vc4_crtc.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095
  1. /*
  2. * Copyright (C) 2015 Broadcom
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. /**
  9. * DOC: VC4 CRTC module
  10. *
  11. * In VC4, the Pixel Valve is what most closely corresponds to the
  12. * DRM's concept of a CRTC. The PV generates video timings from the
  13. * encoder's clock plus its configuration. It pulls scaled pixels from
  14. * the HVS at that timing, and feeds it to the encoder.
  15. *
  16. * However, the DRM CRTC also collects the configuration of all the
  17. * DRM planes attached to it. As a result, the CRTC is also
  18. * responsible for writing the display list for the HVS channel that
  19. * the CRTC will use.
  20. *
  21. * The 2835 has 3 different pixel valves. pv0 in the audio power
  22. * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
  23. * image domain can feed either HDMI or the SDTV controller. The
  24. * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  25. * SDTV, etc.) according to which output type is chosen in the mux.
  26. *
  27. * For power management, the pixel valve's registers are all clocked
  28. * by the AXI clock, while the timings and FIFOs make use of the
  29. * output-specific clock. Since the encoders also directly consume
  30. * the CPRMAN clocks, and know what timings they need, they are the
  31. * ones that set the clock.
  32. */
  33. #include "drm_atomic.h"
  34. #include "drm_atomic_helper.h"
  35. #include "drm_crtc_helper.h"
  36. #include "linux/clk.h"
  37. #include "drm_fb_cma_helper.h"
  38. #include "linux/component.h"
  39. #include "linux/of_device.h"
  40. #include "vc4_drv.h"
  41. #include "vc4_regs.h"
  42. struct vc4_crtc {
  43. struct drm_crtc base;
  44. const struct vc4_crtc_data *data;
  45. void __iomem *regs;
  46. /* Timestamp at start of vblank irq - unaffected by lock delays. */
  47. ktime_t t_vblank;
  48. /* Which HVS channel we're using for our CRTC. */
  49. int channel;
  50. u8 lut_r[256];
  51. u8 lut_g[256];
  52. u8 lut_b[256];
  53. /* Size in pixels of the COB memory allocated to this CRTC. */
  54. u32 cob_size;
  55. struct drm_pending_vblank_event *event;
  56. };
  57. struct vc4_crtc_state {
  58. struct drm_crtc_state base;
  59. /* Dlist area for this CRTC configuration. */
  60. struct drm_mm_node mm;
  61. };
  62. static inline struct vc4_crtc *
  63. to_vc4_crtc(struct drm_crtc *crtc)
  64. {
  65. return (struct vc4_crtc *)crtc;
  66. }
  67. static inline struct vc4_crtc_state *
  68. to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  69. {
  70. return (struct vc4_crtc_state *)crtc_state;
  71. }
  72. struct vc4_crtc_data {
  73. /* Which channel of the HVS this pixelvalve sources from. */
  74. int hvs_channel;
  75. enum vc4_encoder_type encoder_types[4];
  76. };
  77. #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  78. #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  79. #define CRTC_REG(reg) { reg, #reg }
  80. static const struct {
  81. u32 reg;
  82. const char *name;
  83. } crtc_regs[] = {
  84. CRTC_REG(PV_CONTROL),
  85. CRTC_REG(PV_V_CONTROL),
  86. CRTC_REG(PV_VSYNCD_EVEN),
  87. CRTC_REG(PV_HORZA),
  88. CRTC_REG(PV_HORZB),
  89. CRTC_REG(PV_VERTA),
  90. CRTC_REG(PV_VERTB),
  91. CRTC_REG(PV_VERTA_EVEN),
  92. CRTC_REG(PV_VERTB_EVEN),
  93. CRTC_REG(PV_INTEN),
  94. CRTC_REG(PV_INTSTAT),
  95. CRTC_REG(PV_STAT),
  96. CRTC_REG(PV_HACT_ACT),
  97. };
  98. static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
  99. {
  100. int i;
  101. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  102. DRM_INFO("0x%04x (%s): 0x%08x\n",
  103. crtc_regs[i].reg, crtc_regs[i].name,
  104. CRTC_READ(crtc_regs[i].reg));
  105. }
  106. }
  107. #ifdef CONFIG_DEBUG_FS
  108. int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
  109. {
  110. struct drm_info_node *node = (struct drm_info_node *)m->private;
  111. struct drm_device *dev = node->minor->dev;
  112. int crtc_index = (uintptr_t)node->info_ent->data;
