common.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394
  1. #include <linux/bootmem.h>
  2. #include <linux/linkage.h>
  3. #include <linux/bitops.h>
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/string.h>
  8. #include <linux/delay.h>
  9. #include <linux/sched.h>
  10. #include <linux/init.h>
  11. #include <linux/kgdb.h>
  12. #include <linux/smp.h>
  13. #include <linux/io.h>
  14. #include <asm/stackprotector.h>
  15. #include <asm/perf_event.h>
  16. #include <asm/mmu_context.h>
  17. #include <asm/archrandom.h>
  18. #include <asm/hypervisor.h>
  19. #include <asm/processor.h>
  20. #include <asm/debugreg.h>
  21. #include <asm/sections.h>
  22. #include <linux/topology.h>
  23. #include <linux/cpumask.h>
  24. #include <asm/pgtable.h>
  25. #include <linux/atomic.h>
  26. #include <asm/proto.h>
  27. #include <asm/setup.h>
  28. #include <asm/apic.h>
  29. #include <asm/desc.h>
  30. #include <asm/i387.h>
  31. #include <asm/fpu-internal.h>
  32. #include <asm/mtrr.h>
  33. #include <linux/numa.h>
  34. #include <asm/asm.h>
  35. #include <asm/cpu.h>
  36. #include <asm/mce.h>
  37. #include <asm/msr.h>
  38. #include <asm/pat.h>
  39. #include <asm/microcode.h>
  40. #include <asm/microcode_intel.h>
  41. #ifdef CONFIG_X86_LOCAL_APIC
  42. #include <asm/uv/uv.h>
  43. #endif
  44. #include "cpu.h"
  45. /* all of these masks are initialized in setup_cpu_local_masks() */
  46. cpumask_var_t cpu_initialized_mask;
  47. cpumask_var_t cpu_callout_mask;
  48. cpumask_var_t cpu_callin_mask;
  49. /* representing cpus for which sibling maps can be computed */
  50. cpumask_var_t cpu_sibling_setup_mask;
  51. /* correctly size the local cpu masks */
  52. void __init setup_cpu_local_masks(void)
  53. {
  54. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  55. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  56. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  57. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  58. }
  59. static void default_init(struct cpuinfo_x86 *c)
  60. {
  61. #ifdef CONFIG_X86_64
  62. cpu_detect_cache_sizes(c);
  63. #else
  64. /* Not much we can do here... */
  65. /* Check if at least it has cpuid */
  66. if (c->cpuid_level == -1) {
  67. /* No cpuid. It must be an ancient CPU */
  68. if (c->x86 == 4)
  69. strcpy(c->x86_model_id, "486");
  70. else if (c->x86 == 3)
  71. strcpy(c->x86_model_id, "386");
  72. }
  73. #endif
  74. }
  75. static const struct cpu_dev default_cpu = {
  76. .c_init = default_init,
  77. .c_vendor = "Unknown",
  78. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  79. };
  80. static const struct cpu_dev *this_cpu = &default_cpu;
  81. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  82. #ifdef CONFIG_X86_64
  83. /*
  84. * We need valid kernel segments for data and code in long mode too
  85. * IRET will check the segment types kkeil 2000/10/28
  86. * Also sysret mandates a special GDT layout
  87. *
  88. * TLS descriptors are currently at a different place compared to i386.
  89. * Hopefully nobody expects them at a fixed place (Wine?)
  90. */
  91. [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
  92. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
  93. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
  94. [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
  95. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
  96. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
  97. #else
  98. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
  99. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  100. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
  101. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
  102. /*
  103. * Segments used for calling PnP BIOS have byte granularity.
  104. * They code segments and data segments have fixed 64k limits,
  105. * the transfer segment sizes are set at run time.
  106. */
  107. /* 32-bit code */
  108. [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  109. /* 16-bit code */
  110. [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  111. /* 16-bit data */
  112. [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
  113. /* 16-bit data */
  114. [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
  115. /* 16-bit data */
  116. [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
  117. /*
  118. * The APM segments have byte granularity and their bases
  119. * are set at run time. All have 64k limits.
  120. */
  121. /* 32-bit code */
  122. [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  123. /* 16-bit code */
  124. [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  125. /* data */
  126. [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
  127. [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  128. [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  129. GDT_STACK_CANARY_INIT
  130. #endif
  131. } };
  132. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  133. static int __init x86_xsave_setup(char *s)
  134. {
  135. setup_clear_cpu_cap(X86_FEATURE_XSAVE);
  136. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  137. setup_clear_cpu_cap(X86_FEATURE_AVX);
  138. setup_clear_cpu_cap(X86_FEATURE_AVX2);
  139. return 1;
  140. }
  141. __setup("noxsave", x86_xsave_setup);
  142. static int __init x86_xsaveopt_setup(char *s)
  143. {
  144. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  145. return 1;
  146. }
  147. __setup("noxsaveopt", x86_xsaveopt_setup);
  148. #ifdef CONFIG_X86_32
  149. static int cachesize_override = -1;
  150. static int disable_x86_serial_nr = 1;
  151. static int __init cachesize_setup(char *str)
  152. {
  153. get_option(&str, &cachesize_override);
  154. return 1;
  155. }
  156. __setup("cachesize=", cachesize_setup);
  157. static int __init x86_fxsr_setup(char *s)
  158. {
  159. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  160. setup_clear_cpu_cap(X86_FEATURE_XMM);
  161. return 1;
  162. }
  163. __setup("nofxsr", x86_fxsr_setup);
  164. static int __init x86_sep_setup(char *s)
  165. {
  166. setup_clear_cpu_cap(X86_FEATURE_SEP);
  167. return 1;
  168. }
  169. __setup("nosep", x86_sep_setup);
  170. /* Standard macro to see if a specific flag is changeable */
  171. static inline int flag_is_changeable_p(u32 flag)
  172. {
  173. u32 f1, f2;
  174. /*
  175. * Cyrix and IDT cpus allow disabling of CPUID
  176. * so the code below may return different results
  177. * when it is executed before and after enabling
  178. * the CPUID. Add "volatile" to not allow gcc to
  179. * optimize the subsequent calls to this function.
