pci.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011-2014, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/aer.h>
  15. #include <linux/bitops.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/blk-mq.h>
  18. #include <linux/blk-mq-pci.h>
  19. #include <linux/dmi.h>
  20. #include <linux/init.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/io.h>
  23. #include <linux/mm.h>
  24. #include <linux/module.h>
  25. #include <linux/mutex.h>
  26. #include <linux/pci.h>
  27. #include <linux/poison.h>
  28. #include <linux/t10-pi.h>
  29. #include <linux/timer.h>
  30. #include <linux/types.h>
  31. #include <linux/io-64-nonatomic-lo-hi.h>
  32. #include <asm/unaligned.h>
  33. #include <linux/sed-opal.h>
  34. #include "nvme.h"
  35. #define NVME_Q_DEPTH 1024
  36. #define NVME_AQ_DEPTH 256
  37. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  38. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  39. /*
  40. * We handle AEN commands ourselves and don't even let the
  41. * block layer know about them.
  42. */
  43. #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
  44. static int use_threaded_interrupts;
  45. module_param(use_threaded_interrupts, int, 0);
  46. static bool use_cmb_sqes = true;
  47. module_param(use_cmb_sqes, bool, 0644);
  48. MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  49. static unsigned int max_host_mem_size_mb = 128;
  50. module_param(max_host_mem_size_mb, uint, 0444);
  51. MODULE_PARM_DESC(max_host_mem_size_mb,
  52. "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
  53. struct nvme_dev;
  54. struct nvme_queue;
  55. static void nvme_process_cq(struct nvme_queue *nvmeq);
  56. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  57. /*
  58. * Represents an NVM Express device. Each nvme_dev is a PCI function.
  59. */
  60. struct nvme_dev {
  61. struct nvme_queue **queues;
  62. struct blk_mq_tag_set tagset;
  63. struct blk_mq_tag_set admin_tagset;
  64. u32 __iomem *dbs;
  65. struct device *dev;
  66. struct dma_pool *prp_page_pool;
  67. struct dma_pool *prp_small_pool;
  68. unsigned queue_count;
  69. unsigned online_queues;
  70. unsigned max_qid;
  71. int q_depth;
  72. u32 db_stride;
  73. void __iomem *bar;
  74. unsigned long bar_mapped_size;
  75. struct work_struct remove_work;
  76. struct mutex shutdown_lock;
  77. bool subsystem;
  78. void __iomem *cmb;
  79. dma_addr_t cmb_dma_addr;
  80. u64 cmb_size;
  81. u32 cmbsz;
  82. u32 cmbloc;
  83. struct nvme_ctrl ctrl;
  84. struct completion ioq_wait;
  85. /* shadow doorbell buffer support: */
  86. u32 *dbbuf_dbs;
  87. dma_addr_t dbbuf_dbs_dma_addr;
  88. u32 *dbbuf_eis;
  89. dma_addr_t dbbuf_eis_dma_addr;
  90. /* host memory buffer support: */
  91. u64 host_mem_size;
  92. u32 nr_host_mem_descs;
  93. struct nvme_host_mem_buf_desc *host_mem_descs;
  94. void **host_mem_desc_bufs;
  95. };
  96. static inline unsigned int sq_idx(unsigned int qid, u32 stride)
  97. {
  98. return qid * 2 * stride;
  99. }
  100. static inline unsigned int cq_idx(unsigned int qid, u32 stride)
  101. {
  102. return (qid * 2 + 1) * stride;
  103. }
  104. static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
  105. {
  106. return container_of(ctrl, struct nvme_dev, ctrl);
  107. }
  108. /*
  109. * An NVM Express queue. Each device has at least two (one for admin
  110. * commands and one for I/O commands).
  111. */
  112. struct nvme_queue {
  113. struct device *q_dmadev;
  114. struct nvme_dev *dev;
  115. spinlock_t q_lock;
  116. struct nvme_command *sq_cmds;
  117. struct nvme_command __iomem *sq_cmds_io;
  118. volatile struct nvme_completion *cqes;
  119. struct blk_mq_tags **tags;
  120. dma_addr_t sq_dma_addr;
  121. dma_addr_t cq_dma_addr;
  122. u32 __iomem *q_db;
  123. u16 q_depth;
  124. s16 cq_vector;
  125. u16 sq_tail;
  126. u16 cq_head;
  127. u16 qid;
  128. u8 cq_phase;
  129. u8 cqe_seen;
  130. u32 *dbbuf_sq_db;
  131. u32 *dbbuf_cq_db;
  132. u32 *dbbuf_sq_ei;
  133. u32 *dbbuf_cq_ei;
  134. };
  135. /*
  136. * The nvme_iod describes the data in an I/O, including the list of PRP
  137. * entries. You can't see it in this data structure because C doesn't let
  138. * me express that. Use nvme_init_iod to ensure there's enough space
  139. * allocated to store the PRP list.
  140. */
  141. struct nvme_iod {
  142. struct nvme_request req;
  143. struct nvme_queue *nvmeq;
  144. int aborted;
  145. int npages; /* In the PRP list. 0 means small pool in use */
  146. int nents; /* Used in scatterlist */
  147. int length; /* Of data, in bytes */
  148. dma_addr_t first_dma;
  149. struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
  150. struct scatterlist *sg;
  151. struct scatterlist inline_sg[0];
  152. };
  153. /*
  154. * Check we didin't inadvertently grow the command struct
  155. */
  156. static inline void _nvme_check_size(void)
  157. {
  158. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  159. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  160. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  161. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  162. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  163. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  164. BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
  165. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  166. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
  167. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
  168. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  169. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  170. BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
  171. }
  172. static inline unsigned int nvme_dbbuf_size(u32 stride)
  173. {
  174. return ((num_possible_cpus() + 1) * 8 * stride);
  175. }
  176. static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
  177. {
  178. unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
  179. if (dev->dbbuf_dbs)
  180. return 0;
  181. dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
  182. &dev->dbbuf_dbs_dma_addr,
  183. GFP_KERNEL);
  184. if (!dev->dbbuf_dbs)
  185. return -ENOMEM;
  186. dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
  187. &dev->dbbuf_eis_dma_addr,
  188. GFP_KERNEL);
  189. if (!dev->dbbuf_eis) {
  190. dma_free_coherent(dev->dev, mem_size,
  191. dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
  192. dev->dbbuf_dbs = NULL;
  193. return -ENOMEM;
  194. }
  195. return 0;
  196. }
  197. static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
  198. {
  199. unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
  200. if (dev->dbbuf_dbs) {
  201. dma_free_coherent(dev->dev, mem_size,
  202. dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
  203. dev->dbbuf_dbs = NULL;
  204. }
  205. if (dev->dbbuf_eis) {
  206. dma_free_coherent(dev->dev, mem_size,
  207. dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
  208. dev->dbbuf_eis = NULL;
  209. }
  210. }
  211. static void nvme_dbbuf_init(struct nvme_dev *dev,
  212. struct nvme_queue *nvmeq, int qid)
  213. {
  214. if (!dev->dbbuf_dbs || !qid)
  215. return;
  216. nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
  217. nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
  218. nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
  219. nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
  220. }
  221. static void nvme_dbbuf_set(struct nvme_dev *dev)
  222. {
  223. struct nvme_command c;
  224. if (!dev->dbbuf_dbs)
  225. return;
  226. memset(&c, 0, sizeof(c));
  227. c.dbbuf.opcode = nvme_admin_dbbuf;
  228. c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
  229. c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
  230. if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
  231. dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
  232. /* Free memory and continue on */
  233. nvme_dbbuf_dma_free(dev);
  234. }
  235. }
  236. static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
  237. {
  238. return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
  239. }
  240. /* Update dbbuf and return true if an MMIO is required */
  241. static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
  242. volatile u32 *dbbuf_ei)
  243. {
  244. if (dbbuf_db) {
  245. u16 old_value;
  246. /*
  247. * Ensure that the queue is written before updating
  248. * the doorbell in memory
  249. */
  250. wmb();
  251. old_value = *dbbuf_db;
  252. *dbbuf_db = value;
  253. if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
  254. return false;
  255. }
  256. return true;
  257. }
  258. /*
  259. * Max size of iod being embedded in the request payload
  260. */
  261. #define NVME_INT_PAGES 2
  262. #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
  263. /*
  264. * Will slightly overestimate the number of pages needed. This is OK
  265. * as it only leads to a small amount of wasted memory for the lifetime of
  266. * the I/O.