  113. struct drm_crtc *crtc;
  114. struct vc4_crtc *vc4_crtc;
  115. int i;
  116. i = 0;
  117. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  118. if (i == crtc_index)
  119. break;
  120. i++;
  121. }
  122. if (!crtc)
  123. return 0;
  124. vc4_crtc = to_vc4_crtc(crtc);
  125. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  126. seq_printf(m, "%s (0x%04x): 0x%08x\n",
  127. crtc_regs[i].name, crtc_regs[i].reg,
  128. CRTC_READ(crtc_regs[i].reg));
  129. }
  130. return 0;
  131. }
  132. #endif
  133. int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
  134. unsigned int flags, int *vpos, int *hpos,
  135. ktime_t *stime, ktime_t *etime,
  136. const struct drm_display_mode *mode)
  137. {
  138. struct vc4_dev *vc4 = to_vc4_dev(dev);
  139. struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  140. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  141. u32 val;
  142. int fifo_lines;
  143. int vblank_lines;
  144. int ret = 0;
  145. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  146. /* Get optional system timestamp before query. */
  147. if (stime)
  148. *stime = ktime_get();
  149. /*
  150. * Read vertical scanline which is currently composed for our
  151. * pixelvalve by the HVS, and also the scaler status.
  152. */
  153. val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
  154. /* Get optional system timestamp after query. */
  155. if (etime)
  156. *etime = ktime_get();
  157. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  158. /* Vertical position of hvs composed scanline. */
  159. *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
  160. *hpos = 0;
  161. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  162. *vpos /= 2;
  163. /* Use hpos to correct for field offset in interlaced mode. */
  164. if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
  165. *hpos += mode->crtc_htotal / 2;
  166. }
  167. /* This is the offset we need for translating hvs -> pv scanout pos. */
  168. fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
  169. if (fifo_lines > 0)
  170. ret |= DRM_SCANOUTPOS_VALID;
  171. /* HVS more than fifo_lines into frame for compositing? */
  172. if (*vpos > fifo_lines) {
  173. /*
  174. * We are in active scanout and can get some meaningful results
  175. * from HVS. The actual PV scanout can not trail behind more
  176. * than fifo_lines as that is the fifo's capacity. Assume that
  177. * in active scanout the HVS and PV work in lockstep wrt. HVS
  178. * refilling the fifo and PV consuming from the fifo, ie.
  179. * whenever the PV consumes and frees up a scanline in the
  180. * fifo, the HVS will immediately refill it, therefore
  181. * incrementing vpos. Therefore we choose HVS read position -
  182. * fifo size in scanlines as a estimate of the real scanout
  183. * position of the PV.
  184. */
  185. *vpos -= fifo_lines + 1;
  186. ret |= DRM_SCANOUTPOS_ACCURATE;
  187. return ret;
  188. }
  189. /*
  190. * Less: This happens when we are in vblank and the HVS, after getting
  191. * the VSTART restart signal from the PV, just started refilling its
  192. * fifo with new lines from the top-most lines of the new framebuffers.
  193. * The PV does not scan out in vblank, so does not remove lines from
  194. * the fifo, so the fifo will be full quickly and the HVS has to pause.
  195. * We can't get meaningful readings wrt. scanline position of the PV
  196. * and need to make things up in a approximative but consistent way.
  197. */
  198. ret |= DRM_SCANOUTPOS_IN_VBLANK;
  199. vblank_lines = mode->vtotal - mode->vdisplay;
  200. if (flags & DRM_CALLED_FROM_VBLIRQ) {
  201. /*
  202. * Assume the irq handler got called close to first
  203. * line of vblank, so PV has about a full vblank
  204. * scanlines to go, and as a base timestamp use the
  205. * one taken at entry into vblank irq handler, so it
  206. * is not affected by random delays due to lock
  207. * contention on event_lock or vblank_time lock in
  208. * the core.
