perf_event.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165
  1. /*
  2. * Performance events x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10. * Copyright (C) 2009 Google, Inc., Stephane Eranian
  11. *
  12. * For licencing details see kernel-base/COPYING
  13. */
  14. #include <linux/perf_event.h>
  15. #include <linux/capability.h>
  16. #include <linux/notifier.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/kprobes.h>
  19. #include <linux/module.h>
  20. #include <linux/kdebug.h>
  21. #include <linux/sched.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/slab.h>
  24. #include <linux/cpu.h>
  25. #include <linux/bitops.h>
  26. #include <linux/device.h>
  27. #include <asm/apic.h>
  28. #include <asm/stacktrace.h>
  29. #include <asm/nmi.h>
  30. #include <asm/smp.h>
  31. #include <asm/alternative.h>
  32. #include <asm/timer.h>
  33. #include <asm/desc.h>
  34. #include <asm/ldt.h>
  35. #include "perf_event.h"
  36. struct x86_pmu x86_pmu __read_mostly;
  37. DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  38. .enabled = 1,
  39. };
  40. u64 __read_mostly hw_cache_event_ids
  41. [PERF_COUNT_HW_CACHE_MAX]
  42. [PERF_COUNT_HW_CACHE_OP_MAX]
  43. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  44. u64 __read_mostly hw_cache_extra_regs
  45. [PERF_COUNT_HW_CACHE_MAX]
  46. [PERF_COUNT_HW_CACHE_OP_MAX]
  47. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  48. /*
  49. * Propagate event elapsed time into the generic event.
  50. * Can only be executed on the CPU where the event is active.
  51. * Returns the delta events processed.
  52. */
  53. u64 x86_perf_event_update(struct perf_event *event)
  54. {
  55. struct hw_perf_event *hwc = &event->hw;
  56. int shift = 64 - x86_pmu.cntval_bits;
  57. u64 prev_raw_count, new_raw_count;
  58. int idx = hwc->idx;
  59. s64 delta;
  60. if (idx == INTEL_PMC_IDX_FIXED_BTS)
  61. return 0;
  62. /*
  63. * Careful: an NMI might modify the previous event value.
  64. *
  65. * Our tactic to handle this is to first atomically read and
  66. * exchange a new raw count - then add that new-prev delta
  67. * count to the generic event atomically:
  68. */
  69. again:
  70. prev_raw_count = local64_read(&hwc->prev_count);
  71. rdpmcl(hwc->event_base_rdpmc, new_raw_count);
  72. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  73. new_raw_count) != prev_raw_count)
  74. goto again;
  75. /*
  76. * Now we have the new raw value and have updated the prev
  77. * timestamp already. We can now calculate the elapsed delta
  78. * (event-)time and add that to the generic event.
  79. *
  80. * Careful, not all hw sign-extends above the physical width
  81. * of the count.
  82. */
  83. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  84. delta >>= shift;
  85. local64_add(delta, &event->count);
  86. local64_sub(delta, &hwc->period_left);
  87. return new_raw_count;
  88. }
  89. /*
  90. * Find and validate any extra registers to set up.
  91. */
  92. static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
  93. {
  94. struct hw_perf_event_extra *reg;
  95. struct extra_reg *er;
  96. reg = &event->hw.extra_reg;
  97. if (!x86_pmu.extra_regs)
  98. return 0;
  99. for (er = x86_pmu.extra_regs; er->msr; er++) {
  100. if (er->event != (config & er->config_mask))
  101. continue;
  102. if (event->attr.config1 & ~er->valid_mask)
  103. return -EINVAL;
  104. reg->idx = er->idx;
  105. reg->config = event->attr.config1;
  106. reg->reg = er->msr;
  107. break;
  108. }
  109. return 0;
  110. }
  111. static atomic_t active_events;
  112. static DEFINE_MUTEX(pmc_reserve_mutex);
  113. #ifdef CONFIG_X86_LOCAL_APIC
  114. static bool reserve_pmc_hardware(void)
  115. {
  116. int i;
  117. for (i = 0; i < x86_pmu.num_counters; i++) {
  118. if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
  119. goto perfctr_fail;
  120. }
  121. for (i = 0; i < x86_pmu.num_counters; i++) {
  122. if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
  123. goto eventsel_fail;
  124. }
  125. return true;
  126. eventsel_fail:
  127. for (i--; i >= 0; i--)
  128. release_evntsel_nmi(x86_pmu_config_addr(i));
  129. i = x86_pmu.num_counters;
  130. perfctr_fail:
  131. for (i--; i >= 0; i--)
  132. release_perfctr_nmi(x86_pmu_event_addr(i));
  133. return false;
  134. }
  135. static void release_pmc_hardware(void)
  136. {
  137. int i;
  138. for (i = 0; i < x86_pmu.num_counters; i++) {
  139. release_perfctr_nmi(x86_pmu_event_addr(i));
  140. release_evntsel_nmi(x86_pmu_config_addr(i));
  141. }
  142. }
  143. #else
  144. static bool reserve_pmc_hardware(void) { return true; }
  145. static void release_pmc_hardware(void) {}
  146. #endif
  147. static bool check_hw_exists(void)
  148. {
  149. u64 val, val_fail, val_new= ~0;
  150. int i, reg, reg_fail, ret = 0;
  151. int bios_fail = 0;
  152. /*
  153. * Check to see if the BIOS enabled any of the counters, if so
  154. * complain and bail.
  155. */
  156. for (i = 0; i < x86_pmu.num_counters; i++) {
  157. reg = x86_pmu_config_addr(i);
  158. ret = rdmsrl_safe(reg, &val);
  159. if (ret)
  160. goto msr_fail;
  161. if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
  162. bios_fail = 1;
  163. val_fail = val;
  164. reg_fail = reg;
  165. }
  166. }
  167. if (x86_pmu.num_counters_fixed) {
  168. reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  169. ret = rdmsrl_safe(reg, &val);
  170. if (ret)
  171. goto msr_fail;
  172. for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
  173. if (val & (0x03 << i*4)) {
  174. bios_fail = 1;
  175. val_fail = val;
  176. reg_fail = reg;
  177. }
  178. }
  179. }
  180. /*
  181. * Read the current value, change it and read it back to see if it
  182. * matches, this is needed to detect certain hardware emulators
  183. * (qemu/kvm) that don't trap on the MSR access and always return 0s.