  267. */
  268. static int nvme_npages(unsigned size, struct nvme_dev *dev)
  269. {
  270. unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
  271. dev->ctrl.page_size);
  272. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  273. }
  274. static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
  275. unsigned int size, unsigned int nseg)
  276. {
  277. return sizeof(__le64 *) * nvme_npages(size, dev) +
  278. sizeof(struct scatterlist) * nseg;
  279. }
  280. static unsigned int nvme_cmd_size(struct nvme_dev *dev)
  281. {
  282. return sizeof(struct nvme_iod) +
  283. nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
  284. }
  285. static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  286. unsigned int hctx_idx)
  287. {
  288. struct nvme_dev *dev = data;
  289. struct nvme_queue *nvmeq = dev->queues[0];
  290. WARN_ON(hctx_idx != 0);
  291. WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
  292. WARN_ON(nvmeq->tags);
  293. hctx->driver_data = nvmeq;
  294. nvmeq->tags = &dev->admin_tagset.tags[0];
  295. return 0;
  296. }
  297. static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
  298. {
  299. struct nvme_queue *nvmeq = hctx->driver_data;
  300. nvmeq->tags = NULL;
  301. }
  302. static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  303. unsigned int hctx_idx)
  304. {
  305. struct nvme_dev *dev = data;
  306. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  307. if (!nvmeq->tags)
  308. nvmeq->tags = &dev->tagset.tags[hctx_idx];
  309. WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
  310. hctx->driver_data = nvmeq;
  311. return 0;
  312. }
  313. static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
  314. unsigned int hctx_idx, unsigned int numa_node)
  315. {
  316. struct nvme_dev *dev = set->driver_data;
  317. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  318. int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
  319. struct nvme_queue *nvmeq = dev->queues[queue_idx];
  320. BUG_ON(!nvmeq);
  321. iod->nvmeq = nvmeq;
  322. return 0;
  323. }
  324. static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
  325. {
  326. struct nvme_dev *dev = set->driver_data;
  327. return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
  328. }
  329. /**
  330. * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  331. * @nvmeq: The queue to use
  332. * @cmd: The command to send
  333. *
  334. * Safe to use from interrupt context
  335. */
  336. static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
  337. struct nvme_command *cmd)
  338. {
  339. u16 tail = nvmeq->sq_tail;
  340. if (nvmeq->sq_cmds_io)
  341. memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
  342. else
  343. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  344. if (++tail == nvmeq->q_depth)
  345. tail = 0;
  346. if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
  347. nvmeq->dbbuf_sq_ei))
  348. writel(tail, nvmeq->q_db);
  349. nvmeq->sq_tail = tail;
  350. }
  351. static __le64 **iod_list(struct request *req)
  352. {
  353. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  354. return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
  355. }
  356. static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
  357. {
  358. struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
  359. int nseg = blk_rq_nr_phys_segments(rq);
  360. unsigned int size = blk_rq_payload_bytes(rq);
  361. if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
  362. iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
  363. if (!iod->sg)
  364. return BLK_STS_RESOURCE;
  365. } else {
  366. iod->sg = iod->inline_sg;
  367. }
  368. iod->aborted = 0;
  369. iod->npages = -1;
  370. iod->nents = 0;
  371. iod->length = size;
  372. return BLK_STS_OK;
  373. }
  374. static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
  375. {
  376. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  377. const int last_prp = dev->ctrl.page_size / 8 - 1;
  378. int i;
  379. __le64 **list = iod_list(req);
  380. dma_addr_t prp_dma = iod->first_dma;
  381. if (iod->npages == 0)
  382. dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
  383. for (i = 0; i < iod->npages; i++) {
  384. __le64 *prp_list = list[i];
  385. dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
  386. dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
  387. prp_dma = next_prp_dma;
  388. }
  389. if (iod->sg != iod->inline_sg)
  390. kfree(iod->sg);
  391. }
  392. #ifdef CONFIG_BLK_DEV_INTEGRITY
  393. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  394. {
  395. if (be32_to_cpu(pi->ref_tag) == v)
  396. pi->ref_tag = cpu_to_be32(p);
  397. }
  398. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  399. {
  400. if (be32_to_cpu(pi->ref_tag) == p)
  401. pi->ref_tag = cpu_to_be32(v);
  402. }
  403. /**
  404. * nvme_dif_remap - remaps ref tags to bip seed and physical lba
  405. *
  406. * The virtual start sector is the one that was originally submitted by the
  407. * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
  408. * start sector may be different. Remap protection information to match the
  409. * physical LBA on writes, and back to the original seed on reads.
  410. *
  411. * Type 0 and 3 do not have a ref tag, so no remapping required.
  412. */
  413. static void nvme_dif_remap(struct request *req,
  414. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  415. {
  416. struct nvme_ns *ns = req->rq_disk->private_data;
  417. struct bio_integrity_payload *bip;
  418. struct t10_pi_tuple *pi;
  419. void *p, *pmap;
  420. u32 i, nlb, ts, phys, virt;
  421. if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
  422. return;
  423. bip = bio_integrity(req->bio);
  424. if (!bip)
  425. return;
  426. pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
  427. p = pmap;
  428. virt = bip_get_seed(bip);
  429. phys = nvme_block_nr(ns, blk_rq_pos(req));
  430. nlb = (blk_rq_bytes(req) >> ns->lba_shift);
  431. ts = ns->disk->queue->integrity.tuple_size;
  432. for (i = 0; i < nlb; i++, virt++, phys++) {
  433. pi = (struct t10_pi_tuple *)p;
  434. dif_swap(phys, virt, pi);
  435. p += ts;
  436. }
  437. kunmap_atomic(pmap);
  438. }
  439. #else /* CONFIG_BLK_DEV_INTEGRITY */
  440. static void nvme_dif_remap(struct request *req,
  441. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  442. {
  443. }
  444. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  445. {
  446. }
  447. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  448. {
  449. }
  450. #endif
  451. static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
  452. {
  453. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  454. struct dma_pool *pool;
  455. int length = blk_rq_payload_bytes(req);
  456. struct scatterlist *sg = iod->sg;
  457. int dma_len = sg_dma_len(sg);
  458. u64 dma_addr = sg_dma_address(sg);
  459. u32 page_size = dev->ctrl.page_size;
  460. int offset = dma_addr & (page_size - 1);
  461. __le64 *prp_list;
  462. __le64 **list = iod_list(req);
  463. dma_addr_t prp_dma;
  464. int nprps, i;
  465. length -= (page_size - offset);
  466. if (length <= 0)
  467. return true;
  468. dma_len -= (page_size - offset);
  469. if (dma_len) {
  470. dma_addr += (page_size - offset);
  471. } else {
  472. sg = sg_next(sg);
  473. dma_addr = sg_dma_address(sg);
  474. dma_len = sg_dma_len(sg);
  475. }
  476. if (length <= page_size) {
  477. iod->first_dma = dma_addr;
  478. return true;
  479. }
  480. nprps = DIV_ROUND_UP(length, page_size);
  481. if (nprps <= (256 / 8)) {
  482. pool = dev->prp_small_pool;
  483. iod->npages = 0;
  484. } else {
  485. pool = dev->prp_page_pool;
  486. iod->npages = 1;
  487. }
  488. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  489. if (!prp_list) {
  490. iod->first_dma = dma_addr;
  491. iod->npages = -1;
  492. return false;
  493. }
  494. list[0] = prp_list;
  495. iod->first_dma = prp_dma;
  496. i = 0;
  497. for (;;) {
  498. if (i == page_size >> 3) {
  499. __le64 *old_prp_list = prp_list;
  500. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  501. if (!prp_list)
  502. return false;
  503. list[iod->npages++] = prp_list;
  504. prp_list[0] = old_prp_list[i - 1];
  505. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  506. i = 1;
  507. }
  508. prp_list[i++] = cpu_to_le64(dma_addr);
  509. dma_len -= page_size;
  510. dma_addr += page_size;
  511. length -= page_size;
  512. if (length <= 0)
  513. break;
  514. if (dma_len > 0)
  515. continue;
  516. BUG_ON(dma_len < 0);
  517. sg = sg_next(sg);
  518. dma_addr = sg_dma_address(sg);
  519. dma_len = sg_dma_len(sg);
  520. }
  521. return true;
  522. }
  523. static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
  524. struct nvme_command *cmnd)
  525. {
  526. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  527. struct request_queue *q = req->q;
  528. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  529. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  530. blk_status_t ret = BLK_STS_IOERR;
  531. sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
  532. iod->nents = blk_rq_map_sg(q, req, iod->sg);
  533. if (!iod->nents)
  534. goto out;
  535. ret = BLK_STS_RESOURCE;
  536. if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
  537. DMA_ATTR_NO_WARN))
  538. goto out;
  539. if (!nvme_setup_prps(dev, req))
  540. goto out_unmap;
  541. ret = BLK_STS_IOERR;
  542. if (blk_integrity_rq(req)) {
  543. if (blk_rq_count_integrity_sg(q, req->bio) != 1)
  544. goto out_unmap;
  545. sg_init_table(&iod->meta_sg, 1);
  546. if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
  547. goto out_unmap;
  548. if (rq_data_dir(req))
  549. nvme_dif_remap(req, nvme_dif_prep);
  550. if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
  551. goto out_unmap;
  552. }
  553. cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
  554. cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
  555. if (blk_integrity_rq(req))
  556. cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
  557. return BLK_STS_OK;
  558. out_unmap:
  559. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  560. out:
  561. return ret;
  562. }
  563. static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
  564. {
  565. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  566. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  567. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  568. if (iod->nents) {
  569. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  570. if (blk_integrity_rq(req)) {
  571. if (!rq_data_dir(req))
  572. nvme_dif_remap(req, nvme_dif_complete);
  573. dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
  574. }
  575. }
  576. nvme_cleanup_cmd(req);
  577. nvme_free_iod(dev, req);
  578. }
  579. /*
  580. * NOTE: ns is NULL when called on the admin queue.