  209. */
  210. *vpos = -vblank_lines;
  211. if (stime)
  212. *stime = vc4_crtc->t_vblank;
  213. if (etime)
  214. *etime = vc4_crtc->t_vblank;
  215. /*
  216. * If the HVS fifo is not yet full then we know for certain
  217. * we are at the very beginning of vblank, as the hvs just
  218. * started refilling, and the stime and etime timestamps
  219. * truly correspond to start of vblank.
  220. */
  221. if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
  222. ret |= DRM_SCANOUTPOS_ACCURATE;
  223. } else {
  224. /*
  225. * No clue where we are inside vblank. Return a vpos of zero,
  226. * which will cause calling code to just return the etime
  227. * timestamp uncorrected. At least this is no worse than the
  228. * standard fallback.
  229. */
  230. *vpos = 0;
  231. }
  232. return ret;
  233. }
  234. int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
  235. int *max_error, struct timeval *vblank_time,
  236. unsigned flags)
  237. {
  238. struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  239. struct drm_crtc_state *state = crtc->state;
  240. /* Helper routine in DRM core does all the work: */
  241. return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
  242. vblank_time, flags,
  243. &state->adjusted_mode);
  244. }
  245. static void vc4_crtc_destroy(struct drm_crtc *crtc)
  246. {
  247. drm_crtc_cleanup(crtc);
  248. }
  249. static void
  250. vc4_crtc_lut_load(struct drm_crtc *crtc)
  251. {
  252. struct drm_device *dev = crtc->dev;
  253. struct vc4_dev *vc4 = to_vc4_dev(dev);
  254. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  255. u32 i;
  256. /* The LUT memory is laid out with each HVS channel in order,
  257. * each of which takes 256 writes for R, 256 for G, then 256
  258. * for B.
  259. */
  260. HVS_WRITE(SCALER_GAMADDR,
  261. SCALER_GAMADDR_AUTOINC |
  262. (vc4_crtc->channel * 3 * crtc->gamma_size));
  263. for (i = 0; i < crtc->gamma_size; i++)
  264. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
  265. for (i = 0; i < crtc->gamma_size; i++)
  266. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
  267. for (i = 0; i < crtc->gamma_size; i++)
  268. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
  269. }
  270. static int
  271. vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
  272. uint32_t size,
  273. struct drm_modeset_acquire_ctx *ctx)
  274. {
  275. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  276. u32 i;
  277. for (i = 0; i < size; i++) {
  278. vc4_crtc->lut_r[i] = r[i] >> 8;
  279. vc4_crtc->lut_g[i] = g[i] >> 8;
  280. vc4_crtc->lut_b[i] = b[i] >> 8;
  281. }
  282. vc4_crtc_lut_load(crtc);
  283. return 0;
  284. }
  285. static u32 vc4_get_fifo_full_level(u32 format)
  286. {
  287. static const u32 fifo_len_bytes = 64;
  288. static const u32 hvs_latency_pix = 6;
  289. switch (format) {
  290. case PV_CONTROL_FORMAT_DSIV_16:
  291. case PV_CONTROL_FORMAT_DSIC_16:
  292. return fifo_len_bytes - 2 * hvs_latency_pix;
  293. case PV_CONTROL_FORMAT_DSIV_18:
  294. return fifo_len_bytes - 14;
  295. case PV_CONTROL_FORMAT_24:
  296. case PV_CONTROL_FORMAT_DSIV_24:
  297. default:
  298. return fifo_len_bytes - 3 * hvs_latency_pix;
  299. }
  300. }
  301. /*
  302. * Returns the encoder attached to the CRTC.
  303. *
  304. * VC4 can only scan out to one encoder at a time, while the DRM core
  305. * allows drivers to push pixels to more than one encoder from the
  306. * same CRTC.
