verbs.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101
  1. /*
  2. * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
  3. * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
  4. * Copyright (c) 2004 Intel Corporation. All rights reserved.
  5. * Copyright (c) 2004 Topspin Corporation. All rights reserved.
  6. * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
  7. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
  8. * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
  9. *
  10. * This software is available to you under a choice of one of two
  11. * licenses. You may choose to be licensed under the terms of the GNU
  12. * General Public License (GPL) Version 2, available from the file
  13. * COPYING in the main directory of this source tree, or the
  14. * OpenIB.org BSD license below:
  15. *
  16. * Redistribution and use in source and binary forms, with or
  17. * without modification, are permitted provided that the following
  18. * conditions are met:
  19. *
  20. * - Redistributions of source code must retain the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer.
  23. *
  24. * - Redistributions in binary form must reproduce the above
  25. * copyright notice, this list of conditions and the following
  26. * disclaimer in the documentation and/or other materials
  27. * provided with the distribution.
  28. *
  29. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36. * SOFTWARE.
  37. */
  38. #include <linux/errno.h>
  39. #include <linux/err.h>
  40. #include <linux/export.h>
  41. #include <linux/string.h>
  42. #include <linux/slab.h>
  43. #include <linux/in.h>
  44. #include <linux/in6.h>
  45. #include <net/addrconf.h>
  46. #include <rdma/ib_verbs.h>
  47. #include <rdma/ib_cache.h>
  48. #include <rdma/ib_addr.h>
  49. #include <rdma/rw.h>
  50. #include "core_priv.h"
  51. static const char * const ib_events[] = {
  52. [IB_EVENT_CQ_ERR] = "CQ error",
  53. [IB_EVENT_QP_FATAL] = "QP fatal error",
  54. [IB_EVENT_QP_REQ_ERR] = "QP request error",
  55. [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
  56. [IB_EVENT_COMM_EST] = "communication established",
  57. [IB_EVENT_SQ_DRAINED] = "send queue drained",
  58. [IB_EVENT_PATH_MIG] = "path migration successful",
  59. [IB_EVENT_PATH_MIG_ERR] = "path migration error",
  60. [IB_EVENT_DEVICE_FATAL] = "device fatal error",
  61. [IB_EVENT_PORT_ACTIVE] = "port active",
  62. [IB_EVENT_PORT_ERR] = "port error",
  63. [IB_EVENT_LID_CHANGE] = "LID change",
  64. [IB_EVENT_PKEY_CHANGE] = "P_key change",
  65. [IB_EVENT_SM_CHANGE] = "SM change",
  66. [IB_EVENT_SRQ_ERR] = "SRQ error",
  67. [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
  68. [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
  69. [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
  70. [IB_EVENT_GID_CHANGE] = "GID changed",
  71. };
  72. const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
  73. {
  74. size_t index = event;
  75. return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
  76. ib_events[index] : "unrecognized event";
  77. }
  78. EXPORT_SYMBOL(ib_event_msg);
  79. static const char * const wc_statuses[] = {
  80. [IB_WC_SUCCESS] = "success",
  81. [IB_WC_LOC_LEN_ERR] = "local length error",
  82. [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
  83. [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
  84. [IB_WC_LOC_PROT_ERR] = "local protection error",
  85. [IB_WC_WR_FLUSH_ERR] = "WR flushed",
  86. [IB_WC_MW_BIND_ERR] = "memory management operation error",
  87. [IB_WC_BAD_RESP_ERR] = "bad response error",
  88. [IB_WC_LOC_ACCESS_ERR] = "local access error",
  89. [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
  90. [IB_WC_REM_ACCESS_ERR] = "remote access error",
  91. [IB_WC_REM_OP_ERR] = "remote operation error",
  92. [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
  93. [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
  94. [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
  95. [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
  96. [IB_WC_REM_ABORT_ERR] = "operation aborted",
  97. [IB_WC_INV_EECN_ERR] = "invalid EE context number",
  98. [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
  99. [IB_WC_FATAL_ERR] = "fatal error",
  100. [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
  101. [IB_WC_GENERAL_ERR] = "general error",
  102. };
  103. const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
  104. {
  105. size_t index = status;
  106. return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
  107. wc_statuses[index] : "unrecognized status";
  108. }
  109. EXPORT_SYMBOL(ib_wc_status_msg);
  110. __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
  111. {
  112. switch (rate) {
  113. case IB_RATE_2_5_GBPS: return 1;
  114. case IB_RATE_5_GBPS: return 2;
  115. case IB_RATE_10_GBPS: return 4;
  116. case IB_RATE_20_GBPS: return 8;
  117. case IB_RATE_30_GBPS: return 12;
  118. case IB_RATE_40_GBPS: return 16;
  119. case IB_RATE_60_GBPS: return 24;
  120. case IB_RATE_80_GBPS: return 32;
  121. case IB_RATE_120_GBPS: return 48;
  122. default: return -1;
  123. }
  124. }
  125. EXPORT_SYMBOL(ib_rate_to_mult);
  126. __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
  127. {
  128. switch (mult) {
  129. case 1: return IB_RATE_2_5_GBPS;
  130. case 2: return IB_RATE_5_GBPS;
  131. case 4: return IB_RATE_10_GBPS;
  132. case 8: return IB_RATE_20_GBPS;
  133. case 12: return IB_RATE_30_GBPS;
  134. case 16: return IB_RATE_40_GBPS;
  135. case 24: return IB_RATE_60_GBPS;
  136. case 32: return IB_RATE_80_GBPS;
  137. case 48: return IB_RATE_120_GBPS;
  138. default: return IB_RATE_PORT_CURRENT;
  139. }
  140. }
  141. EXPORT_SYMBOL(mult_to_ib_rate);
  142. __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
  143. {
  144. switch (rate) {
  145. case IB_RATE_2_5_GBPS: return 2500;
  146. case IB_RATE_5_GBPS: return 5000;
  147. case IB_RATE_10_GBPS: return 10000;
  148. case IB_RATE_20_GBPS: return 20000;
  149. case IB_RATE_30_GBPS: return 30000;
  150. case IB_RATE_40_GBPS: return 40000;
  151. case IB_RATE_60_GBPS: return 60000;
  152. case IB_RATE_80_GBPS: return 80000;
  153. case IB_RATE_120_GBPS: return 120000;
  154. case IB_RATE_14_GBPS: return 14062;
  155. case IB_RATE_56_GBPS: return 56250;
  156. case IB_RATE_112_GBPS: return 112500;
  157. case IB_RATE_168_GBPS: return 168750;
  158. case IB_RATE_25_GBPS: return 25781;
  159. case IB_RATE_100_GBPS: return 103125;
  160. case IB_RATE_200_GBPS: return 206250;
  161. case IB_RATE_300_GBPS: return 309375;
  162. default: return -1;
  163. }
  164. }
  165. EXPORT_SYMBOL(ib_rate_to_mbps);
  166. __attribute_const__ enum rdma_transport_type
  167. rdma_node_get_transport(enum rdma_node_type node_type)
  168. {
  169. switch (node_type) {
  170. case RDMA_NODE_IB_CA:
  171. case RDMA_NODE_IB_SWITCH:
  172. case RDMA_NODE_IB_ROUTER:
  173. return RDMA_TRANSPORT_IB;
  174. case RDMA_NODE_RNIC:
  175. return RDMA_TRANSPORT_IWARP;
  176. case RDMA_NODE_USNIC:
  177. return RDMA_TRANSPORT_USNIC;
  178. case RDMA_NODE_USNIC_UDP:
  179. return RDMA_TRANSPORT_USNIC_UDP;
  180. default:
  181. BUG();
  182. return 0;
  183. }
  184. }
  185. EXPORT_SYMBOL(rdma_node_get_transport);
  186. enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
  187. {
  188. if (device->get_link_layer)
  189. return device->get_link_layer(device, port_num);
  190. switch (rdma_node_get_transport(device->node_type)) {
  191. case RDMA_TRANSPORT_IB:
  192. return IB_LINK_LAYER_INFINIBAND;
  193. case RDMA_TRANSPORT_IWARP:
  194. case RDMA_TRANSPORT_USNIC:
  195. case RDMA_TRANSPORT_USNIC_UDP:
  196. return IB_LINK_LAYER_ETHERNET;
  197. default:
  198. return IB_LINK_LAYER_UNSPECIFIED;
  199. }
  200. }
  201. EXPORT_SYMBOL(rdma_port_get_link_layer);
  202. /* Protection domains */
  203. /**
  204. * ib_alloc_pd - Allocates an unused protection domain.
  205. * @device: The device on which to allocate the protection domain.
  206. *
  207. * A protection domain object provides an association between QPs, shared
  208. * receive queues, address handles, memory regions, and memory windows.
  209. *
  210. * Every PD has a local_dma_lkey which can be used as the lkey value for local
  211. * memory operations.