  180. */
  181. asm volatile ("pushfl \n\t"
  182. "pushfl \n\t"
  183. "popl %0 \n\t"
  184. "movl %0, %1 \n\t"
  185. "xorl %2, %0 \n\t"
  186. "pushl %0 \n\t"
  187. "popfl \n\t"
  188. "pushfl \n\t"
  189. "popl %0 \n\t"
  190. "popfl \n\t"
  191. : "=&r" (f1), "=&r" (f2)
  192. : "ir" (flag));
  193. return ((f1^f2) & flag) != 0;
  194. }
  195. /* Probe for the CPUID instruction */
  196. int have_cpuid_p(void)
  197. {
  198. return flag_is_changeable_p(X86_EFLAGS_ID);
  199. }
  200. static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  201. {
  202. unsigned long lo, hi;
  203. if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
  204. return;
  205. /* Disable processor serial number: */
  206. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  207. lo |= 0x200000;
  208. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  209. printk(KERN_NOTICE "CPU serial number disabled.\n");
  210. clear_cpu_cap(c, X86_FEATURE_PN);
  211. /* Disabling the serial number may affect the cpuid level */
  212. c->cpuid_level = cpuid_eax(0);
  213. }
  214. static int __init x86_serial_nr_setup(char *s)
  215. {
  216. disable_x86_serial_nr = 0;
  217. return 1;
  218. }
  219. __setup("serialnumber", x86_serial_nr_setup);
  220. #else
  221. static inline int flag_is_changeable_p(u32 flag)
  222. {
  223. return 1;
  224. }
  225. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  226. {
  227. }
  228. #endif
  229. static __init int setup_disable_smep(char *arg)
  230. {
  231. setup_clear_cpu_cap(X86_FEATURE_SMEP);
  232. return 1;
  233. }
  234. __setup("nosmep", setup_disable_smep);
  235. static __always_inline void setup_smep(struct cpuinfo_x86 *c)
  236. {
  237. if (cpu_has(c, X86_FEATURE_SMEP))
  238. set_in_cr4(X86_CR4_SMEP);
  239. }
  240. static __init int setup_disable_smap(char *arg)
  241. {
  242. setup_clear_cpu_cap(X86_FEATURE_SMAP);
  243. return 1;
  244. }
  245. __setup("nosmap", setup_disable_smap);
  246. static __always_inline void setup_smap(struct cpuinfo_x86 *c)
  247. {
  248. unsigned long eflags;
  249. /* This should have been cleared long ago */
  250. raw_local_save_flags(eflags);
  251. BUG_ON(eflags & X86_EFLAGS_AC);
  252. if (cpu_has(c, X86_FEATURE_SMAP)) {
  253. #ifdef CONFIG_X86_SMAP
  254. set_in_cr4(X86_CR4_SMAP);
  255. #else
  256. clear_in_cr4(X86_CR4_SMAP);
  257. #endif
  258. }
  259. }
  260. /*
  261. * Some CPU features depend on higher CPUID levels, which may not always
  262. * be available due to CPUID level capping or broken virtualization
  263. * software. Add those features to this table to auto-disable them.
  264. */
  265. struct cpuid_dependent_feature {
  266. u32 feature;
  267. u32 level;
  268. };
  269. static const struct cpuid_dependent_feature
  270. cpuid_dependent_features[] = {
  271. { X86_FEATURE_MWAIT, 0x00000005 },
  272. { X86_FEATURE_DCA, 0x00000009 },
  273. { X86_FEATURE_XSAVE, 0x0000000d },
  274. { 0, 0 }
  275. };
  276. static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  277. {
  278. const struct cpuid_dependent_feature *df;
  279. for (df = cpuid_dependent_features; df->feature; df++) {
  280. if (!cpu_has(c, df->feature))
  281. continue;
  282. /*
  283. * Note: cpuid_level is set to -1 if unavailable, but
  284. * extended_extended_level is set to 0 if unavailable
  285. * and the legitimate extended levels are all negative
  286. * when signed; hence the weird messing around with
  287. * signs here...
  288. */
  289. if (!((s32)df->level < 0 ?