  184. */
  185. reg = x86_pmu_event_addr(0);
  186. if (rdmsrl_safe(reg, &val))
  187. goto msr_fail;
  188. val ^= 0xffffUL;
  189. ret = wrmsrl_safe(reg, val);
  190. ret |= rdmsrl_safe(reg, &val_new);
  191. if (ret || val != val_new)
  192. goto msr_fail;
  193. /*
  194. * We still allow the PMU driver to operate:
  195. */
  196. if (bios_fail) {
  197. printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
  198. printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
  199. }
  200. return true;
  201. msr_fail:
  202. printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
  203. printk(KERN_ERR "Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new);
  204. return false;
  205. }
  206. static void hw_perf_event_destroy(struct perf_event *event)
  207. {
  208. if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
  209. release_pmc_hardware();
  210. release_ds_buffers();
  211. mutex_unlock(&pmc_reserve_mutex);
  212. }
  213. }
  214. static inline int x86_pmu_initialized(void)
  215. {
  216. return x86_pmu.handle_irq != NULL;
  217. }
  218. static inline int
  219. set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
  220. {
  221. struct perf_event_attr *attr = &event->attr;
  222. unsigned int cache_type, cache_op, cache_result;
  223. u64 config, val;
  224. config = attr->config;
  225. cache_type = (config >> 0) & 0xff;
  226. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  227. return -EINVAL;
  228. cache_op = (config >> 8) & 0xff;
  229. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  230. return -EINVAL;
  231. cache_result = (config >> 16) & 0xff;
  232. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  233. return -EINVAL;
  234. val = hw_cache_event_ids[cache_type][cache_op][cache_result];
  235. if (val == 0)
  236. return -ENOENT;
  237. if (val == -1)
  238. return -EINVAL;
  239. hwc->config |= val;
  240. attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
  241. return x86_pmu_extra_regs(val, event);
  242. }
  243. int x86_setup_perfctr(struct perf_event *event)
  244. {
  245. struct perf_event_attr *attr = &event->attr;
  246. struct hw_perf_event *hwc = &event->hw;
  247. u64 config;
  248. if (!is_sampling_event(event)) {
  249. hwc->sample_period = x86_pmu.max_period;
  250. hwc->last_period = hwc->sample_period;
  251. local64_set(&hwc->period_left, hwc->sample_period);
  252. } else {
  253. /*
  254. * If we have a PMU initialized but no APIC
  255. * interrupts, we cannot sample hardware
  256. * events (user-space has to fall back and
  257. * sample via a hrtimer based software event):
  258. */
  259. if (!x86_pmu.apic)
  260. return -EOPNOTSUPP;
  261. }
  262. if (attr->type == PERF_TYPE_RAW)
  263. return x86_pmu_extra_regs(event->attr.config, event);
  264. if (attr->type == PERF_TYPE_HW_CACHE)
  265. return set_ext_hw_attr(hwc, event);
  266. if (attr->config >= x86_pmu.max_events)
  267. return -EINVAL;
  268. /*
  269. * The generic map:
  270. */
  271. config = x86_pmu.event_map(attr->config);
  272. if (config == 0)
  273. return -ENOENT;
  274. if (config == -1LL)
  275. return -EINVAL;
  276. /*
  277. * Branch tracing:
  278. */
  279. if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
  280. !attr->freq && hwc->sample_period == 1) {
  281. /* BTS is not supported by this architecture. */
  282. if (!x86_pmu.bts_active)
  283. return -EOPNOTSUPP;
  284. /* BTS is currently only allowed for user-mode. */
  285. if (!attr->exclude_kernel)
  286. return -EOPNOTSUPP;
  287. }
  288. hwc->config |= config;
  289. return 0;
  290. }
  291. /*
  292. * check that branch_sample_type is compatible with
  293. * settings needed for precise_ip > 1 which implies
  294. * using the LBR to capture ALL taken branches at the
  295. * priv levels of the measurement
  296. */
  297. static inline int precise_br_compat(struct perf_event *event)
  298. {
  299. u64 m = event->attr.branch_sample_type;
  300. u64 b = 0;
  301. /* must capture all branches */
  302. if (!(m & PERF_SAMPLE_BRANCH_ANY))
  303. return 0;
  304. m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
  305. if (!event->attr.exclude_user)
  306. b |= PERF_SAMPLE_BRANCH_USER;
  307. if (!event->attr.exclude_kernel)
  308. b |= PERF_SAMPLE_BRANCH_KERNEL;
  309. /*
  310. * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
  311. */
  312. return m == b;
  313. }
  314. int x86_pmu_hw_config(struct perf_event *event)
  315. {
  316. if (event->attr.precise_ip) {
  317. int precise = 0;
  318. /* Support for constant skid */
  319. if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
  320. precise++;
  321. /* Support for IP fixup */
  322. if (x86_pmu.lbr_nr)
  323. precise++;
  324. }
  325. if (event->attr.precise_ip > precise)
  326. return -EOPNOTSUPP;
  327. /*
  328. * check that PEBS LBR correction does not conflict with
  329. * whatever the user is asking with attr->branch_sample_type
  330. */
  331. if (event->attr.precise_ip > 1 &&
  332. x86_pmu.intel_cap.pebs_format < 2) {
  333. u64 *br_type = &event->attr.branch_sample_type;
  334. if (has_branch_stack(event)) {
  335. if (!precise_br_compat(event))
  336. return -EOPNOTSUPP;
  337. /* branch_sample_type is compatible */
  338. } else {
  339. /*
  340. * user did not specify branch_sample_type
  341. *
  342. * For PEBS fixups, we capture all
  343. * the branches at the priv level of the
  344. * event.
  345. */
  346. *br_type = PERF_SAMPLE_BRANCH_ANY;
  347. if (!event->attr.exclude_user)
  348. *br_type |= PERF_SAMPLE_BRANCH_USER;
  349. if (!event->attr.exclude_kernel)
  350. *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
  351. }
  352. }
  353. }
  354. /*
  355. * Generate PMC IRQs:
  356. * (keep 'enabled' bit clear for now)
  357. */
  358. event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
  359. /*
  360. * Count user and OS events unless requested not to
  361. */
  362. if (!event->attr.exclude_user)
  363. event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
  364. if (!event->attr.exclude_kernel)
  365. event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
  366. if (event->attr.type == PERF_TYPE_RAW)
  367. event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
  368. return x86_setup_perfctr(event);
  369. }
  370. /*
  371. * Setup the hardware configuration for a given attr_type
  372. */
  373. static int __x86_pmu_event_init(struct perf_event *event)
  374. {
  375. int err;
  376. if (!x86_pmu_initialized())
  377. return -ENODEV;
  378. err = 0;
  379. if (!atomic_inc_not_zero(&active_events)) {
  380. mutex_lock(&pmc_reserve_mutex);
  381. if (atomic_read(&active_events) == 0) {
  382. if (!reserve_pmc_hardware())
  383. err = -EBUSY;
  384. else
  385. reserve_ds_buffers();
  386. }
  387. if (!err)
  388. atomic_inc(&active_events);
  389. mutex_unlock(&pmc_reserve_mutex);
  390. }
  391. if (err)
  392. return err;
  393. event->destroy = hw_perf_event_destroy;
  394. event->hw.idx = -1;
  395. event->hw.last_cpu = -1;
  396. event->hw.last_tag = ~0ULL;
  397. /* mark unused */
  398. event->hw.extra_reg.idx = EXTRA_REG_NONE;
  399. event->hw.branch_reg.idx = EXTRA_REG_NONE;
  400. return x86_pmu.hw_config(event);
  401. }
  402. void x86_pmu_disable_all(void)
  403. {
  404. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  405. int idx;
  406. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  407. u64 val;
  408. if (!test_bit(idx, cpuc->active_mask))
  409. continue;
  410. rdmsrl(x86_pmu_config_addr(idx), val);
  411. if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
  412. continue;
  413. val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  414. wrmsrl(x86_pmu_config_addr(idx), val);
  415. }
  416. }
  417. static void x86_pmu_disable(struct pmu *pmu)
  418. {
  419. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  420. if (!x86_pmu_initialized())
  421. return;
  422. if (!cpuc->enabled)
  423. return;
  424. cpuc->n_added = 0;
  425. cpuc->enabled = 0;
  426. barrier();
  427. x86_pmu.disable_all();
  428. }
  429. void x86_pmu_enable_all(int added)
  430. {
  431. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  432. int idx;
  433. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  434. struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
  435. if (!test_bit(idx, cpuc->active_mask))
  436. continue;
  437. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  438. }
  439. }
  440. static struct pmu pmu;
  441. static inline int is_x86_event(struct perf_event *event)
  442. {
  443. return event->pmu == &pmu;
  444. }
  445. /*
  446. * Event scheduler state:
  447. *
  448. * Assign events iterating over all events and counters, beginning
  449. * with events with least weights first. Keep the current iterator
  450. * state in struct sched_state.
  451. */
  452. struct sched_state {
  453. int weight;
  454. int event; /* event index */
  455. int counter; /* counter index */
  456. int unassigned; /* number of events to be assigned left */
  457. unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  458. };
  459. /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
  460. #define SCHED_STATES_MAX 2
  461. struct perf_sched {
  462. int max_weight;
  463. int max_events;
  464. struct perf_event **events;
  465. struct sched_state state;
  466. int saved_states;
  467. struct sched_state saved[SCHED_STATES_MAX];
  468. };
  469. /*
  470. * Initialize interator that runs through all events and counters.