  212. */
  213. struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
  214. const char *caller)
  215. {
  216. struct ib_pd *pd;
  217. int mr_access_flags = 0;
  218. pd = device->alloc_pd(device, NULL, NULL);
  219. if (IS_ERR(pd))
  220. return pd;
  221. pd->device = device;
  222. pd->uobject = NULL;
  223. pd->__internal_mr = NULL;
  224. atomic_set(&pd->usecnt, 0);
  225. pd->flags = flags;
  226. if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
  227. pd->local_dma_lkey = device->local_dma_lkey;
  228. else
  229. mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
  230. if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
  231. pr_warn("%s: enabling unsafe global rkey\n", caller);
  232. mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
  233. }
  234. if (mr_access_flags) {
  235. struct ib_mr *mr;
  236. mr = pd->device->get_dma_mr(pd, mr_access_flags);
  237. if (IS_ERR(mr)) {
  238. ib_dealloc_pd(pd);
  239. return ERR_CAST(mr);
  240. }
  241. mr->device = pd->device;
  242. mr->pd = pd;
  243. mr->uobject = NULL;
  244. mr->need_inval = false;
  245. pd->__internal_mr = mr;
  246. if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
  247. pd->local_dma_lkey = pd->__internal_mr->lkey;
  248. if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
  249. pd->unsafe_global_rkey = pd->__internal_mr->rkey;
  250. }
  251. return pd;
  252. }
  253. EXPORT_SYMBOL(__ib_alloc_pd);
  254. /**
  255. * ib_dealloc_pd - Deallocates a protection domain.
  256. * @pd: The protection domain to deallocate.
  257. *
  258. * It is an error to call this function while any resources in the pd still
  259. * exist. The caller is responsible to synchronously destroy them and
  260. * guarantee no new allocations will happen.
  261. */
  262. void ib_dealloc_pd(struct ib_pd *pd)
  263. {
  264. int ret;
  265. if (pd->__internal_mr) {
  266. ret = pd->device->dereg_mr(pd->__internal_mr);
  267. WARN_ON(ret);
  268. pd->__internal_mr = NULL;
  269. }
  270. /* uverbs manipulates usecnt with proper locking, while the kabi
  271. requires the caller to guarantee we can't race here. */
  272. WARN_ON(atomic_read(&pd->usecnt));
  273. /* Making delalloc_pd a void return is a WIP, no driver should return
  274. an error here. */
  275. ret = pd->device->dealloc_pd(pd);
  276. WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
  277. }
  278. EXPORT_SYMBOL(ib_dealloc_pd);
  279. /* Address handles */
  280. struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
  281. {
  282. struct ib_ah *ah;
  283. ah = pd->device->create_ah(pd, ah_attr, NULL);
  284. if (!IS_ERR(ah)) {
  285. ah->device = pd->device;
  286. ah->pd = pd;
  287. ah->uobject = NULL;
  288. ah->type = ah_attr->type;
  289. atomic_inc(&pd->usecnt);
  290. }
  291. return ah;
  292. }
  293. EXPORT_SYMBOL(rdma_create_ah);
  294. int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
  295. {
  296. const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
  297. struct iphdr ip4h_checked;
  298. const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
  299. /* If it's IPv6, the version must be 6, otherwise, the first
  300. * 20 bytes (before the IPv4 header) are garbled.
  301. */
  302. if (ip6h->version != 6)
  303. return (ip4h->version == 4) ? 4 : 0;
  304. /* version may be 6 or 4 because the first 20 bytes could be garbled */
  305. /* RoCE v2 requires no options, thus header length
  306. * must be 5 words
  307. */
  308. if (ip4h->ihl != 5)
  309. return 6;
  310. /* Verify checksum.
  311. * We can't write on scattered buffers so we need to copy to
  312. * temp buffer.
  313. */
  314. memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
  315. ip4h_checked.check = 0;
  316. ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
  317. /* if IPv4 header checksum is OK, believe it */
  318. if (ip4h->check == ip4h_checked.check)
  319. return 4;
  320. return 6;
  321. }
  322. EXPORT_SYMBOL(ib_get_rdma_header_version);
  323. static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
  324. u8 port_num,
  325. const struct ib_grh *grh)
  326. {
  327. int grh_version;
  328. if (rdma_protocol_ib(device, port_num))
  329. return RDMA_NETWORK_IB;
  330. grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
  331. if (grh_version == 4)
  332. return RDMA_NETWORK_IPV4;
  333. if (grh->next_hdr == IPPROTO_UDP)
  334. return RDMA_NETWORK_IPV6;
  335. return RDMA_NETWORK_ROCE_V1;
  336. }
  337. struct find_gid_index_context {
  338. u16 vlan_id;
  339. enum ib_gid_type gid_type;
  340. };
  341. static bool find_gid_index(const union ib_gid *gid,
  342. const struct ib_gid_attr *gid_attr,
  343. void *context)
  344. {
  345. struct find_gid_index_context *ctx =
  346. (struct find_gid_index_context *)context;
  347. if (ctx->gid_type != gid_attr->gid_type)
  348. return false;
  349. if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
  350. (is_vlan_dev(gid_attr->ndev) &&
  351. vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
  352. return false;
  353. return true;
  354. }
  355. static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
  356. u16 vlan_id, const union ib_gid *sgid,
  357. enum ib_gid_type gid_type,
  358. u16 *gid_index)
  359. {
  360. struct find_gid_index_context context = {.vlan_id = vlan_id,
  361. .gid_type = gid_type};
  362. return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
  363. &context, gid_index);
  364. }
  365. int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
  366. enum rdma_network_type net_type,
  367. union ib_gid *sgid, union ib_gid *dgid)
  368. {
  369. struct sockaddr_in src_in;
  370. struct sockaddr_in dst_in;
  371. __be32 src_saddr, dst_saddr;
  372. if (!sgid || !dgid)
  373. return -EINVAL;
  374. if (net_type == RDMA_NETWORK_IPV4) {
  375. memcpy(&src_in.sin_addr.s_addr,
  376. &hdr->roce4grh.saddr, 4);
  377. memcpy(&dst_in.sin_addr.s_addr,
  378. &hdr->roce4grh.daddr, 4);
  379. src_saddr = src_in.sin_addr.s_addr;
  380. dst_saddr = dst_in.sin_addr.s_addr;
  381. ipv6_addr_set_v4mapped(src_saddr,
  382. (struct in6_addr *)sgid);
  383. ipv6_addr_set_v4mapped(dst_saddr,
  384. (struct in6_addr *)dgid);
  385. return 0;
  386. } else if (net_type == RDMA_NETWORK_IPV6 ||
  387. net_type == RDMA_NETWORK_IB) {
  388. *dgid = hdr->ibgrh.dgid;
  389. *sgid = hdr->ibgrh.sgid;
  390. return 0;
  391. } else {
  392. return -EINVAL;
  393. }
  394. }
  395. EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
  396. int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
  397. const struct ib_wc *wc, const struct ib_grh *grh,
  398. struct rdma_ah_attr *ah_attr)
  399. {
  400. u32 flow_class;
  401. u16 gid_index;
  402. int ret;
  403. enum rdma_network_type net_type = RDMA_NETWORK_IB;
  404. enum ib_gid_type gid_type = IB_GID_TYPE_IB;
  405. int hoplimit = 0xff;
  406. union ib_gid dgid;
  407. union ib_gid sgid;
  408. memset(ah_attr, 0, sizeof *ah_attr);
  409. ah_attr->type = rdma_ah_find_type(device, port_num);
  410. if (rdma_cap_eth_ah(device, port_num)) {
  411. if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
  412. net_type = wc->network_hdr_type;
  413. else
  414. net_type = ib_get_net_type_by_grh(device, port_num, grh);
  415. gid_type = ib_network_to_gid_type(net_type);
  416. }
  417. ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
  418. &sgid, &dgid);
  419. if (ret)
  420. return ret;
  421. if (rdma_protocol_roce(device, port_num)) {
  422. int if_index = 0;
  423. u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
  424. wc->vlan_id : 0xffff;
  425. struct net_device *idev;
  426. struct net_device *resolved_dev;
  427. if (!(wc->wc_flags & IB_WC_GRH))
  428. return -EPROTOTYPE;
  429. if (!device->get_netdev)
  430. return -EOPNOTSUPP;
  431. idev = device->get_netdev(device, port_num);
  432. if (!idev)
  433. return -ENODEV;
  434. ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
  435. ah_attr->roce.dmac,
  436. wc->wc_flags & IB_WC_WITH_VLAN ?