  290. (u32)df->level > (u32)c->extended_cpuid_level :
  291. (s32)df->level > (s32)c->cpuid_level))
  292. continue;
  293. clear_cpu_cap(c, df->feature);
  294. if (!warn)
  295. continue;
  296. printk(KERN_WARNING
  297. "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
  298. x86_cap_flags[df->feature], df->level);
  299. }
  300. }
  301. /*
  302. * Naming convention should be: <Name> [(<Codename>)]
  303. * This table only is used unless init_<vendor>() below doesn't set it;
  304. * in particular, if CPUID levels 0x80000002..4 are supported, this
  305. * isn't used
  306. */
  307. /* Look up CPU names by table lookup. */
  308. static const char *table_lookup_model(struct cpuinfo_x86 *c)
  309. {
  310. #ifdef CONFIG_X86_32
  311. const struct legacy_cpu_model_info *info;
  312. if (c->x86_model >= 16)
  313. return NULL; /* Range check */
  314. if (!this_cpu)
  315. return NULL;
  316. info = this_cpu->legacy_models;
  317. while (info->family) {
  318. if (info->family == c->x86)
  319. return info->model_names[c->x86_model];
  320. info++;
  321. }
  322. #endif
  323. return NULL; /* Not found */
  324. }
  325. __u32 cpu_caps_cleared[NCAPINTS];
  326. __u32 cpu_caps_set[NCAPINTS];
  327. void load_percpu_segment(int cpu)
  328. {
  329. #ifdef CONFIG_X86_32
  330. loadsegment(fs, __KERNEL_PERCPU);
  331. #else
  332. loadsegment(gs, 0);
  333. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  334. #endif
  335. load_stack_canary_segment();
  336. }
  337. /*
  338. * Current gdt points %fs at the "master" per-cpu area: after this,
  339. * it's on the real one.
  340. */
  341. void switch_to_new_gdt(int cpu)
  342. {
  343. struct desc_ptr gdt_descr;
  344. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  345. gdt_descr.size = GDT_SIZE - 1;
  346. load_gdt(&gdt_descr);
  347. /* Reload the per-cpu base */
  348. load_percpu_segment(cpu);
  349. }
  350. static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
  351. static void get_model_name(struct cpuinfo_x86 *c)
  352. {
  353. unsigned int *v;
  354. char *p, *q;
  355. if (c->extended_cpuid_level < 0x80000004)
  356. return;
  357. v = (unsigned int *)c->x86_model_id;
  358. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  359. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  360. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  361. c->x86_model_id[48] = 0;
  362. /*
  363. * Intel chips right-justify this string for some dumb reason;
  364. * undo that brain damage:
  365. */
  366. p = q = &c->x86_model_id[0];
  367. while (*p == ' ')
  368. p++;
  369. if (p != q) {
  370. while (*p)
  371. *q++ = *p++;
  372. while (q <= &c->x86_model_id[48])
  373. *q++ = '\0'; /* Zero-pad the rest */
  374. }
  375. }
  376. void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
  377. {
  378. unsigned int n, dummy, ebx, ecx, edx, l2size;
  379. n = c->extended_cpuid_level;
  380. if (n >= 0x80000005) {
  381. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  382. c->x86_cache_size = (ecx>>24) + (edx>>24);
  383. #ifdef CONFIG_X86_64
  384. /* On K8 L1 TLB is inclusive, so don't count it */
  385. c->x86_tlbsize = 0;
  386. #endif
  387. }
  388. if (n < 0x80000006) /* Some chips just has a large L1. */
  389. return;
  390. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  391. l2size = ecx >> 16;
  392. #ifdef CONFIG_X86_64
  393. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  394. #else
  395. /* do processor-specific cache resizing */
  396. if (this_cpu->legacy_cache_size)
  397. l2size = this_cpu->legacy_cache_size(c, l2size);
  398. /* Allow user to override all this if necessary. */
  399. if (cachesize_override != -1)
  400. l2size = cachesize_override;
  401. if (l2size == 0)
  402. return; /* Again, no L2 cache is possible */
  403. #endif
  404. c->x86_cache_size = l2size;
  405. }
  406. u16 __read_mostly tlb_lli_4k[NR_INFO];
  407. u16 __read_mostly tlb_lli_2m[NR_INFO];
  408. u16 __read_mostly tlb_lli_4m[NR_INFO];
  409. u16 __read_mostly tlb_lld_4k[NR_INFO];
  410. u16 __read_mostly tlb_lld_2m[NR_INFO];
  411. u16 __read_mostly tlb_lld_4m[NR_INFO];
  412. u16 __read_mostly tlb_lld_1g[NR_INFO];
  413. /*
  414. * tlb_flushall_shift shows the balance point in replacing cr3 write
  415. * with multiple 'invlpg'. It will do this replacement when
  416. * flush_tlb_lines <= active_lines/2^tlb_flushall_shift.
  417. * If tlb_flushall_shift is -1, means the replacement will be disabled.
