rdma.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017
  1. /*
  2. * NVMe over Fabrics RDMA host code.
  3. * Copyright (c) 2015-2016 HGST, a Western Digital Company.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/slab.h>
  18. #include <linux/err.h>
  19. #include <linux/string.h>
  20. #include <linux/atomic.h>
  21. #include <linux/blk-mq.h>
  22. #include <linux/types.h>
  23. #include <linux/list.h>
  24. #include <linux/mutex.h>
  25. #include <linux/scatterlist.h>
  26. #include <linux/nvme.h>
  27. #include <asm/unaligned.h>
  28. #include <rdma/ib_verbs.h>
  29. #include <rdma/rdma_cm.h>
  30. #include <linux/nvme-rdma.h>
  31. #include "nvme.h"
  32. #include "fabrics.h"
  33. #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
  34. #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */
  35. #define NVME_RDMA_MAX_SEGMENTS 256
  36. #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
  37. /*
  38. * We handle AEN commands ourselves and don't even let the
  39. * block layer know about them.
  40. */
  41. #define NVME_RDMA_NR_AEN_COMMANDS 1
  42. #define NVME_RDMA_AQ_BLKMQ_DEPTH \
  43. (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
  44. struct nvme_rdma_device {
  45. struct ib_device *dev;
  46. struct ib_pd *pd;
  47. struct kref ref;
  48. struct list_head entry;
  49. };
  50. struct nvme_rdma_qe {
  51. struct ib_cqe cqe;
  52. void *data;
  53. u64 dma;
  54. };
  55. struct nvme_rdma_queue;
  56. struct nvme_rdma_request {
  57. struct nvme_request req;
  58. struct ib_mr *mr;
  59. struct nvme_rdma_qe sqe;
  60. struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
  61. u32 num_sge;
  62. int nents;
  63. bool inline_data;
  64. struct ib_reg_wr reg_wr;
  65. struct ib_cqe reg_cqe;
  66. struct nvme_rdma_queue *queue;
  67. struct sg_table sg_table;
  68. struct scatterlist first_sgl[];
  69. };
  70. enum nvme_rdma_queue_flags {
  71. NVME_RDMA_Q_LIVE = 0,
  72. NVME_RDMA_Q_DELETING = 1,
  73. };
  74. struct nvme_rdma_queue {
  75. struct nvme_rdma_qe *rsp_ring;
  76. u8 sig_count;
  77. int queue_size;
  78. size_t cmnd_capsule_len;
  79. struct nvme_rdma_ctrl *ctrl;
  80. struct nvme_rdma_device *device;
  81. struct ib_cq *ib_cq;
  82. struct ib_qp *qp;
  83. unsigned long flags;
  84. struct rdma_cm_id *cm_id;
  85. int cm_error;
  86. struct completion cm_done;
  87. };
  88. struct nvme_rdma_ctrl {
  89. /* read only in the hot path */
  90. struct nvme_rdma_queue *queues;
  91. u32 queue_count;
  92. /* other member variables */
  93. struct blk_mq_tag_set tag_set;
  94. struct work_struct delete_work;
  95. struct work_struct err_work;
  96. struct nvme_rdma_qe async_event_sqe;
  97. struct delayed_work reconnect_work;
  98. struct list_head list;
  99. struct blk_mq_tag_set admin_tag_set;
  100. struct nvme_rdma_device *device;
  101. u64 cap;
  102. u32 max_fr_pages;
  103. struct sockaddr_storage addr;
  104. struct sockaddr_storage src_addr;
  105. struct nvme_ctrl ctrl;
  106. };
  107. static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
  108. {
  109. return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
  110. }
  111. static LIST_HEAD(device_list);
  112. static DEFINE_MUTEX(device_list_mutex);
  113. static LIST_HEAD(nvme_rdma_ctrl_list);
  114. static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
  115. /*
  116. * Disabling this option makes small I/O goes faster, but is fundamentally
  117. * unsafe. With it turned off we will have to register a global rkey that
  118. * allows read and write access to all physical memory.
  119. */
  120. static bool register_always = true;
  121. module_param(register_always, bool, 0444);
  122. MODULE_PARM_DESC(register_always,
  123. "Use memory registration even for contiguous memory regions");
  124. static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
  125. struct rdma_cm_event *event);
  126. static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
  127. /* XXX: really should move to a generic header sooner or later.. */
  128. static inline void put_unaligned_le24(u32 val, u8 *p)
  129. {
  130. *p++ = val;
  131. *p++ = val >> 8;
  132. *p++ = val >> 16;
  133. }
  134. static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
  135. {
  136. return queue - queue->ctrl->queues;
  137. }
  138. static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
  139. {
  140. return queue->cmnd_capsule_len - sizeof(struct nvme_command);
  141. }
  142. static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
  143. size_t capsule_size, enum dma_data_direction dir)
  144. {
  145. ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
  146. kfree(qe->data);
  147. }
  148. static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
  149. size_t capsule_size, enum dma_data_direction dir)
  150. {
  151. qe->data = kzalloc(capsule_size, GFP_KERNEL);
  152. if (!qe->data)
  153. return -ENOMEM;
  154. qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
  155. if (ib_dma_mapping_error(ibdev, qe->dma)) {
  156. kfree(qe->data);
  157. return -ENOMEM;
  158. }
  159. return 0;
  160. }
  161. static void nvme_rdma_free_ring(struct ib_device *ibdev,
  162. struct nvme_rdma_qe *ring, size_t ib_queue_size,
  163. size_t capsule_size, enum dma_data_direction dir)
  164. {
  165. int i;
  166. for (i = 0; i < ib_queue_size; i++)
  167. nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
  168. kfree(ring);
  169. }
  170. static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
  171. size_t ib_queue_size, size_t capsule_size,
  172. enum dma_data_direction dir)
  173. {
  174. struct nvme_rdma_qe *ring;
  175. int i;
  176. ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
  177. if (!ring)
  178. return NULL;
  179. for (i = 0; i < ib_queue_size; i++) {
  180. if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
  181. goto out_free_ring;
  182. }
  183. return ring;
  184. out_free_ring:
  185. nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
  186. return NULL;
  187. }
  188. static void nvme_rdma_qp_event(struct ib_event *event, void *context)
  189. {
  190. pr_debug("QP event %s (%d)\n",
  191. ib_event_msg(event->event), event->event);
  192. }
  193. static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
  194. {
  195. wait_for_completion_interruptible_timeout(&queue->cm_done,
  196. msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
  197. return queue->cm_error;
  198. }
  199. static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
  200. {
  201. struct nvme_rdma_device *dev = queue->device;
  202. struct ib_qp_init_attr init_attr;
  203. int ret;
  204. memset(&init_attr, 0, sizeof(init_attr));
  205. init_attr.event_handler = nvme_rdma_qp_event;
  206. /* +1 for drain */
  207. init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
  208. /* +1 for drain */
  209. init_attr.cap.max_recv_wr = queue->queue_size + 1;
  210. init_attr.cap.max_recv_sge = 1;
  211. init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
  212. init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
  213. init_attr.qp_type = IB_QPT_RC;
  214. init_attr.send_cq = queue->ib_cq;
  215. init_attr.recv_cq = queue->ib_cq;
  216. ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
  217. queue->qp = queue->cm_id->qp;
  218. return ret;
  219. }
  220. static int nvme_rdma_reinit_request(void *data, struct request *rq)
  221. {
  222. struct nvme_rdma_ctrl *ctrl = data;
  223. struct nvme_rdma_device *dev = ctrl->device;
  224. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  225. int ret = 0;