  437. NULL : &vlan_id,
  438. &if_index, &hoplimit);
  439. if (ret) {
  440. dev_put(idev);
  441. return ret;
  442. }
  443. resolved_dev = dev_get_by_index(&init_net, if_index);
  444. if (resolved_dev->flags & IFF_LOOPBACK) {
  445. dev_put(resolved_dev);
  446. resolved_dev = idev;
  447. dev_hold(resolved_dev);
  448. }
  449. rcu_read_lock();
  450. if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
  451. resolved_dev))
  452. ret = -EHOSTUNREACH;
  453. rcu_read_unlock();
  454. dev_put(idev);
  455. dev_put(resolved_dev);
  456. if (ret)
  457. return ret;
  458. ret = get_sgid_index_from_eth(device, port_num, vlan_id,
  459. &dgid, gid_type, &gid_index);
  460. if (ret)
  461. return ret;
  462. }
  463. rdma_ah_set_dlid(ah_attr, wc->slid);
  464. rdma_ah_set_sl(ah_attr, wc->sl);
  465. rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
  466. rdma_ah_set_port_num(ah_attr, port_num);
  467. if (wc->wc_flags & IB_WC_GRH) {
  468. if (!rdma_cap_eth_ah(device, port_num)) {
  469. if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
  470. ret = ib_find_cached_gid_by_port(device, &dgid,
  471. IB_GID_TYPE_IB,
  472. port_num, NULL,
  473. &gid_index);
  474. if (ret)
  475. return ret;
  476. } else {
  477. gid_index = 0;
  478. }
  479. }
  480. flow_class = be32_to_cpu(grh->version_tclass_flow);
  481. rdma_ah_set_grh(ah_attr, &sgid,
  482. flow_class & 0xFFFFF,
  483. (u8)gid_index, hoplimit,
  484. (flow_class >> 20) & 0xFF);
  485. }
  486. return 0;
  487. }
  488. EXPORT_SYMBOL(ib_init_ah_from_wc);
  489. struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
  490. const struct ib_grh *grh, u8 port_num)
  491. {
  492. struct rdma_ah_attr ah_attr;
  493. int ret;
  494. ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
  495. if (ret)
  496. return ERR_PTR(ret);
  497. return rdma_create_ah(pd, &ah_attr);
  498. }
  499. EXPORT_SYMBOL(ib_create_ah_from_wc);
  500. int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
  501. {
  502. if (ah->type != ah_attr->type)
  503. return -EINVAL;
  504. return ah->device->modify_ah ?
  505. ah->device->modify_ah(ah, ah_attr) :
  506. -ENOSYS;
  507. }
  508. EXPORT_SYMBOL(rdma_modify_ah);
  509. int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
  510. {
  511. return ah->device->query_ah ?
  512. ah->device->query_ah(ah, ah_attr) :
  513. -ENOSYS;
  514. }
  515. EXPORT_SYMBOL(rdma_query_ah);
  516. int rdma_destroy_ah(struct ib_ah *ah)
  517. {
  518. struct ib_pd *pd;
  519. int ret;
  520. pd = ah->pd;
  521. ret = ah->device->destroy_ah(ah);
  522. if (!ret)
  523. atomic_dec(&pd->usecnt);
  524. return ret;
  525. }
  526. EXPORT_SYMBOL(rdma_destroy_ah);
  527. /* Shared receive queues */
  528. struct ib_srq *ib_create_srq(struct ib_pd *pd,
  529. struct ib_srq_init_attr *srq_init_attr)
  530. {
  531. struct ib_srq *srq;
  532. if (!pd->device->create_srq)
  533. return ERR_PTR(-ENOSYS);
  534. srq = pd->device->create_srq(pd, srq_init_attr, NULL);
  535. if (!IS_ERR(srq)) {
  536. srq->device = pd->device;
  537. srq->pd = pd;
  538. srq->uobject = NULL;
  539. srq->event_handler = srq_init_attr->event_handler;
  540. srq->srq_context = srq_init_attr->srq_context;
  541. srq->srq_type = srq_init_attr->srq_type;
  542. if (srq->srq_type == IB_SRQT_XRC) {
  543. srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
  544. srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
  545. atomic_inc(&srq->ext.xrc.xrcd->usecnt);
  546. atomic_inc(&srq->ext.xrc.cq->usecnt);
  547. }
  548. atomic_inc(&pd->usecnt);
  549. atomic_set(&srq->usecnt, 0);
  550. }
  551. return srq;
  552. }
  553. EXPORT_SYMBOL(ib_create_srq);
  554. int ib_modify_srq(struct ib_srq *srq,
  555. struct ib_srq_attr *srq_attr,
  556. enum ib_srq_attr_mask srq_attr_mask)
  557. {
  558. return srq->device->modify_srq ?
  559. srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
  560. -ENOSYS;
  561. }
  562. EXPORT_SYMBOL(ib_modify_srq);
  563. int ib_query_srq(struct ib_srq *srq,
  564. struct ib_srq_attr *srq_attr)
  565. {
  566. return srq->device->query_srq ?
  567. srq->device->query_srq(srq, srq_attr) : -ENOSYS;
  568. }
  569. EXPORT_SYMBOL(ib_query_srq);
  570. int ib_destroy_srq(struct ib_srq *srq)
  571. {
  572. struct ib_pd *pd;
  573. enum ib_srq_type srq_type;
  574. struct ib_xrcd *uninitialized_var(xrcd);
  575. struct ib_cq *uninitialized_var(cq);
  576. int ret;
  577. if (atomic_read(&srq->usecnt))
  578. return -EBUSY;
  579. pd = srq->pd;
  580. srq_type = srq->srq_type;
  581. if (srq_type == IB_SRQT_XRC) {
  582. xrcd = srq->ext.xrc.xrcd;
  583. cq = srq->ext.xrc.cq;
  584. }
  585. ret = srq->device->destroy_srq(srq);
  586. if (!ret) {
  587. atomic_dec(&pd->usecnt);
  588. if (srq_type == IB_SRQT_XRC) {
  589. atomic_dec(&xrcd->usecnt);
  590. atomic_dec(&cq->usecnt);
  591. }
  592. }
  593. return ret;
  594. }
  595. EXPORT_SYMBOL(ib_destroy_srq);
  596. /* Queue pairs */
  597. static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
  598. {
  599. struct ib_qp *qp = context;
  600. unsigned long flags;
  601. spin_lock_irqsave(&qp->device->event_handler_lock, flags);
  602. list_for_each_entry(event->element.qp, &qp->open_list, open_list)
  603. if (event->element.qp->event_handler)
  604. event->element.qp->event_handler(event, event->element.qp->qp_context);
  605. spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
  606. }
  607. static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
  608. {
  609. mutex_lock(&xrcd->tgt_qp_mutex);
  610. list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
  611. mutex_unlock(&xrcd->tgt_qp_mutex);
  612. }
  613. static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
  614. void (*event_handler)(struct ib_event *, void *),
  615. void *qp_context)
  616. {
  617. struct ib_qp *qp;
  618. unsigned long flags;
  619. qp = kzalloc(sizeof *qp, GFP_KERNEL);
  620. if (!qp)
  621. return ERR_PTR(-ENOMEM);
  622. qp->real_qp = real_qp;
  623. atomic_inc(&real_qp->usecnt);
  624. qp->device = real_qp->device;
  625. qp->event_handler = event_handler;
  626. qp->qp_context = qp_context;
  627. qp->qp_num = real_qp->qp_num;
  628. qp->qp_type = real_qp->qp_type;
  629. spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
  630. list_add(&qp->open_list, &real_qp->open_list);
  631. spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
  632. return qp;
  633. }
  634. struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
  635. struct ib_qp_open_attr *qp_open_attr)
  636. {
  637. struct ib_qp *qp, *real_qp;
  638. if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
  639. return ERR_PTR(-EINVAL);
  640. qp = ERR_PTR(-EINVAL);
  641. mutex_lock(&xrcd->tgt_qp_mutex);
  642. list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
  643. if (real_qp->qp_num == qp_open_attr->qp_num) {
  644. qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
  645. qp_open_attr->qp_context);
  646. break;
  647. }
  648. }
  649. mutex_unlock(&xrcd->tgt_qp_mutex);
  650. return qp;
  651. }
  652. EXPORT_SYMBOL(ib_open_qp);
  653. static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
  654. struct ib_qp_init_attr *qp_init_attr)
  655. {
  656. struct ib_qp *real_qp = qp;
  657. qp->event_handler = __ib_shared_qp_event_handler;
  658. qp->qp_context = qp;
  659. qp->pd = NULL;
  660. qp->send_cq = qp->recv_cq = NULL;
  661. qp->srq = NULL;
  662. qp->xrcd = qp_init_attr->xrcd;
  663. atomic_inc(&qp_init_attr->xrcd->usecnt);
  664. INIT_LIST_HEAD(&qp->open_list);
  665. qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
  666. qp_init_attr->qp_context);
  667. if (!IS_ERR(qp))
  668. __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
  669. else
  670. real_qp->device->destroy_qp(real_qp);
  671. return qp;
  672. }
  673. struct ib_qp *ib_create_qp(struct ib_pd *pd,
  674. struct ib_qp_init_attr *qp_init_attr)
  675. {
  676. struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
  677. struct ib_qp *qp;
  678. int ret;
  679. if (qp_init_attr->rwq_ind_tbl &&
  680. (qp_init_attr->recv_cq ||
  681. qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
  682. qp_init_attr->cap.max_recv_sge))
  683. return ERR_PTR(-EINVAL);
  684. /*
  685. * If the callers is using the RDMA API calculate the resources
  686. * needed for the RDMA READ/WRITE operations.