  418. */
  419. s8 __read_mostly tlb_flushall_shift = -1;
  420. void cpu_detect_tlb(struct cpuinfo_x86 *c)
  421. {
  422. if (this_cpu->c_detect_tlb)
  423. this_cpu->c_detect_tlb(c);
  424. printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n"
  425. "Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n"
  426. "tlb_flushall_shift: %d\n",
  427. tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
  428. tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
  429. tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
  430. tlb_lld_1g[ENTRIES], tlb_flushall_shift);
  431. }
  432. void detect_ht(struct cpuinfo_x86 *c)
  433. {
  434. #ifdef CONFIG_X86_HT
  435. u32 eax, ebx, ecx, edx;
  436. int index_msb, core_bits;
  437. static bool printed;
  438. if (!cpu_has(c, X86_FEATURE_HT))
  439. return;
  440. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  441. goto out;
  442. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  443. return;
  444. cpuid(1, &eax, &ebx, &ecx, &edx);
  445. smp_num_siblings = (ebx & 0xff0000) >> 16;
  446. if (smp_num_siblings == 1) {
  447. printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
  448. goto out;
  449. }
  450. if (smp_num_siblings <= 1)
  451. goto out;
  452. index_msb = get_count_order(smp_num_siblings);
  453. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  454. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  455. index_msb = get_count_order(smp_num_siblings);
  456. core_bits = get_count_order(c->x86_max_cores);
  457. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  458. ((1 << core_bits) - 1);
  459. out:
  460. if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
  461. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  462. c->phys_proc_id);
  463. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  464. c->cpu_core_id);
  465. printed = 1;
  466. }
  467. #endif
  468. }
  469. static void get_cpu_vendor(struct cpuinfo_x86 *c)
  470. {
  471. char *v = c->x86_vendor_id;
  472. int i;
  473. for (i = 0; i < X86_VENDOR_NUM; i++) {
  474. if (!cpu_devs[i])
  475. break;
  476. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  477. (cpu_devs[i]->c_ident[1] &&
  478. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  479. this_cpu = cpu_devs[i];
  480. c->x86_vendor = this_cpu->c_x86_vendor;
  481. return;
  482. }
  483. }
  484. printk_once(KERN_ERR
  485. "CPU: vendor_id '%s' unknown, using generic init.\n" \
  486. "CPU: Your system may be unstable.\n", v);
  487. c->x86_vendor = X86_VENDOR_UNKNOWN;
  488. this_cpu = &default_cpu;
  489. }
  490. void cpu_detect(struct cpuinfo_x86 *c)
  491. {
  492. /* Get vendor name */
  493. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  494. (unsigned int *)&c->x86_vendor_id[0],
  495. (unsigned int *)&c->x86_vendor_id[8],
  496. (unsigned int *)&c->x86_vendor_id[4]);
  497. c->x86 = 4;
  498. /* Intel-defined flags: level 0x00000001 */
  499. if (c->cpuid_level >= 0x00000001) {
  500. u32 junk, tfms, cap0, misc;
  501. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  502. c->x86 = (tfms >> 8) & 0xf;
  503. c->x86_model = (tfms >> 4) & 0xf;
  504. c->x86_mask = tfms & 0xf;
  505. if (c->x86 == 0xf)
  506. c->x86 += (tfms >> 20) & 0xff;
  507. if (c->x86 >= 0x6)
  508. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  509. if (cap0 & (1<<19)) {
  510. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  511. c->x86_cache_alignment = c->x86_clflush_size;
  512. }
  513. }
  514. }
  515. void get_cpu_cap(struct cpuinfo_x86 *c)
  516. {
  517. u32 tfms, xlvl;
  518. u32 ebx;
  519. /* Intel-defined flags: level 0x00000001 */
  520. if (c->cpuid_level >= 0x00000001) {
  521. u32 capability, excap;
  522. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  523. c->x86_capability[0] = capability;
  524. c->x86_capability[4] = excap;
  525. }
  526. /* Additional Intel-defined flags: level 0x00000007 */
  527. if (c->cpuid_level >= 0x00000007) {
  528. u32 eax, ebx, ecx, edx;
  529. cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
  530. c->x86_capability[9] = ebx;
  531. }
  532. /* AMD-defined flags: level 0x80000001 */
  533. xlvl = cpuid_eax(0x80000000);
  534. c->extended_cpuid_level = xlvl;
  535. if ((xlvl & 0xffff0000) == 0x80000000) {
  536. if (xlvl >= 0x80000001) {
  537. c->x86_capability[1] = cpuid_edx(0x80000001);
  538. c->x86_capability[6] = cpuid_ecx(0x80000001);
  539. }
  540. }
  541. if (c->extended_cpuid_level >= 0x80000008) {
  542. u32 eax = cpuid_eax(0x80000008);
  543. c->x86_virt_bits = (eax >> 8) & 0xff;
  544. c->x86_phys_bits = eax & 0xff;
  545. }
  546. #ifdef CONFIG_X86_32
  547. else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
  548. c->x86_phys_bits = 36;
  549. #endif
  550. if (c->extended_cpuid_level >= 0x80000007)
  551. c->x86_power = cpuid_edx(0x80000007);
  552. init_scattered_cpuid_features(c);
  553. }
  554. static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  555. {
  556. #ifdef CONFIG_X86_32
  557. int i;
  558. /*
  559. * First of all, decide if this is a 486 or higher
  560. * It's a 486 if we can modify the AC flag
  561. */
  562. if (flag_is_changeable_p(X86_EFLAGS_AC))
  563. c->x86 = 4;
  564. else
  565. c->x86 = 3;
  566. for (i = 0; i < X86_VENDOR_NUM; i++)
  567. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  568. c->x86_vendor_id[0] = 0;
  569. cpu_devs[i]->c_identify(c);
  570. if (c->x86_vendor_id[0]) {
  571. get_cpu_vendor(c);
  572. break;
  573. }
  574. }
  575. #endif
  576. }
  577. /*
  578. * Do minimum CPU detection early.
