aq_vec.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. /*
  2. * aQuantia Corporation Network Driver
  3. * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. */
  9. /* File aq_vec.c: Definition of common structure for vector of Rx and Tx rings.
  10. * Definition of functions for Rx and Tx rings. Friendly module for aq_nic.
  11. */
  12. #include "aq_vec.h"
  13. #include "aq_nic.h"
  14. #include "aq_ring.h"
  15. #include "aq_hw.h"
  16. #include <linux/netdevice.h>
  17. struct aq_vec_s {
  18. struct aq_obj_s header;
  19. struct aq_hw_ops *aq_hw_ops;
  20. struct aq_hw_s *aq_hw;
  21. struct aq_nic_s *aq_nic;
  22. unsigned int tx_rings;
  23. unsigned int rx_rings;
  24. struct aq_ring_param_s aq_ring_param;
  25. struct napi_struct napi;
  26. struct aq_ring_s ring[AQ_CFG_TCS_MAX][2];
  27. };
  28. #define AQ_VEC_TX_ID 0
  29. #define AQ_VEC_RX_ID 1
  30. static int aq_vec_poll(struct napi_struct *napi, int budget)
  31. __releases(&self->lock)
  32. __acquires(&self->lock)
  33. {
  34. struct aq_vec_s *self = container_of(napi, struct aq_vec_s, napi);
  35. struct aq_ring_s *ring = NULL;
  36. int work_done = 0;
  37. int err = 0;
  38. unsigned int i = 0U;
  39. unsigned int sw_tail_old = 0U;
  40. bool was_tx_cleaned = false;
  41. if (!self) {
  42. err = -EINVAL;
  43. } else if (spin_trylock(&self->header.lock)) {
  44. for (i = 0U, ring = self->ring[0];
  45. self->tx_rings > i; ++i, ring = self->ring[i]) {
  46. if (self->aq_hw_ops->hw_ring_tx_head_update) {
  47. err = self->aq_hw_ops->hw_ring_tx_head_update(
  48. self->aq_hw,
  49. &ring[AQ_VEC_TX_ID]);
  50. if (err < 0)
  51. goto err_exit;
  52. }
  53. if (ring[AQ_VEC_TX_ID].sw_head !=
  54. ring[AQ_VEC_TX_ID].hw_head) {
  55. aq_ring_tx_clean(&ring[AQ_VEC_TX_ID]);
  56. if (aq_ring_avail_dx(&ring[AQ_VEC_TX_ID]) >
  57. AQ_CFG_SKB_FRAGS_MAX) {
  58. aq_nic_ndev_queue_start(self->aq_nic,
  59. ring[AQ_VEC_TX_ID].idx);
  60. }
  61. was_tx_cleaned = true;
  62. }
  63. err = self->aq_hw_ops->hw_ring_rx_receive(self->aq_hw,
  64. &ring[AQ_VEC_RX_ID]);
  65. if (err < 0)
  66. goto err_exit;
  67. if (ring[AQ_VEC_RX_ID].sw_head !=
  68. ring[AQ_VEC_RX_ID].hw_head) {
  69. err = aq_ring_rx_clean(&ring[AQ_VEC_RX_ID],
  70. &work_done,
  71. budget - work_done);
  72. if (err < 0)
  73. goto err_exit;
  74. sw_tail_old = ring[AQ_VEC_RX_ID].sw_tail;
  75. err = aq_ring_rx_fill(&ring[AQ_VEC_RX_ID]);
  76. if (err < 0)
  77. goto err_exit;
  78. err = self->aq_hw_ops->hw_ring_rx_fill(
  79. self->aq_hw,
  80. &ring[AQ_VEC_RX_ID], sw_tail_old);
  81. if (err < 0)
  82. goto err_exit;
  83. }
  84. }
  85. if (was_tx_cleaned)
  86. work_done = budget;
  87. if (work_done < budget) {
  88. napi_complete_done(napi, work_done);
  89. self->aq_hw_ops->hw_irq_enable(self->aq_hw,
  90. 1U << self->aq_ring_param.vec_idx);
  91. }
  92. err_exit:
  93. spin_unlock(&self->header.lock);
  94. }
  95. return work_done;
  96. }
  97. struct aq_vec_s *aq_vec_alloc(struct aq_nic_s *aq_nic, unsigned int idx,
  98. struct aq_nic_cfg_s *aq_nic_cfg)
  99. {
  100. struct aq_vec_s *self = NULL;
  101. struct aq_ring_s *ring = NULL;
  102. unsigned int i = 0U;
  103. int err = 0;
  104. self = kzalloc(sizeof(*self), GFP_KERNEL);
  105. if (!self) {
  106. err = -ENOMEM;
  107. goto err_exit;
  108. }
  109. self->aq_nic = aq_nic;
  110. self->aq_ring_param.vec_idx = idx;