  687. *
  688. * Note that these callers need to pass in a port number.
  689. */
  690. if (qp_init_attr->cap.max_rdma_ctxs)
  691. rdma_rw_init_qp(device, qp_init_attr);
  692. qp = device->create_qp(pd, qp_init_attr, NULL);
  693. if (IS_ERR(qp))
  694. return qp;
  695. qp->device = device;
  696. qp->real_qp = qp;
  697. qp->uobject = NULL;
  698. qp->qp_type = qp_init_attr->qp_type;
  699. qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
  700. atomic_set(&qp->usecnt, 0);
  701. qp->mrs_used = 0;
  702. spin_lock_init(&qp->mr_lock);
  703. INIT_LIST_HEAD(&qp->rdma_mrs);
  704. INIT_LIST_HEAD(&qp->sig_mrs);
  705. if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
  706. return ib_create_xrc_qp(qp, qp_init_attr);
  707. qp->event_handler = qp_init_attr->event_handler;
  708. qp->qp_context = qp_init_attr->qp_context;
  709. if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
  710. qp->recv_cq = NULL;
  711. qp->srq = NULL;
  712. } else {
  713. qp->recv_cq = qp_init_attr->recv_cq;
  714. if (qp_init_attr->recv_cq)
  715. atomic_inc(&qp_init_attr->recv_cq->usecnt);
  716. qp->srq = qp_init_attr->srq;
  717. if (qp->srq)
  718. atomic_inc(&qp_init_attr->srq->usecnt);
  719. }
  720. qp->pd = pd;
  721. qp->send_cq = qp_init_attr->send_cq;
  722. qp->xrcd = NULL;
  723. atomic_inc(&pd->usecnt);
  724. if (qp_init_attr->send_cq)
  725. atomic_inc(&qp_init_attr->send_cq->usecnt);
  726. if (qp_init_attr->rwq_ind_tbl)
  727. atomic_inc(&qp->rwq_ind_tbl->usecnt);
  728. if (qp_init_attr->cap.max_rdma_ctxs) {
  729. ret = rdma_rw_init_mrs(qp, qp_init_attr);
  730. if (ret) {
  731. pr_err("failed to init MR pool ret= %d\n", ret);
  732. ib_destroy_qp(qp);
  733. return ERR_PTR(ret);
  734. }
  735. }
  736. /*
  737. * Note: all hw drivers guarantee that max_send_sge is lower than
  738. * the device RDMA WRITE SGE limit but not all hw drivers ensure that
  739. * max_send_sge <= max_sge_rd.
  740. */
  741. qp->max_write_sge = qp_init_attr->cap.max_send_sge;
  742. qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
  743. device->attrs.max_sge_rd);
  744. return qp;
  745. }
  746. EXPORT_SYMBOL(ib_create_qp);
  747. static const struct {
  748. int valid;
  749. enum ib_qp_attr_mask req_param[IB_QPT_MAX];
  750. enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
  751. } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
  752. [IB_QPS_RESET] = {
  753. [IB_QPS_RESET] = { .valid = 1 },
  754. [IB_QPS_INIT] = {
  755. .valid = 1,
  756. .req_param = {
  757. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  758. IB_QP_PORT |
  759. IB_QP_QKEY),
  760. [IB_QPT_RAW_PACKET] = IB_QP_PORT,
  761. [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
  762. IB_QP_PORT |
  763. IB_QP_ACCESS_FLAGS),
  764. [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
  765. IB_QP_PORT |
  766. IB_QP_ACCESS_FLAGS),
  767. [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
  768. IB_QP_PORT |
  769. IB_QP_ACCESS_FLAGS),
  770. [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
  771. IB_QP_PORT |
  772. IB_QP_ACCESS_FLAGS),
  773. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  774. IB_QP_QKEY),
  775. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  776. IB_QP_QKEY),
  777. }
  778. },
  779. },
  780. [IB_QPS_INIT] = {
  781. [IB_QPS_RESET] = { .valid = 1 },
  782. [IB_QPS_ERR] = { .valid = 1 },
  783. [IB_QPS_INIT] = {
  784. .valid = 1,
  785. .opt_param = {
  786. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  787. IB_QP_PORT |
  788. IB_QP_QKEY),
  789. [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
  790. IB_QP_PORT |
  791. IB_QP_ACCESS_FLAGS),
  792. [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
  793. IB_QP_PORT |
  794. IB_QP_ACCESS_FLAGS),
  795. [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
  796. IB_QP_PORT |
  797. IB_QP_ACCESS_FLAGS),
  798. [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
  799. IB_QP_PORT |
  800. IB_QP_ACCESS_FLAGS),
  801. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  802. IB_QP_QKEY),
  803. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  804. IB_QP_QKEY),
  805. }
  806. },
  807. [IB_QPS_RTR] = {
  808. .valid = 1,
  809. .req_param = {
  810. [IB_QPT_UC] = (IB_QP_AV |
  811. IB_QP_PATH_MTU |
  812. IB_QP_DEST_QPN |
  813. IB_QP_RQ_PSN),
  814. [IB_QPT_RC] = (IB_QP_AV |
  815. IB_QP_PATH_MTU |
  816. IB_QP_DEST_QPN |
  817. IB_QP_RQ_PSN |
  818. IB_QP_MAX_DEST_RD_ATOMIC |
  819. IB_QP_MIN_RNR_TIMER),
  820. [IB_QPT_XRC_INI] = (IB_QP_AV |
  821. IB_QP_PATH_MTU |
  822. IB_QP_DEST_QPN |
  823. IB_QP_RQ_PSN),
  824. [IB_QPT_XRC_TGT] = (IB_QP_AV |
  825. IB_QP_PATH_MTU |
  826. IB_QP_DEST_QPN |
  827. IB_QP_RQ_PSN |
  828. IB_QP_MAX_DEST_RD_ATOMIC |
  829. IB_QP_MIN_RNR_TIMER),
  830. },
  831. .opt_param = {
  832. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  833. IB_QP_QKEY),
  834. [IB_QPT_UC] = (IB_QP_ALT_PATH |
  835. IB_QP_ACCESS_FLAGS |
  836. IB_QP_PKEY_INDEX),
  837. [IB_QPT_RC] = (IB_QP_ALT_PATH |
  838. IB_QP_ACCESS_FLAGS |
  839. IB_QP_PKEY_INDEX),
  840. [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
  841. IB_QP_ACCESS_FLAGS |
  842. IB_QP_PKEY_INDEX),
  843. [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
  844. IB_QP_ACCESS_FLAGS |
  845. IB_QP_PKEY_INDEX),
  846. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  847. IB_QP_QKEY),
  848. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  849. IB_QP_QKEY),
  850. },
  851. },
  852. },
  853. [IB_QPS_RTR] = {
  854. [IB_QPS_RESET] = { .valid = 1 },
  855. [IB_QPS_ERR] = { .valid = 1 },
  856. [IB_QPS_RTS] = {
  857. .valid = 1,
  858. .req_param = {
  859. [IB_QPT_UD] = IB_QP_SQ_PSN,
  860. [IB_QPT_UC] = IB_QP_SQ_PSN,
  861. [IB_QPT_RC] = (IB_QP_TIMEOUT |
  862. IB_QP_RETRY_CNT |
  863. IB_QP_RNR_RETRY |
  864. IB_QP_SQ_PSN |
  865. IB_QP_MAX_QP_RD_ATOMIC),
  866. [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
  867. IB_QP_RETRY_CNT |
  868. IB_QP_RNR_RETRY |
  869. IB_QP_SQ_PSN |
  870. IB_QP_MAX_QP_RD_ATOMIC),
  871. [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
  872. IB_QP_SQ_PSN),
  873. [IB_QPT_SMI] = IB_QP_SQ_PSN,
  874. [IB_QPT_GSI] = IB_QP_SQ_PSN,
  875. },
  876. .opt_param = {
  877. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  878. IB_QP_QKEY),
  879. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  880. IB_QP_ALT_PATH |
  881. IB_QP_ACCESS_FLAGS |
  882. IB_QP_PATH_MIG_STATE),
  883. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  884. IB_QP_ALT_PATH |
  885. IB_QP_ACCESS_FLAGS |
  886. IB_QP_MIN_RNR_TIMER |
  887. IB_QP_PATH_MIG_STATE),
  888. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  889. IB_QP_ALT_PATH |
  890. IB_QP_ACCESS_FLAGS |
  891. IB_QP_PATH_MIG_STATE),
  892. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  893. IB_QP_ALT_PATH |
  894. IB_QP_ACCESS_FLAGS |
  895. IB_QP_MIN_RNR_TIMER |
  896. IB_QP_PATH_MIG_STATE),
  897. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  898. IB_QP_QKEY),
  899. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  900. IB_QP_QKEY),
  901. [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
  902. }
  903. }
  904. },
  905. [IB_QPS_RTS] = {
  906. [IB_QPS_RESET] = { .valid = 1 },
  907. [IB_QPS_ERR] = { .valid = 1 },
  908. [IB_QPS_RTS] = {
  909. .valid = 1,