  579. * Fields really needed: vendor, cpuid_level, family, model, mask,
  580. * cache alignment.
  581. * The others are not touched to avoid unwanted side effects.
  582. *
  583. * WARNING: this function is only called on the BP. Don't add code here
  584. * that is supposed to run on all CPUs.
  585. */
  586. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  587. {
  588. #ifdef CONFIG_X86_64
  589. c->x86_clflush_size = 64;
  590. c->x86_phys_bits = 36;
  591. c->x86_virt_bits = 48;
  592. #else
  593. c->x86_clflush_size = 32;
  594. c->x86_phys_bits = 32;
  595. c->x86_virt_bits = 32;
  596. #endif
  597. c->x86_cache_alignment = c->x86_clflush_size;
  598. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  599. c->extended_cpuid_level = 0;
  600. if (!have_cpuid_p())
  601. identify_cpu_without_cpuid(c);
  602. /* cyrix could have cpuid enabled via c_identify()*/
  603. if (!have_cpuid_p())
  604. return;
  605. cpu_detect(c);
  606. get_cpu_vendor(c);
  607. get_cpu_cap(c);
  608. fpu_detect(c);
  609. if (this_cpu->c_early_init)
  610. this_cpu->c_early_init(c);
  611. c->cpu_index = 0;
  612. filter_cpuid_features(c, false);
  613. if (this_cpu->c_bsp_init)
  614. this_cpu->c_bsp_init(c);
  615. setup_force_cpu_cap(X86_FEATURE_ALWAYS);
  616. }
  617. void __init early_cpu_init(void)
  618. {
  619. const struct cpu_dev *const *cdev;
  620. int count = 0;
  621. #ifdef CONFIG_PROCESSOR_SELECT
  622. printk(KERN_INFO "KERNEL supported cpus:\n");
  623. #endif
  624. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  625. const struct cpu_dev *cpudev = *cdev;
  626. if (count >= X86_VENDOR_NUM)
  627. break;
  628. cpu_devs[count] = cpudev;
  629. count++;
  630. #ifdef CONFIG_PROCESSOR_SELECT
  631. {
  632. unsigned int j;
  633. for (j = 0; j < 2; j++) {
  634. if (!cpudev->c_ident[j])
  635. continue;
  636. printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
  637. cpudev->c_ident[j]);
  638. }
  639. }
  640. #endif
  641. }
  642. early_identify_cpu(&boot_cpu_data);
  643. }
  644. /*
  645. * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
  646. * unfortunately, that's not true in practice because of early VIA
  647. * chips and (more importantly) broken virtualizers that are not easy
  648. * to detect. In the latter case it doesn't even *fail* reliably, so
  649. * probing for it doesn't even work. Disable it completely on 32-bit
  650. * unless we can find a reliable way to detect all the broken cases.
  651. * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
  652. */
  653. static void detect_nopl(struct cpuinfo_x86 *c)
  654. {
  655. #ifdef CONFIG_X86_32
  656. clear_cpu_cap(c, X86_FEATURE_NOPL);
  657. #else
  658. set_cpu_cap(c, X86_FEATURE_NOPL);
  659. #endif
  660. }
  661. static void generic_identify(struct cpuinfo_x86 *c)
  662. {
  663. c->extended_cpuid_level = 0;
  664. if (!have_cpuid_p())
  665. identify_cpu_without_cpuid(c);
  666. /* cyrix could have cpuid enabled via c_identify()*/
  667. if (!have_cpuid_p())
  668. return;
  669. cpu_detect(c);
  670. get_cpu_vendor(c);
  671. get_cpu_cap(c);
  672. if (c->cpuid_level >= 0x00000001) {
  673. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  674. #ifdef CONFIG_X86_32
  675. # ifdef CONFIG_X86_HT
  676. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  677. # else
  678. c->apicid = c->initial_apicid;
  679. # endif
  680. #endif
  681. c->phys_proc_id = c->initial_apicid;
  682. }
  683. get_model_name(c); /* Default name */
  684. detect_nopl(c);
  685. }
  686. /*
  687. * This does the hard work of actually picking apart the CPU stuff...
  688. */
  689. static void identify_cpu(struct cpuinfo_x86 *c)
  690. {
  691. int i;
  692. c->loops_per_jiffy = loops_per_jiffy;
  693. c->x86_cache_size = -1;
  694. c->x86_vendor = X86_VENDOR_UNKNOWN;
  695. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  696. c->x86_vendor_id[0] = '\0'; /* Unset */
  697. c->x86_model_id[0] = '\0'; /* Unset */
  698. c->x86_max_cores = 1;
  699. c->x86_coreid_bits = 0;
  700. #ifdef CONFIG_X86_64
  701. c->x86_clflush_size = 64;
  702. c->x86_phys_bits = 36;
  703. c->x86_virt_bits = 48;
  704. #else
  705. c->cpuid_level = -1; /* CPUID not detected */
  706. c->x86_clflush_size = 32;
  707. c->x86_phys_bits = 32;
  708. c->x86_virt_bits = 32;
  709. #endif
  710. c->x86_cache_alignment = c->x86_clflush_size;
  711. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  712. generic_identify(c);
  713. if (this_cpu->c_identify)
  714. this_cpu->c_identify(c);
  715. /* Clear/Set all flags overriden by options, after probe */
  716. for (i = 0; i < NCAPINTS; i++) {
  717. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  718. c->x86_capability[i] |= cpu_caps_set[i];
  719. }
  720. #ifdef CONFIG_X86_64
  721. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  722. #endif
  723. /*
  724. * Vendor-specific initialization. In this section we
  725. * canonicalize the feature flags, meaning if there are
  726. * features a certain CPU supports which CPUID doesn't
  727. * tell us, CPUID claiming incorrect flags, or other bugs,
  728. * we handle them here.