  226. if (!req->mr->need_inval)
  227. goto out;
  228. ib_dereg_mr(req->mr);
  229. req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
  230. ctrl->max_fr_pages);
  231. if (IS_ERR(req->mr)) {
  232. ret = PTR_ERR(req->mr);
  233. req->mr = NULL;
  234. goto out;
  235. }
  236. req->mr->need_inval = false;
  237. out:
  238. return ret;
  239. }
  240. static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
  241. struct request *rq, unsigned int hctx_idx)
  242. {
  243. struct nvme_rdma_ctrl *ctrl = set->driver_data;
  244. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  245. int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
  246. struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
  247. struct nvme_rdma_device *dev = queue->device;
  248. if (req->mr)
  249. ib_dereg_mr(req->mr);
  250. nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
  251. DMA_TO_DEVICE);
  252. }
  253. static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
  254. struct request *rq, unsigned int hctx_idx,
  255. unsigned int numa_node)
  256. {
  257. struct nvme_rdma_ctrl *ctrl = set->driver_data;
  258. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  259. int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
  260. struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
  261. struct nvme_rdma_device *dev = queue->device;
  262. struct ib_device *ibdev = dev->dev;
  263. int ret;
  264. ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
  265. DMA_TO_DEVICE);
  266. if (ret)
  267. return ret;
  268. req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
  269. ctrl->max_fr_pages);
  270. if (IS_ERR(req->mr)) {
  271. ret = PTR_ERR(req->mr);
  272. goto out_free_qe;
  273. }
  274. req->queue = queue;
  275. return 0;
  276. out_free_qe:
  277. nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
  278. DMA_TO_DEVICE);
  279. return -ENOMEM;
  280. }
  281. static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  282. unsigned int hctx_idx)
  283. {
  284. struct nvme_rdma_ctrl *ctrl = data;
  285. struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
  286. BUG_ON(hctx_idx >= ctrl->queue_count);
  287. hctx->driver_data = queue;
  288. return 0;
  289. }
  290. static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  291. unsigned int hctx_idx)
  292. {
  293. struct nvme_rdma_ctrl *ctrl = data;
  294. struct nvme_rdma_queue *queue = &ctrl->queues[0];
  295. BUG_ON(hctx_idx != 0);
  296. hctx->driver_data = queue;
  297. return 0;
  298. }
  299. static void nvme_rdma_free_dev(struct kref *ref)
  300. {
  301. struct nvme_rdma_device *ndev =
  302. container_of(ref, struct nvme_rdma_device, ref);
  303. mutex_lock(&device_list_mutex);
  304. list_del(&ndev->entry);
  305. mutex_unlock(&device_list_mutex);
  306. ib_dealloc_pd(ndev->pd);
  307. kfree(ndev);
  308. }
  309. static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
  310. {
  311. kref_put(&dev->ref, nvme_rdma_free_dev);
  312. }
  313. static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
  314. {
  315. return kref_get_unless_zero(&dev->ref);
  316. }
  317. static struct nvme_rdma_device *
  318. nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
  319. {
  320. struct nvme_rdma_device *ndev;
  321. mutex_lock(&device_list_mutex);
  322. list_for_each_entry(ndev, &device_list, entry) {
  323. if (ndev->dev->node_guid == cm_id->device->node_guid &&
  324. nvme_rdma_dev_get(ndev))
  325. goto out_unlock;
  326. }
  327. ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
  328. if (!ndev)
  329. goto out_err;
  330. ndev->dev = cm_id->device;
  331. kref_init(&ndev->ref);
  332. ndev->pd = ib_alloc_pd(ndev->dev,
  333. register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
  334. if (IS_ERR(ndev->pd))
  335. goto out_free_dev;
  336. if (!(ndev->dev->attrs.device_cap_flags &
  337. IB_DEVICE_MEM_MGT_EXTENSIONS)) {
  338. dev_err(&ndev->dev->dev,
  339. "Memory registrations not supported.\n");
  340. goto out_free_pd;
  341. }
  342. list_add(&ndev->entry, &device_list);
  343. out_unlock:
  344. mutex_unlock(&device_list_mutex);
  345. return ndev;
  346. out_free_pd:
  347. ib_dealloc_pd(ndev->pd);
  348. out_free_dev:
  349. kfree(ndev);
  350. out_err:
  351. mutex_unlock(&device_list_mutex);
  352. return NULL;
  353. }
  354. static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
  355. {
  356. struct nvme_rdma_device *dev;
  357. struct ib_device *ibdev;
  358. dev = queue->device;
  359. ibdev = dev->dev;
  360. rdma_destroy_qp(queue->cm_id);
  361. ib_free_cq(queue->ib_cq);
  362. nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
  363. sizeof(struct nvme_completion), DMA_FROM_DEVICE);
  364. nvme_rdma_dev_put(dev);
  365. }
  366. static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
  367. {
  368. struct ib_device *ibdev;
  369. const int send_wr_factor = 3; /* MR, SEND, INV */
  370. const int cq_factor = send_wr_factor + 1; /* + RECV */
  371. int comp_vector, idx = nvme_rdma_queue_idx(queue);
  372. int ret;
  373. queue->device = nvme_rdma_find_get_device(queue->cm_id);
  374. if (!queue->device) {
  375. dev_err(queue->cm_id->device->dev.parent,
  376. "no client data found!\n");
  377. return -ECONNREFUSED;
  378. }
  379. ibdev = queue->device->dev;
  380. /*
  381. * The admin queue is barely used once the controller is live, so don't
  382. * bother to spread it out.
  383. */
  384. if (idx == 0)
  385. comp_vector = 0;
  386. else
  387. comp_vector = idx % ibdev->num_comp_vectors;
  388. /* +1 for ib_stop_cq */
  389. queue->ib_cq = ib_alloc_cq(ibdev, queue,
  390. cq_factor * queue->queue_size + 1,
  391. comp_vector, IB_POLL_SOFTIRQ);
  392. if (IS_ERR(queue->ib_cq)) {
  393. ret = PTR_ERR(queue->ib_cq);
  394. goto out_put_dev;
  395. }
  396. ret = nvme_rdma_create_qp(queue, send_wr_factor);
  397. if (ret)
  398. goto out_destroy_ib_cq;
  399. queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
  400. sizeof(struct nvme_completion), DMA_FROM_DEVICE);
  401. if (!queue->rsp_ring) {
  402. ret = -ENOMEM;
  403. goto out_destroy_qp;
  404. }
  405. return 0;
  406. out_destroy_qp:
  407. ib_destroy_qp(queue->qp);
  408. out_destroy_ib_cq:
  409. ib_free_cq(queue->ib_cq);
  410. out_put_dev:
  411. nvme_rdma_dev_put(queue->device);
  412. return ret;
  413. }
  414. static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
  415. int idx, size_t queue_size)
  416. {
  417. struct nvme_rdma_queue *queue;
  418. struct sockaddr *src_addr = NULL;
  419. int ret;
  420. queue = &ctrl->queues[idx];
  421. queue->ctrl = ctrl;
  422. init_completion(&queue->cm_done);
  423. if (idx > 0)
  424. queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
  425. else
  426. queue->cmnd_capsule_len = sizeof(struct nvme_command);
  427. queue->queue_size = queue_size;
  428. queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
  429. RDMA_PS_TCP, IB_QPT_RC);
  430. if (IS_ERR(queue->cm_id)) {
  431. dev_info(ctrl->ctrl.device,
  432. "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
  433. return PTR_ERR(queue->cm_id);
  434. }
  435. if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
  436. src_addr = (struct sockaddr *)&ctrl->src_addr;
  437. queue->cm_error = -ETIMEDOUT;
  438. ret = rdma_resolve_addr(queue->cm_id, src_addr,
  439. (struct sockaddr *)&ctrl->addr,
  440. NVME_RDMA_CONNECT_TIMEOUT_MS);
  441. if (ret) {
  442. dev_info(ctrl->ctrl.device,
  443. "rdma_resolve_addr failed (%d).\n", ret);
  444. goto out_destroy_cm_id;
  445. }
  446. ret = nvme_rdma_wait_for_cm(queue);
  447. if (ret) {