  910. .opt_param = {
  911. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  912. IB_QP_QKEY),
  913. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  914. IB_QP_ACCESS_FLAGS |
  915. IB_QP_ALT_PATH |
  916. IB_QP_PATH_MIG_STATE),
  917. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  918. IB_QP_ACCESS_FLAGS |
  919. IB_QP_ALT_PATH |
  920. IB_QP_PATH_MIG_STATE |
  921. IB_QP_MIN_RNR_TIMER),
  922. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  923. IB_QP_ACCESS_FLAGS |
  924. IB_QP_ALT_PATH |
  925. IB_QP_PATH_MIG_STATE),
  926. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  927. IB_QP_ACCESS_FLAGS |
  928. IB_QP_ALT_PATH |
  929. IB_QP_PATH_MIG_STATE |
  930. IB_QP_MIN_RNR_TIMER),
  931. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  932. IB_QP_QKEY),
  933. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  934. IB_QP_QKEY),
  935. [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
  936. }
  937. },
  938. [IB_QPS_SQD] = {
  939. .valid = 1,
  940. .opt_param = {
  941. [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  942. [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  943. [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  944. [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  945. [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
  946. [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  947. [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
  948. }
  949. },
  950. },
  951. [IB_QPS_SQD] = {
  952. [IB_QPS_RESET] = { .valid = 1 },
  953. [IB_QPS_ERR] = { .valid = 1 },
  954. [IB_QPS_RTS] = {
  955. .valid = 1,
  956. .opt_param = {
  957. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  958. IB_QP_QKEY),
  959. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  960. IB_QP_ALT_PATH |
  961. IB_QP_ACCESS_FLAGS |
  962. IB_QP_PATH_MIG_STATE),
  963. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  964. IB_QP_ALT_PATH |
  965. IB_QP_ACCESS_FLAGS |
  966. IB_QP_MIN_RNR_TIMER |
  967. IB_QP_PATH_MIG_STATE),
  968. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  969. IB_QP_ALT_PATH |
  970. IB_QP_ACCESS_FLAGS |
  971. IB_QP_PATH_MIG_STATE),
  972. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  973. IB_QP_ALT_PATH |
  974. IB_QP_ACCESS_FLAGS |
  975. IB_QP_MIN_RNR_TIMER |
  976. IB_QP_PATH_MIG_STATE),
  977. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  978. IB_QP_QKEY),
  979. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  980. IB_QP_QKEY),
  981. }
  982. },
  983. [IB_QPS_SQD] = {
  984. .valid = 1,
  985. .opt_param = {
  986. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  987. IB_QP_QKEY),
  988. [IB_QPT_UC] = (IB_QP_AV |
  989. IB_QP_ALT_PATH |
  990. IB_QP_ACCESS_FLAGS |
  991. IB_QP_PKEY_INDEX |
  992. IB_QP_PATH_MIG_STATE),
  993. [IB_QPT_RC] = (IB_QP_PORT |
  994. IB_QP_AV |
  995. IB_QP_TIMEOUT |
  996. IB_QP_RETRY_CNT |
  997. IB_QP_RNR_RETRY |
  998. IB_QP_MAX_QP_RD_ATOMIC |
  999. IB_QP_MAX_DEST_RD_ATOMIC |
  1000. IB_QP_ALT_PATH |
  1001. IB_QP_ACCESS_FLAGS |
  1002. IB_QP_PKEY_INDEX |
  1003. IB_QP_MIN_RNR_TIMER |
  1004. IB_QP_PATH_MIG_STATE),
  1005. [IB_QPT_XRC_INI] = (IB_QP_PORT |
  1006. IB_QP_AV |
  1007. IB_QP_TIMEOUT |
  1008. IB_QP_RETRY_CNT |
  1009. IB_QP_RNR_RETRY |
  1010. IB_QP_MAX_QP_RD_ATOMIC |
  1011. IB_QP_ALT_PATH |
  1012. IB_QP_ACCESS_FLAGS |
  1013. IB_QP_PKEY_INDEX |
  1014. IB_QP_PATH_MIG_STATE),
  1015. [IB_QPT_XRC_TGT] = (IB_QP_PORT |
  1016. IB_QP_AV |
  1017. IB_QP_TIMEOUT |
  1018. IB_QP_MAX_DEST_RD_ATOMIC |
  1019. IB_QP_ALT_PATH |
  1020. IB_QP_ACCESS_FLAGS |
  1021. IB_QP_PKEY_INDEX |
  1022. IB_QP_MIN_RNR_TIMER |
  1023. IB_QP_PATH_MIG_STATE),
  1024. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  1025. IB_QP_QKEY),
  1026. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  1027. IB_QP_QKEY),
  1028. }
  1029. }
  1030. },
  1031. [IB_QPS_SQE] = {
  1032. [IB_QPS_RESET] = { .valid = 1 },
  1033. [IB_QPS_ERR] = { .valid = 1 },
  1034. [IB_QPS_RTS] = {
  1035. .valid = 1,
  1036. .opt_param = {
  1037. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  1038. IB_QP_QKEY),
  1039. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  1040. IB_QP_ACCESS_FLAGS),
  1041. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  1042. IB_QP_QKEY),
  1043. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  1044. IB_QP_QKEY),
  1045. }
  1046. }
  1047. },
  1048. [IB_QPS_ERR] = {
  1049. [IB_QPS_RESET] = { .valid = 1 },
  1050. [IB_QPS_ERR] = { .valid = 1 }
  1051. }
  1052. };
  1053. int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
  1054. enum ib_qp_type type, enum ib_qp_attr_mask mask,
  1055. enum rdma_link_layer ll)
  1056. {
  1057. enum ib_qp_attr_mask req_param, opt_param;
  1058. if (cur_state < 0 || cur_state > IB_QPS_ERR ||
  1059. next_state < 0 || next_state > IB_QPS_ERR)
  1060. return 0;
  1061. if (mask & IB_QP_CUR_STATE &&
  1062. cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
  1063. cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
  1064. return 0;
  1065. if (!qp_state_table[cur_state][next_state].valid)
  1066. return 0;
  1067. req_param = qp_state_table[cur_state][next_state].req_param[type];
  1068. opt_param = qp_state_table[cur_state][next_state].opt_param[type];
  1069. if ((mask & req_param) != req_param)
  1070. return 0;
  1071. if (mask & ~(req_param | opt_param | IB_QP_STATE))
  1072. return 0;
  1073. return 1;
  1074. }
  1075. EXPORT_SYMBOL(ib_modify_qp_is_ok);
  1076. int ib_resolve_eth_dmac(struct ib_device *device,
  1077. struct rdma_ah_attr *ah_attr)
  1078. {
  1079. int ret = 0;
  1080. struct ib_global_route *grh;
  1081. if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
  1082. return -EINVAL;
  1083. if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE)
  1084. return 0;
  1085. grh = rdma_ah_retrieve_grh(ah_attr);
  1086. if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) {
  1087. rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
  1088. ah_attr->roce.dmac);
  1089. } else {
  1090. union ib_gid sgid;
  1091. struct ib_gid_attr sgid_attr;
  1092. int ifindex;
  1093. int hop_limit;
  1094. ret = ib_query_gid(device,
  1095. rdma_ah_get_port_num(ah_attr),
  1096. grh->sgid_index,
  1097. &sgid, &sgid_attr);
  1098. if (ret || !sgid_attr.ndev) {
  1099. if (!ret)
  1100. ret = -ENXIO;
  1101. goto out;
  1102. }
  1103. ifindex = sgid_attr.ndev->ifindex;
  1104. ret =
  1105. rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
  1106. ah_attr->roce.dmac,
  1107. NULL, &ifindex, &hop_limit);
  1108. dev_put(sgid_attr.ndev);
  1109. grh->hop_limit = hop_limit;
  1110. }
  1111. out:
  1112. return ret;
  1113. }
  1114. EXPORT_SYMBOL(ib_resolve_eth_dmac);
  1115. int ib_modify_qp(struct ib_qp *qp,
  1116. struct ib_qp_attr *qp_attr,
  1117. int qp_attr_mask)
  1118. {
  1119. if (qp_attr_mask & IB_QP_AV) {
  1120. int ret;
  1121. ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
  1122. if (ret)
  1123. return ret;
  1124. }
  1125. return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
  1126. }
  1127. EXPORT_SYMBOL(ib_modify_qp);
  1128. int ib_query_qp(struct ib_qp *qp,
  1129. struct ib_qp_attr *qp_attr,
  1130. int qp_attr_mask,
  1131. struct ib_qp_init_attr *qp_init_attr)
  1132. {
  1133. return qp->device->query_qp ?