  471. */
  472. static void perf_sched_init(struct perf_sched *sched, struct perf_event **events,
  473. int num, int wmin, int wmax)
  474. {
  475. int idx;
  476. memset(sched, 0, sizeof(*sched));
  477. sched->max_events = num;
  478. sched->max_weight = wmax;
  479. sched->events = events;
  480. for (idx = 0; idx < num; idx++) {
  481. if (events[idx]->hw.constraint->weight == wmin)
  482. break;
  483. }
  484. sched->state.event = idx; /* start with min weight */
  485. sched->state.weight = wmin;
  486. sched->state.unassigned = num;
  487. }
  488. static void perf_sched_save_state(struct perf_sched *sched)
  489. {
  490. if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
  491. return;
  492. sched->saved[sched->saved_states] = sched->state;
  493. sched->saved_states++;
  494. }
  495. static bool perf_sched_restore_state(struct perf_sched *sched)
  496. {
  497. if (!sched->saved_states)
  498. return false;
  499. sched->saved_states--;
  500. sched->state = sched->saved[sched->saved_states];
  501. /* continue with next counter: */
  502. clear_bit(sched->state.counter++, sched->state.used);
  503. return true;
  504. }
  505. /*
  506. * Select a counter for the current event to schedule. Return true on
  507. * success.
  508. */
  509. static bool __perf_sched_find_counter(struct perf_sched *sched)
  510. {
  511. struct event_constraint *c;
  512. int idx;
  513. if (!sched->state.unassigned)
  514. return false;
  515. if (sched->state.event >= sched->max_events)
  516. return false;
  517. c = sched->events[sched->state.event]->hw.constraint;
  518. /* Prefer fixed purpose counters */
  519. if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
  520. idx = INTEL_PMC_IDX_FIXED;
  521. for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
  522. if (!__test_and_set_bit(idx, sched->state.used))
  523. goto done;
  524. }
  525. }
  526. /* Grab the first unused counter starting with idx */
  527. idx = sched->state.counter;
  528. for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
  529. if (!__test_and_set_bit(idx, sched->state.used))
  530. goto done;
  531. }
  532. return false;
  533. done:
  534. sched->state.counter = idx;
  535. if (c->overlap)
  536. perf_sched_save_state(sched);
  537. return true;
  538. }
  539. static bool perf_sched_find_counter(struct perf_sched *sched)
  540. {
  541. while (!__perf_sched_find_counter(sched)) {
  542. if (!perf_sched_restore_state(sched))
  543. return false;
  544. }
  545. return true;
  546. }
  547. /*
  548. * Go through all unassigned events and find the next one to schedule.
  549. * Take events with the least weight first. Return true on success.
  550. */
  551. static bool perf_sched_next_event(struct perf_sched *sched)
  552. {
  553. struct event_constraint *c;
  554. if (!sched->state.unassigned || !--sched->state.unassigned)
  555. return false;
  556. do {
  557. /* next event */
  558. sched->state.event++;
  559. if (sched->state.event >= sched->max_events) {
  560. /* next weight */
  561. sched->state.event = 0;
  562. sched->state.weight++;
  563. if (sched->state.weight > sched->max_weight)
  564. return false;
  565. }
  566. c = sched->events[sched->state.event]->hw.constraint;
  567. } while (c->weight != sched->state.weight);
  568. sched->state.counter = 0; /* start with first counter */
  569. return true;
  570. }
  571. /*
  572. * Assign a counter for each event.
  573. */
  574. int perf_assign_events(struct perf_event **events, int n,
  575. int wmin, int wmax, int *assign)
  576. {
  577. struct perf_sched sched;
  578. perf_sched_init(&sched, events, n, wmin, wmax);
  579. do {
  580. if (!perf_sched_find_counter(&sched))
  581. break; /* failed */
  582. if (assign)
  583. assign[sched.state.event] = sched.state.counter;
  584. } while (perf_sched_next_event(&sched));
  585. return sched.state.unassigned;
  586. }
  587. int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
  588. {
  589. struct event_constraint *c;
  590. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  591. struct perf_event *e;
  592. int i, wmin, wmax, num = 0;
  593. struct hw_perf_event *hwc;
  594. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  595. for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
  596. hwc = &cpuc->event_list[i]->hw;
  597. c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
  598. hwc->constraint = c;
  599. wmin = min(wmin, c->weight);
  600. wmax = max(wmax, c->weight);
  601. }
  602. /*
  603. * fastpath, try to reuse previous register
  604. */
  605. for (i = 0; i < n; i++) {
  606. hwc = &cpuc->event_list[i]->hw;
  607. c = hwc->constraint;
  608. /* never assigned */
  609. if (hwc->idx == -1)
  610. break;
  611. /* constraint still honored */
  612. if (!test_bit(hwc->idx, c->idxmsk))
  613. break;
  614. /* not already used */
  615. if (test_bit(hwc->idx, used_mask))
  616. break;
  617. __set_bit(hwc->idx, used_mask);
  618. if (assign)
  619. assign[i] = hwc->idx;
  620. }
  621. /* slow path */
  622. if (i != n)
  623. num = perf_assign_events(cpuc->event_list, n, wmin,
  624. wmax, assign);
  625. /*
  626. * Mark the event as committed, so we do not put_constraint()
  627. * in case new events are added and fail scheduling.
  628. */
  629. if (!num && assign) {
  630. for (i = 0; i < n; i++) {
  631. e = cpuc->event_list[i];
  632. e->hw.flags |= PERF_X86_EVENT_COMMITTED;
  633. }
  634. }
  635. /*
  636. * scheduling failed or is just a simulation,
  637. * free resources if necessary
  638. */
  639. if (!assign || num) {
  640. for (i = 0; i < n; i++) {
  641. e = cpuc->event_list[i];
  642. /*
  643. * do not put_constraint() on comitted events,
  644. * because they are good to go
  645. */
  646. if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
  647. continue;
  648. if (x86_pmu.put_event_constraints)
  649. x86_pmu.put_event_constraints(cpuc, e);
  650. }
  651. }
  652. return num ? -EINVAL : 0;
  653. }
  654. /*
  655. * dogrp: true if must collect siblings events (group)
  656. * returns total number of events and error code
  657. */
  658. static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
  659. {
  660. struct perf_event *event;
  661. int n, max_count;
  662. max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
  663. /* current number of events already accepted */
  664. n = cpuc->n_events;
  665. if (is_x86_event(leader)) {
  666. if (n >= max_count)
  667. return -EINVAL;
  668. cpuc->event_list[n] = leader;
  669. n++;
  670. }
  671. if (!dogrp)
  672. return n;
  673. list_for_each_entry(event, &leader->sibling_list, group_entry) {
  674. if (!is_x86_event(event) ||
  675. event->state <= PERF_EVENT_STATE_OFF)
  676. continue;
  677. if (n >= max_count)
  678. return -EINVAL;
  679. cpuc->event_list[n] = event;
  680. n++;
  681. }
  682. return n;
  683. }
  684. static inline void x86_assign_hw_event(struct perf_event *event,
  685. struct cpu_hw_events *cpuc, int i)
  686. {
  687. struct hw_perf_event *hwc = &event->hw;
  688. hwc->idx = cpuc->assign[i];
  689. hwc->last_cpu = smp_processor_id();
  690. hwc->last_tag = ++cpuc->tags[i];
  691. if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
  692. hwc->config_base = 0;
  693. hwc->event_base = 0;
  694. } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
  695. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  696. hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
  697. hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
  698. } else {
  699. hwc->config_base = x86_pmu_config_addr(hwc->idx);
  700. hwc->event_base = x86_pmu_event_addr(hwc->idx);
  701. hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
  702. }
  703. }
  704. static inline int match_prev_assignment(struct hw_perf_event *hwc,
  705. struct cpu_hw_events *cpuc,
  706. int i)
  707. {
  708. return hwc->idx == cpuc->assign[i] &&
  709. hwc->last_cpu == smp_processor_id() &&
  710. hwc->last_tag == cpuc->tags[i];
  711. }
  712. static void x86_pmu_start(struct perf_event *event, int flags);
  713. static void x86_pmu_enable(struct pmu *pmu)
  714. {
  715. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  716. struct perf_event *event;
  717. struct hw_perf_event *hwc;
  718. int i, added = cpuc->n_added;
  719. if (!x86_pmu_initialized())
  720. return;
  721. if (cpuc->enabled)
  722. return;
  723. if (cpuc->n_added) {
  724. int n_running = cpuc->n_events - cpuc->n_added;
  725. /*
  726. * apply assignment obtained either from
  727. * hw_perf_group_sched_in() or x86_pmu_enable()
  728. *
  729. * step1: save events moving to new counters
  730. */
  731. for (i = 0; i < n_running; i++) {
  732. event = cpuc->event_list[i];
  733. hwc = &event->hw;
  734. /*
  735. * we can avoid reprogramming counter if:
  736. * - assigned same counter as last time
  737. * - running on same CPU as last time
  738. * - no other event has used the counter since
  739. */
  740. if (hwc->idx == -1 ||
  741. match_prev_assignment(hwc, cpuc, i))
  742. continue;
  743. /*
  744. * Ensure we don't accidentally enable a stopped
  745. * counter simply because we rescheduled.