  307. */
  308. static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
  309. {
  310. struct drm_connector *connector;
  311. drm_for_each_connector(connector, crtc->dev) {
  312. if (connector->state->crtc == crtc) {
  313. return connector->encoder;
  314. }
  315. }
  316. return NULL;
  317. }
  318. static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
  319. {
  320. struct drm_device *dev = crtc->dev;
  321. struct vc4_dev *vc4 = to_vc4_dev(dev);
  322. struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
  323. struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
  324. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  325. struct drm_crtc_state *state = crtc->state;
  326. struct drm_display_mode *mode = &state->adjusted_mode;
  327. bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
  328. u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
  329. bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
  330. vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
  331. u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
  332. bool debug_dump_regs = false;
  333. if (debug_dump_regs) {
  334. DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
  335. vc4_crtc_dump_regs(vc4_crtc);
  336. }
  337. /* Reset the PV fifo. */
  338. CRTC_WRITE(PV_CONTROL, 0);
  339. CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
  340. CRTC_WRITE(PV_CONTROL, 0);
  341. CRTC_WRITE(PV_HORZA,
  342. VC4_SET_FIELD((mode->htotal -
  343. mode->hsync_end) * pixel_rep,
  344. PV_HORZA_HBP) |
  345. VC4_SET_FIELD((mode->hsync_end -
  346. mode->hsync_start) * pixel_rep,
  347. PV_HORZA_HSYNC));
  348. CRTC_WRITE(PV_HORZB,
  349. VC4_SET_FIELD((mode->hsync_start -
  350. mode->hdisplay) * pixel_rep,
  351. PV_HORZB_HFP) |
  352. VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
  353. CRTC_WRITE(PV_VERTA,
  354. VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
  355. PV_VERTA_VBP) |
  356. VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
  357. PV_VERTA_VSYNC));
  358. CRTC_WRITE(PV_VERTB,
  359. VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
  360. PV_VERTB_VFP) |
  361. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  362. if (interlace) {
  363. CRTC_WRITE(PV_VERTA_EVEN,
  364. VC4_SET_FIELD(mode->crtc_vtotal -
  365. mode->crtc_vsync_end - 1,
  366. PV_VERTA_VBP) |
  367. VC4_SET_FIELD(mode->crtc_vsync_end -
  368. mode->crtc_vsync_start,
  369. PV_VERTA_VSYNC));
  370. CRTC_WRITE(PV_VERTB_EVEN,
  371. VC4_SET_FIELD(mode->crtc_vsync_start -
  372. mode->crtc_vdisplay,
  373. PV_VERTB_VFP) |
  374. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  375. /* We set up first field even mode for HDMI. VEC's
  376. * NTSC mode would want first field odd instead, once
  377. * we support it (to do so, set ODD_FIRST and put the
  378. * delay in VSYNCD_EVEN instead).
  379. */
  380. CRTC_WRITE(PV_V_CONTROL,
  381. PV_VCONTROL_CONTINUOUS |
  382. (is_dsi ? PV_VCONTROL_DSI : 0) |
  383. PV_VCONTROL_INTERLACE |
  384. VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
  385. PV_VCONTROL_ODD_DELAY));
  386. CRTC_WRITE(PV_VSYNCD_EVEN, 0);
  387. } else {
  388. CRTC_WRITE(PV_V_CONTROL,
  389. PV_VCONTROL_CONTINUOUS |
  390. (is_dsi ? PV_VCONTROL_DSI : 0));
  391. }
  392. CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
  393. CRTC_WRITE(PV_CONTROL,
  394. VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
  395. VC4_SET_FIELD(vc4_get_fifo_full_level(format),
  396. PV_CONTROL_FIFO_LEVEL) |
  397. VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
  398. PV_CONTROL_CLR_AT_START |
  399. PV_CONTROL_TRIGGER_UNDERFLOW |
  400. PV_CONTROL_WAIT_HSTART |
  401. VC4_SET_FIELD(vc4_encoder->clock_select,
  402. PV_CONTROL_CLK_SELECT) |
  403. PV_CONTROL_FIFO_CLR |
  404. PV_CONTROL_EN);
  405. HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
  406. SCALER_DISPBKGND_AUTOHS |