  448. dev_info(ctrl->ctrl.device,
  449. "rdma_resolve_addr wait failed (%d).\n", ret);
  450. goto out_destroy_cm_id;
  451. }
  452. clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
  453. return 0;
  454. out_destroy_cm_id:
  455. rdma_destroy_id(queue->cm_id);
  456. return ret;
  457. }
  458. static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
  459. {
  460. rdma_disconnect(queue->cm_id);
  461. ib_drain_qp(queue->qp);
  462. }
  463. static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
  464. {
  465. nvme_rdma_destroy_queue_ib(queue);
  466. rdma_destroy_id(queue->cm_id);
  467. }
  468. static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
  469. {
  470. if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
  471. return;
  472. nvme_rdma_stop_queue(queue);
  473. nvme_rdma_free_queue(queue);
  474. }
  475. static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
  476. {
  477. int i;
  478. for (i = 1; i < ctrl->queue_count; i++)
  479. nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
  480. }
  481. static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
  482. {
  483. int i, ret = 0;
  484. for (i = 1; i < ctrl->queue_count; i++) {
  485. ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
  486. if (ret) {
  487. dev_info(ctrl->ctrl.device,
  488. "failed to connect i/o queue: %d\n", ret);
  489. goto out_free_queues;
  490. }
  491. set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
  492. }
  493. return 0;
  494. out_free_queues:
  495. nvme_rdma_free_io_queues(ctrl);
  496. return ret;
  497. }
  498. static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
  499. {
  500. struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
  501. unsigned int nr_io_queues;
  502. int i, ret;
  503. nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
  504. ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
  505. if (ret)
  506. return ret;
  507. ctrl->queue_count = nr_io_queues + 1;
  508. if (ctrl->queue_count < 2)
  509. return 0;
  510. dev_info(ctrl->ctrl.device,
  511. "creating %d I/O queues.\n", nr_io_queues);
  512. for (i = 1; i < ctrl->queue_count; i++) {
  513. ret = nvme_rdma_init_queue(ctrl, i,
  514. ctrl->ctrl.opts->queue_size);
  515. if (ret) {
  516. dev_info(ctrl->ctrl.device,
  517. "failed to initialize i/o queue: %d\n", ret);
  518. goto out_free_queues;
  519. }
  520. }
  521. return 0;
  522. out_free_queues:
  523. for (i--; i >= 1; i--)
  524. nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
  525. return ret;
  526. }
  527. static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
  528. {
  529. nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
  530. sizeof(struct nvme_command), DMA_TO_DEVICE);
  531. nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
  532. blk_cleanup_queue(ctrl->ctrl.admin_q);
  533. blk_mq_free_tag_set(&ctrl->admin_tag_set);
  534. nvme_rdma_dev_put(ctrl->device);
  535. }
  536. static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
  537. {
  538. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  539. if (list_empty(&ctrl->list))
  540. goto free_ctrl;
  541. mutex_lock(&nvme_rdma_ctrl_mutex);
  542. list_del(&ctrl->list);
  543. mutex_unlock(&nvme_rdma_ctrl_mutex);
  544. kfree(ctrl->queues);
  545. nvmf_free_options(nctrl->opts);
  546. free_ctrl:
  547. kfree(ctrl);
  548. }
  549. static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
  550. {
  551. /* If we are resetting/deleting then do nothing */
  552. if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
  553. WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
  554. ctrl->ctrl.state == NVME_CTRL_LIVE);
  555. return;
  556. }
  557. if (nvmf_should_reconnect(&ctrl->ctrl)) {
  558. dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
  559. ctrl->ctrl.opts->reconnect_delay);
  560. queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
  561. ctrl->ctrl.opts->reconnect_delay * HZ);
  562. } else {
  563. dev_info(ctrl->ctrl.device, "Removing controller...\n");
  564. queue_work(nvme_wq, &ctrl->delete_work);
  565. }
  566. }
  567. static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
  568. {
  569. struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
  570. struct nvme_rdma_ctrl, reconnect_work);
  571. bool changed;
  572. int ret;
  573. ++ctrl->ctrl.nr_reconnects;
  574. if (ctrl->queue_count > 1) {
  575. nvme_rdma_free_io_queues(ctrl);
  576. ret = blk_mq_reinit_tagset(&ctrl->tag_set);
  577. if (ret)
  578. goto requeue;
  579. }
  580. nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
  581. ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
  582. if (ret)
  583. goto requeue;
  584. ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
  585. if (ret)
  586. goto requeue;
  587. ret = nvmf_connect_admin_queue(&ctrl->ctrl);
  588. if (ret)
  589. goto requeue;
  590. set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
  591. ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
  592. if (ret)
  593. goto requeue;
  594. nvme_start_keep_alive(&ctrl->ctrl);
  595. if (ctrl->queue_count > 1) {
  596. ret = nvme_rdma_init_io_queues(ctrl);
  597. if (ret)
  598. goto requeue;
  599. ret = nvme_rdma_connect_io_queues(ctrl);
  600. if (ret)
  601. goto requeue;
  602. }
  603. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
  604. WARN_ON_ONCE(!changed);
  605. ctrl->ctrl.nr_reconnects = 0;
  606. if (ctrl->queue_count > 1) {
  607. nvme_queue_scan(&ctrl->ctrl);
  608. nvme_queue_async_events(&ctrl->ctrl);
  609. }
  610. dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
  611. return;
  612. requeue:
  613. dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
  614. ctrl->ctrl.nr_reconnects);
  615. nvme_rdma_reconnect_or_remove(ctrl);
  616. }
  617. static void nvme_rdma_error_recovery_work(struct work_struct *work)
  618. {
  619. struct nvme_rdma_ctrl *ctrl = container_of(work,
  620. struct nvme_rdma_ctrl, err_work);
  621. int i;
  622. nvme_stop_keep_alive(&ctrl->ctrl);
  623. for (i = 0; i < ctrl->queue_count; i++)
  624. clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
  625. if (ctrl->queue_count > 1)
  626. nvme_stop_queues(&ctrl->ctrl);
  627. blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
  628. /* We must take care of fastfail/requeue all our inflight requests */
  629. if (ctrl->queue_count > 1)
  630. blk_mq_tagset_busy_iter(&ctrl->tag_set,
  631. nvme_cancel_request, &ctrl->ctrl);
  632. blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
  633. nvme_cancel_request, &ctrl->ctrl);
  634. /*
  635. * queues are not a live anymore, so restart the queues to fail fast
  636. * new IO
  637. */
  638. blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
  639. nvme_start_queues(&ctrl->ctrl);
  640. nvme_rdma_reconnect_or_remove(ctrl);
  641. }
  642. static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
  643. {
  644. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
  645. return;
  646. queue_work(nvme_wq, &ctrl->err_work);
  647. }
  648. static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
  649. const char *op)
  650. {
  651. struct nvme_rdma_queue *queue = cq->cq_context;
  652. struct nvme_rdma_ctrl *ctrl = queue->ctrl;
  653. if (ctrl->ctrl.state == NVME_CTRL_LIVE)
  654. dev_info(ctrl->ctrl.device,
  655. "%s for CQE 0x%p failed with status %s (%d)\n",
  656. op, wc->wr_cqe,
  657. ib_wc_status_msg(wc->status), wc->status);
  658. nvme_rdma_error_recovery(ctrl);
  659. }
  660. static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
  661. {
  662. if (unlikely(wc->status != IB_WC_SUCCESS))