  1134. qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
  1135. -ENOSYS;
  1136. }
  1137. EXPORT_SYMBOL(ib_query_qp);
  1138. int ib_close_qp(struct ib_qp *qp)
  1139. {
  1140. struct ib_qp *real_qp;
  1141. unsigned long flags;
  1142. real_qp = qp->real_qp;
  1143. if (real_qp == qp)
  1144. return -EINVAL;
  1145. spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
  1146. list_del(&qp->open_list);
  1147. spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
  1148. atomic_dec(&real_qp->usecnt);
  1149. kfree(qp);
  1150. return 0;
  1151. }
  1152. EXPORT_SYMBOL(ib_close_qp);
  1153. static int __ib_destroy_shared_qp(struct ib_qp *qp)
  1154. {
  1155. struct ib_xrcd *xrcd;
  1156. struct ib_qp *real_qp;
  1157. int ret;
  1158. real_qp = qp->real_qp;
  1159. xrcd = real_qp->xrcd;
  1160. mutex_lock(&xrcd->tgt_qp_mutex);
  1161. ib_close_qp(qp);
  1162. if (atomic_read(&real_qp->usecnt) == 0)
  1163. list_del(&real_qp->xrcd_list);
  1164. else
  1165. real_qp = NULL;
  1166. mutex_unlock(&xrcd->tgt_qp_mutex);
  1167. if (real_qp) {
  1168. ret = ib_destroy_qp(real_qp);
  1169. if (!ret)
  1170. atomic_dec(&xrcd->usecnt);
  1171. else
  1172. __ib_insert_xrcd_qp(xrcd, real_qp);
  1173. }
  1174. return 0;
  1175. }
  1176. int ib_destroy_qp(struct ib_qp *qp)
  1177. {
  1178. struct ib_pd *pd;
  1179. struct ib_cq *scq, *rcq;
  1180. struct ib_srq *srq;
  1181. struct ib_rwq_ind_table *ind_tbl;
  1182. int ret;
  1183. WARN_ON_ONCE(qp->mrs_used > 0);
  1184. if (atomic_read(&qp->usecnt))
  1185. return -EBUSY;
  1186. if (qp->real_qp != qp)
  1187. return __ib_destroy_shared_qp(qp);
  1188. pd = qp->pd;
  1189. scq = qp->send_cq;
  1190. rcq = qp->recv_cq;
  1191. srq = qp->srq;
  1192. ind_tbl = qp->rwq_ind_tbl;
  1193. if (!qp->uobject)
  1194. rdma_rw_cleanup_mrs(qp);
  1195. ret = qp->device->destroy_qp(qp);
  1196. if (!ret) {
  1197. if (pd)
  1198. atomic_dec(&pd->usecnt);
  1199. if (scq)
  1200. atomic_dec(&scq->usecnt);
  1201. if (rcq)
  1202. atomic_dec(&rcq->usecnt);
  1203. if (srq)
  1204. atomic_dec(&srq->usecnt);
  1205. if (ind_tbl)
  1206. atomic_dec(&ind_tbl->usecnt);
  1207. }
  1208. return ret;
  1209. }
  1210. EXPORT_SYMBOL(ib_destroy_qp);
  1211. /* Completion queues */
  1212. struct ib_cq *ib_create_cq(struct ib_device *device,
  1213. ib_comp_handler comp_handler,
  1214. void (*event_handler)(struct ib_event *, void *),
  1215. void *cq_context,
  1216. const struct ib_cq_init_attr *cq_attr)
  1217. {
  1218. struct ib_cq *cq;
  1219. cq = device->create_cq(device, cq_attr, NULL, NULL);
  1220. if (!IS_ERR(cq)) {
  1221. cq->device = device;
  1222. cq->uobject = NULL;
  1223. cq->comp_handler = comp_handler;
  1224. cq->event_handler = event_handler;
  1225. cq->cq_context = cq_context;
  1226. atomic_set(&cq->usecnt, 0);
  1227. }
  1228. return cq;
  1229. }
  1230. EXPORT_SYMBOL(ib_create_cq);
  1231. int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
  1232. {
  1233. return cq->device->modify_cq ?
  1234. cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
  1235. }
  1236. EXPORT_SYMBOL(ib_modify_cq);
  1237. int ib_destroy_cq(struct ib_cq *cq)
  1238. {
  1239. if (atomic_read(&cq->usecnt))
  1240. return -EBUSY;
  1241. return cq->device->destroy_cq(cq);
  1242. }
  1243. EXPORT_SYMBOL(ib_destroy_cq);
  1244. int ib_resize_cq(struct ib_cq *cq, int cqe)
  1245. {
  1246. return cq->device->resize_cq ?
  1247. cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
  1248. }
  1249. EXPORT_SYMBOL(ib_resize_cq);
  1250. /* Memory regions */
  1251. int ib_dereg_mr(struct ib_mr *mr)
  1252. {
  1253. struct ib_pd *pd = mr->pd;
  1254. int ret;
  1255. ret = mr->device->dereg_mr(mr);
  1256. if (!ret)
  1257. atomic_dec(&pd->usecnt);
  1258. return ret;
  1259. }
  1260. EXPORT_SYMBOL(ib_dereg_mr);
  1261. /**
  1262. * ib_alloc_mr() - Allocates a memory region
  1263. * @pd: protection domain associated with the region
  1264. * @mr_type: memory region type
  1265. * @max_num_sg: maximum sg entries available for registration.
  1266. *
  1267. * Notes:
  1268. * Memory registeration page/sg lists must not exceed max_num_sg.
  1269. * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
  1270. * max_num_sg * used_page_size.
  1271. *
  1272. */
  1273. struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
  1274. enum ib_mr_type mr_type,
  1275. u32 max_num_sg)
  1276. {
  1277. struct ib_mr *mr;
  1278. if (!pd->device->alloc_mr)
  1279. return ERR_PTR(-ENOSYS);
  1280. mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
  1281. if (!IS_ERR(mr)) {
  1282. mr->device = pd->device;
  1283. mr->pd = pd;
  1284. mr->uobject = NULL;
  1285. atomic_inc(&pd->usecnt);
  1286. mr->need_inval = false;
  1287. }
  1288. return mr;
  1289. }
  1290. EXPORT_SYMBOL(ib_alloc_mr);
  1291. /* "Fast" memory regions */
  1292. struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
  1293. int mr_access_flags,
  1294. struct ib_fmr_attr *fmr_attr)
  1295. {
  1296. struct ib_fmr *fmr;
  1297. if (!pd->device->alloc_fmr)
  1298. return ERR_PTR(-ENOSYS);
  1299. fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
  1300. if (!IS_ERR(fmr)) {
  1301. fmr->device = pd->device;
  1302. fmr->pd = pd;
  1303. atomic_inc(&pd->usecnt);
  1304. }
  1305. return fmr;
  1306. }
  1307. EXPORT_SYMBOL(ib_alloc_fmr);
  1308. int ib_unmap_fmr(struct list_head *fmr_list)
  1309. {
  1310. struct ib_fmr *fmr;
  1311. if (list_empty(fmr_list))
  1312. return 0;
  1313. fmr = list_entry(fmr_list->next, struct ib_fmr, list);
  1314. return fmr->device->unmap_fmr(fmr_list);
  1315. }
  1316. EXPORT_SYMBOL(ib_unmap_fmr);
  1317. int ib_dealloc_fmr(struct ib_fmr *fmr)
  1318. {
  1319. struct ib_pd *pd;
  1320. int ret;
  1321. pd = fmr->pd;
  1322. ret = fmr->device->dealloc_fmr(fmr);
  1323. if (!ret)
  1324. atomic_dec(&pd->usecnt);
  1325. return ret;
  1326. }
  1327. EXPORT_SYMBOL(ib_dealloc_fmr);
  1328. /* Multicast groups */
  1329. int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
  1330. {
  1331. int ret;
  1332. if (!qp->device->attach_mcast)
  1333. return -ENOSYS;
  1334. if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
  1335. lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
  1336. lid == be16_to_cpu(IB_LID_PERMISSIVE))
  1337. return -EINVAL;
  1338. ret = qp->device->attach_mcast(qp, gid, lid);
  1339. if (!ret)
  1340. atomic_inc(&qp->usecnt);
  1341. return ret;
  1342. }
  1343. EXPORT_SYMBOL(ib_attach_mcast);
  1344. int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
  1345. {
  1346. int ret;
  1347. if (!qp->device->detach_mcast)
  1348. return -ENOSYS;
  1349. if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
  1350. lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
  1351. lid == be16_to_cpu(IB_LID_PERMISSIVE))
  1352. return -EINVAL;
  1353. ret = qp->device->detach_mcast(qp, gid, lid);
  1354. if (!ret)
  1355. atomic_dec(&qp->usecnt);
  1356. return ret;
  1357. }
  1358. EXPORT_SYMBOL(ib_detach_mcast);
  1359. struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
  1360. {
  1361. struct ib_xrcd *xrcd;
  1362. if (!device->alloc_xrcd)
  1363. return ERR_PTR(-ENOSYS);
  1364. xrcd = device->alloc_xrcd(device, NULL, NULL);
  1365. if (!IS_ERR(xrcd)) {
  1366. xrcd->device = device;
  1367. xrcd->inode = NULL;
  1368. atomic_set(&xrcd->usecnt, 0);
  1369. mutex_init(&xrcd->tgt_qp_mutex);
  1370. INIT_LIST_HEAD(&xrcd->tgt_qp_list);
  1371. }
  1372. return xrcd;
  1373. }
  1374. EXPORT_SYMBOL(ib_alloc_xrcd);
  1375. int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
  1376. {
  1377. struct ib_qp *qp;
  1378. int ret;
  1379. if (atomic_read(&xrcd->usecnt))
  1380. return -EBUSY;
  1381. while (!list_empty(&xrcd->tgt_qp_list)) {
  1382. qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
  1383. ret = ib_destroy_qp(qp);
  1384. if (ret)
  1385. return ret;
  1386. }
  1387. return xrcd->device->dealloc_xrcd(xrcd);
  1388. }
  1389. EXPORT_SYMBOL(ib_dealloc_xrcd);
  1390. /**
  1391. * ib_create_wq - Creates a WQ associated with the specified protection
  1392. * domain.