  407. SCALER_DISPBKGND_GAMMA |
  408. (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
  409. /* Reload the LUT, since the SRAMs would have been disabled if
  410. * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
  411. */
  412. vc4_crtc_lut_load(crtc);
  413. if (debug_dump_regs) {
  414. DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
  415. vc4_crtc_dump_regs(vc4_crtc);
  416. }
  417. }
  418. static void require_hvs_enabled(struct drm_device *dev)
  419. {
  420. struct vc4_dev *vc4 = to_vc4_dev(dev);
  421. WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
  422. SCALER_DISPCTRL_ENABLE);
  423. }
  424. static void vc4_crtc_disable(struct drm_crtc *crtc)
  425. {
  426. struct drm_device *dev = crtc->dev;
  427. struct vc4_dev *vc4 = to_vc4_dev(dev);
  428. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  429. u32 chan = vc4_crtc->channel;
  430. int ret;
  431. require_hvs_enabled(dev);
  432. /* Disable vblank irq handling before crtc is disabled. */
  433. drm_crtc_vblank_off(crtc);
  434. CRTC_WRITE(PV_V_CONTROL,
  435. CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
  436. ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
  437. WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
  438. if (HVS_READ(SCALER_DISPCTRLX(chan)) &
  439. SCALER_DISPCTRLX_ENABLE) {
  440. HVS_WRITE(SCALER_DISPCTRLX(chan),
  441. SCALER_DISPCTRLX_RESET);
  442. /* While the docs say that reset is self-clearing, it
  443. * seems it doesn't actually.
  444. */
  445. HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
  446. }
  447. /* Once we leave, the scaler should be disabled and its fifo empty. */
  448. WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
  449. WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
  450. SCALER_DISPSTATX_MODE) !=
  451. SCALER_DISPSTATX_MODE_DISABLED);
  452. WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
  453. (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
  454. SCALER_DISPSTATX_EMPTY);
  455. }
  456. static void vc4_crtc_enable(struct drm_crtc *crtc)
  457. {
  458. struct drm_device *dev = crtc->dev;
  459. struct vc4_dev *vc4 = to_vc4_dev(dev);
  460. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  461. struct drm_crtc_state *state = crtc->state;
  462. struct drm_display_mode *mode = &state->adjusted_mode;
  463. require_hvs_enabled(dev);
  464. /* Turn on the scaler, which will wait for vstart to start
  465. * compositing.
  466. */
  467. HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
  468. VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
  469. VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
  470. SCALER_DISPCTRLX_ENABLE);
  471. /* Turn on the pixel valve, which will emit the vstart signal. */
  472. CRTC_WRITE(PV_V_CONTROL,
  473. CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
  474. /* Enable vblank irq handling after crtc is started. */
  475. drm_crtc_vblank_on(crtc);
  476. }
  477. static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
  478. const struct drm_display_mode *mode,
  479. struct drm_display_mode *adjusted_mode)
  480. {
  481. /* Do not allow doublescan modes from user space */
  482. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
  483. DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
  484. crtc->base.id);
  485. return false;
  486. }
  487. return true;
  488. }
  489. static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
  490. struct drm_crtc_state *state)
  491. {
  492. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  493. struct drm_device *dev = crtc->dev;
  494. struct vc4_dev *vc4 = to_vc4_dev(dev);
  495. struct drm_plane *plane;
  496. unsigned long flags;
  497. const struct drm_plane_state *plane_state;
  498. u32 dlist_count = 0;
  499. int ret;
  500. /* The pixelvalve can only feed one encoder (and encoders are
  501. * 1:1 with connectors.)