  729. *
  730. * At the end of this section, c->x86_capability better
  731. * indicate the features this CPU genuinely supports!
  732. */
  733. if (this_cpu->c_init)
  734. this_cpu->c_init(c);
  735. /* Disable the PN if appropriate */
  736. squash_the_stupid_serial_number(c);
  737. /* Set up SMEP/SMAP */
  738. setup_smep(c);
  739. setup_smap(c);
  740. /*
  741. * The vendor-specific functions might have changed features.
  742. * Now we do "generic changes."
  743. */
  744. /* Filter out anything that depends on CPUID levels we don't have */
  745. filter_cpuid_features(c, true);
  746. /* If the model name is still unset, do table lookup. */
  747. if (!c->x86_model_id[0]) {
  748. const char *p;
  749. p = table_lookup_model(c);
  750. if (p)
  751. strcpy(c->x86_model_id, p);
  752. else
  753. /* Last resort... */
  754. sprintf(c->x86_model_id, "%02x/%02x",
  755. c->x86, c->x86_model);
  756. }
  757. #ifdef CONFIG_X86_64
  758. detect_ht(c);
  759. #endif
  760. init_hypervisor(c);
  761. x86_init_rdrand(c);
  762. /*
  763. * Clear/Set all flags overriden by options, need do it
  764. * before following smp all cpus cap AND.
  765. */
  766. for (i = 0; i < NCAPINTS; i++) {
  767. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  768. c->x86_capability[i] |= cpu_caps_set[i];
  769. }
  770. /*
  771. * On SMP, boot_cpu_data holds the common feature set between
  772. * all CPUs; so make sure that we indicate which features are
  773. * common between the CPUs. The first time this routine gets
  774. * executed, c == &boot_cpu_data.
  775. */
  776. if (c != &boot_cpu_data) {
  777. /* AND the already accumulated flags with these */
  778. for (i = 0; i < NCAPINTS; i++)
  779. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  780. /* OR, i.e. replicate the bug flags */
  781. for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
  782. c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
  783. }
  784. /* Init Machine Check Exception if available. */
  785. mcheck_cpu_init(c);
  786. select_idle_routine(c);
  787. #ifdef CONFIG_NUMA
  788. numa_add_cpu(smp_processor_id());
  789. #endif
  790. }
  791. #ifdef CONFIG_X86_64
  792. static void vgetcpu_set_mode(void)
  793. {
  794. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  795. vgetcpu_mode = VGETCPU_RDTSCP;
  796. else
  797. vgetcpu_mode = VGETCPU_LSL;
  798. }
  799. #endif
  800. void __init identify_boot_cpu(void)
  801. {
  802. identify_cpu(&boot_cpu_data);
  803. init_amd_e400_c1e_mask();
  804. #ifdef CONFIG_X86_32
  805. sysenter_setup();
  806. enable_sep_cpu();
  807. #else
  808. vgetcpu_set_mode();
  809. #endif
  810. cpu_detect_tlb(&boot_cpu_data);
  811. }
  812. void identify_secondary_cpu(struct cpuinfo_x86 *c)
  813. {
  814. BUG_ON(c == &boot_cpu_data);
  815. identify_cpu(c);
  816. #ifdef CONFIG_X86_32
  817. enable_sep_cpu();
  818. #endif
  819. mtrr_ap_init();
  820. }
  821. struct msr_range {
  822. unsigned min;
  823. unsigned max;
  824. };
  825. static const struct msr_range msr_range_array[] = {
  826. { 0x00000000, 0x00000418},
  827. { 0xc0000000, 0xc000040b},
  828. { 0xc0010000, 0xc0010142},
  829. { 0xc0011000, 0xc001103b},
  830. };
  831. static void __print_cpu_msr(void)
  832. {
  833. unsigned index_min, index_max;
  834. unsigned index;
  835. u64 val;
  836. int i;
  837. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  838. index_min = msr_range_array[i].min;
  839. index_max = msr_range_array[i].max;
  840. for (index = index_min; index < index_max; index++) {
  841. if (rdmsrl_safe(index, &val))
  842. continue;
  843. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  844. }
  845. }
  846. }
  847. static int show_msr;
  848. static __init int setup_show_msr(char *arg)
  849. {
  850. int num;
  851. get_option(&arg, &num);
  852. if (num > 0)
  853. show_msr = num;
  854. return 1;
  855. }
  856. __setup("show_msr=", setup_show_msr);
  857. static __init int setup_noclflush(char *arg)
  858. {
  859. setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
  860. setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
  861. return 1;
  862. }
  863. __setup("noclflush", setup_noclflush);
  864. void print_cpu_info(struct cpuinfo_x86 *c)
  865. {
  866. const char *vendor = NULL;
  867. if (c->x86_vendor < X86_VENDOR_NUM) {
  868. vendor = this_cpu->c_vendor;
  869. } else {
  870. if (c->cpuid_level >= 0)
  871. vendor = c->x86_vendor_id;
  872. }
  873. if (vendor && !strstr(c->x86_model_id, vendor))
  874. printk(KERN_CONT "%s ", vendor);
  875. if (c->x86_model_id[0])
  876. printk(KERN_CONT "%s", strim(c->x86_model_id));
  877. else
  878. printk(KERN_CONT "%d86", c->x86);
  879. printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