  581. */
  582. static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
  583. const struct blk_mq_queue_data *bd)
  584. {
  585. struct nvme_ns *ns = hctx->queue->queuedata;
  586. struct nvme_queue *nvmeq = hctx->driver_data;
  587. struct nvme_dev *dev = nvmeq->dev;
  588. struct request *req = bd->rq;
  589. struct nvme_command cmnd;
  590. blk_status_t ret;
  591. ret = nvme_setup_cmd(ns, req, &cmnd);
  592. if (ret)
  593. return ret;
  594. ret = nvme_init_iod(req, dev);
  595. if (ret)
  596. goto out_free_cmd;
  597. if (blk_rq_nr_phys_segments(req)) {
  598. ret = nvme_map_data(dev, req, &cmnd);
  599. if (ret)
  600. goto out_cleanup_iod;
  601. }
  602. blk_mq_start_request(req);
  603. spin_lock_irq(&nvmeq->q_lock);
  604. if (unlikely(nvmeq->cq_vector < 0)) {
  605. ret = BLK_STS_IOERR;
  606. spin_unlock_irq(&nvmeq->q_lock);
  607. goto out_cleanup_iod;
  608. }
  609. __nvme_submit_cmd(nvmeq, &cmnd);
  610. nvme_process_cq(nvmeq);
  611. spin_unlock_irq(&nvmeq->q_lock);
  612. return BLK_STS_OK;
  613. out_cleanup_iod:
  614. nvme_free_iod(dev, req);
  615. out_free_cmd:
  616. nvme_cleanup_cmd(req);
  617. return ret;
  618. }
  619. static void nvme_pci_complete_rq(struct request *req)
  620. {
  621. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  622. nvme_unmap_data(iod->nvmeq->dev, req);
  623. nvme_complete_rq(req);
  624. }
  625. /* We read the CQE phase first to check if the rest of the entry is valid */
  626. static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
  627. u16 phase)
  628. {
  629. return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
  630. }
  631. static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
  632. {
  633. u16 head, phase;
  634. head = nvmeq->cq_head;
  635. phase = nvmeq->cq_phase;
  636. while (nvme_cqe_valid(nvmeq, head, phase)) {
  637. struct nvme_completion cqe = nvmeq->cqes[head];
  638. struct request *req;
  639. if (++head == nvmeq->q_depth) {
  640. head = 0;
  641. phase = !phase;
  642. }
  643. if (tag && *tag == cqe.command_id)
  644. *tag = -1;
  645. if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
  646. dev_warn(nvmeq->dev->ctrl.device,
  647. "invalid id %d completed on queue %d\n",
  648. cqe.command_id, le16_to_cpu(cqe.sq_id));
  649. continue;
  650. }
  651. /*
  652. * AEN requests are special as they don't time out and can
  653. * survive any kind of queue freeze and often don't respond to
  654. * aborts. We don't even bother to allocate a struct request
  655. * for them but rather special case them here.
  656. */
  657. if (unlikely(nvmeq->qid == 0 &&
  658. cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
  659. nvme_complete_async_event(&nvmeq->dev->ctrl,
  660. cqe.status, &cqe.result);
  661. continue;
  662. }
  663. req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
  664. nvme_end_request(req, cqe.status, cqe.result);
  665. }
  666. if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
  667. return;
  668. if (likely(nvmeq->cq_vector >= 0))
  669. if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
  670. nvmeq->dbbuf_cq_ei))
  671. writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
  672. nvmeq->cq_head = head;
  673. nvmeq->cq_phase = phase;
  674. nvmeq->cqe_seen = 1;
  675. }
  676. static void nvme_process_cq(struct nvme_queue *nvmeq)
  677. {
  678. __nvme_process_cq(nvmeq, NULL);
  679. }
  680. static irqreturn_t nvme_irq(int irq, void *data)
  681. {
  682. irqreturn_t result;
  683. struct nvme_queue *nvmeq = data;
  684. spin_lock(&nvmeq->q_lock);
  685. nvme_process_cq(nvmeq);
  686. result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
  687. nvmeq->cqe_seen = 0;
  688. spin_unlock(&nvmeq->q_lock);
  689. return result;
  690. }
  691. static irqreturn_t nvme_irq_check(int irq, void *data)
  692. {
  693. struct nvme_queue *nvmeq = data;
  694. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
  695. return IRQ_WAKE_THREAD;
  696. return IRQ_NONE;
  697. }
  698. static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
  699. {
  700. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
  701. spin_lock_irq(&nvmeq->q_lock);
  702. __nvme_process_cq(nvmeq, &tag);
  703. spin_unlock_irq(&nvmeq->q_lock);
  704. if (tag == -1)
  705. return 1;
  706. }
  707. return 0;
  708. }
  709. static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  710. {
  711. struct nvme_queue *nvmeq = hctx->driver_data;
  712. return __nvme_poll(nvmeq, tag);
  713. }
  714. static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
  715. {
  716. struct nvme_dev *dev = to_nvme_dev(ctrl);
  717. struct nvme_queue *nvmeq = dev->queues[0];
  718. struct nvme_command c;
  719. memset(&c, 0, sizeof(c));
  720. c.common.opcode = nvme_admin_async_event;
  721. c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
  722. spin_lock_irq(&nvmeq->q_lock);
  723. __nvme_submit_cmd(nvmeq, &c);
  724. spin_unlock_irq(&nvmeq->q_lock);
  725. }
  726. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  727. {
  728. struct nvme_command c;
  729. memset(&c, 0, sizeof(c));
  730. c.delete_queue.opcode = opcode;
  731. c.delete_queue.qid = cpu_to_le16(id);
  732. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  733. }
  734. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  735. struct nvme_queue *nvmeq)
  736. {
  737. struct nvme_command c;
  738. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  739. /*
  740. * Note: we (ab)use the fact the the prp fields survive if no data
  741. * is attached to the request.
  742. */
  743. memset(&c, 0, sizeof(c));
  744. c.create_cq.opcode = nvme_admin_create_cq;
  745. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  746. c.create_cq.cqid = cpu_to_le16(qid);
  747. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  748. c.create_cq.cq_flags = cpu_to_le16(flags);
  749. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  750. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  751. }
  752. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  753. struct nvme_queue *nvmeq)
  754. {
  755. struct nvme_command c;
  756. int flags = NVME_QUEUE_PHYS_CONTIG;
  757. /*
  758. * Note: we (ab)use the fact the the prp fields survive if no data
  759. * is attached to the request.
  760. */
  761. memset(&c, 0, sizeof(c));
  762. c.create_sq.opcode = nvme_admin_create_sq;
  763. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  764. c.create_sq.sqid = cpu_to_le16(qid);
  765. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  766. c.create_sq.sq_flags = cpu_to_le16(flags);
  767. c.create_sq.cqid = cpu_to_le16(qid);
  768. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  769. }
  770. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  771. {
  772. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  773. }
  774. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  775. {
  776. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  777. }
  778. static void abort_endio(struct request *req, blk_status_t error)
  779. {
  780. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  781. struct nvme_queue *nvmeq = iod->nvmeq;
  782. dev_warn(nvmeq->dev->ctrl.device,
  783. "Abort status: 0x%x", nvme_req(req)->status);
  784. atomic_inc(&nvmeq->dev->ctrl.abort_limit);
  785. blk_mq_free_request(req);
  786. }
  787. static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
  788. {
  789. /* If true, indicates loss of adapter communication, possibly by a
  790. * NVMe Subsystem reset.
  791. */
  792. bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
  793. /* If there is a reset ongoing, we shouldn't reset again. */
  794. if (dev->ctrl.state == NVME_CTRL_RESETTING)
  795. return false;
  796. /* We shouldn't reset unless the controller is on fatal error state
  797. * _or_ if we lost the communication with it.
  798. */
  799. if (!(csts & NVME_CSTS_CFS) && !nssro)
  800. return false;
  801. /* If PCI error recovery process is happening, we cannot reset or
  802. * the recovery mechanism will surely fail.
  803. */
  804. if (pci_channel_offline(to_pci_dev(dev->dev)))
  805. return false;
  806. return true;
  807. }
  808. static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
  809. {
  810. /* Read a config register to help see what died. */
  811. u16 pci_status;
  812. int result;
  813. result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
  814. &pci_status);
  815. if (result == PCIBIOS_SUCCESSFUL)
  816. dev_warn(dev->ctrl.device,
  817. "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
  818. csts, pci_status);
  819. else
  820. dev_warn(dev->ctrl.device,
  821. "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
  822. csts, result);
  823. }
  824. static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
  825. {
  826. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  827. struct nvme_queue *nvmeq = iod->nvmeq;
  828. struct nvme_dev *dev = nvmeq->dev;
  829. struct request *abort_req;
  830. struct nvme_command cmd;
  831. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  832. /*
  833. * Reset immediately if the controller is failed
  834. */
  835. if (nvme_should_reset(dev, csts)) {
  836. nvme_warn_reset(dev, csts);
  837. nvme_dev_disable(dev, false);
  838. nvme_reset_ctrl(&dev->ctrl);
  839. return BLK_EH_HANDLED;
  840. }
  841. /*
  842. * Did we miss an interrupt?