  502. */
  503. if (hweight32(state->connector_mask) > 1)
  504. return -EINVAL;
  505. drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
  506. dlist_count += vc4_plane_dlist_size(plane_state);
  507. dlist_count++; /* Account for SCALER_CTL0_END. */
  508. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  509. ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
  510. dlist_count);
  511. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  512. if (ret)
  513. return ret;
  514. return 0;
  515. }
  516. static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
  517. struct drm_crtc_state *old_state)
  518. {
  519. struct drm_device *dev = crtc->dev;
  520. struct vc4_dev *vc4 = to_vc4_dev(dev);
  521. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  522. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  523. struct drm_plane *plane;
  524. bool debug_dump_regs = false;
  525. u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
  526. u32 __iomem *dlist_next = dlist_start;
  527. if (debug_dump_regs) {
  528. DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
  529. vc4_hvs_dump_state(dev);
  530. }
  531. /* Copy all the active planes' dlist contents to the hardware dlist. */
  532. drm_atomic_crtc_for_each_plane(plane, crtc) {
  533. dlist_next += vc4_plane_write_dlist(plane, dlist_next);
  534. }
  535. writel(SCALER_CTL0_END, dlist_next);
  536. dlist_next++;
  537. WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
  538. if (crtc->state->event) {
  539. unsigned long flags;
  540. crtc->state->event->pipe = drm_crtc_index(crtc);
  541. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  542. spin_lock_irqsave(&dev->event_lock, flags);
  543. vc4_crtc->event = crtc->state->event;
  544. crtc->state->event = NULL;
  545. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  546. vc4_state->mm.start);
  547. spin_unlock_irqrestore(&dev->event_lock, flags);
  548. } else {
  549. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  550. vc4_state->mm.start);
  551. }
  552. if (debug_dump_regs) {
  553. DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
  554. vc4_hvs_dump_state(dev);
  555. }
  556. }
  557. static int vc4_enable_vblank(struct drm_crtc *crtc)
  558. {
  559. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  560. CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
  561. return 0;
  562. }
  563. static void vc4_disable_vblank(struct drm_crtc *crtc)
  564. {
  565. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  566. CRTC_WRITE(PV_INTEN, 0);
  567. }
  568. /* Must be called with the event lock held */
  569. bool vc4_event_pending(struct drm_crtc *crtc)
  570. {
  571. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  572. return !!vc4_crtc->event;
  573. }
  574. static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
  575. {
  576. struct drm_crtc *crtc = &vc4_crtc->base;
  577. struct drm_device *dev = crtc->dev;
  578. struct vc4_dev *vc4 = to_vc4_dev(dev);
  579. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  580. u32 chan = vc4_crtc->channel;
  581. unsigned long flags;
  582. spin_lock_irqsave(&dev->event_lock, flags);
  583. if (vc4_crtc->event &&
  584. (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
  585. drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
  586. vc4_crtc->event = NULL;
  587. drm_crtc_vblank_put(crtc);
  588. }
  589. spin_unlock_irqrestore(&dev->event_lock, flags);
  590. }
  591. static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
  592. {
  593. struct vc4_crtc *vc4_crtc = data;
  594. u32 stat = CRTC_READ(PV_INTSTAT);
  595. irqreturn_t ret = IRQ_NONE;
  596. if (stat & PV_INT_VFP_START) {
  597. vc4_crtc->t_vblank = ktime_get();
  598. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  599. drm_crtc_handle_vblank(&vc4_crtc->base);
  600. vc4_crtc_handle_page_flip(vc4_crtc);
  601. ret = IRQ_HANDLED;
  602. }
  603. return ret;
  604. }
  605. struct vc4_async_flip_state {
  606. struct drm_crtc *crtc;
  607. struct drm_framebuffer *fb;
  608. struct drm_pending_vblank_event *event;
  609. struct vc4_seqno_cb cb;
  610. };
  611. /* Called when the V3D execution for the BO being flipped to is done, so that
  612. * we can actually update the plane's address to point to it.
  613. */
  614. static void
  615. vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
  616. {
  617. struct vc4_async_flip_state *flip_state =
  618. container_of(cb, struct vc4_async_flip_state, cb);
  619. struct drm_crtc *crtc = flip_state->crtc;
  620. struct drm_device *dev = crtc->dev;
  621. struct vc4_dev *vc4 = to_vc4_dev(dev);
  622. struct drm_plane *plane = crtc->primary;
  623. vc4_plane_async_set_fb(plane, flip_state->fb);
  624. if (flip_state->event) {
  625. unsigned long flags;
  626. spin_lock_irqsave(&dev->event_lock, flags);
  627. drm_crtc_send_vblank_event(crtc, flip_state->event);
  628. spin_unlock_irqrestore(&dev->event_lock, flags);
  629. }
  630. drm_crtc_vblank_put(crtc);
  631. drm_framebuffer_unreference(flip_state->fb);
  632. kfree(flip_state);
  633. up(&vc4->async_modeset);
  634. }
  635. /* Implements async (non-vblank-synced) page flips.