  880. if (c->x86_mask || c->cpuid_level >= 0)
  881. printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
  882. else
  883. printk(KERN_CONT ")\n");
  884. print_cpu_msr(c);
  885. }
  886. void print_cpu_msr(struct cpuinfo_x86 *c)
  887. {
  888. if (c->cpu_index < show_msr)
  889. __print_cpu_msr();
  890. }
  891. static __init int setup_disablecpuid(char *arg)
  892. {
  893. int bit;
  894. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  895. setup_clear_cpu_cap(bit);
  896. else
  897. return 0;
  898. return 1;
  899. }
  900. __setup("clearcpuid=", setup_disablecpuid);
  901. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  902. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  903. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  904. #ifdef CONFIG_X86_64
  905. struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
  906. struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
  907. (unsigned long) debug_idt_table };
  908. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  909. irq_stack_union) __aligned(PAGE_SIZE) __visible;
  910. /*
  911. * The following four percpu variables are hot. Align current_task to
  912. * cacheline size such that all four fall in the same cacheline.
  913. */
  914. DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
  915. &init_task;
  916. EXPORT_PER_CPU_SYMBOL(current_task);
  917. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  918. init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  919. DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
  920. DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
  921. EXPORT_PER_CPU_SYMBOL(__preempt_count);
  922. DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
  923. /*
  924. * Special IST stacks which the CPU switches to when it calls
  925. * an IST-marked descriptor entry. Up to 7 stacks (hardware
  926. * limit), all of them are 4K, except the debug stack which
  927. * is 8K.
  928. */
  929. static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
  930. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  931. [DEBUG_STACK - 1] = DEBUG_STKSZ
  932. };
  933. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  934. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
  935. /* May not be marked __init: used by software suspend */
  936. void syscall_init(void)
  937. {
  938. /*
  939. * LSTAR and STAR live in a bit strange symbiosis.
  940. * They both write to the same internal register. STAR allows to
  941. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  942. */
  943. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  944. wrmsrl(MSR_LSTAR, system_call);
  945. wrmsrl(MSR_CSTAR, ignore_sysret);
  946. #ifdef CONFIG_IA32_EMULATION
  947. syscall32_cpu_init();
  948. #endif
  949. /* Flags to clear on syscall */
  950. wrmsrl(MSR_SYSCALL_MASK,
  951. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
  952. X86_EFLAGS_IOPL|X86_EFLAGS_AC);
  953. }
  954. /*
  955. * Copies of the original ist values from the tss are only accessed during
  956. * debugging, no special alignment required.
  957. */
  958. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  959. static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
  960. DEFINE_PER_CPU(int, debug_stack_usage);
  961. int is_debug_stack(unsigned long addr)
  962. {
  963. return __get_cpu_var(debug_stack_usage) ||
  964. (addr <= __get_cpu_var(debug_stack_addr) &&
  965. addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
  966. }
  967. DEFINE_PER_CPU(u32, debug_idt_ctr);
  968. void debug_stack_set_zero(void)
  969. {
  970. this_cpu_inc(debug_idt_ctr);
  971. load_current_idt();
  972. }
  973. void debug_stack_reset(void)
  974. {
  975. if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
  976. return;
  977. if (this_cpu_dec_return(debug_idt_ctr) == 0)
  978. load_current_idt();
  979. }
  980. #else /* CONFIG_X86_64 */
  981. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  982. EXPORT_PER_CPU_SYMBOL(current_task);
  983. DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
  984. EXPORT_PER_CPU_SYMBOL(__preempt_count);
  985. DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
  986. #ifdef CONFIG_CC_STACKPROTECTOR
  987. DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
  988. #endif
  989. #endif /* CONFIG_X86_64 */
  990. /*
  991. * Clear all 6 debug registers:
  992. */
  993. static void clear_all_debug_regs(void)
  994. {
  995. int i;
  996. for (i = 0; i < 8; i++) {
  997. /* Ignore db4, db5 */
  998. if ((i == 4) || (i == 5))
  999. continue;
  1000. set_debugreg(0, i);
  1001. }
  1002. }
  1003. #ifdef CONFIG_KGDB
  1004. /*
  1005. * Restore debug regs if using kgdbwait and you have a kernel debugger
  1006. * connection established.