  746. */
  747. if (hwc->state & PERF_HES_STOPPED)
  748. hwc->state |= PERF_HES_ARCH;
  749. x86_pmu_stop(event, PERF_EF_UPDATE);
  750. }
  751. /*
  752. * step2: reprogram moved events into new counters
  753. */
  754. for (i = 0; i < cpuc->n_events; i++) {
  755. event = cpuc->event_list[i];
  756. hwc = &event->hw;
  757. if (!match_prev_assignment(hwc, cpuc, i))
  758. x86_assign_hw_event(event, cpuc, i);
  759. else if (i < n_running)
  760. continue;
  761. if (hwc->state & PERF_HES_ARCH)
  762. continue;
  763. x86_pmu_start(event, PERF_EF_RELOAD);
  764. }
  765. cpuc->n_added = 0;
  766. perf_events_lapic_init();
  767. }
  768. cpuc->enabled = 1;
  769. barrier();
  770. x86_pmu.enable_all(added);
  771. }
  772. static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
  773. /*
  774. * Set the next IRQ period, based on the hwc->period_left value.
  775. * To be called with the event disabled in hw:
  776. */
  777. int x86_perf_event_set_period(struct perf_event *event)
  778. {
  779. struct hw_perf_event *hwc = &event->hw;
  780. s64 left = local64_read(&hwc->period_left);
  781. s64 period = hwc->sample_period;
  782. int ret = 0, idx = hwc->idx;
  783. if (idx == INTEL_PMC_IDX_FIXED_BTS)
  784. return 0;
  785. /*
  786. * If we are way outside a reasonable range then just skip forward:
  787. */
  788. if (unlikely(left <= -period)) {
  789. left = period;
  790. local64_set(&hwc->period_left, left);
  791. hwc->last_period = period;
  792. ret = 1;
  793. }
  794. if (unlikely(left <= 0)) {
  795. left += period;
  796. local64_set(&hwc->period_left, left);
  797. hwc->last_period = period;
  798. ret = 1;
  799. }
  800. /*
  801. * Quirk: certain CPUs dont like it if just 1 hw_event is left:
  802. */
  803. if (unlikely(left < 2))
  804. left = 2;
  805. if (left > x86_pmu.max_period)
  806. left = x86_pmu.max_period;
  807. per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
  808. /*
  809. * The hw event starts counting from this event offset,
  810. * mark it to be able to extra future deltas:
  811. */
  812. local64_set(&hwc->prev_count, (u64)-left);
  813. wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
  814. /*
  815. * Due to erratum on certan cpu we need
  816. * a second write to be sure the register
  817. * is updated properly
  818. */
  819. if (x86_pmu.perfctr_second_write) {
  820. wrmsrl(hwc->event_base,
  821. (u64)(-left) & x86_pmu.cntval_mask);
  822. }
  823. perf_event_update_userpage(event);
  824. return ret;
  825. }
  826. void x86_pmu_enable_event(struct perf_event *event)
  827. {
  828. if (__this_cpu_read(cpu_hw_events.enabled))
  829. __x86_pmu_enable_event(&event->hw,
  830. ARCH_PERFMON_EVENTSEL_ENABLE);
  831. }
  832. /*
  833. * Add a single event to the PMU.
  834. *
  835. * The event is added to the group of enabled events
  836. * but only if it can be scehduled with existing events.
  837. */
  838. static int x86_pmu_add(struct perf_event *event, int flags)
  839. {
  840. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  841. struct hw_perf_event *hwc;
  842. int assign[X86_PMC_IDX_MAX];
  843. int n, n0, ret;
  844. hwc = &event->hw;
  845. perf_pmu_disable(event->pmu);
  846. n0 = cpuc->n_events;
  847. ret = n = collect_events(cpuc, event, false);
  848. if (ret < 0)
  849. goto out;
  850. hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
  851. if (!(flags & PERF_EF_START))
  852. hwc->state |= PERF_HES_ARCH;
  853. /*
  854. * If group events scheduling transaction was started,
  855. * skip the schedulability test here, it will be performed
  856. * at commit time (->commit_txn) as a whole.
  857. */
  858. if (cpuc->group_flag & PERF_EVENT_TXN)
  859. goto done_collect;
  860. ret = x86_pmu.schedule_events(cpuc, n, assign);
  861. if (ret)
  862. goto out;
  863. /*
  864. * copy new assignment, now we know it is possible
  865. * will be used by hw_perf_enable()
  866. */
  867. memcpy(cpuc->assign, assign, n*sizeof(int));
  868. done_collect:
  869. /*
  870. * Commit the collect_events() state. See x86_pmu_del() and
  871. * x86_pmu_*_txn().
  872. */
  873. cpuc->n_events = n;
  874. cpuc->n_added += n - n0;
  875. cpuc->n_txn += n - n0;
  876. ret = 0;
  877. out:
  878. perf_pmu_enable(event->pmu);
  879. return ret;
  880. }
  881. static void x86_pmu_start(struct perf_event *event, int flags)
  882. {
  883. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  884. int idx = event->hw.idx;
  885. if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
  886. return;
  887. if (WARN_ON_ONCE(idx == -1))
  888. return;
  889. if (flags & PERF_EF_RELOAD) {
  890. WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
  891. x86_perf_event_set_period(event);
  892. }
  893. event->hw.state = 0;
  894. cpuc->events[idx] = event;
  895. __set_bit(idx, cpuc->active_mask);
  896. __set_bit(idx, cpuc->running);
  897. x86_pmu.enable(event);
  898. perf_event_update_userpage(event);
  899. }
  900. void perf_event_print_debug(void)
  901. {
  902. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  903. u64 pebs;
  904. struct cpu_hw_events *cpuc;
  905. unsigned long flags;
  906. int cpu, idx;
  907. if (!x86_pmu.num_counters)
  908. return;
  909. local_irq_save(flags);
  910. cpu = smp_processor_id();
  911. cpuc = &per_cpu(cpu_hw_events, cpu);
  912. if (x86_pmu.version >= 2) {
  913. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  914. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  915. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  916. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  917. rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
  918. pr_info("\n");
  919. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  920. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  921. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  922. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  923. pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
  924. }
  925. pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
  926. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  927. rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
  928. rdmsrl(x86_pmu_event_addr(idx), pmc_count);
  929. prev_left = per_cpu(pmc_prev_left[idx], cpu);
  930. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  931. cpu, idx, pmc_ctrl);
  932. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  933. cpu, idx, pmc_count);
  934. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  935. cpu, idx, prev_left);
  936. }
  937. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
  938. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  939. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  940. cpu, idx, pmc_count);
  941. }
  942. local_irq_restore(flags);
  943. }
  944. void x86_pmu_stop(struct perf_event *event, int flags)
  945. {
  946. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  947. struct hw_perf_event *hwc = &event->hw;
  948. if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
  949. x86_pmu.disable(event);
  950. cpuc->events[hwc->idx] = NULL;
  951. WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
  952. hwc->state |= PERF_HES_STOPPED;
  953. }
  954. if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
  955. /*
  956. * Drain the remaining delta count out of a event
  957. * that we are disabling:
  958. */
  959. x86_perf_event_update(event);
  960. hwc->state |= PERF_HES_UPTODATE;
  961. }
  962. }
  963. static void x86_pmu_del(struct perf_event *event, int flags)
  964. {
  965. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  966. int i;
  967. /*
  968. * event is descheduled
  969. */
  970. event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
  971. /*
  972. * If we're called during a txn, we don't need to do anything.