  663. nvme_rdma_wr_error(cq, wc, "MEMREG");
  664. }
  665. static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
  666. {
  667. if (unlikely(wc->status != IB_WC_SUCCESS))
  668. nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
  669. }
  670. static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
  671. struct nvme_rdma_request *req)
  672. {
  673. struct ib_send_wr *bad_wr;
  674. struct ib_send_wr wr = {
  675. .opcode = IB_WR_LOCAL_INV,
  676. .next = NULL,
  677. .num_sge = 0,
  678. .send_flags = 0,
  679. .ex.invalidate_rkey = req->mr->rkey,
  680. };
  681. req->reg_cqe.done = nvme_rdma_inv_rkey_done;
  682. wr.wr_cqe = &req->reg_cqe;
  683. return ib_post_send(queue->qp, &wr, &bad_wr);
  684. }
  685. static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
  686. struct request *rq)
  687. {
  688. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  689. struct nvme_rdma_ctrl *ctrl = queue->ctrl;
  690. struct nvme_rdma_device *dev = queue->device;
  691. struct ib_device *ibdev = dev->dev;
  692. int res;
  693. if (!blk_rq_bytes(rq))
  694. return;
  695. if (req->mr->need_inval) {
  696. res = nvme_rdma_inv_rkey(queue, req);
  697. if (res < 0) {
  698. dev_err(ctrl->ctrl.device,
  699. "Queueing INV WR for rkey %#x failed (%d)\n",
  700. req->mr->rkey, res);
  701. nvme_rdma_error_recovery(queue->ctrl);
  702. }
  703. }
  704. ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
  705. req->nents, rq_data_dir(rq) ==
  706. WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  707. nvme_cleanup_cmd(rq);
  708. sg_free_table_chained(&req->sg_table, true);
  709. }
  710. static int nvme_rdma_set_sg_null(struct nvme_command *c)
  711. {
  712. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  713. sg->addr = 0;
  714. put_unaligned_le24(0, sg->length);
  715. put_unaligned_le32(0, sg->key);
  716. sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
  717. return 0;
  718. }
  719. static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
  720. struct nvme_rdma_request *req, struct nvme_command *c)
  721. {
  722. struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
  723. req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
  724. req->sge[1].length = sg_dma_len(req->sg_table.sgl);
  725. req->sge[1].lkey = queue->device->pd->local_dma_lkey;
  726. sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
  727. sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
  728. sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
  729. req->inline_data = true;
  730. req->num_sge++;
  731. return 0;
  732. }
  733. static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
  734. struct nvme_rdma_request *req, struct nvme_command *c)
  735. {
  736. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  737. sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
  738. put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
  739. put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
  740. sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
  741. return 0;
  742. }
  743. static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
  744. struct nvme_rdma_request *req, struct nvme_command *c,
  745. int count)
  746. {
  747. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  748. int nr;
  749. nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
  750. if (nr < count) {
  751. if (nr < 0)
  752. return nr;
  753. return -EINVAL;
  754. }
  755. ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
  756. req->reg_cqe.done = nvme_rdma_memreg_done;
  757. memset(&req->reg_wr, 0, sizeof(req->reg_wr));
  758. req->reg_wr.wr.opcode = IB_WR_REG_MR;
  759. req->reg_wr.wr.wr_cqe = &req->reg_cqe;
  760. req->reg_wr.wr.num_sge = 0;
  761. req->reg_wr.mr = req->mr;
  762. req->reg_wr.key = req->mr->rkey;
  763. req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
  764. IB_ACCESS_REMOTE_READ |
  765. IB_ACCESS_REMOTE_WRITE;
  766. req->mr->need_inval = true;
  767. sg->addr = cpu_to_le64(req->mr->iova);
  768. put_unaligned_le24(req->mr->length, sg->length);
  769. put_unaligned_le32(req->mr->rkey, sg->key);
  770. sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
  771. NVME_SGL_FMT_INVALIDATE;
  772. return 0;
  773. }
  774. static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
  775. struct request *rq, struct nvme_command *c)
  776. {
  777. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  778. struct nvme_rdma_device *dev = queue->device;
  779. struct ib_device *ibdev = dev->dev;
  780. int count, ret;
  781. req->num_sge = 1;
  782. req->inline_data = false;
  783. req->mr->need_inval = false;
  784. c->common.flags |= NVME_CMD_SGL_METABUF;
  785. if (!blk_rq_bytes(rq))
  786. return nvme_rdma_set_sg_null(c);
  787. req->sg_table.sgl = req->first_sgl;
  788. ret = sg_alloc_table_chained(&req->sg_table,
  789. blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
  790. if (ret)
  791. return -ENOMEM;
  792. req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
  793. count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
  794. rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  795. if (unlikely(count <= 0)) {
  796. sg_free_table_chained(&req->sg_table, true);
  797. return -EIO;
  798. }
  799. if (count == 1) {
  800. if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
  801. blk_rq_payload_bytes(rq) <=
  802. nvme_rdma_inline_data_size(queue))
  803. return nvme_rdma_map_sg_inline(queue, req, c);
  804. if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
  805. return nvme_rdma_map_sg_single(queue, req, c);
  806. }
  807. return nvme_rdma_map_sg_fr(queue, req, c, count);
  808. }
  809. static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
  810. {
  811. if (unlikely(wc->status != IB_WC_SUCCESS))
  812. nvme_rdma_wr_error(cq, wc, "SEND");
  813. }
  814. static inline int nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue)
  815. {
  816. int sig_limit;
  817. /*
  818. * We signal completion every queue depth/2 and also handle the
  819. * degenerated case of a device with queue_depth=1, where we
  820. * would need to signal every message.
  821. */
  822. sig_limit = max(queue->queue_size / 2, 1);
  823. return (++queue->sig_count % sig_limit) == 0;
  824. }
  825. static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
  826. struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
  827. struct ib_send_wr *first, bool flush)
  828. {
  829. struct ib_send_wr wr, *bad_wr;
  830. int ret;
  831. sge->addr = qe->dma;
  832. sge->length = sizeof(struct nvme_command),
  833. sge->lkey = queue->device->pd->local_dma_lkey;
  834. qe->cqe.done = nvme_rdma_send_done;
  835. wr.next = NULL;
  836. wr.wr_cqe = &qe->cqe;
  837. wr.sg_list = sge;
  838. wr.num_sge = num_sge;
  839. wr.opcode = IB_WR_SEND;
  840. wr.send_flags = 0;
  841. /*
  842. * Unsignalled send completions are another giant desaster in the
  843. * IB Verbs spec: If we don't regularly post signalled sends
  844. * the send queue will fill up and only a QP reset will rescue us.
  845. * Would have been way to obvious to handle this in hardware or
  846. * at least the RDMA stack..
  847. *
  848. * Always signal the flushes. The magic request used for the flush
  849. * sequencer is not allocated in our driver's tagset and it's
  850. * triggered to be freed by blk_cleanup_queue(). So we need to
  851. * always mark it as signaled to ensure that the "wr_cqe", which is
  852. * embedded in request's payload, is not freed when __ib_process_cq()
  853. * calls wr_cqe->done().