  1007. */
  1008. static void dbg_restore_debug_regs(void)
  1009. {
  1010. if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
  1011. arch_kgdb_ops.correct_hw_break();
  1012. }
  1013. #else /* ! CONFIG_KGDB */
  1014. #define dbg_restore_debug_regs()
  1015. #endif /* ! CONFIG_KGDB */
  1016. /*
  1017. * cpu_init() initializes state that is per-CPU. Some data is already
  1018. * initialized (naturally) in the bootstrap process, such as the GDT
  1019. * and IDT. We reload them nevertheless, this function acts as a
  1020. * 'CPU state barrier', nothing should get across.
  1021. * A lot of state is already set up in PDA init for 64 bit
  1022. */
  1023. #ifdef CONFIG_X86_64
  1024. void cpu_init(void)
  1025. {
  1026. struct orig_ist *oist;
  1027. struct task_struct *me;
  1028. struct tss_struct *t;
  1029. unsigned long v;
  1030. int cpu;
  1031. int i;
  1032. /*
  1033. * Load microcode on this cpu if a valid microcode is available.
  1034. * This is early microcode loading procedure.
  1035. */
  1036. load_ucode_ap();
  1037. cpu = stack_smp_processor_id();
  1038. t = &per_cpu(init_tss, cpu);
  1039. oist = &per_cpu(orig_ist, cpu);
  1040. #ifdef CONFIG_NUMA
  1041. if (this_cpu_read(numa_node) == 0 &&
  1042. early_cpu_to_node(cpu) != NUMA_NO_NODE)
  1043. set_numa_node(early_cpu_to_node(cpu));
  1044. #endif
  1045. me = current;
  1046. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
  1047. panic("CPU#%d already initialized!\n", cpu);
  1048. pr_debug("Initializing CPU#%d\n", cpu);
  1049. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1050. /*
  1051. * Initialize the per-CPU GDT with the boot GDT,
  1052. * and set up the GDT descriptor:
  1053. */
  1054. switch_to_new_gdt(cpu);
  1055. loadsegment(fs, 0);
  1056. load_current_idt();
  1057. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  1058. syscall_init();
  1059. wrmsrl(MSR_FS_BASE, 0);
  1060. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  1061. barrier();
  1062. x86_configure_nx();
  1063. enable_x2apic();
  1064. /*
  1065. * set up and load the per-CPU TSS
  1066. */
  1067. if (!oist->ist[0]) {
  1068. char *estacks = per_cpu(exception_stacks, cpu);
  1069. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  1070. estacks += exception_stack_sizes[v];
  1071. oist->ist[v] = t->x86_tss.ist[v] =
  1072. (unsigned long)estacks;
  1073. if (v == DEBUG_STACK-1)
  1074. per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
  1075. }
  1076. }
  1077. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1078. /*
  1079. * <= is required because the CPU will access up to
  1080. * 8 bits beyond the end of the IO permission bitmap.
  1081. */
  1082. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  1083. t->io_bitmap[i] = ~0UL;
  1084. atomic_inc(&init_mm.mm_count);
  1085. me->active_mm = &init_mm;
  1086. BUG_ON(me->mm);
  1087. enter_lazy_tlb(&init_mm, me);
  1088. load_sp0(t, &current->thread);
  1089. set_tss_desc(cpu, t);
  1090. load_TR_desc();
  1091. load_LDT(&init_mm.context);
  1092. clear_all_debug_regs();
  1093. dbg_restore_debug_regs();
  1094. fpu_init();
  1095. if (is_uv_system())
  1096. uv_cpu_init();
  1097. }
  1098. #else
  1099. void cpu_init(void)
  1100. {
  1101. int cpu = smp_processor_id();
  1102. struct task_struct *curr = current;
  1103. struct tss_struct *t = &per_cpu(init_tss, cpu);
  1104. struct thread_struct *thread = &curr->thread;
  1105. show_ucode_info_early();
  1106. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
  1107. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  1108. for (;;)
  1109. local_irq_enable();
  1110. }
  1111. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  1112. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  1113. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1114. load_current_idt();
  1115. switch_to_new_gdt(cpu);
  1116. /*
  1117. * Set up and load the per-CPU TSS and LDT
  1118. */
  1119. atomic_inc(&init_mm.mm_count);
  1120. curr->active_mm = &init_mm;
  1121. BUG_ON(curr->mm);
  1122. enter_lazy_tlb(&init_mm, curr);
  1123. load_sp0(t, thread);
  1124. set_tss_desc(cpu, t);
  1125. load_TR_desc();
  1126. load_LDT(&init_mm.context);
  1127. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1128. #ifdef CONFIG_DOUBLEFAULT
  1129. /* Set up doublefault TSS pointer in the GDT */
  1130. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  1131. #endif
  1132. clear_all_debug_regs();
  1133. dbg_restore_debug_regs();
  1134. fpu_init();
  1135. }
  1136. #endif
  1137. #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
  1138. void warn_pre_alternatives(void)
  1139. {
  1140. WARN(1, "You're using static_cpu_has before alternatives have run!\n");
  1141. }
  1142. EXPORT_SYMBOL_GPL(warn_pre_alternatives);
  1143. #endif
  1144. inline bool __static_cpu_has_safe(u16 bit)
  1145. {
  1146. return boot_cpu_has(bit);
  1147. }
  1148. EXPORT_SYMBOL_GPL(__static_cpu_has_safe);