  111. self->aq_ring_param.cpu =
  112. idx + aq_nic_cfg->aq_rss.base_cpu_number;
  113. cpumask_set_cpu(self->aq_ring_param.cpu,
  114. &self->aq_ring_param.affinity_mask);
  115. self->tx_rings = 0;
  116. self->rx_rings = 0;
  117. netif_napi_add(aq_nic_get_ndev(aq_nic), &self->napi,
  118. aq_vec_poll, AQ_CFG_NAPI_WEIGHT);
  119. for (i = 0; i < aq_nic_cfg->tcs; ++i) {
  120. unsigned int idx_ring = AQ_NIC_TCVEC2RING(self->nic,
  121. self->tx_rings,
  122. self->aq_ring_param.vec_idx);
  123. ring = aq_ring_tx_alloc(&self->ring[i][AQ_VEC_TX_ID], aq_nic,
  124. idx_ring, aq_nic_cfg);
  125. if (!ring) {
  126. err = -ENOMEM;
  127. goto err_exit;
  128. }
  129. ++self->tx_rings;
  130. aq_nic_set_tx_ring(aq_nic, idx_ring, ring);
  131. ring = aq_ring_rx_alloc(&self->ring[i][AQ_VEC_RX_ID], aq_nic,
  132. idx_ring, aq_nic_cfg);
  133. if (!ring) {
  134. err = -ENOMEM;
  135. goto err_exit;
  136. }
  137. ++self->rx_rings;
  138. }
  139. err_exit:
  140. if (err < 0) {
  141. aq_vec_free(self);
  142. self = NULL;
  143. }
  144. return self;
  145. }
  146. int aq_vec_init(struct aq_vec_s *self, struct aq_hw_ops *aq_hw_ops,
  147. struct aq_hw_s *aq_hw)
  148. {
  149. struct aq_ring_s *ring = NULL;
  150. unsigned int i = 0U;
  151. int err = 0;
  152. self->aq_hw_ops = aq_hw_ops;
  153. self->aq_hw = aq_hw;
  154. spin_lock_init(&self->header.lock);
  155. for (i = 0U, ring = self->ring[0];
  156. self->tx_rings > i; ++i, ring = self->ring[i]) {
  157. err = aq_ring_init(&ring[AQ_VEC_TX_ID]);
  158. if (err < 0)
  159. goto err_exit;
  160. err = self->aq_hw_ops->hw_ring_tx_init(self->aq_hw,
  161. &ring[AQ_VEC_TX_ID],
  162. &self->aq_ring_param);
  163. if (err < 0)
  164. goto err_exit;
  165. err = aq_ring_init(&ring[AQ_VEC_RX_ID]);
  166. if (err < 0)
  167. goto err_exit;
  168. err = self->aq_hw_ops->hw_ring_rx_init(self->aq_hw,
  169. &ring[AQ_VEC_RX_ID],
  170. &self->aq_ring_param);
  171. if (err < 0)
  172. goto err_exit;
  173. err = aq_ring_rx_fill(&ring[AQ_VEC_RX_ID]);
  174. if (err < 0)
  175. goto err_exit;
  176. err = self->aq_hw_ops->hw_ring_rx_fill(self->aq_hw,
  177. &ring[AQ_VEC_RX_ID], 0U);
  178. if (err < 0)
  179. goto err_exit;
  180. }
  181. err_exit:
  182. return err;
  183. }
  184. int aq_vec_start(struct aq_vec_s *self)
  185. {
  186. struct aq_ring_s *ring = NULL;
  187. unsigned int i = 0U;
  188. int err = 0;
  189. for (i = 0U, ring = self->ring[0];
  190. self->tx_rings > i; ++i, ring = self->ring[i]) {
  191. err = self->aq_hw_ops->hw_ring_tx_start(self->aq_hw,
  192. &ring[AQ_VEC_TX_ID]);
  193. if (err < 0)
  194. goto err_exit;
  195. err = self->aq_hw_ops->hw_ring_rx_start(self->aq_hw,
  196. &ring[AQ_VEC_RX_ID]);
  197. if (err < 0)
  198. goto err_exit;
  199. }
  200. napi_enable(&self->napi);
  201. err_exit:
  202. return err;
  203. }
  204. void aq_vec_stop(struct aq_vec_s *self)
  205. {
  206. struct aq_ring_s *ring = NULL;
  207. unsigned int i = 0U;
  208. for (i = 0U, ring = self->ring[0];
  209. self->tx_rings > i; ++i, ring = self->ring[i]) {
  210. self->aq_hw_ops->hw_ring_tx_stop(self->aq_hw,
  211. &ring[AQ_VEC_TX_ID]);
  212. self->aq_hw_ops->hw_ring_rx_stop(self->aq_hw,
  213. &ring[AQ_VEC_RX_ID]);
  214. }
  215. napi_disable(&self->napi);
  216. }
  217. void aq_vec_deinit(struct aq_vec_s *self)
  218. {