  854. */
  855. if (nvme_rdma_queue_sig_limit(queue) || flush)
  856. wr.send_flags |= IB_SEND_SIGNALED;
  857. if (first)
  858. first->next = &wr;
  859. else
  860. first = &wr;
  861. ret = ib_post_send(queue->qp, first, &bad_wr);
  862. if (ret) {
  863. dev_err(queue->ctrl->ctrl.device,
  864. "%s failed with error code %d\n", __func__, ret);
  865. }
  866. return ret;
  867. }
  868. static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
  869. struct nvme_rdma_qe *qe)
  870. {
  871. struct ib_recv_wr wr, *bad_wr;
  872. struct ib_sge list;
  873. int ret;
  874. list.addr = qe->dma;
  875. list.length = sizeof(struct nvme_completion);
  876. list.lkey = queue->device->pd->local_dma_lkey;
  877. qe->cqe.done = nvme_rdma_recv_done;
  878. wr.next = NULL;
  879. wr.wr_cqe = &qe->cqe;
  880. wr.sg_list = &list;
  881. wr.num_sge = 1;
  882. ret = ib_post_recv(queue->qp, &wr, &bad_wr);
  883. if (ret) {
  884. dev_err(queue->ctrl->ctrl.device,
  885. "%s failed with error code %d\n", __func__, ret);
  886. }
  887. return ret;
  888. }
  889. static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
  890. {
  891. u32 queue_idx = nvme_rdma_queue_idx(queue);
  892. if (queue_idx == 0)
  893. return queue->ctrl->admin_tag_set.tags[queue_idx];
  894. return queue->ctrl->tag_set.tags[queue_idx - 1];
  895. }
  896. static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
  897. {
  898. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
  899. struct nvme_rdma_queue *queue = &ctrl->queues[0];
  900. struct ib_device *dev = queue->device->dev;
  901. struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
  902. struct nvme_command *cmd = sqe->data;
  903. struct ib_sge sge;
  904. int ret;
  905. if (WARN_ON_ONCE(aer_idx != 0))
  906. return;
  907. ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
  908. memset(cmd, 0, sizeof(*cmd));
  909. cmd->common.opcode = nvme_admin_async_event;
  910. cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
  911. cmd->common.flags |= NVME_CMD_SGL_METABUF;
  912. nvme_rdma_set_sg_null(cmd);
  913. ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
  914. DMA_TO_DEVICE);
  915. ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
  916. WARN_ON_ONCE(ret);
  917. }
  918. static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
  919. struct nvme_completion *cqe, struct ib_wc *wc, int tag)
  920. {
  921. struct request *rq;
  922. struct nvme_rdma_request *req;
  923. int ret = 0;
  924. rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
  925. if (!rq) {
  926. dev_err(queue->ctrl->ctrl.device,
  927. "tag 0x%x on QP %#x not found\n",
  928. cqe->command_id, queue->qp->qp_num);
  929. nvme_rdma_error_recovery(queue->ctrl);
  930. return ret;
  931. }
  932. req = blk_mq_rq_to_pdu(rq);
  933. if (rq->tag == tag)
  934. ret = 1;
  935. if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
  936. wc->ex.invalidate_rkey == req->mr->rkey)
  937. req->mr->need_inval = false;
  938. nvme_end_request(rq, cqe->status, cqe->result);
  939. return ret;
  940. }
  941. static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
  942. {
  943. struct nvme_rdma_qe *qe =
  944. container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
  945. struct nvme_rdma_queue *queue = cq->cq_context;
  946. struct ib_device *ibdev = queue->device->dev;
  947. struct nvme_completion *cqe = qe->data;
  948. const size_t len = sizeof(struct nvme_completion);
  949. int ret = 0;
  950. if (unlikely(wc->status != IB_WC_SUCCESS)) {
  951. nvme_rdma_wr_error(cq, wc, "RECV");
  952. return 0;
  953. }
  954. ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
  955. /*
  956. * AEN requests are special as they don't time out and can
  957. * survive any kind of queue freeze and often don't respond to
  958. * aborts. We don't even bother to allocate a struct request
  959. * for them but rather special case them here.
  960. */
  961. if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
  962. cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
  963. nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
  964. &cqe->result);
  965. else
  966. ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
  967. ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
  968. nvme_rdma_post_recv(queue, qe);
  969. return ret;
  970. }
  971. static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
  972. {
  973. __nvme_rdma_recv_done(cq, wc, -1);
  974. }
  975. static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
  976. {
  977. int ret, i;
  978. for (i = 0; i < queue->queue_size; i++) {
  979. ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
  980. if (ret)
  981. goto out_destroy_queue_ib;
  982. }
  983. return 0;
  984. out_destroy_queue_ib:
  985. nvme_rdma_destroy_queue_ib(queue);
  986. return ret;
  987. }
  988. static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
  989. struct rdma_cm_event *ev)
  990. {
  991. struct rdma_cm_id *cm_id = queue->cm_id;
  992. int status = ev->status;
  993. const char *rej_msg;
  994. const struct nvme_rdma_cm_rej *rej_data;
  995. u8 rej_data_len;
  996. rej_msg = rdma_reject_msg(cm_id, status);
  997. rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
  998. if (rej_data && rej_data_len >= sizeof(u16)) {
  999. u16 sts = le16_to_cpu(rej_data->sts);
  1000. dev_err(queue->ctrl->ctrl.device,
  1001. "Connect rejected: status %d (%s) nvme status %d (%s).\n",
  1002. status, rej_msg, sts, nvme_rdma_cm_msg(sts));
  1003. } else {
  1004. dev_err(queue->ctrl->ctrl.device,
  1005. "Connect rejected: status %d (%s).\n", status, rej_msg);
  1006. }
  1007. return -ECONNRESET;
  1008. }
  1009. static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
  1010. {
  1011. int ret;
  1012. ret = nvme_rdma_create_queue_ib(queue);
  1013. if (ret)
  1014. return ret;
  1015. ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
  1016. if (ret) {
  1017. dev_err(queue->ctrl->ctrl.device,
  1018. "rdma_resolve_route failed (%d).\n",
  1019. queue->cm_error);
  1020. goto out_destroy_queue;
  1021. }
  1022. return 0;
  1023. out_destroy_queue:
  1024. nvme_rdma_destroy_queue_ib(queue);
  1025. return ret;
  1026. }
  1027. static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
  1028. {
  1029. struct nvme_rdma_ctrl *ctrl = queue->ctrl;
  1030. struct rdma_conn_param param = { };
  1031. struct nvme_rdma_cm_req priv = { };
  1032. int ret;
  1033. param.qp_num = queue->qp->qp_num;
  1034. param.flow_control = 1;
  1035. param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
  1036. /* maximum retry count */
  1037. param.retry_count = 7;
  1038. param.rnr_retry_count = 7;
  1039. param.private_data = &priv;
  1040. param.private_data_len = sizeof(priv);
  1041. priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
  1042. priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
  1043. /*
  1044. * set the admin queue depth to the minimum size
  1045. * specified by the Fabrics standard.
  1046. */
  1047. if (priv.qid == 0) {
  1048. priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH);
  1049. priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1);
  1050. } else {
  1051. /*
  1052. * current interpretation of the fabrics spec
  1053. * is at minimum you make hrqsize sqsize+1, or a
  1054. * 1's based representation of sqsize.