  843. */
  844. if (__nvme_poll(nvmeq, req->tag)) {
  845. dev_warn(dev->ctrl.device,
  846. "I/O %d QID %d timeout, completion polled\n",
  847. req->tag, nvmeq->qid);
  848. return BLK_EH_HANDLED;
  849. }
  850. /*
  851. * Shutdown immediately if controller times out while starting. The
  852. * reset work will see the pci device disabled when it gets the forced
  853. * cancellation error. All outstanding requests are completed on
  854. * shutdown, so we return BLK_EH_HANDLED.
  855. */
  856. if (dev->ctrl.state == NVME_CTRL_RESETTING) {
  857. dev_warn(dev->ctrl.device,
  858. "I/O %d QID %d timeout, disable controller\n",
  859. req->tag, nvmeq->qid);
  860. nvme_dev_disable(dev, false);
  861. nvme_req(req)->flags |= NVME_REQ_CANCELLED;
  862. return BLK_EH_HANDLED;
  863. }
  864. /*
  865. * Shutdown the controller immediately and schedule a reset if the
  866. * command was already aborted once before and still hasn't been
  867. * returned to the driver, or if this is the admin queue.
  868. */
  869. if (!nvmeq->qid || iod->aborted) {
  870. dev_warn(dev->ctrl.device,
  871. "I/O %d QID %d timeout, reset controller\n",
  872. req->tag, nvmeq->qid);
  873. nvme_dev_disable(dev, false);
  874. nvme_reset_ctrl(&dev->ctrl);
  875. /*
  876. * Mark the request as handled, since the inline shutdown
  877. * forces all outstanding requests to complete.
  878. */
  879. nvme_req(req)->flags |= NVME_REQ_CANCELLED;
  880. return BLK_EH_HANDLED;
  881. }
  882. if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
  883. atomic_inc(&dev->ctrl.abort_limit);
  884. return BLK_EH_RESET_TIMER;
  885. }
  886. iod->aborted = 1;
  887. memset(&cmd, 0, sizeof(cmd));
  888. cmd.abort.opcode = nvme_admin_abort_cmd;
  889. cmd.abort.cid = req->tag;
  890. cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
  891. dev_warn(nvmeq->dev->ctrl.device,
  892. "I/O %d QID %d timeout, aborting\n",
  893. req->tag, nvmeq->qid);
  894. abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
  895. BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  896. if (IS_ERR(abort_req)) {
  897. atomic_inc(&dev->ctrl.abort_limit);
  898. return BLK_EH_RESET_TIMER;
  899. }
  900. abort_req->timeout = ADMIN_TIMEOUT;
  901. abort_req->end_io_data = NULL;
  902. blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
  903. /*
  904. * The aborted req will be completed on receiving the abort req.
  905. * We enable the timer again. If hit twice, it'll cause a device reset,
  906. * as the device then is in a faulty state.
  907. */
  908. return BLK_EH_RESET_TIMER;
  909. }
  910. static void nvme_free_queue(struct nvme_queue *nvmeq)
  911. {
  912. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  913. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  914. if (nvmeq->sq_cmds)
  915. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  916. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  917. kfree(nvmeq);
  918. }
  919. static void nvme_free_queues(struct nvme_dev *dev, int lowest)
  920. {
  921. int i;
  922. for (i = dev->queue_count - 1; i >= lowest; i--) {
  923. struct nvme_queue *nvmeq = dev->queues[i];
  924. dev->queue_count--;
  925. dev->queues[i] = NULL;
  926. nvme_free_queue(nvmeq);
  927. }
  928. }
  929. /**
  930. * nvme_suspend_queue - put queue into suspended state
  931. * @nvmeq - queue to suspend
  932. */
  933. static int nvme_suspend_queue(struct nvme_queue *nvmeq)
  934. {
  935. int vector;
  936. spin_lock_irq(&nvmeq->q_lock);
  937. if (nvmeq->cq_vector == -1) {
  938. spin_unlock_irq(&nvmeq->q_lock);
  939. return 1;
  940. }
  941. vector = nvmeq->cq_vector;
  942. nvmeq->dev->online_queues--;
  943. nvmeq->cq_vector = -1;
  944. spin_unlock_irq(&nvmeq->q_lock);
  945. if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
  946. blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
  947. pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
  948. return 0;
  949. }
  950. static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
  951. {
  952. struct nvme_queue *nvmeq = dev->queues[0];
  953. if (!nvmeq)
  954. return;
  955. if (nvme_suspend_queue(nvmeq))
  956. return;
  957. if (shutdown)
  958. nvme_shutdown_ctrl(&dev->ctrl);
  959. else
  960. nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
  961. dev->bar + NVME_REG_CAP));
  962. spin_lock_irq(&nvmeq->q_lock);
  963. nvme_process_cq(nvmeq);
  964. spin_unlock_irq(&nvmeq->q_lock);
  965. }
  966. static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
  967. int entry_size)
  968. {
  969. int q_depth = dev->q_depth;
  970. unsigned q_size_aligned = roundup(q_depth * entry_size,
  971. dev->ctrl.page_size);
  972. if (q_size_aligned * nr_io_queues > dev->cmb_size) {
  973. u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
  974. mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
  975. q_depth = div_u64(mem_per_q, entry_size);
  976. /*
  977. * Ensure the reduced q_depth is above some threshold where it
  978. * would be better to map queues in system memory with the
  979. * original depth
  980. */
  981. if (q_depth < 64)
  982. return -ENOMEM;
  983. }
  984. return q_depth;
  985. }
  986. static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  987. int qid, int depth)
  988. {
  989. if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
  990. unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
  991. dev->ctrl.page_size);
  992. nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
  993. nvmeq->sq_cmds_io = dev->cmb + offset;
  994. } else {
  995. nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
  996. &nvmeq->sq_dma_addr, GFP_KERNEL);
  997. if (!nvmeq->sq_cmds)
  998. return -ENOMEM;
  999. }
  1000. return 0;
  1001. }
  1002. static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
  1003. int depth, int node)
  1004. {
  1005. struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
  1006. node);
  1007. if (!nvmeq)
  1008. return NULL;
  1009. nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
  1010. &nvmeq->cq_dma_addr, GFP_KERNEL);
  1011. if (!nvmeq->cqes)
  1012. goto free_nvmeq;
  1013. if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
  1014. goto free_cqdma;
  1015. nvmeq->q_dmadev = dev->dev;
  1016. nvmeq->dev = dev;
  1017. spin_lock_init(&nvmeq->q_lock);
  1018. nvmeq->cq_head = 0;
  1019. nvmeq->cq_phase = 1;
  1020. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1021. nvmeq->q_depth = depth;
  1022. nvmeq->qid = qid;
  1023. nvmeq->cq_vector = -1;
  1024. dev->queues[qid] = nvmeq;
  1025. dev->queue_count++;
  1026. return nvmeq;
  1027. free_cqdma:
  1028. dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  1029. nvmeq->cq_dma_addr);
  1030. free_nvmeq:
  1031. kfree(nvmeq);
  1032. return NULL;
  1033. }
  1034. static int queue_request_irq(struct nvme_queue *nvmeq)
  1035. {
  1036. struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
  1037. int nr = nvmeq->dev->ctrl.instance;
  1038. if (use_threaded_interrupts) {
  1039. return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
  1040. nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
  1041. } else {
  1042. return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
  1043. NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
  1044. }
  1045. }
  1046. static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
  1047. {
  1048. struct nvme_dev *dev = nvmeq->dev;
  1049. spin_lock_irq(&nvmeq->q_lock);
  1050. nvmeq->sq_tail = 0;
  1051. nvmeq->cq_head = 0;
  1052. nvmeq->cq_phase = 1;
  1053. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1054. memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
  1055. nvme_dbbuf_init(dev, nvmeq, qid);
  1056. dev->online_queues++;
  1057. spin_unlock_irq(&nvmeq->q_lock);
  1058. }
  1059. static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
  1060. {
  1061. struct nvme_dev *dev = nvmeq->dev;
  1062. int result;
  1063. nvmeq->cq_vector = qid - 1;
  1064. result = adapter_alloc_cq(dev, qid, nvmeq);
  1065. if (result < 0)
  1066. return result;
  1067. result = adapter_alloc_sq(dev, qid, nvmeq);
  1068. if (result < 0)
  1069. goto release_cq;
  1070. result = queue_request_irq(nvmeq);
  1071. if (result < 0)
  1072. goto release_sq;
  1073. nvme_init_queue(nvmeq, qid);
  1074. return result;
  1075. release_sq:
  1076. adapter_delete_sq(dev, qid);
  1077. release_cq:
  1078. adapter_delete_cq(dev, qid);
  1079. return result;
  1080. }
  1081. static const struct blk_mq_ops nvme_mq_admin_ops = {
  1082. .queue_rq = nvme_queue_rq,
  1083. .complete = nvme_pci_complete_rq,
  1084. .init_hctx = nvme_admin_init_hctx,
  1085. .exit_hctx = nvme_admin_exit_hctx,
  1086. .init_request = nvme_init_request,
  1087. .timeout = nvme_timeout,
  1088. };
  1089. static const struct blk_mq_ops nvme_mq_ops = {
  1090. .queue_rq = nvme_queue_rq,
  1091. .complete = nvme_pci_complete_rq,
  1092. .init_hctx = nvme_init_hctx,
  1093. .init_request = nvme_init_request,
  1094. .map_queues = nvme_pci_map_queues,
  1095. .timeout = nvme_timeout,
  1096. .poll = nvme_poll,
  1097. };
  1098. static void nvme_dev_remove_admin(struct nvme_dev *dev)
  1099. {
  1100. if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
  1101. /*
  1102. * If the controller was reset during removal, it's possible
  1103. * user requests may be waiting on a stopped queue. Start the
  1104. * queue to flush these to completion.