  973. * The events never got scheduled and ->cancel_txn will truncate
  974. * the event_list.
  975. *
  976. * XXX assumes any ->del() called during a TXN will only be on
  977. * an event added during that same TXN.
  978. */
  979. if (cpuc->group_flag & PERF_EVENT_TXN)
  980. return;
  981. /*
  982. * Not a TXN, therefore cleanup properly.
  983. */
  984. x86_pmu_stop(event, PERF_EF_UPDATE);
  985. for (i = 0; i < cpuc->n_events; i++) {
  986. if (event == cpuc->event_list[i])
  987. break;
  988. }
  989. if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
  990. return;
  991. /* If we have a newly added event; make sure to decrease n_added. */
  992. if (i >= cpuc->n_events - cpuc->n_added)
  993. --cpuc->n_added;
  994. if (x86_pmu.put_event_constraints)
  995. x86_pmu.put_event_constraints(cpuc, event);
  996. /* Delete the array entry. */
  997. while (++i < cpuc->n_events)
  998. cpuc->event_list[i-1] = cpuc->event_list[i];
  999. --cpuc->n_events;
  1000. perf_event_update_userpage(event);
  1001. }
  1002. int x86_pmu_handle_irq(struct pt_regs *regs)
  1003. {
  1004. struct perf_sample_data data;
  1005. struct cpu_hw_events *cpuc;
  1006. struct perf_event *event;
  1007. int idx, handled = 0;
  1008. u64 val;
  1009. cpuc = &__get_cpu_var(cpu_hw_events);
  1010. /*
  1011. * Some chipsets need to unmask the LVTPC in a particular spot
  1012. * inside the nmi handler. As a result, the unmasking was pushed
  1013. * into all the nmi handlers.
  1014. *
  1015. * This generic handler doesn't seem to have any issues where the
  1016. * unmasking occurs so it was left at the top.
  1017. */
  1018. apic_write(APIC_LVTPC, APIC_DM_NMI);
  1019. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  1020. if (!test_bit(idx, cpuc->active_mask)) {
  1021. /*
  1022. * Though we deactivated the counter some cpus
  1023. * might still deliver spurious interrupts still
  1024. * in flight. Catch them:
  1025. */
  1026. if (__test_and_clear_bit(idx, cpuc->running))
  1027. handled++;
  1028. continue;
  1029. }
  1030. event = cpuc->events[idx];
  1031. val = x86_perf_event_update(event);
  1032. if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
  1033. continue;
  1034. /*
  1035. * event overflow
  1036. */
  1037. handled++;
  1038. perf_sample_data_init(&data, 0, event->hw.last_period);
  1039. if (!x86_perf_event_set_period(event))
  1040. continue;
  1041. if (perf_event_overflow(event, &data, regs))
  1042. x86_pmu_stop(event, 0);
  1043. }
  1044. if (handled)
  1045. inc_irq_stat(apic_perf_irqs);
  1046. return handled;
  1047. }
  1048. void perf_events_lapic_init(void)
  1049. {
  1050. if (!x86_pmu.apic || !x86_pmu_initialized())
  1051. return;
  1052. /*
  1053. * Always use NMI for PMU
  1054. */
  1055. apic_write(APIC_LVTPC, APIC_DM_NMI);
  1056. }
  1057. static int __kprobes
  1058. perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
  1059. {
  1060. u64 start_clock;
  1061. u64 finish_clock;
  1062. int ret;
  1063. if (!atomic_read(&active_events))
  1064. return NMI_DONE;
  1065. start_clock = sched_clock();
  1066. ret = x86_pmu.handle_irq(regs);
  1067. finish_clock = sched_clock();
  1068. perf_sample_event_took(finish_clock - start_clock);
  1069. return ret;
  1070. }
  1071. struct event_constraint emptyconstraint;
  1072. struct event_constraint unconstrained;
  1073. static int
  1074. x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
  1075. {
  1076. unsigned int cpu = (long)hcpu;
  1077. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1078. int ret = NOTIFY_OK;
  1079. switch (action & ~CPU_TASKS_FROZEN) {
  1080. case CPU_UP_PREPARE:
  1081. cpuc->kfree_on_online = NULL;
  1082. if (x86_pmu.cpu_prepare)
  1083. ret = x86_pmu.cpu_prepare(cpu);
  1084. break;
  1085. case CPU_STARTING:
  1086. if (x86_pmu.attr_rdpmc)
  1087. set_in_cr4(X86_CR4_PCE);
  1088. if (x86_pmu.cpu_starting)
  1089. x86_pmu.cpu_starting(cpu);
  1090. break;
  1091. case CPU_ONLINE:
  1092. kfree(cpuc->kfree_on_online);
  1093. break;
  1094. case CPU_DYING:
  1095. if (x86_pmu.cpu_dying)
  1096. x86_pmu.cpu_dying(cpu);
  1097. break;
  1098. case CPU_UP_CANCELED:
  1099. case CPU_DEAD:
  1100. if (x86_pmu.cpu_dead)
  1101. x86_pmu.cpu_dead(cpu);
  1102. break;
  1103. default:
  1104. break;
  1105. }
  1106. return ret;
  1107. }
  1108. static void __init pmu_check_apic(void)
  1109. {
  1110. if (cpu_has_apic)
  1111. return;
  1112. x86_pmu.apic = 0;
  1113. pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
  1114. pr_info("no hardware sampling interrupt available.\n");
  1115. }
  1116. static struct attribute_group x86_pmu_format_group = {
  1117. .name = "format",
  1118. .attrs = NULL,
  1119. };
  1120. /*
  1121. * Remove all undefined events (x86_pmu.event_map(id) == 0)
  1122. * out of events_attr attributes.