  1055. */
  1056. priv.hrqsize = cpu_to_le16(queue->queue_size);
  1057. priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
  1058. }
  1059. ret = rdma_connect(queue->cm_id, &param);
  1060. if (ret) {
  1061. dev_err(ctrl->ctrl.device,
  1062. "rdma_connect failed (%d).\n", ret);
  1063. goto out_destroy_queue_ib;
  1064. }
  1065. return 0;
  1066. out_destroy_queue_ib:
  1067. nvme_rdma_destroy_queue_ib(queue);
  1068. return ret;
  1069. }
  1070. static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
  1071. struct rdma_cm_event *ev)
  1072. {
  1073. struct nvme_rdma_queue *queue = cm_id->context;
  1074. int cm_error = 0;
  1075. dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
  1076. rdma_event_msg(ev->event), ev->event,
  1077. ev->status, cm_id);
  1078. switch (ev->event) {
  1079. case RDMA_CM_EVENT_ADDR_RESOLVED:
  1080. cm_error = nvme_rdma_addr_resolved(queue);
  1081. break;
  1082. case RDMA_CM_EVENT_ROUTE_RESOLVED:
  1083. cm_error = nvme_rdma_route_resolved(queue);
  1084. break;
  1085. case RDMA_CM_EVENT_ESTABLISHED:
  1086. queue->cm_error = nvme_rdma_conn_established(queue);
  1087. /* complete cm_done regardless of success/failure */
  1088. complete(&queue->cm_done);
  1089. return 0;
  1090. case RDMA_CM_EVENT_REJECTED:
  1091. nvme_rdma_destroy_queue_ib(queue);
  1092. cm_error = nvme_rdma_conn_rejected(queue, ev);
  1093. break;
  1094. case RDMA_CM_EVENT_ROUTE_ERROR:
  1095. case RDMA_CM_EVENT_CONNECT_ERROR:
  1096. case RDMA_CM_EVENT_UNREACHABLE:
  1097. nvme_rdma_destroy_queue_ib(queue);
  1098. case RDMA_CM_EVENT_ADDR_ERROR:
  1099. dev_dbg(queue->ctrl->ctrl.device,
  1100. "CM error event %d\n", ev->event);
  1101. cm_error = -ECONNRESET;
  1102. break;
  1103. case RDMA_CM_EVENT_DISCONNECTED:
  1104. case RDMA_CM_EVENT_ADDR_CHANGE:
  1105. case RDMA_CM_EVENT_TIMEWAIT_EXIT:
  1106. dev_dbg(queue->ctrl->ctrl.device,
  1107. "disconnect received - connection closed\n");
  1108. nvme_rdma_error_recovery(queue->ctrl);
  1109. break;
  1110. case RDMA_CM_EVENT_DEVICE_REMOVAL:
  1111. /* device removal is handled via the ib_client API */
  1112. break;
  1113. default:
  1114. dev_err(queue->ctrl->ctrl.device,
  1115. "Unexpected RDMA CM event (%d)\n", ev->event);
  1116. nvme_rdma_error_recovery(queue->ctrl);
  1117. break;
  1118. }
  1119. if (cm_error) {
  1120. queue->cm_error = cm_error;
  1121. complete(&queue->cm_done);
  1122. }
  1123. return 0;
  1124. }
  1125. static enum blk_eh_timer_return
  1126. nvme_rdma_timeout(struct request *rq, bool reserved)
  1127. {
  1128. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1129. /* queue error recovery */
  1130. nvme_rdma_error_recovery(req->queue->ctrl);
  1131. /* fail with DNR on cmd timeout */
  1132. nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
  1133. return BLK_EH_HANDLED;
  1134. }
  1135. /*
  1136. * We cannot accept any other command until the Connect command has completed.
  1137. */
  1138. static inline blk_status_t
  1139. nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
  1140. {
  1141. if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
  1142. struct nvme_command *cmd = nvme_req(rq)->cmd;
  1143. if (!blk_rq_is_passthrough(rq) ||
  1144. cmd->common.opcode != nvme_fabrics_command ||
  1145. cmd->fabrics.fctype != nvme_fabrics_type_connect) {
  1146. /*
  1147. * reconnecting state means transport disruption, which
  1148. * can take a long time and even might fail permanently,
  1149. * so we can't let incoming I/O be requeued forever.
  1150. * fail it fast to allow upper layers a chance to
  1151. * failover.
  1152. */
  1153. if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING)
  1154. return BLK_STS_IOERR;
  1155. return BLK_STS_RESOURCE; /* try again later */
  1156. }
  1157. }
  1158. return 0;
  1159. }
  1160. static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
  1161. const struct blk_mq_queue_data *bd)
  1162. {
  1163. struct nvme_ns *ns = hctx->queue->queuedata;
  1164. struct nvme_rdma_queue *queue = hctx->driver_data;
  1165. struct request *rq = bd->rq;
  1166. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1167. struct nvme_rdma_qe *sqe = &req->sqe;
  1168. struct nvme_command *c = sqe->data;
  1169. bool flush = false;
  1170. struct ib_device *dev;
  1171. blk_status_t ret;
  1172. int err;
  1173. WARN_ON_ONCE(rq->tag < 0);
  1174. ret = nvme_rdma_queue_is_ready(queue, rq);
  1175. if (unlikely(ret))
  1176. return ret;
  1177. dev = queue->device->dev;
  1178. ib_dma_sync_single_for_cpu(dev, sqe->dma,
  1179. sizeof(struct nvme_command), DMA_TO_DEVICE);
  1180. ret = nvme_setup_cmd(ns, rq, c);
  1181. if (ret)
  1182. return ret;
  1183. blk_mq_start_request(rq);
  1184. err = nvme_rdma_map_data(queue, rq, c);
  1185. if (err < 0) {
  1186. dev_err(queue->ctrl->ctrl.device,
  1187. "Failed to map data (%d)\n", err);
  1188. nvme_cleanup_cmd(rq);
  1189. goto err;
  1190. }
  1191. ib_dma_sync_single_for_device(dev, sqe->dma,
  1192. sizeof(struct nvme_command), DMA_TO_DEVICE);
  1193. if (req_op(rq) == REQ_OP_FLUSH)
  1194. flush = true;
  1195. err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
  1196. req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
  1197. if (err) {
  1198. nvme_rdma_unmap_data(queue, rq);
  1199. goto err;
  1200. }
  1201. return BLK_STS_OK;
  1202. err:
  1203. if (err == -ENOMEM || err == -EAGAIN)
  1204. return BLK_STS_RESOURCE;
  1205. return BLK_STS_IOERR;
  1206. }
  1207. static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  1208. {
  1209. struct nvme_rdma_queue *queue = hctx->driver_data;
  1210. struct ib_cq *cq = queue->ib_cq;
  1211. struct ib_wc wc;
  1212. int found = 0;
  1213. while (ib_poll_cq(cq, 1, &wc) > 0) {
  1214. struct ib_cqe *cqe = wc.wr_cqe;
  1215. if (cqe) {
  1216. if (cqe->done == nvme_rdma_recv_done)
  1217. found |= __nvme_rdma_recv_done(cq, &wc, tag);
  1218. else
  1219. cqe->done(cq, &wc);
  1220. }
  1221. }
  1222. return found;
  1223. }
  1224. static void nvme_rdma_complete_rq(struct request *rq)
  1225. {
  1226. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1227. nvme_rdma_unmap_data(req->queue, rq);
  1228. nvme_complete_rq(rq);
  1229. }
  1230. static const struct blk_mq_ops nvme_rdma_mq_ops = {
  1231. .queue_rq = nvme_rdma_queue_rq,
  1232. .complete = nvme_rdma_complete_rq,
  1233. .init_request = nvme_rdma_init_request,
  1234. .exit_request = nvme_rdma_exit_request,
  1235. .reinit_request = nvme_rdma_reinit_request,
  1236. .init_hctx = nvme_rdma_init_hctx,
  1237. .poll = nvme_rdma_poll,
  1238. .timeout = nvme_rdma_timeout,
  1239. };
  1240. static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
  1241. .queue_rq = nvme_rdma_queue_rq,
  1242. .complete = nvme_rdma_complete_rq,
  1243. .init_request = nvme_rdma_init_request,
  1244. .exit_request = nvme_rdma_exit_request,
  1245. .reinit_request = nvme_rdma_reinit_request,
  1246. .init_hctx = nvme_rdma_init_admin_hctx,
  1247. .timeout = nvme_rdma_timeout,
  1248. };
  1249. static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
  1250. {
  1251. int error;
  1252. error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
  1253. if (error)
  1254. return error;
  1255. ctrl->device = ctrl->queues[0].device;
  1256. /*
  1257. * We need a reference on the device as long as the tag_set is alive,
  1258. * as the MRs in the request structures need a valid ib_device.