  1105. */
  1106. blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
  1107. blk_cleanup_queue(dev->ctrl.admin_q);
  1108. blk_mq_free_tag_set(&dev->admin_tagset);
  1109. }
  1110. }
  1111. static int nvme_alloc_admin_tags(struct nvme_dev *dev)
  1112. {
  1113. if (!dev->ctrl.admin_q) {
  1114. dev->admin_tagset.ops = &nvme_mq_admin_ops;
  1115. dev->admin_tagset.nr_hw_queues = 1;
  1116. /*
  1117. * Subtract one to leave an empty queue entry for 'Full Queue'
  1118. * condition. See NVM-Express 1.2 specification, section 4.1.2.
  1119. */
  1120. dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
  1121. dev->admin_tagset.timeout = ADMIN_TIMEOUT;
  1122. dev->admin_tagset.numa_node = dev_to_node(dev->dev);
  1123. dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
  1124. dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
  1125. dev->admin_tagset.driver_data = dev;
  1126. if (blk_mq_alloc_tag_set(&dev->admin_tagset))
  1127. return -ENOMEM;
  1128. dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
  1129. if (IS_ERR(dev->ctrl.admin_q)) {
  1130. blk_mq_free_tag_set(&dev->admin_tagset);
  1131. return -ENOMEM;
  1132. }
  1133. if (!blk_get_queue(dev->ctrl.admin_q)) {
  1134. nvme_dev_remove_admin(dev);
  1135. dev->ctrl.admin_q = NULL;
  1136. return -ENODEV;
  1137. }
  1138. } else
  1139. blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
  1140. return 0;
  1141. }
  1142. static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
  1143. {
  1144. return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
  1145. }
  1146. static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
  1147. {
  1148. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1149. if (size <= dev->bar_mapped_size)
  1150. return 0;
  1151. if (size > pci_resource_len(pdev, 0))
  1152. return -ENOMEM;
  1153. if (dev->bar)
  1154. iounmap(dev->bar);
  1155. dev->bar = ioremap(pci_resource_start(pdev, 0), size);
  1156. if (!dev->bar) {
  1157. dev->bar_mapped_size = 0;
  1158. return -ENOMEM;
  1159. }
  1160. dev->bar_mapped_size = size;
  1161. dev->dbs = dev->bar + NVME_REG_DBS;
  1162. return 0;
  1163. }
  1164. static int nvme_configure_admin_queue(struct nvme_dev *dev)
  1165. {
  1166. int result;
  1167. u32 aqa;
  1168. u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1169. struct nvme_queue *nvmeq;
  1170. result = nvme_remap_bar(dev, db_bar_size(dev, 0));
  1171. if (result < 0)
  1172. return result;
  1173. dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
  1174. NVME_CAP_NSSRC(cap) : 0;
  1175. if (dev->subsystem &&
  1176. (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
  1177. writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
  1178. result = nvme_disable_ctrl(&dev->ctrl, cap);
  1179. if (result < 0)
  1180. return result;
  1181. nvmeq = dev->queues[0];
  1182. if (!nvmeq) {
  1183. nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
  1184. dev_to_node(dev->dev));
  1185. if (!nvmeq)
  1186. return -ENOMEM;
  1187. }
  1188. aqa = nvmeq->q_depth - 1;
  1189. aqa |= aqa << 16;
  1190. writel(aqa, dev->bar + NVME_REG_AQA);
  1191. lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
  1192. lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
  1193. result = nvme_enable_ctrl(&dev->ctrl, cap);
  1194. if (result)
  1195. return result;
  1196. nvmeq->cq_vector = 0;
  1197. result = queue_request_irq(nvmeq);
  1198. if (result) {
  1199. nvmeq->cq_vector = -1;
  1200. return result;
  1201. }
  1202. return result;
  1203. }
  1204. static int nvme_create_io_queues(struct nvme_dev *dev)
  1205. {
  1206. unsigned i, max;
  1207. int ret = 0;
  1208. for (i = dev->queue_count; i <= dev->max_qid; i++) {
  1209. /* vector == qid - 1, match nvme_create_queue */
  1210. if (!nvme_alloc_queue(dev, i, dev->q_depth,
  1211. pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
  1212. ret = -ENOMEM;
  1213. break;
  1214. }
  1215. }
  1216. max = min(dev->max_qid, dev->queue_count - 1);
  1217. for (i = dev->online_queues; i <= max; i++) {
  1218. ret = nvme_create_queue(dev->queues[i], i);
  1219. if (ret)
  1220. break;
  1221. }
  1222. /*
  1223. * Ignore failing Create SQ/CQ commands, we can continue with less
  1224. * than the desired aount of queues, and even a controller without
  1225. * I/O queues an still be used to issue admin commands. This might
  1226. * be useful to upgrade a buggy firmware for example.
  1227. */
  1228. return ret >= 0 ? 0 : ret;
  1229. }
  1230. static ssize_t nvme_cmb_show(struct device *dev,
  1231. struct device_attribute *attr,
  1232. char *buf)
  1233. {
  1234. struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
  1235. return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
  1236. ndev->cmbloc, ndev->cmbsz);
  1237. }
  1238. static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
  1239. static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
  1240. {
  1241. u64 szu, size, offset;
  1242. resource_size_t bar_size;
  1243. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1244. void __iomem *cmb;
  1245. dma_addr_t dma_addr;
  1246. dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
  1247. if (!(NVME_CMB_SZ(dev->cmbsz)))
  1248. return NULL;
  1249. dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
  1250. if (!use_cmb_sqes)
  1251. return NULL;
  1252. szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
  1253. size = szu * NVME_CMB_SZ(dev->cmbsz);
  1254. offset = szu * NVME_CMB_OFST(dev->cmbloc);
  1255. bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
  1256. if (offset > bar_size)
  1257. return NULL;
  1258. /*
  1259. * Controllers may support a CMB size larger than their BAR,
  1260. * for example, due to being behind a bridge. Reduce the CMB to
  1261. * the reported size of the BAR
  1262. */
  1263. if (size > bar_size - offset)
  1264. size = bar_size - offset;
  1265. dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
  1266. cmb = ioremap_wc(dma_addr, size);
  1267. if (!cmb)
  1268. return NULL;
  1269. dev->cmb_dma_addr = dma_addr;
  1270. dev->cmb_size = size;
  1271. return cmb;
  1272. }
  1273. static inline void nvme_release_cmb(struct nvme_dev *dev)
  1274. {
  1275. if (dev->cmb) {
  1276. iounmap(dev->cmb);
  1277. dev->cmb = NULL;
  1278. if (dev->cmbsz) {
  1279. sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
  1280. &dev_attr_cmb.attr, NULL);
  1281. dev->cmbsz = 0;
  1282. }
  1283. }
  1284. }
  1285. static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
  1286. {
  1287. size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
  1288. struct nvme_command c;
  1289. u64 dma_addr;
  1290. int ret;
  1291. dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
  1292. DMA_TO_DEVICE);
  1293. if (dma_mapping_error(dev->dev, dma_addr))
  1294. return -ENOMEM;
  1295. memset(&c, 0, sizeof(c));
  1296. c.features.opcode = nvme_admin_set_features;
  1297. c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
  1298. c.features.dword11 = cpu_to_le32(bits);
  1299. c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
  1300. ilog2(dev->ctrl.page_size));
  1301. c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
  1302. c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
  1303. c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
  1304. ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  1305. if (ret) {
  1306. dev_warn(dev->ctrl.device,
  1307. "failed to set host mem (err %d, flags %#x).\n",
  1308. ret, bits);
  1309. }
  1310. dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
  1311. return ret;
  1312. }
  1313. static void nvme_free_host_mem(struct nvme_dev *dev)
  1314. {
  1315. int i;
  1316. for (i = 0; i < dev->nr_host_mem_descs; i++) {
  1317. struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
  1318. size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
  1319. dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
  1320. le64_to_cpu(desc->addr));
  1321. }
  1322. kfree(dev->host_mem_desc_bufs);
  1323. dev->host_mem_desc_bufs = NULL;
  1324. kfree(dev->host_mem_descs);
  1325. dev->host_mem_descs = NULL;
  1326. }
  1327. static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
  1328. {
  1329. struct nvme_host_mem_buf_desc *descs;
  1330. u32 chunk_size, max_entries, i = 0;
  1331. void **bufs;
  1332. u64 size, tmp;
  1333. /* start big and work our way down */
  1334. chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
  1335. retry:
  1336. tmp = (preferred + chunk_size - 1);
  1337. do_div(tmp, chunk_size);
  1338. max_entries = tmp;
  1339. descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
  1340. if (!descs)
  1341. goto out;
  1342. bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
  1343. if (!bufs)
  1344. goto out_free_descs;
  1345. for (size = 0; size < preferred; size += chunk_size) {
  1346. u32 len = min_t(u64, chunk_size, preferred - size);
  1347. dma_addr_t dma_addr;
  1348. bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
  1349. DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
  1350. if (!bufs[i])
  1351. break;
  1352. descs[i].addr = cpu_to_le64(dma_addr);
  1353. descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
  1354. i++;
  1355. }
  1356. if (!size || (min && size < min)) {
  1357. dev_warn(dev->ctrl.device,
  1358. "failed to allocate host memory buffer.\n");
  1359. goto out_free_bufs;
  1360. }
  1361. dev_info(dev->ctrl.device,
  1362. "allocated %lld MiB host memory buffer.\n",
  1363. size >> ilog2(SZ_1M));
  1364. dev->nr_host_mem_descs = i;
  1365. dev->host_mem_size = size;
  1366. dev->host_mem_descs = descs;
  1367. dev->host_mem_desc_bufs = bufs;
  1368. return 0;
  1369. out_free_bufs:
  1370. while (--i >= 0) {
  1371. size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
  1372. dma_free_coherent(dev->dev, size, bufs[i],
  1373. le64_to_cpu(descs[i].addr));
  1374. }
  1375. kfree(bufs);
  1376. out_free_descs:
  1377. kfree(descs);
  1378. out:
  1379. /* try a smaller chunk size if we failed early */
  1380. if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
  1381. chunk_size /= 2;
  1382. goto retry;
  1383. }
  1384. dev->host_mem_descs = NULL;
  1385. return -ENOMEM;
  1386. }
  1387. static void nvme_setup_host_mem(struct nvme_dev *dev)
  1388. {
  1389. u64 max = (u64)max_host_mem_size_mb * SZ_1M;
  1390. u64 preferred = (u64)dev->ctrl.hmpre * 4096;
  1391. u64 min = (u64)dev->ctrl.hmmin * 4096;
  1392. u32 enable_bits = NVME_HOST_MEM_ENABLE;
  1393. preferred = min(preferred, max);
  1394. if (min > max) {
  1395. dev_warn(dev->ctrl.device,
  1396. "min host memory (%lld MiB) above limit (%d MiB).\n",
  1397. min >> ilog2(SZ_1M), max_host_mem_size_mb);
  1398. nvme_free_host_mem(dev);
  1399. return;
  1400. }
  1401. /*
  1402. * If we already have a buffer allocated check if we can reuse it.