  1123. */
  1124. static void __init filter_events(struct attribute **attrs)
  1125. {
  1126. struct device_attribute *d;
  1127. struct perf_pmu_events_attr *pmu_attr;
  1128. int i, j;
  1129. for (i = 0; attrs[i]; i++) {
  1130. d = (struct device_attribute *)attrs[i];
  1131. pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
  1132. /* str trumps id */
  1133. if (pmu_attr->event_str)
  1134. continue;
  1135. if (x86_pmu.event_map(i))
  1136. continue;
  1137. for (j = i; attrs[j]; j++)
  1138. attrs[j] = attrs[j + 1];
  1139. /* Check the shifted attr. */
  1140. i--;
  1141. }
  1142. }
  1143. /* Merge two pointer arrays */
  1144. static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
  1145. {
  1146. struct attribute **new;
  1147. int j, i;
  1148. for (j = 0; a[j]; j++)
  1149. ;
  1150. for (i = 0; b[i]; i++)
  1151. j++;
  1152. j++;
  1153. new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
  1154. if (!new)
  1155. return NULL;
  1156. j = 0;
  1157. for (i = 0; a[i]; i++)
  1158. new[j++] = a[i];
  1159. for (i = 0; b[i]; i++)
  1160. new[j++] = b[i];
  1161. new[j] = NULL;
  1162. return new;
  1163. }
  1164. ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
  1165. char *page)
  1166. {
  1167. struct perf_pmu_events_attr *pmu_attr = \
  1168. container_of(attr, struct perf_pmu_events_attr, attr);
  1169. u64 config = x86_pmu.event_map(pmu_attr->id);
  1170. /* string trumps id */
  1171. if (pmu_attr->event_str)
  1172. return sprintf(page, "%s", pmu_attr->event_str);
  1173. return x86_pmu.events_sysfs_show(page, config);
  1174. }
  1175. EVENT_ATTR(cpu-cycles, CPU_CYCLES );
  1176. EVENT_ATTR(instructions, INSTRUCTIONS );
  1177. EVENT_ATTR(cache-references, CACHE_REFERENCES );
  1178. EVENT_ATTR(cache-misses, CACHE_MISSES );
  1179. EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
  1180. EVENT_ATTR(branch-misses, BRANCH_MISSES );
  1181. EVENT_ATTR(bus-cycles, BUS_CYCLES );
  1182. EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
  1183. EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
  1184. EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
  1185. static struct attribute *empty_attrs;
  1186. static struct attribute *events_attr[] = {
  1187. EVENT_PTR(CPU_CYCLES),
  1188. EVENT_PTR(INSTRUCTIONS),
  1189. EVENT_PTR(CACHE_REFERENCES),
  1190. EVENT_PTR(CACHE_MISSES),
  1191. EVENT_PTR(BRANCH_INSTRUCTIONS),
  1192. EVENT_PTR(BRANCH_MISSES),
  1193. EVENT_PTR(BUS_CYCLES),
  1194. EVENT_PTR(STALLED_CYCLES_FRONTEND),
  1195. EVENT_PTR(STALLED_CYCLES_BACKEND),
  1196. EVENT_PTR(REF_CPU_CYCLES),
  1197. NULL,
  1198. };
  1199. static struct attribute_group x86_pmu_events_group = {
  1200. .name = "events",
  1201. .attrs = events_attr,
  1202. };
  1203. ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
  1204. {
  1205. u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
  1206. u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
  1207. bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
  1208. bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
  1209. bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
  1210. bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
  1211. ssize_t ret;
  1212. /*
  1213. * We have whole page size to spend and just little data
  1214. * to write, so we can safely use sprintf.
  1215. */
  1216. ret = sprintf(page, "event=0x%02llx", event);
  1217. if (umask)
  1218. ret += sprintf(page + ret, ",umask=0x%02llx", umask);
  1219. if (edge)
  1220. ret += sprintf(page + ret, ",edge");
  1221. if (pc)
  1222. ret += sprintf(page + ret, ",pc");
  1223. if (any)
  1224. ret += sprintf(page + ret, ",any");
  1225. if (inv)
  1226. ret += sprintf(page + ret, ",inv");
  1227. if (cmask)
  1228. ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
  1229. ret += sprintf(page + ret, "\n");
  1230. return ret;
  1231. }
  1232. static int __init init_hw_perf_events(void)
  1233. {
  1234. struct x86_pmu_quirk *quirk;
  1235. int err;
  1236. pr_info("Performance Events: ");
  1237. switch (boot_cpu_data.x86_vendor) {
  1238. case X86_VENDOR_INTEL:
  1239. err = intel_pmu_init();
  1240. break;
  1241. case X86_VENDOR_AMD:
  1242. err = amd_pmu_init();
  1243. break;
  1244. default:
  1245. err = -ENOTSUPP;
  1246. }
  1247. if (err != 0) {
  1248. pr_cont("no PMU driver, software events only.\n");
  1249. return 0;
  1250. }
  1251. pmu_check_apic();
  1252. /* sanity check that the hardware exists or is emulated */
  1253. if (!check_hw_exists())
  1254. return 0;
  1255. pr_cont("%s PMU driver.\n", x86_pmu.name);
  1256. x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
  1257. for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
  1258. quirk->func();
  1259. if (!x86_pmu.intel_ctrl)
  1260. x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
  1261. perf_events_lapic_init();
  1262. register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
  1263. unconstrained = (struct event_constraint)
  1264. __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
  1265. 0, x86_pmu.num_counters, 0, 0);
  1266. x86_pmu_format_group.attrs = x86_pmu.format_attrs;
  1267. if (x86_pmu.event_attrs)
  1268. x86_pmu_events_group.attrs = x86_pmu.event_attrs;
  1269. if (!x86_pmu.events_sysfs_show)
  1270. x86_pmu_events_group.attrs = &empty_attrs;
  1271. else
  1272. filter_events(x86_pmu_events_group.attrs);
  1273. if (x86_pmu.cpu_events) {
  1274. struct attribute **tmp;
  1275. tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
  1276. if (!WARN_ON(!tmp))
  1277. x86_pmu_events_group.attrs = tmp;
  1278. }
  1279. pr_info("... version: %d\n", x86_pmu.version);
  1280. pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
  1281. pr_info("... generic registers: %d\n", x86_pmu.num_counters);
  1282. pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
  1283. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  1284. pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
  1285. pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
  1286. perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
  1287. perf_cpu_notifier(x86_pmu_notifier);
  1288. return 0;
  1289. }
  1290. early_initcall(init_hw_perf_events);
  1291. static inline void x86_pmu_read(struct perf_event *event)
  1292. {
  1293. x86_perf_event_update(event);
  1294. }
  1295. /*
  1296. * Start group events scheduling transaction
  1297. * Set the flag to make pmu::enable() not perform the
  1298. * schedulability test, it will be performed at commit time
  1299. */
  1300. static void x86_pmu_start_txn(struct pmu *pmu)
  1301. {
  1302. perf_pmu_disable(pmu);
  1303. __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
  1304. __this_cpu_write(cpu_hw_events.n_txn, 0);
  1305. }
  1306. /*
  1307. * Stop group events scheduling transaction
  1308. * Clear the flag and pmu::enable() will perform the
  1309. * schedulability test.
  1310. */
  1311. static void x86_pmu_cancel_txn(struct pmu *pmu)
  1312. {
  1313. __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
  1314. /*
  1315. * Truncate collected array by the number of events added in this
  1316. * transaction. See x86_pmu_add() and x86_pmu_*_txn().
  1317. */
  1318. __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
  1319. __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
  1320. perf_pmu_enable(pmu);
  1321. }
  1322. /*
  1323. * Commit group events scheduling transaction
  1324. * Perform the group schedulability test as a whole
  1325. * Return 0 if success
  1326. *
  1327. * Does not cancel the transaction on failure; expects the caller to do this.
  1328. */
  1329. static int x86_pmu_commit_txn(struct pmu *pmu)
  1330. {
  1331. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1332. int assign[X86_PMC_IDX_MAX];
  1333. int n, ret;
  1334. n = cpuc->n_events;
  1335. if (!x86_pmu_initialized())
  1336. return -EAGAIN;
  1337. ret = x86_pmu.schedule_events(cpuc, n, assign);
  1338. if (ret)
  1339. return ret;
  1340. /*
  1341. * copy new assignment, now we know it is possible
  1342. * will be used by hw_perf_enable()
  1343. */
  1344. memcpy(cpuc->assign, assign, n*sizeof(int));
  1345. cpuc->group_flag &= ~PERF_EVENT_TXN;
  1346. perf_pmu_enable(pmu);
  1347. return 0;
  1348. }
  1349. /*
  1350. * a fake_cpuc is used to validate event groups. Due to
  1351. * the extra reg logic, we need to also allocate a fake
  1352. * per_core and per_cpu structure. Otherwise, group events
  1353. * using extra reg may conflict without the kernel being
  1354. * able to catch this when the last event gets added to
  1355. * the group.