  1393. * @pd: The protection domain associated with the WQ.
  1394. * @wq_init_attr: A list of initial attributes required to create the
  1395. * WQ. If WQ creation succeeds, then the attributes are updated to
  1396. * the actual capabilities of the created WQ.
  1397. *
  1398. * wq_init_attr->max_wr and wq_init_attr->max_sge determine
  1399. * the requested size of the WQ, and set to the actual values allocated
  1400. * on return.
  1401. * If ib_create_wq() succeeds, then max_wr and max_sge will always be
  1402. * at least as large as the requested values.
  1403. */
  1404. struct ib_wq *ib_create_wq(struct ib_pd *pd,
  1405. struct ib_wq_init_attr *wq_attr)
  1406. {
  1407. struct ib_wq *wq;
  1408. if (!pd->device->create_wq)
  1409. return ERR_PTR(-ENOSYS);
  1410. wq = pd->device->create_wq(pd, wq_attr, NULL);
  1411. if (!IS_ERR(wq)) {
  1412. wq->event_handler = wq_attr->event_handler;
  1413. wq->wq_context = wq_attr->wq_context;
  1414. wq->wq_type = wq_attr->wq_type;
  1415. wq->cq = wq_attr->cq;
  1416. wq->device = pd->device;
  1417. wq->pd = pd;
  1418. wq->uobject = NULL;
  1419. atomic_inc(&pd->usecnt);
  1420. atomic_inc(&wq_attr->cq->usecnt);
  1421. atomic_set(&wq->usecnt, 0);
  1422. }
  1423. return wq;
  1424. }
  1425. EXPORT_SYMBOL(ib_create_wq);
  1426. /**
  1427. * ib_destroy_wq - Destroys the specified WQ.
  1428. * @wq: The WQ to destroy.
  1429. */
  1430. int ib_destroy_wq(struct ib_wq *wq)
  1431. {
  1432. int err;
  1433. struct ib_cq *cq = wq->cq;
  1434. struct ib_pd *pd = wq->pd;
  1435. if (atomic_read(&wq->usecnt))
  1436. return -EBUSY;
  1437. err = wq->device->destroy_wq(wq);
  1438. if (!err) {
  1439. atomic_dec(&pd->usecnt);
  1440. atomic_dec(&cq->usecnt);
  1441. }
  1442. return err;
  1443. }
  1444. EXPORT_SYMBOL(ib_destroy_wq);
  1445. /**
  1446. * ib_modify_wq - Modifies the specified WQ.
  1447. * @wq: The WQ to modify.
  1448. * @wq_attr: On input, specifies the WQ attributes to modify.
  1449. * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
  1450. * are being modified.
  1451. * On output, the current values of selected WQ attributes are returned.
  1452. */
  1453. int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
  1454. u32 wq_attr_mask)
  1455. {
  1456. int err;
  1457. if (!wq->device->modify_wq)
  1458. return -ENOSYS;
  1459. err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
  1460. return err;
  1461. }
  1462. EXPORT_SYMBOL(ib_modify_wq);
  1463. /*
  1464. * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
  1465. * @device: The device on which to create the rwq indirection table.
  1466. * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
  1467. * create the Indirection Table.
  1468. *
  1469. * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
  1470. * than the created ib_rwq_ind_table object and the caller is responsible
  1471. * for its memory allocation/free.
  1472. */
  1473. struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
  1474. struct ib_rwq_ind_table_init_attr *init_attr)
  1475. {
  1476. struct ib_rwq_ind_table *rwq_ind_table;
  1477. int i;
  1478. u32 table_size;
  1479. if (!device->create_rwq_ind_table)
  1480. return ERR_PTR(-ENOSYS);
  1481. table_size = (1 << init_attr->log_ind_tbl_size);
  1482. rwq_ind_table = device->create_rwq_ind_table(device,
  1483. init_attr, NULL);
  1484. if (IS_ERR(rwq_ind_table))
  1485. return rwq_ind_table;
  1486. rwq_ind_table->ind_tbl = init_attr->ind_tbl;
  1487. rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
  1488. rwq_ind_table->device = device;
  1489. rwq_ind_table->uobject = NULL;
  1490. atomic_set(&rwq_ind_table->usecnt, 0);
  1491. for (i = 0; i < table_size; i++)
  1492. atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
  1493. return rwq_ind_table;
  1494. }
  1495. EXPORT_SYMBOL(ib_create_rwq_ind_table);
  1496. /*
  1497. * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
  1498. * @wq_ind_table: The Indirection Table to destroy.
  1499. */
  1500. int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
  1501. {
  1502. int err, i;
  1503. u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
  1504. struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
  1505. if (atomic_read(&rwq_ind_table->usecnt))
  1506. return -EBUSY;
  1507. err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
  1508. if (!err) {
  1509. for (i = 0; i < table_size; i++)
  1510. atomic_dec(&ind_tbl[i]->usecnt);
  1511. }
  1512. return err;
  1513. }
  1514. EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
  1515. struct ib_flow *ib_create_flow(struct ib_qp *qp,
  1516. struct ib_flow_attr *flow_attr,
  1517. int domain)
  1518. {
  1519. struct ib_flow *flow_id;
  1520. if (!qp->device->create_flow)
  1521. return ERR_PTR(-ENOSYS);
  1522. flow_id = qp->device->create_flow(qp, flow_attr, domain);
  1523. if (!IS_ERR(flow_id)) {
  1524. atomic_inc(&qp->usecnt);
  1525. flow_id->qp = qp;
  1526. }
  1527. return flow_id;
  1528. }
  1529. EXPORT_SYMBOL(ib_create_flow);
  1530. int ib_destroy_flow(struct ib_flow *flow_id)
  1531. {
  1532. int err;
  1533. struct ib_qp *qp = flow_id->qp;
  1534. err = qp->device->destroy_flow(flow_id);
  1535. if (!err)
  1536. atomic_dec(&qp->usecnt);
  1537. return err;
  1538. }
  1539. EXPORT_SYMBOL(ib_destroy_flow);
  1540. int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
  1541. struct ib_mr_status *mr_status)
  1542. {
  1543. return mr->device->check_mr_status ?
  1544. mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
  1545. }
  1546. EXPORT_SYMBOL(ib_check_mr_status);
  1547. int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
  1548. int state)
  1549. {
  1550. if (!device->set_vf_link_state)
  1551. return -ENOSYS;
  1552. return device->set_vf_link_state(device, vf, port, state);
  1553. }
  1554. EXPORT_SYMBOL(ib_set_vf_link_state);
  1555. int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
  1556. struct ifla_vf_info *info)
  1557. {
  1558. if (!device->get_vf_config)
  1559. return -ENOSYS;
  1560. return device->get_vf_config(device, vf, port, info);
  1561. }
  1562. EXPORT_SYMBOL(ib_get_vf_config);
  1563. int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
  1564. struct ifla_vf_stats *stats)
  1565. {
  1566. if (!device->get_vf_stats)
  1567. return -ENOSYS;
  1568. return device->get_vf_stats(device, vf, port, stats);
  1569. }
  1570. EXPORT_SYMBOL(ib_get_vf_stats);
  1571. int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
  1572. int type)
  1573. {
  1574. if (!device->set_vf_guid)
  1575. return -ENOSYS;
  1576. return device->set_vf_guid(device, vf, port, guid, type);
  1577. }
  1578. EXPORT_SYMBOL(ib_set_vf_guid);
  1579. /**
  1580. * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
  1581. * and set it the memory region.
  1582. * @mr: memory region
  1583. * @sg: dma mapped scatterlist
  1584. * @sg_nents: number of entries in sg
  1585. * @sg_offset: offset in bytes into sg
  1586. * @page_size: page vector desired page size
  1587. *
  1588. * Constraints:
  1589. * - The first sg element is allowed to have an offset.
  1590. * - Each sg element must either be aligned to page_size or virtually
  1591. * contiguous to the previous element. In case an sg element has a
  1592. * non-contiguous offset, the mapping prefix will not include it.