  1403. */
  1404. if (dev->host_mem_descs) {
  1405. if (dev->host_mem_size >= min)
  1406. enable_bits |= NVME_HOST_MEM_RETURN;
  1407. else
  1408. nvme_free_host_mem(dev);
  1409. }
  1410. if (!dev->host_mem_descs) {
  1411. if (nvme_alloc_host_mem(dev, min, preferred))
  1412. return;
  1413. }
  1414. if (nvme_set_host_mem(dev, enable_bits))
  1415. nvme_free_host_mem(dev);
  1416. }
  1417. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1418. {
  1419. struct nvme_queue *adminq = dev->queues[0];
  1420. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1421. int result, nr_io_queues;
  1422. unsigned long size;
  1423. nr_io_queues = num_online_cpus();
  1424. result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
  1425. if (result < 0)
  1426. return result;
  1427. if (nr_io_queues == 0)
  1428. return 0;
  1429. if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
  1430. result = nvme_cmb_qdepth(dev, nr_io_queues,
  1431. sizeof(struct nvme_command));
  1432. if (result > 0)
  1433. dev->q_depth = result;
  1434. else
  1435. nvme_release_cmb(dev);
  1436. }
  1437. do {
  1438. size = db_bar_size(dev, nr_io_queues);
  1439. result = nvme_remap_bar(dev, size);
  1440. if (!result)
  1441. break;
  1442. if (!--nr_io_queues)
  1443. return -ENOMEM;
  1444. } while (1);
  1445. adminq->q_db = dev->dbs;
  1446. /* Deregister the admin queue's interrupt */
  1447. pci_free_irq(pdev, 0, adminq);
  1448. /*
  1449. * If we enable msix early due to not intx, disable it again before
  1450. * setting up the full range we need.
  1451. */
  1452. pci_free_irq_vectors(pdev);
  1453. nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
  1454. PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
  1455. if (nr_io_queues <= 0)
  1456. return -EIO;
  1457. dev->max_qid = nr_io_queues;
  1458. /*
  1459. * Should investigate if there's a performance win from allocating
  1460. * more queues than interrupt vectors; it might allow the submission
  1461. * path to scale better, even if the receive path is limited by the
  1462. * number of interrupts.
  1463. */
  1464. result = queue_request_irq(adminq);
  1465. if (result) {
  1466. adminq->cq_vector = -1;
  1467. return result;
  1468. }
  1469. return nvme_create_io_queues(dev);
  1470. }
  1471. static void nvme_del_queue_end(struct request *req, blk_status_t error)
  1472. {
  1473. struct nvme_queue *nvmeq = req->end_io_data;
  1474. blk_mq_free_request(req);
  1475. complete(&nvmeq->dev->ioq_wait);
  1476. }
  1477. static void nvme_del_cq_end(struct request *req, blk_status_t error)
  1478. {
  1479. struct nvme_queue *nvmeq = req->end_io_data;
  1480. if (!error) {
  1481. unsigned long flags;
  1482. /*
  1483. * We might be called with the AQ q_lock held
  1484. * and the I/O queue q_lock should always
  1485. * nest inside the AQ one.
  1486. */
  1487. spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
  1488. SINGLE_DEPTH_NESTING);
  1489. nvme_process_cq(nvmeq);
  1490. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  1491. }
  1492. nvme_del_queue_end(req, error);
  1493. }
  1494. static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
  1495. {
  1496. struct request_queue *q = nvmeq->dev->ctrl.admin_q;
  1497. struct request *req;
  1498. struct nvme_command cmd;
  1499. memset(&cmd, 0, sizeof(cmd));
  1500. cmd.delete_queue.opcode = opcode;
  1501. cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
  1502. req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  1503. if (IS_ERR(req))
  1504. return PTR_ERR(req);
  1505. req->timeout = ADMIN_TIMEOUT;
  1506. req->end_io_data = nvmeq;
  1507. blk_execute_rq_nowait(q, NULL, req, false,
  1508. opcode == nvme_admin_delete_cq ?
  1509. nvme_del_cq_end : nvme_del_queue_end);
  1510. return 0;
  1511. }
  1512. static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
  1513. {
  1514. int pass;
  1515. unsigned long timeout;
  1516. u8 opcode = nvme_admin_delete_sq;
  1517. for (pass = 0; pass < 2; pass++) {
  1518. int sent = 0, i = queues;
  1519. reinit_completion(&dev->ioq_wait);
  1520. retry:
  1521. timeout = ADMIN_TIMEOUT;
  1522. for (; i > 0; i--, sent++)
  1523. if (nvme_delete_queue(dev->queues[i], opcode))
  1524. break;
  1525. while (sent--) {
  1526. timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
  1527. if (timeout == 0)
  1528. return;
  1529. if (i)
  1530. goto retry;
  1531. }
  1532. opcode = nvme_admin_delete_cq;
  1533. }
  1534. }
  1535. /*
  1536. * Return: error value if an error occurred setting up the queues or calling
  1537. * Identify Device. 0 if these succeeded, even if adding some of the
  1538. * namespaces failed. At the moment, these failures are silent. TBD which
  1539. * failures should be reported.
  1540. */
  1541. static int nvme_dev_add(struct nvme_dev *dev)
  1542. {
  1543. if (!dev->ctrl.tagset) {
  1544. dev->tagset.ops = &nvme_mq_ops;
  1545. dev->tagset.nr_hw_queues = dev->online_queues - 1;
  1546. dev->tagset.timeout = NVME_IO_TIMEOUT;
  1547. dev->tagset.numa_node = dev_to_node(dev->dev);
  1548. dev->tagset.queue_depth =
  1549. min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
  1550. dev->tagset.cmd_size = nvme_cmd_size(dev);
  1551. dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
  1552. dev->tagset.driver_data = dev;
  1553. if (blk_mq_alloc_tag_set(&dev->tagset))
  1554. return 0;
  1555. dev->ctrl.tagset = &dev->tagset;
  1556. nvme_dbbuf_set(dev);
  1557. } else {
  1558. blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
  1559. /* Free previously allocated queues that are no longer usable */
  1560. nvme_free_queues(dev, dev->online_queues);
  1561. }
  1562. return 0;
  1563. }
  1564. static int nvme_pci_enable(struct nvme_dev *dev)
  1565. {
  1566. u64 cap;
  1567. int result = -ENOMEM;
  1568. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1569. if (pci_enable_device_mem(pdev))
  1570. return result;
  1571. pci_set_master(pdev);
  1572. if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
  1573. dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
  1574. goto disable;
  1575. if (readl(dev->bar + NVME_REG_CSTS) == -1) {
  1576. result = -ENODEV;
  1577. goto disable;
  1578. }
  1579. /*
  1580. * Some devices and/or platforms don't advertise or work with INTx
  1581. * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
  1582. * adjust this later.