  1356. */
  1357. static void free_fake_cpuc(struct cpu_hw_events *cpuc)
  1358. {
  1359. kfree(cpuc->shared_regs);
  1360. kfree(cpuc);
  1361. }
  1362. static struct cpu_hw_events *allocate_fake_cpuc(void)
  1363. {
  1364. struct cpu_hw_events *cpuc;
  1365. int cpu = raw_smp_processor_id();
  1366. cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
  1367. if (!cpuc)
  1368. return ERR_PTR(-ENOMEM);
  1369. /* only needed, if we have extra_regs */
  1370. if (x86_pmu.extra_regs) {
  1371. cpuc->shared_regs = allocate_shared_regs(cpu);
  1372. if (!cpuc->shared_regs)
  1373. goto error;
  1374. }
  1375. cpuc->is_fake = 1;
  1376. return cpuc;
  1377. error:
  1378. free_fake_cpuc(cpuc);
  1379. return ERR_PTR(-ENOMEM);
  1380. }
  1381. /*
  1382. * validate that we can schedule this event
  1383. */
  1384. static int validate_event(struct perf_event *event)
  1385. {
  1386. struct cpu_hw_events *fake_cpuc;
  1387. struct event_constraint *c;
  1388. int ret = 0;
  1389. fake_cpuc = allocate_fake_cpuc();
  1390. if (IS_ERR(fake_cpuc))
  1391. return PTR_ERR(fake_cpuc);
  1392. c = x86_pmu.get_event_constraints(fake_cpuc, event);
  1393. if (!c || !c->weight)
  1394. ret = -EINVAL;
  1395. if (x86_pmu.put_event_constraints)
  1396. x86_pmu.put_event_constraints(fake_cpuc, event);
  1397. free_fake_cpuc(fake_cpuc);
  1398. return ret;
  1399. }
  1400. /*
  1401. * validate a single event group
  1402. *
  1403. * validation include:
  1404. * - check events are compatible which each other
  1405. * - events do not compete for the same counter
  1406. * - number of events <= number of counters
  1407. *
  1408. * validation ensures the group can be loaded onto the
  1409. * PMU if it was the only group available.
  1410. */
  1411. static int validate_group(struct perf_event *event)
  1412. {
  1413. struct perf_event *leader = event->group_leader;
  1414. struct cpu_hw_events *fake_cpuc;
  1415. int ret = -EINVAL, n;
  1416. fake_cpuc = allocate_fake_cpuc();
  1417. if (IS_ERR(fake_cpuc))
  1418. return PTR_ERR(fake_cpuc);
  1419. /*
  1420. * the event is not yet connected with its
  1421. * siblings therefore we must first collect
  1422. * existing siblings, then add the new event
  1423. * before we can simulate the scheduling
  1424. */
  1425. n = collect_events(fake_cpuc, leader, true);
  1426. if (n < 0)
  1427. goto out;
  1428. fake_cpuc->n_events = n;
  1429. n = collect_events(fake_cpuc, event, false);
  1430. if (n < 0)
  1431. goto out;
  1432. fake_cpuc->n_events = n;
  1433. ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
  1434. out:
  1435. free_fake_cpuc(fake_cpuc);
  1436. return ret;
  1437. }
  1438. static int x86_pmu_event_init(struct perf_event *event)
  1439. {
  1440. struct pmu *tmp;
  1441. int err;
  1442. switch (event->attr.type) {
  1443. case PERF_TYPE_RAW:
  1444. case PERF_TYPE_HARDWARE:
  1445. case PERF_TYPE_HW_CACHE:
  1446. break;
  1447. default:
  1448. return -ENOENT;
  1449. }
  1450. err = __x86_pmu_event_init(event);
  1451. if (!err) {
  1452. /*
  1453. * we temporarily connect event to its pmu
  1454. * such that validate_group() can classify
  1455. * it as an x86 event using is_x86_event()
  1456. */
  1457. tmp = event->pmu;
  1458. event->pmu = &pmu;
  1459. if (event->group_leader != event)
  1460. err = validate_group(event);
  1461. else
  1462. err = validate_event(event);
  1463. event->pmu = tmp;
  1464. }
  1465. if (err) {
  1466. if (event->destroy)
  1467. event->destroy(event);
  1468. }
  1469. return err;
  1470. }
  1471. static int x86_pmu_event_idx(struct perf_event *event)
  1472. {
  1473. int idx = event->hw.idx;
  1474. if (!x86_pmu.attr_rdpmc)
  1475. return 0;
  1476. if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
  1477. idx -= INTEL_PMC_IDX_FIXED;
  1478. idx |= 1 << 30;
  1479. }
  1480. return idx + 1;
  1481. }
  1482. static ssize_t get_attr_rdpmc(struct device *cdev,
  1483. struct device_attribute *attr,
  1484. char *buf)
  1485. {
  1486. return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
  1487. }
  1488. static void change_rdpmc(void *info)
  1489. {
  1490. bool enable = !!(unsigned long)info;
  1491. if (enable)
  1492. set_in_cr4(X86_CR4_PCE);
  1493. else
  1494. clear_in_cr4(X86_CR4_PCE);
  1495. }
  1496. static ssize_t set_attr_rdpmc(struct device *cdev,
  1497. struct device_attribute *attr,
  1498. const char *buf, size_t count)
  1499. {
  1500. unsigned long val;
  1501. ssize_t ret;
  1502. ret = kstrtoul(buf, 0, &val);
  1503. if (ret)
  1504. return ret;
  1505. if (x86_pmu.attr_rdpmc_broken)
  1506. return -ENOTSUPP;
  1507. if (!!val != !!x86_pmu.attr_rdpmc) {
  1508. x86_pmu.attr_rdpmc = !!val;
  1509. on_each_cpu(change_rdpmc, (void *)val, 1);
  1510. }
  1511. return count;
  1512. }
  1513. static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
  1514. static struct attribute *x86_pmu_attrs[] = {
  1515. &dev_attr_rdpmc.attr,
  1516. NULL,
  1517. };
  1518. static struct attribute_group x86_pmu_attr_group = {
  1519. .attrs = x86_pmu_attrs,
  1520. };
  1521. static const struct attribute_group *x86_pmu_attr_groups[] = {
  1522. &x86_pmu_attr_group,
  1523. &x86_pmu_format_group,
  1524. &x86_pmu_events_group,
  1525. NULL,
  1526. };
  1527. static void x86_pmu_flush_branch_stack(void)
  1528. {
  1529. if (x86_pmu.flush_branch_stack)
  1530. x86_pmu.flush_branch_stack();
  1531. }
  1532. void perf_check_microcode(void)
  1533. {
  1534. if (x86_pmu.check_microcode)
  1535. x86_pmu.check_microcode();
  1536. }
  1537. EXPORT_SYMBOL_GPL(perf_check_microcode);
  1538. static struct pmu pmu = {
  1539. .pmu_enable = x86_pmu_enable,
  1540. .pmu_disable = x86_pmu_disable,
  1541. .attr_groups = x86_pmu_attr_groups,
  1542. .event_init = x86_pmu_event_init,
  1543. .add = x86_pmu_add,
  1544. .del = x86_pmu_del,
  1545. .start = x86_pmu_start,
  1546. .stop = x86_pmu_stop,
  1547. .read = x86_pmu_read,
  1548. .start_txn = x86_pmu_start_txn,
  1549. .cancel_txn = x86_pmu_cancel_txn,
  1550. .commit_txn = x86_pmu_commit_txn,
  1551. .event_idx = x86_pmu_event_idx,
  1552. .flush_branch_stack = x86_pmu_flush_branch_stack,
  1553. };
  1554. void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
  1555. {
  1556. struct cyc2ns_data *data;
  1557. userpg->cap_user_time = 0;
  1558. userpg->cap_user_time_zero = 0;
  1559. userpg->cap_user_rdpmc = x86_pmu.attr_rdpmc;
  1560. userpg->pmc_width = x86_pmu.cntval_bits;
  1561. if (!sched_clock_stable())
  1562. return;
  1563. data = cyc2ns_read_begin();
  1564. userpg->cap_user_time = 1;
  1565. userpg->time_mult = data->cyc2ns_mul;