  1259. */
  1260. error = -EINVAL;
  1261. if (!nvme_rdma_dev_get(ctrl->device))
  1262. goto out_free_queue;
  1263. ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
  1264. ctrl->device->dev->attrs.max_fast_reg_page_list_len);
  1265. memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
  1266. ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
  1267. ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
  1268. ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
  1269. ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
  1270. ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
  1271. SG_CHUNK_SIZE * sizeof(struct scatterlist);
  1272. ctrl->admin_tag_set.driver_data = ctrl;
  1273. ctrl->admin_tag_set.nr_hw_queues = 1;
  1274. ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
  1275. error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
  1276. if (error)
  1277. goto out_put_dev;
  1278. ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
  1279. if (IS_ERR(ctrl->ctrl.admin_q)) {
  1280. error = PTR_ERR(ctrl->ctrl.admin_q);
  1281. goto out_free_tagset;
  1282. }
  1283. error = nvmf_connect_admin_queue(&ctrl->ctrl);
  1284. if (error)
  1285. goto out_cleanup_queue;
  1286. set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
  1287. error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
  1288. if (error) {
  1289. dev_err(ctrl->ctrl.device,
  1290. "prop_get NVME_REG_CAP failed\n");
  1291. goto out_cleanup_queue;
  1292. }
  1293. ctrl->ctrl.sqsize =
  1294. min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->ctrl.sqsize);
  1295. error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
  1296. if (error)
  1297. goto out_cleanup_queue;
  1298. ctrl->ctrl.max_hw_sectors =
  1299. (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
  1300. error = nvme_init_identify(&ctrl->ctrl);
  1301. if (error)
  1302. goto out_cleanup_queue;
  1303. error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
  1304. &ctrl->async_event_sqe, sizeof(struct nvme_command),
  1305. DMA_TO_DEVICE);
  1306. if (error)
  1307. goto out_cleanup_queue;
  1308. nvme_start_keep_alive(&ctrl->ctrl);
  1309. return 0;
  1310. out_cleanup_queue:
  1311. blk_cleanup_queue(ctrl->ctrl.admin_q);
  1312. out_free_tagset:
  1313. /* disconnect and drain the queue before freeing the tagset */
  1314. nvme_rdma_stop_queue(&ctrl->queues[0]);
  1315. blk_mq_free_tag_set(&ctrl->admin_tag_set);
  1316. out_put_dev:
  1317. nvme_rdma_dev_put(ctrl->device);
  1318. out_free_queue:
  1319. nvme_rdma_free_queue(&ctrl->queues[0]);
  1320. return error;
  1321. }
  1322. static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
  1323. {
  1324. nvme_stop_keep_alive(&ctrl->ctrl);
  1325. cancel_work_sync(&ctrl->err_work);
  1326. cancel_delayed_work_sync(&ctrl->reconnect_work);
  1327. if (ctrl->queue_count > 1) {
  1328. nvme_stop_queues(&ctrl->ctrl);
  1329. blk_mq_tagset_busy_iter(&ctrl->tag_set,
  1330. nvme_cancel_request, &ctrl->ctrl);
  1331. nvme_rdma_free_io_queues(ctrl);
  1332. }
  1333. if (test_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags))
  1334. nvme_shutdown_ctrl(&ctrl->ctrl);
  1335. blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
  1336. blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
  1337. nvme_cancel_request, &ctrl->ctrl);
  1338. nvme_rdma_destroy_admin_queue(ctrl);
  1339. }
  1340. static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
  1341. {
  1342. nvme_uninit_ctrl(&ctrl->ctrl);
  1343. if (shutdown)
  1344. nvme_rdma_shutdown_ctrl(ctrl);
  1345. if (ctrl->ctrl.tagset) {
  1346. blk_cleanup_queue(ctrl->ctrl.connect_q);
  1347. blk_mq_free_tag_set(&ctrl->tag_set);
  1348. nvme_rdma_dev_put(ctrl->device);
  1349. }
  1350. nvme_put_ctrl(&ctrl->ctrl);
  1351. }
  1352. static void nvme_rdma_del_ctrl_work(struct work_struct *work)
  1353. {
  1354. struct nvme_rdma_ctrl *ctrl = container_of(work,
  1355. struct nvme_rdma_ctrl, delete_work);
  1356. __nvme_rdma_remove_ctrl(ctrl, true);
  1357. }
  1358. static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
  1359. {
  1360. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
  1361. return -EBUSY;
  1362. if (!queue_work(nvme_wq, &ctrl->delete_work))
  1363. return -EBUSY;
  1364. return 0;
  1365. }
  1366. static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
  1367. {
  1368. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  1369. int ret = 0;
  1370. /*
  1371. * Keep a reference until all work is flushed since
  1372. * __nvme_rdma_del_ctrl can free the ctrl mem
  1373. */
  1374. if (!kref_get_unless_zero(&ctrl->ctrl.kref))
  1375. return -EBUSY;
  1376. ret = __nvme_rdma_del_ctrl(ctrl);
  1377. if (!ret)
  1378. flush_work(&ctrl->delete_work);
  1379. nvme_put_ctrl(&ctrl->ctrl);
  1380. return ret;
  1381. }
  1382. static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
  1383. {
  1384. struct nvme_rdma_ctrl *ctrl = container_of(work,
  1385. struct nvme_rdma_ctrl, delete_work);
  1386. __nvme_rdma_remove_ctrl(ctrl, false);
  1387. }
  1388. static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
  1389. {
  1390. struct nvme_rdma_ctrl *ctrl =
  1391. container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
  1392. int ret;
  1393. bool changed;
  1394. nvme_rdma_shutdown_ctrl(ctrl);
  1395. ret = nvme_rdma_configure_admin_queue(ctrl);
  1396. if (ret) {
  1397. /* ctrl is already shutdown, just remove the ctrl */
  1398. INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
  1399. goto del_dead_ctrl;
  1400. }
  1401. if (ctrl->queue_count > 1) {
  1402. ret = blk_mq_reinit_tagset(&ctrl->tag_set);
  1403. if (ret)
  1404. goto del_dead_ctrl;
  1405. ret = nvme_rdma_init_io_queues(ctrl);
  1406. if (ret)
  1407. goto del_dead_ctrl;
  1408. ret = nvme_rdma_connect_io_queues(ctrl);
  1409. if (ret)
  1410. goto del_dead_ctrl;
  1411. }
  1412. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
  1413. WARN_ON_ONCE(!changed);
  1414. if (ctrl->queue_count > 1) {
  1415. nvme_start_queues(&ctrl->ctrl);
  1416. nvme_queue_scan(&ctrl->ctrl);
  1417. nvme_queue_async_events(&ctrl->ctrl);
  1418. }
  1419. return;
  1420. del_dead_ctrl:
  1421. /* Deleting this dead controller... */
  1422. dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
  1423. WARN_ON(!queue_work(nvme_wq, &ctrl->delete_work));
  1424. }
  1425. static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
  1426. .name = "rdma",
  1427. .module = THIS_MODULE,
  1428. .flags = NVME_F_FABRICS,
  1429. .reg_read32 = nvmf_reg_read32,
  1430. .reg_read64 = nvmf_reg_read64,
  1431. .reg_write32 = nvmf_reg_write32,
  1432. .free_ctrl = nvme_rdma_free_ctrl,
  1433. .submit_async_event = nvme_rdma_submit_async_event,
  1434. .delete_ctrl = nvme_rdma_del_ctrl,
  1435. .get_subsysnqn = nvmf_get_subsysnqn,
  1436. .get_address = nvmf_get_address,
  1437. };
  1438. static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
  1439. {
  1440. int ret;
  1441. ret = nvme_rdma_init_io_queues(ctrl);
  1442. if (ret)
  1443. return ret;
  1444. /*
  1445. * We need a reference on the device as long as the tag_set is alive,
  1446. * as the MRs in the request structures need a valid ib_device.