  219. struct aq_ring_s *ring = NULL;
  220. unsigned int i = 0U;
  221. if (!self)
  222. goto err_exit;
  223. for (i = 0U, ring = self->ring[0];
  224. self->tx_rings > i; ++i, ring = self->ring[i]) {
  225. aq_ring_tx_clean(&ring[AQ_VEC_TX_ID]);
  226. aq_ring_rx_deinit(&ring[AQ_VEC_RX_ID]);
  227. }
  228. err_exit:;
  229. }
  230. void aq_vec_free(struct aq_vec_s *self)
  231. {
  232. struct aq_ring_s *ring = NULL;
  233. unsigned int i = 0U;
  234. if (!self)
  235. goto err_exit;
  236. for (i = 0U, ring = self->ring[0];
  237. self->tx_rings > i; ++i, ring = self->ring[i]) {
  238. aq_ring_free(&ring[AQ_VEC_TX_ID]);
  239. aq_ring_free(&ring[AQ_VEC_RX_ID]);
  240. }
  241. netif_napi_del(&self->napi);
  242. kfree(self);
  243. err_exit:;
  244. }
  245. irqreturn_t aq_vec_isr(int irq, void *private)
  246. {
  247. struct aq_vec_s *self = private;
  248. int err = 0;
  249. if (!self) {
  250. err = -EINVAL;
  251. goto err_exit;
  252. }
  253. napi_schedule(&self->napi);
  254. err_exit:
  255. return err >= 0 ? IRQ_HANDLED : IRQ_NONE;
  256. }
  257. irqreturn_t aq_vec_isr_legacy(int irq, void *private)
  258. {
  259. struct aq_vec_s *self = private;
  260. u64 irq_mask = 0U;
  261. irqreturn_t err = 0;
  262. if (!self) {
  263. err = -EINVAL;
  264. goto err_exit;
  265. }
  266. err = self->aq_hw_ops->hw_irq_read(self->aq_hw, &irq_mask);
  267. if (err < 0)
  268. goto err_exit;
  269. if (irq_mask) {
  270. self->aq_hw_ops->hw_irq_disable(self->aq_hw,
  271. 1U << self->aq_ring_param.vec_idx);
  272. napi_schedule(&self->napi);
  273. } else {
  274. self->aq_hw_ops->hw_irq_enable(self->aq_hw, 1U);
  275. err = IRQ_NONE;
  276. }
  277. err_exit:
  278. return err >= 0 ? IRQ_HANDLED : IRQ_NONE;
  279. }
  280. cpumask_t *aq_vec_get_affinity_mask(struct aq_vec_s *self)
  281. {
  282. return &self->aq_ring_param.affinity_mask;
  283. }
  284. void aq_vec_add_stats(struct aq_vec_s *self,
  285. struct aq_ring_stats_rx_s *stats_rx,
  286. struct aq_ring_stats_tx_s *stats_tx)
  287. {
  288. struct aq_ring_s *ring = NULL;
  289. unsigned int r = 0U;
  290. for (r = 0U, ring = self->ring[0];
  291. self->tx_rings > r; ++r, ring = self->ring[r]) {
  292. struct aq_ring_stats_tx_s *tx = &ring[AQ_VEC_TX_ID].stats.tx;
  293. struct aq_ring_stats_rx_s *rx = &ring[AQ_VEC_RX_ID].stats.rx;
  294. stats_rx->packets += rx->packets;
  295. stats_rx->bytes += rx->bytes;
  296. stats_rx->errors += rx->errors;
  297. stats_rx->jumbo_packets += rx->jumbo_packets;
  298. stats_rx->lro_packets += rx->lro_packets;
  299. stats_tx->packets += tx->packets;
  300. stats_tx->bytes += tx->bytes;
  301. stats_tx->errors += tx->errors;
  302. }
  303. }
  304. int aq_vec_get_sw_stats(struct aq_vec_s *self, u64 *data, unsigned int *p_count)
  305. {
  306. unsigned int count = 0U;
  307. struct aq_ring_stats_rx_s stats_rx;
  308. struct aq_ring_stats_tx_s stats_tx;
  309. memset(&stats_rx, 0U, sizeof(struct aq_ring_stats_rx_s));
  310. memset(&stats_tx, 0U, sizeof(struct aq_ring_stats_tx_s));
  311. aq_vec_add_stats(self, &stats_rx, &stats_tx);
  312. data[count] += stats_rx.packets;
  313. data[++count] += stats_tx.packets;
  314. data[++count] += stats_rx.jumbo_packets;
  315. data[++count] += stats_rx.lro_packets;
  316. data[++count] += stats_rx.errors;
  317. if (p_count)
  318. *p_count = ++count;
  319. return 0;
  320. }