  1583. */
  1584. result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
  1585. if (result < 0)
  1586. return result;
  1587. cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1588. dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
  1589. dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
  1590. dev->dbs = dev->bar + 4096;
  1591. /*
  1592. * Temporary fix for the Apple controller found in the MacBook8,1 and
  1593. * some MacBook7,1 to avoid controller resets and data loss.
  1594. */
  1595. if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
  1596. dev->q_depth = 2;
  1597. dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
  1598. "set queue depth=%u to work around controller resets\n",
  1599. dev->q_depth);
  1600. }
  1601. /*
  1602. * CMBs can currently only exist on >=1.2 PCIe devices. We only
  1603. * populate sysfs if a CMB is implemented. Note that we add the
  1604. * CMB attribute to the nvme_ctrl kobj which removes the need to remove
  1605. * it on exit. Since nvme_dev_attrs_group has no name we can pass
  1606. * NULL as final argument to sysfs_add_file_to_group.
  1607. */
  1608. if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
  1609. dev->cmb = nvme_map_cmb(dev);
  1610. if (dev->cmbsz) {
  1611. if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
  1612. &dev_attr_cmb.attr, NULL))
  1613. dev_warn(dev->ctrl.device,
  1614. "failed to add sysfs attribute for CMB\n");
  1615. }
  1616. }
  1617. pci_enable_pcie_error_reporting(pdev);
  1618. pci_save_state(pdev);
  1619. return 0;
  1620. disable:
  1621. pci_disable_device(pdev);
  1622. return result;
  1623. }
  1624. static void nvme_dev_unmap(struct nvme_dev *dev)
  1625. {
  1626. if (dev->bar)
  1627. iounmap(dev->bar);
  1628. pci_release_mem_regions(to_pci_dev(dev->dev));
  1629. }
  1630. static void nvme_pci_disable(struct nvme_dev *dev)
  1631. {
  1632. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1633. nvme_release_cmb(dev);
  1634. pci_free_irq_vectors(pdev);
  1635. if (pci_is_enabled(pdev)) {
  1636. pci_disable_pcie_error_reporting(pdev);
  1637. pci_disable_device(pdev);
  1638. }
  1639. }
  1640. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
  1641. {
  1642. int i, queues;
  1643. bool dead = true;
  1644. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1645. mutex_lock(&dev->shutdown_lock);
  1646. if (pci_is_enabled(pdev)) {
  1647. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  1648. if (dev->ctrl.state == NVME_CTRL_LIVE)
  1649. nvme_start_freeze(&dev->ctrl);
  1650. dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
  1651. pdev->error_state != pci_channel_io_normal);
  1652. }
  1653. /*
  1654. * Give the controller a chance to complete all entered requests if
  1655. * doing a safe shutdown.
  1656. */
  1657. if (!dead) {
  1658. if (shutdown)
  1659. nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
  1660. /*
  1661. * If the controller is still alive tell it to stop using the
  1662. * host memory buffer. In theory the shutdown / reset should
  1663. * make sure that it doesn't access the host memoery anymore,
  1664. * but I'd rather be safe than sorry..
  1665. */
  1666. if (dev->host_mem_descs)
  1667. nvme_set_host_mem(dev, 0);
  1668. }
  1669. nvme_stop_queues(&dev->ctrl);
  1670. queues = dev->online_queues - 1;
  1671. for (i = dev->queue_count - 1; i > 0; i--)
  1672. nvme_suspend_queue(dev->queues[i]);
  1673. if (dead) {
  1674. /* A device might become IO incapable very soon during
  1675. * probe, before the admin queue is configured. Thus,
  1676. * queue_count can be 0 here.
  1677. */
  1678. if (dev->queue_count)
  1679. nvme_suspend_queue(dev->queues[0]);
  1680. } else {
  1681. nvme_disable_io_queues(dev, queues);
  1682. nvme_disable_admin_queue(dev, shutdown);
  1683. }
  1684. nvme_pci_disable(dev);
  1685. blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
  1686. blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
  1687. /*
  1688. * The driver will not be starting up queues again if shutting down so
  1689. * must flush all entered requests to their failed completion to avoid
  1690. * deadlocking blk-mq hot-cpu notifier.
  1691. */
  1692. if (shutdown)
  1693. nvme_start_queues(&dev->ctrl);
  1694. mutex_unlock(&dev->shutdown_lock);
  1695. }
  1696. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1697. {
  1698. dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
  1699. PAGE_SIZE, PAGE_SIZE, 0);
  1700. if (!dev->prp_page_pool)
  1701. return -ENOMEM;
  1702. /* Optimisation for I/Os between 4k and 128k */
  1703. dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
  1704. 256, 256, 0);
  1705. if (!dev->prp_small_pool) {
  1706. dma_pool_destroy(dev->prp_page_pool);
  1707. return -ENOMEM;
  1708. }
  1709. return 0;
  1710. }
  1711. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1712. {
  1713. dma_pool_destroy(dev->prp_page_pool);
  1714. dma_pool_destroy(dev->prp_small_pool);
  1715. }
  1716. static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
  1717. {
  1718. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1719. nvme_dbbuf_dma_free(dev);
  1720. put_device(dev->dev);
  1721. if (dev->tagset.tags)
  1722. blk_mq_free_tag_set(&dev->tagset);
  1723. if (dev->ctrl.admin_q)
  1724. blk_put_queue(dev->ctrl.admin_q);
  1725. kfree(dev->queues);
  1726. free_opal_dev(dev->ctrl.opal_dev);
  1727. kfree(dev);
  1728. }
  1729. static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
  1730. {
  1731. dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
  1732. kref_get(&dev->ctrl.kref);
  1733. nvme_dev_disable(dev, false);
  1734. if (!schedule_work(&dev->remove_work))
  1735. nvme_put_ctrl(&dev->ctrl);
  1736. }
  1737. static void nvme_reset_work(struct work_struct *work)
  1738. {
  1739. struct nvme_dev *dev =
  1740. container_of(work, struct nvme_dev, ctrl.reset_work);
  1741. bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
  1742. int result = -ENODEV;
  1743. if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
  1744. goto out;
  1745. /*
  1746. * If we're called to reset a live controller first shut it down before
  1747. * moving on.
  1748. */
  1749. if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
  1750. nvme_dev_disable(dev, false);
  1751. result = nvme_pci_enable(dev);
  1752. if (result)
  1753. goto out;
  1754. result = nvme_configure_admin_queue(dev);
  1755. if (result)
  1756. goto out;
  1757. nvme_init_queue(dev->queues[0], 0);
  1758. result = nvme_alloc_admin_tags(dev);
  1759. if (result)
  1760. goto out;
  1761. result = nvme_init_identify(&dev->ctrl);
  1762. if (result)
  1763. goto out;
  1764. if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
  1765. if (!dev->ctrl.opal_dev)
  1766. dev->ctrl.opal_dev =
  1767. init_opal_dev(&dev->ctrl, &nvme_sec_submit);
  1768. else if (was_suspend)
  1769. opal_unlock_from_suspend(dev->ctrl.opal_dev);
  1770. } else {
  1771. free_opal_dev(dev->ctrl.opal_dev);
  1772. dev->ctrl.opal_dev = NULL;
  1773. }
  1774. if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
  1775. result = nvme_dbbuf_dma_alloc(dev);
  1776. if (result)
  1777. dev_warn(dev->dev,
  1778. "unable to allocate dma for dbbuf\n");
  1779. }
  1780. if (dev->ctrl.hmpre)
  1781. nvme_setup_host_mem(dev);
  1782. result = nvme_setup_io_queues(dev);
  1783. if (result)
  1784. goto out;
  1785. /*
  1786. * A controller that can not execute IO typically requires user
  1787. * intervention to correct. For such degraded controllers, the driver
  1788. * should not submit commands the user did not request, so skip
  1789. * registering for asynchronous event notification on this condition.
  1790. */
  1791. if (dev->online_queues > 1)
  1792. nvme_queue_async_events(&dev->ctrl);
  1793. /*
  1794. * Keep the controller around but remove all namespaces if we don't have
  1795. * any working I/O queue.