  1447. */
  1448. ret = -EINVAL;
  1449. if (!nvme_rdma_dev_get(ctrl->device))
  1450. goto out_free_io_queues;
  1451. memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
  1452. ctrl->tag_set.ops = &nvme_rdma_mq_ops;
  1453. ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
  1454. ctrl->tag_set.reserved_tags = 1; /* fabric connect */
  1455. ctrl->tag_set.numa_node = NUMA_NO_NODE;
  1456. ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
  1457. ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
  1458. SG_CHUNK_SIZE * sizeof(struct scatterlist);
  1459. ctrl->tag_set.driver_data = ctrl;
  1460. ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
  1461. ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
  1462. ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
  1463. if (ret)
  1464. goto out_put_dev;
  1465. ctrl->ctrl.tagset = &ctrl->tag_set;
  1466. ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
  1467. if (IS_ERR(ctrl->ctrl.connect_q)) {
  1468. ret = PTR_ERR(ctrl->ctrl.connect_q);
  1469. goto out_free_tag_set;
  1470. }
  1471. ret = nvme_rdma_connect_io_queues(ctrl);
  1472. if (ret)
  1473. goto out_cleanup_connect_q;
  1474. return 0;
  1475. out_cleanup_connect_q:
  1476. blk_cleanup_queue(ctrl->ctrl.connect_q);
  1477. out_free_tag_set:
  1478. blk_mq_free_tag_set(&ctrl->tag_set);
  1479. out_put_dev:
  1480. nvme_rdma_dev_put(ctrl->device);
  1481. out_free_io_queues:
  1482. nvme_rdma_free_io_queues(ctrl);
  1483. return ret;
  1484. }
  1485. static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
  1486. struct nvmf_ctrl_options *opts)
  1487. {
  1488. struct nvme_rdma_ctrl *ctrl;
  1489. int ret;
  1490. bool changed;
  1491. char *port;
  1492. ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
  1493. if (!ctrl)
  1494. return ERR_PTR(-ENOMEM);
  1495. ctrl->ctrl.opts = opts;
  1496. INIT_LIST_HEAD(&ctrl->list);
  1497. if (opts->mask & NVMF_OPT_TRSVCID)
  1498. port = opts->trsvcid;
  1499. else
  1500. port = __stringify(NVME_RDMA_IP_PORT);
  1501. ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
  1502. opts->traddr, port, &ctrl->addr);
  1503. if (ret) {
  1504. pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
  1505. goto out_free_ctrl;
  1506. }
  1507. if (opts->mask & NVMF_OPT_HOST_TRADDR) {
  1508. ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
  1509. opts->host_traddr, NULL, &ctrl->src_addr);
  1510. if (ret) {
  1511. pr_err("malformed src address passed: %s\n",
  1512. opts->host_traddr);
  1513. goto out_free_ctrl;
  1514. }
  1515. }
  1516. ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
  1517. 0 /* no quirks, we're perfect! */);
  1518. if (ret)
  1519. goto out_free_ctrl;
  1520. INIT_DELAYED_WORK(&ctrl->reconnect_work,
  1521. nvme_rdma_reconnect_ctrl_work);
  1522. INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
  1523. INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
  1524. INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
  1525. ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
  1526. ctrl->ctrl.sqsize = opts->queue_size - 1;
  1527. ctrl->ctrl.kato = opts->kato;
  1528. ret = -ENOMEM;
  1529. ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
  1530. GFP_KERNEL);
  1531. if (!ctrl->queues)
  1532. goto out_uninit_ctrl;
  1533. ret = nvme_rdma_configure_admin_queue(ctrl);
  1534. if (ret)
  1535. goto out_kfree_queues;
  1536. /* sanity check icdoff */
  1537. if (ctrl->ctrl.icdoff) {
  1538. dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
  1539. ret = -EINVAL;
  1540. goto out_remove_admin_queue;
  1541. }
  1542. /* sanity check keyed sgls */
  1543. if (!(ctrl->ctrl.sgls & (1 << 20))) {
  1544. dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
  1545. ret = -EINVAL;
  1546. goto out_remove_admin_queue;
  1547. }
  1548. if (opts->queue_size > ctrl->ctrl.maxcmd) {
  1549. /* warn if maxcmd is lower than queue_size */
  1550. dev_warn(ctrl->ctrl.device,
  1551. "queue_size %zu > ctrl maxcmd %u, clamping down\n",
  1552. opts->queue_size, ctrl->ctrl.maxcmd);
  1553. opts->queue_size = ctrl->ctrl.maxcmd;
  1554. }
  1555. if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
  1556. /* warn if sqsize is lower than queue_size */
  1557. dev_warn(ctrl->ctrl.device,
  1558. "queue_size %zu > ctrl sqsize %u, clamping down\n",
  1559. opts->queue_size, ctrl->ctrl.sqsize + 1);
  1560. opts->queue_size = ctrl->ctrl.sqsize + 1;
  1561. }
  1562. if (opts->nr_io_queues) {
  1563. ret = nvme_rdma_create_io_queues(ctrl);
  1564. if (ret)
  1565. goto out_remove_admin_queue;
  1566. }
  1567. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
  1568. WARN_ON_ONCE(!changed);
  1569. dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
  1570. ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
  1571. kref_get(&ctrl->ctrl.kref);
  1572. mutex_lock(&nvme_rdma_ctrl_mutex);
  1573. list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
  1574. mutex_unlock(&nvme_rdma_ctrl_mutex);
  1575. if (opts->nr_io_queues) {
  1576. nvme_queue_scan(&ctrl->ctrl);
  1577. nvme_queue_async_events(&ctrl->ctrl);
  1578. }
  1579. return &ctrl->ctrl;
  1580. out_remove_admin_queue:
  1581. nvme_stop_keep_alive(&ctrl->ctrl);
  1582. nvme_rdma_destroy_admin_queue(ctrl);
  1583. out_kfree_queues:
  1584. kfree(ctrl->queues);
  1585. out_uninit_ctrl:
  1586. nvme_uninit_ctrl(&ctrl->ctrl);
  1587. nvme_put_ctrl(&ctrl->ctrl);
  1588. if (ret > 0)
  1589. ret = -EIO;
  1590. return ERR_PTR(ret);
  1591. out_free_ctrl:
  1592. kfree(ctrl);
  1593. return ERR_PTR(ret);
  1594. }
  1595. static struct nvmf_transport_ops nvme_rdma_transport = {
  1596. .name = "rdma",
  1597. .required_opts = NVMF_OPT_TRADDR,
  1598. .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
  1599. NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
  1600. .create_ctrl = nvme_rdma_create_ctrl,
  1601. };
  1602. static void nvme_rdma_add_one(struct ib_device *ib_device)
  1603. {
  1604. }
  1605. static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
  1606. {
  1607. struct nvme_rdma_ctrl *ctrl;
  1608. /* Delete all controllers using this device */
  1609. mutex_lock(&nvme_rdma_ctrl_mutex);
  1610. list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
  1611. if (ctrl->device->dev != ib_device)
  1612. continue;
  1613. dev_info(ctrl->ctrl.device,
  1614. "Removing ctrl: NQN \"%s\", addr %pISp\n",
  1615. ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
  1616. __nvme_rdma_del_ctrl(ctrl);
  1617. }
  1618. mutex_unlock(&nvme_rdma_ctrl_mutex);
  1619. flush_workqueue(nvme_wq);
  1620. }
  1621. static struct ib_client nvme_rdma_ib_client = {
  1622. .name = "nvme_rdma",
  1623. .add = nvme_rdma_add_one,
  1624. .remove = nvme_rdma_remove_one
  1625. };
  1626. static int __init nvme_rdma_init_module(void)
  1627. {
  1628. int ret;
  1629. ret = ib_register_client(&nvme_rdma_ib_client);
  1630. if (ret)
  1631. return ret;
  1632. ret = nvmf_register_transport(&nvme_rdma_transport);
  1633. if (ret)
  1634. goto err_unreg_client;
  1635. return 0;
  1636. err_unreg_client:
  1637. ib_unregister_client(&nvme_rdma_ib_client);
  1638. return ret;
  1639. }
  1640. static void __exit nvme_rdma_cleanup_module(void)
  1641. {
  1642. nvmf_unregister_transport(&nvme_rdma_transport);
  1643. ib_unregister_client(&nvme_rdma_ib_client);
  1644. }
  1645. module_init(nvme_rdma_init_module);
  1646. module_exit(nvme_rdma_cleanup_module);
  1647. MODULE_LICENSE("GPL v2");