  1593. * - The last sg element is allowed to have length less than page_size.
  1594. * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
  1595. * then only max_num_sg entries will be mapped.
  1596. * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
  1597. * constraints holds and the page_size argument is ignored.
  1598. *
  1599. * Returns the number of sg elements that were mapped to the memory region.
  1600. *
  1601. * After this completes successfully, the memory region
  1602. * is ready for registration.
  1603. */
  1604. int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
  1605. unsigned int *sg_offset, unsigned int page_size)
  1606. {
  1607. if (unlikely(!mr->device->map_mr_sg))
  1608. return -ENOSYS;
  1609. mr->page_size = page_size;
  1610. return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
  1611. }
  1612. EXPORT_SYMBOL(ib_map_mr_sg);
  1613. /**
  1614. * ib_sg_to_pages() - Convert the largest prefix of a sg list
  1615. * to a page vector
  1616. * @mr: memory region
  1617. * @sgl: dma mapped scatterlist
  1618. * @sg_nents: number of entries in sg
  1619. * @sg_offset_p: IN: start offset in bytes into sg
  1620. * OUT: offset in bytes for element n of the sg of the first
  1621. * byte that has not been processed where n is the return
  1622. * value of this function.
  1623. * @set_page: driver page assignment function pointer
  1624. *
  1625. * Core service helper for drivers to convert the largest
  1626. * prefix of given sg list to a page vector. The sg list
  1627. * prefix converted is the prefix that meet the requirements
  1628. * of ib_map_mr_sg.
  1629. *
  1630. * Returns the number of sg elements that were assigned to
  1631. * a page vector.
  1632. */
  1633. int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
  1634. unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
  1635. {
  1636. struct scatterlist *sg;
  1637. u64 last_end_dma_addr = 0;
  1638. unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
  1639. unsigned int last_page_off = 0;
  1640. u64 page_mask = ~((u64)mr->page_size - 1);
  1641. int i, ret;
  1642. if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
  1643. return -EINVAL;
  1644. mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
  1645. mr->length = 0;
  1646. for_each_sg(sgl, sg, sg_nents, i) {
  1647. u64 dma_addr = sg_dma_address(sg) + sg_offset;
  1648. u64 prev_addr = dma_addr;
  1649. unsigned int dma_len = sg_dma_len(sg) - sg_offset;
  1650. u64 end_dma_addr = dma_addr + dma_len;
  1651. u64 page_addr = dma_addr & page_mask;
  1652. /*
  1653. * For the second and later elements, check whether either the
  1654. * end of element i-1 or the start of element i is not aligned
  1655. * on a page boundary.
  1656. */
  1657. if (i && (last_page_off != 0 || page_addr != dma_addr)) {
  1658. /* Stop mapping if there is a gap. */
  1659. if (last_end_dma_addr != dma_addr)
  1660. break;
  1661. /*
  1662. * Coalesce this element with the last. If it is small
  1663. * enough just update mr->length. Otherwise start
  1664. * mapping from the next page.
  1665. */
  1666. goto next_page;
  1667. }
  1668. do {
  1669. ret = set_page(mr, page_addr);
  1670. if (unlikely(ret < 0)) {
  1671. sg_offset = prev_addr - sg_dma_address(sg);
  1672. mr->length += prev_addr - dma_addr;
  1673. if (sg_offset_p)
  1674. *sg_offset_p = sg_offset;
  1675. return i || sg_offset ? i : ret;
  1676. }
  1677. prev_addr = page_addr;
  1678. next_page:
  1679. page_addr += mr->page_size;
  1680. } while (page_addr < end_dma_addr);
  1681. mr->length += dma_len;
  1682. last_end_dma_addr = end_dma_addr;
  1683. last_page_off = end_dma_addr & ~page_mask;
  1684. sg_offset = 0;
  1685. }
  1686. if (sg_offset_p)
  1687. *sg_offset_p = 0;
  1688. return i;
  1689. }
  1690. EXPORT_SYMBOL(ib_sg_to_pages);
  1691. struct ib_drain_cqe {
  1692. struct ib_cqe cqe;
  1693. struct completion done;
  1694. };
  1695. static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
  1696. {
  1697. struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
  1698. cqe);
  1699. complete(&cqe->done);
  1700. }
  1701. /*
  1702. * Post a WR and block until its completion is reaped for the SQ.
  1703. */
  1704. static void __ib_drain_sq(struct ib_qp *qp)
  1705. {
  1706. struct ib_cq *cq = qp->send_cq;
  1707. struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
  1708. struct ib_drain_cqe sdrain;
  1709. struct ib_send_wr swr = {}, *bad_swr;
  1710. int ret;
  1711. swr.wr_cqe = &sdrain.cqe;
  1712. sdrain.cqe.done = ib_drain_qp_done;
  1713. init_completion(&sdrain.done);
  1714. ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
  1715. if (ret) {
  1716. WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
  1717. return;
  1718. }
  1719. ret = ib_post_send(qp, &swr, &bad_swr);
  1720. if (ret) {
  1721. WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
  1722. return;
  1723. }
  1724. if (cq->poll_ctx == IB_POLL_DIRECT)
  1725. while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
  1726. ib_process_cq_direct(cq, -1);
  1727. else
  1728. wait_for_completion(&sdrain.done);
  1729. }
  1730. /*
  1731. * Post a WR and block until its completion is reaped for the RQ.
  1732. */
  1733. static void __ib_drain_rq(struct ib_qp *qp)
  1734. {
  1735. struct ib_cq *cq = qp->recv_cq;
  1736. struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
  1737. struct ib_drain_cqe rdrain;
  1738. struct ib_recv_wr rwr = {}, *bad_rwr;
  1739. int ret;
  1740. rwr.wr_cqe = &rdrain.cqe;
  1741. rdrain.cqe.done = ib_drain_qp_done;
  1742. init_completion(&rdrain.done);
  1743. ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
  1744. if (ret) {
  1745. WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
  1746. return;
  1747. }
  1748. ret = ib_post_recv(qp, &rwr, &bad_rwr);
  1749. if (ret) {
  1750. WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
  1751. return;
  1752. }
  1753. if (cq->poll_ctx == IB_POLL_DIRECT)
  1754. while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
  1755. ib_process_cq_direct(cq, -1);
  1756. else
  1757. wait_for_completion(&rdrain.done);
  1758. }
  1759. /**
  1760. * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
  1761. * application.
  1762. * @qp: queue pair to drain
  1763. *
  1764. * If the device has a provider-specific drain function, then
  1765. * call that. Otherwise call the generic drain function
  1766. * __ib_drain_sq().
  1767. *
  1768. * The caller must:
  1769. *
  1770. * ensure there is room in the CQ and SQ for the drain work request and
  1771. * completion.
  1772. *
  1773. * allocate the CQ using ib_alloc_cq().
  1774. *
  1775. * ensure that there are no other contexts that are posting WRs concurrently.
  1776. * Otherwise the drain is not guaranteed.
  1777. */
  1778. void ib_drain_sq(struct ib_qp *qp)
  1779. {
  1780. if (qp->device->drain_sq)
  1781. qp->device->drain_sq(qp);
  1782. else
  1783. __ib_drain_sq(qp);
  1784. }
  1785. EXPORT_SYMBOL(ib_drain_sq);
  1786. /**
  1787. * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
  1788. * application.
  1789. * @qp: queue pair to drain
  1790. *
  1791. * If the device has a provider-specific drain function, then
  1792. * call that. Otherwise call the generic drain function
  1793. * __ib_drain_rq().
  1794. *
  1795. * The caller must:
  1796. *
  1797. * ensure there is room in the CQ and RQ for the drain work request and
  1798. * completion.
  1799. *
  1800. * allocate the CQ using ib_alloc_cq().
  1801. *
  1802. * ensure that there are no other contexts that are posting WRs concurrently.
  1803. * Otherwise the drain is not guaranteed.
  1804. */
  1805. void ib_drain_rq(struct ib_qp *qp)
  1806. {
  1807. if (qp->device->drain_rq)
  1808. qp->device->drain_rq(qp);
  1809. else
  1810. __ib_drain_rq(qp);
  1811. }
  1812. EXPORT_SYMBOL(ib_drain_rq);
  1813. /**
  1814. * ib_drain_qp() - Block until all CQEs have been consumed by the
  1815. * application on both the RQ and SQ.
  1816. * @qp: queue pair to drain
  1817. *
  1818. * The caller must:
  1819. *
  1820. * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
  1821. * and completions.
  1822. *
  1823. * allocate the CQs using ib_alloc_cq().
  1824. *
  1825. * ensure that there are no other contexts that are posting WRs concurrently.
  1826. * Otherwise the drain is not guaranteed.
  1827. */
  1828. void ib_drain_qp(struct ib_qp *qp)
  1829. {
  1830. ib_drain_sq(qp);
  1831. if (!qp->srq)
  1832. ib_drain_rq(qp);
  1833. }
  1834. EXPORT_SYMBOL(ib_drain_qp);