  1796. */
  1797. if (dev->online_queues < 2) {
  1798. dev_warn(dev->ctrl.device, "IO queues not created\n");
  1799. nvme_kill_queues(&dev->ctrl);
  1800. nvme_remove_namespaces(&dev->ctrl);
  1801. } else {
  1802. nvme_start_queues(&dev->ctrl);
  1803. nvme_wait_freeze(&dev->ctrl);
  1804. nvme_dev_add(dev);
  1805. nvme_unfreeze(&dev->ctrl);
  1806. }
  1807. if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
  1808. dev_warn(dev->ctrl.device, "failed to mark controller live\n");
  1809. goto out;
  1810. }
  1811. if (dev->online_queues > 1)
  1812. nvme_queue_scan(&dev->ctrl);
  1813. return;
  1814. out:
  1815. nvme_remove_dead_ctrl(dev, result);
  1816. }
  1817. static void nvme_remove_dead_ctrl_work(struct work_struct *work)
  1818. {
  1819. struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
  1820. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1821. nvme_kill_queues(&dev->ctrl);
  1822. if (pci_get_drvdata(pdev))
  1823. device_release_driver(&pdev->dev);
  1824. nvme_put_ctrl(&dev->ctrl);
  1825. }
  1826. static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
  1827. {
  1828. *val = readl(to_nvme_dev(ctrl)->bar + off);
  1829. return 0;
  1830. }
  1831. static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
  1832. {
  1833. writel(val, to_nvme_dev(ctrl)->bar + off);
  1834. return 0;
  1835. }
  1836. static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
  1837. {
  1838. *val = readq(to_nvme_dev(ctrl)->bar + off);
  1839. return 0;
  1840. }
  1841. static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
  1842. .name = "pcie",
  1843. .module = THIS_MODULE,
  1844. .flags = NVME_F_METADATA_SUPPORTED,
  1845. .reg_read32 = nvme_pci_reg_read32,
  1846. .reg_write32 = nvme_pci_reg_write32,
  1847. .reg_read64 = nvme_pci_reg_read64,
  1848. .free_ctrl = nvme_pci_free_ctrl,
  1849. .submit_async_event = nvme_pci_submit_async_event,
  1850. };
  1851. static int nvme_dev_map(struct nvme_dev *dev)
  1852. {
  1853. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1854. if (pci_request_mem_regions(pdev, "nvme"))
  1855. return -ENODEV;
  1856. if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
  1857. goto release;
  1858. return 0;
  1859. release:
  1860. pci_release_mem_regions(pdev);
  1861. return -ENODEV;
  1862. }
  1863. static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
  1864. {
  1865. if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
  1866. /*
  1867. * Several Samsung devices seem to drop off the PCIe bus
  1868. * randomly when APST is on and uses the deepest sleep state.
  1869. * This has been observed on a Samsung "SM951 NVMe SAMSUNG
  1870. * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
  1871. * 950 PRO 256GB", but it seems to be restricted to two Dell
  1872. * laptops.
  1873. */
  1874. if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
  1875. (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
  1876. dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
  1877. return NVME_QUIRK_NO_DEEPEST_PS;
  1878. }
  1879. return 0;
  1880. }
  1881. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1882. {
  1883. int node, result = -ENOMEM;
  1884. struct nvme_dev *dev;
  1885. unsigned long quirks = id->driver_data;
  1886. node = dev_to_node(&pdev->dev);
  1887. if (node == NUMA_NO_NODE)
  1888. set_dev_node(&pdev->dev, first_memory_node);
  1889. dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
  1890. if (!dev)
  1891. return -ENOMEM;
  1892. dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
  1893. GFP_KERNEL, node);
  1894. if (!dev->queues)
  1895. goto free;
  1896. dev->dev = get_device(&pdev->dev);
  1897. pci_set_drvdata(pdev, dev);
  1898. result = nvme_dev_map(dev);
  1899. if (result)
  1900. goto free;
  1901. INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
  1902. INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
  1903. mutex_init(&dev->shutdown_lock);
  1904. init_completion(&dev->ioq_wait);
  1905. result = nvme_setup_prp_pools(dev);
  1906. if (result)
  1907. goto put_pci;
  1908. quirks |= check_dell_samsung_bug(pdev);
  1909. result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
  1910. quirks);
  1911. if (result)
  1912. goto release_pools;
  1913. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
  1914. dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
  1915. queue_work(nvme_wq, &dev->ctrl.reset_work);
  1916. return 0;
  1917. release_pools:
  1918. nvme_release_prp_pools(dev);
  1919. put_pci:
  1920. put_device(dev->dev);
  1921. nvme_dev_unmap(dev);
  1922. free:
  1923. kfree(dev->queues);
  1924. kfree(dev);
  1925. return result;
  1926. }
  1927. static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
  1928. {
  1929. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1930. if (prepare)
  1931. nvme_dev_disable(dev, false);
  1932. else
  1933. nvme_reset_ctrl(&dev->ctrl);
  1934. }
  1935. static void nvme_shutdown(struct pci_dev *pdev)
  1936. {
  1937. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1938. nvme_dev_disable(dev, true);
  1939. }
  1940. /*
  1941. * The driver's remove may be called on a device in a partially initialized
  1942. * state. This function must not have any dependencies on the device state in
  1943. * order to proceed.
  1944. */
  1945. static void nvme_remove(struct pci_dev *pdev)
  1946. {
  1947. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1948. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
  1949. cancel_work_sync(&dev->ctrl.reset_work);
  1950. pci_set_drvdata(pdev, NULL);
  1951. if (!pci_device_is_present(pdev)) {
  1952. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
  1953. nvme_dev_disable(dev, false);
  1954. }
  1955. flush_work(&dev->ctrl.reset_work);
  1956. nvme_uninit_ctrl(&dev->ctrl);
  1957. nvme_dev_disable(dev, true);
  1958. nvme_free_host_mem(dev);
  1959. nvme_dev_remove_admin(dev);
  1960. nvme_free_queues(dev, 0);
  1961. nvme_release_prp_pools(dev);
  1962. nvme_dev_unmap(dev);
  1963. nvme_put_ctrl(&dev->ctrl);
  1964. }
  1965. static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
  1966. {
  1967. int ret = 0;
  1968. if (numvfs == 0) {
  1969. if (pci_vfs_assigned(pdev)) {
  1970. dev_warn(&pdev->dev,
  1971. "Cannot disable SR-IOV VFs while assigned\n");
  1972. return -EPERM;
  1973. }
  1974. pci_disable_sriov(pdev);
  1975. return 0;
  1976. }
  1977. ret = pci_enable_sriov(pdev, numvfs);
  1978. return ret ? ret : numvfs;
  1979. }
  1980. #ifdef CONFIG_PM_SLEEP
  1981. static int nvme_suspend(struct device *dev)
  1982. {
  1983. struct pci_dev *pdev = to_pci_dev(dev);
  1984. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  1985. nvme_dev_disable(ndev, true);
  1986. return 0;
  1987. }
  1988. static int nvme_resume(struct device *dev)
  1989. {
  1990. struct pci_dev *pdev = to_pci_dev(dev);
  1991. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  1992. nvme_reset_ctrl(&ndev->ctrl);
  1993. return 0;
  1994. }
  1995. #endif
  1996. static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
  1997. static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
  1998. pci_channel_state_t state)
  1999. {
  2000. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2001. /*
  2002. * A frozen channel requires a reset. When detected, this method will
  2003. * shutdown the controller to quiesce. The controller will be restarted
  2004. * after the slot reset through driver's slot_reset callback.
  2005. */
  2006. switch (state) {
  2007. case pci_channel_io_normal:
  2008. return PCI_ERS_RESULT_CAN_RECOVER;
  2009. case pci_channel_io_frozen:
  2010. dev_warn(dev->ctrl.device,
  2011. "frozen state error detected, reset controller\n");
  2012. nvme_dev_disable(dev, false);
  2013. return PCI_ERS_RESULT_NEED_RESET;
  2014. case pci_channel_io_perm_failure:
  2015. dev_warn(dev->ctrl.device,
  2016. "failure state error detected, request disconnect\n");
  2017. return PCI_ERS_RESULT_DISCONNECT;
  2018. }
  2019. return PCI_ERS_RESULT_NEED_RESET;
  2020. }
  2021. static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
  2022. {
  2023. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2024. dev_info(dev->ctrl.device, "restart after slot reset\n");
  2025. pci_restore_state(pdev);
  2026. nvme_reset_ctrl(&dev->ctrl);
  2027. return PCI_ERS_RESULT_RECOVERED;
  2028. }
  2029. static void nvme_error_resume(struct pci_dev *pdev)
  2030. {
  2031. pci_cleanup_aer_uncorrect_error_status(pdev);
  2032. }
  2033. static const struct pci_error_handlers nvme_err_handler = {
  2034. .error_detected = nvme_error_detected,
  2035. .slot_reset = nvme_slot_reset,
  2036. .resume = nvme_error_resume,
  2037. .reset_notify = nvme_reset_notify,
  2038. };
  2039. static const struct pci_device_id nvme_id_table[] = {
  2040. { PCI_VDEVICE(INTEL, 0x0953),
  2041. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2042. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2043. { PCI_VDEVICE(INTEL, 0x0a53),
  2044. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2045. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2046. { PCI_VDEVICE(INTEL, 0x0a54),
  2047. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2048. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2049. { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
  2050. .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
  2051. { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
  2052. .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
  2053. { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
  2054. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2055. { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
  2056. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2057. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  2058. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
  2059. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
  2060. { 0, }
  2061. };
  2062. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  2063. static struct pci_driver nvme_driver = {
  2064. .name = "nvme",
  2065. .id_table = nvme_id_table,
  2066. .probe = nvme_probe,
  2067. .remove = nvme_remove,
  2068. .shutdown = nvme_shutdown,
  2069. .driver = {
  2070. .pm = &nvme_dev_pm_ops,
  2071. },
  2072. .sriov_configure = nvme_pci_sriov_configure,
  2073. .err_handler = &nvme_err_handler,
  2074. };
  2075. static int __init nvme_init(void)
  2076. {
  2077. return pci_register_driver(&nvme_driver);
  2078. }
  2079. static void __exit nvme_exit(void)
  2080. {
  2081. pci_unregister_driver(&nvme_driver);
  2082. _nvme_check_size();
  2083. }
  2084. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  2085. MODULE_LICENSE("GPL");
  2086. MODULE_VERSION("1.0");
  2087. module_init(nvme_init);
  2088. module_exit(nvme_exit);