  1566. userpg->time_shift = data->cyc2ns_shift;
  1567. userpg->time_offset = data->cyc2ns_offset - now;
  1568. userpg->cap_user_time_zero = 1;
  1569. userpg->time_zero = data->cyc2ns_offset;
  1570. cyc2ns_read_end(data);
  1571. }
  1572. /*
  1573. * callchain support
  1574. */
  1575. static int backtrace_stack(void *data, char *name)
  1576. {
  1577. return 0;
  1578. }
  1579. static void backtrace_address(void *data, unsigned long addr, int reliable)
  1580. {
  1581. struct perf_callchain_entry *entry = data;
  1582. perf_callchain_store(entry, addr);
  1583. }
  1584. static const struct stacktrace_ops backtrace_ops = {
  1585. .stack = backtrace_stack,
  1586. .address = backtrace_address,
  1587. .walk_stack = print_context_stack_bp,
  1588. };
  1589. void
  1590. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  1591. {
  1592. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  1593. /* TODO: We don't support guest os callchain now */
  1594. return;
  1595. }
  1596. perf_callchain_store(entry, regs->ip);
  1597. dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
  1598. }
  1599. static inline int
  1600. valid_user_frame(const void __user *fp, unsigned long size)
  1601. {
  1602. return (__range_not_ok(fp, size, TASK_SIZE) == 0);
  1603. }
  1604. static unsigned long get_segment_base(unsigned int segment)
  1605. {
  1606. struct desc_struct *desc;
  1607. int idx = segment >> 3;
  1608. if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
  1609. if (idx > LDT_ENTRIES)
  1610. return 0;
  1611. if (idx > current->active_mm->context.size)
  1612. return 0;
  1613. desc = current->active_mm->context.ldt;
  1614. } else {
  1615. if (idx > GDT_ENTRIES)
  1616. return 0;
  1617. desc = __this_cpu_ptr(&gdt_page.gdt[0]);
  1618. }
  1619. return get_desc_base(desc + idx);
  1620. }
  1621. #ifdef CONFIG_COMPAT
  1622. #include <asm/compat.h>
  1623. static inline int
  1624. perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1625. {
  1626. /* 32-bit process in 64-bit kernel. */
  1627. unsigned long ss_base, cs_base;
  1628. struct stack_frame_ia32 frame;
  1629. const void __user *fp;
  1630. if (!test_thread_flag(TIF_IA32))
  1631. return 0;
  1632. cs_base = get_segment_base(regs->cs);
  1633. ss_base = get_segment_base(regs->ss);
  1634. fp = compat_ptr(ss_base + regs->bp);
  1635. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1636. unsigned long bytes;
  1637. frame.next_frame = 0;
  1638. frame.return_address = 0;
  1639. bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
  1640. if (bytes != 0)
  1641. break;
  1642. if (!valid_user_frame(fp, sizeof(frame)))
  1643. break;
  1644. perf_callchain_store(entry, cs_base + frame.return_address);
  1645. fp = compat_ptr(ss_base + frame.next_frame);
  1646. }
  1647. return 1;
  1648. }
  1649. #else
  1650. static inline int
  1651. perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1652. {
  1653. return 0;
  1654. }
  1655. #endif
  1656. void
  1657. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  1658. {
  1659. struct stack_frame frame;
  1660. const void __user *fp;
  1661. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  1662. /* TODO: We don't support guest os callchain now */
  1663. return;
  1664. }
  1665. /*
  1666. * We don't know what to do with VM86 stacks.. ignore them for now.
  1667. */
  1668. if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
  1669. return;
  1670. fp = (void __user *)regs->bp;
  1671. perf_callchain_store(entry, regs->ip);
  1672. if (!current->mm)
  1673. return;
  1674. if (perf_callchain_user32(regs, entry))
  1675. return;
  1676. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1677. unsigned long bytes;
  1678. frame.next_frame = NULL;
  1679. frame.return_address = 0;
  1680. bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
  1681. if (bytes != 0)
  1682. break;
  1683. if (!valid_user_frame(fp, sizeof(frame)))
  1684. break;
  1685. perf_callchain_store(entry, frame.return_address);
  1686. fp = frame.next_frame;
  1687. }
  1688. }
  1689. /*
  1690. * Deal with code segment offsets for the various execution modes:
  1691. *
  1692. * VM86 - the good olde 16 bit days, where the linear address is
  1693. * 20 bits and we use regs->ip + 0x10 * regs->cs.
  1694. *
  1695. * IA32 - Where we need to look at GDT/LDT segment descriptor tables
  1696. * to figure out what the 32bit base address is.
  1697. *
  1698. * X32 - has TIF_X32 set, but is running in x86_64
  1699. *
  1700. * X86_64 - CS,DS,SS,ES are all zero based.
  1701. */
  1702. static unsigned long code_segment_base(struct pt_regs *regs)
  1703. {
  1704. /*
  1705. * If we are in VM86 mode, add the segment offset to convert to a
  1706. * linear address.
  1707. */
  1708. if (regs->flags & X86_VM_MASK)
  1709. return 0x10 * regs->cs;
  1710. /*
  1711. * For IA32 we look at the GDT/LDT segment base to convert the
  1712. * effective IP to a linear address.
  1713. */
  1714. #ifdef CONFIG_X86_32
  1715. if (user_mode(regs) && regs->cs != __USER_CS)
  1716. return get_segment_base(regs->cs);
  1717. #else
  1718. if (test_thread_flag(TIF_IA32)) {
  1719. if (user_mode(regs) && regs->cs != __USER32_CS)
  1720. return get_segment_base(regs->cs);
  1721. }
  1722. #endif
  1723. return 0;
  1724. }
  1725. unsigned long perf_instruction_pointer(struct pt_regs *regs)
  1726. {
  1727. if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
  1728. return perf_guest_cbs->get_guest_ip();
  1729. return regs->ip + code_segment_base(regs);
  1730. }
  1731. unsigned long perf_misc_flags(struct pt_regs *regs)
  1732. {
  1733. int misc = 0;
  1734. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  1735. if (perf_guest_cbs->is_user_mode())
  1736. misc |= PERF_RECORD_MISC_GUEST_USER;
  1737. else
  1738. misc |= PERF_RECORD_MISC_GUEST_KERNEL;
  1739. } else {
  1740. if (user_mode(regs))
  1741. misc |= PERF_RECORD_MISC_USER;
  1742. else
  1743. misc |= PERF_RECORD_MISC_KERNEL;
  1744. }
  1745. if (regs->flags & PERF_EFLAGS_EXACT)
  1746. misc |= PERF_RECORD_MISC_EXACT_IP;
  1747. return misc;
  1748. }
  1749. void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
  1750. {
  1751. cap->version = x86_pmu.version;
  1752. cap->num_counters_gp = x86_pmu.num_counters;
  1753. cap->num_counters_fixed = x86_pmu.num_counters_fixed;
  1754. cap->bit_width_gp = x86_pmu.cntval_bits;
  1755. cap->bit_width_fixed = x86_pmu.cntval_bits;
  1756. cap->events_mask = (unsigned int)x86_pmu.events_maskl;
  1757. cap->events_mask_len = x86_pmu.events_mask_len;
  1758. }
  1759. EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);