  636. *
  637. * The page flip ioctl needs to return immediately, so we grab the
  638. * modeset semaphore on the pipe, and queue the address update for
  639. * when V3D is done with the BO being flipped to.
  640. */
  641. static int vc4_async_page_flip(struct drm_crtc *crtc,
  642. struct drm_framebuffer *fb,
  643. struct drm_pending_vblank_event *event,
  644. uint32_t flags)
  645. {
  646. struct drm_device *dev = crtc->dev;
  647. struct vc4_dev *vc4 = to_vc4_dev(dev);
  648. struct drm_plane *plane = crtc->primary;
  649. int ret = 0;
  650. struct vc4_async_flip_state *flip_state;
  651. struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
  652. struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
  653. flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
  654. if (!flip_state)
  655. return -ENOMEM;
  656. drm_framebuffer_reference(fb);
  657. flip_state->fb = fb;
  658. flip_state->crtc = crtc;
  659. flip_state->event = event;
  660. /* Make sure all other async modesetes have landed. */
  661. ret = down_interruptible(&vc4->async_modeset);
  662. if (ret) {
  663. drm_framebuffer_unreference(fb);
  664. kfree(flip_state);
  665. return ret;
  666. }
  667. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  668. /* Immediately update the plane's legacy fb pointer, so that later
  669. * modeset prep sees the state that will be present when the semaphore
  670. * is released.
  671. */
  672. drm_atomic_set_fb_for_plane(plane->state, fb);
  673. plane->fb = fb;
  674. vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
  675. vc4_async_page_flip_complete);
  676. /* Driver takes ownership of state on successful async commit. */
  677. return 0;
  678. }
  679. static int vc4_page_flip(struct drm_crtc *crtc,
  680. struct drm_framebuffer *fb,
  681. struct drm_pending_vblank_event *event,
  682. uint32_t flags,
  683. struct drm_modeset_acquire_ctx *ctx)
  684. {
  685. if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
  686. return vc4_async_page_flip(crtc, fb, event, flags);
  687. else
  688. return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
  689. }
  690. static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
  691. {
  692. struct vc4_crtc_state *vc4_state;
  693. vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
  694. if (!vc4_state)
  695. return NULL;
  696. __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
  697. return &vc4_state->base;
  698. }
  699. static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
  700. struct drm_crtc_state *state)
  701. {
  702. struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
  703. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  704. if (vc4_state->mm.allocated) {
  705. unsigned long flags;
  706. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  707. drm_mm_remove_node(&vc4_state->mm);
  708. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  709. }
  710. drm_atomic_helper_crtc_destroy_state(crtc, state);
  711. }
  712. static void
  713. vc4_crtc_reset(struct drm_crtc *crtc)
  714. {
  715. if (crtc->state)
  716. __drm_atomic_helper_crtc_destroy_state(crtc->state);
  717. crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
  718. if (crtc->state)
  719. crtc->state->crtc = crtc;
  720. }
  721. static const struct drm_crtc_funcs vc4_crtc_funcs = {
  722. .set_config = drm_atomic_helper_set_config,
  723. .destroy = vc4_crtc_destroy,
  724. .page_flip = vc4_page_flip,
  725. .set_property = NULL,
  726. .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
  727. .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
  728. .reset = vc4_crtc_reset,
  729. .atomic_duplicate_state = vc4_crtc_duplicate_state,
  730. .atomic_destroy_state = vc4_crtc_destroy_state,
  731. .gamma_set = vc4_crtc_gamma_set,
  732. .enable_vblank = vc4_enable_vblank,
  733. .disable_vblank = vc4_disable_vblank,
  734. };
  735. static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
  736. .mode_set_nofb = vc4_crtc_mode_set_nofb,
  737. .disable = vc4_crtc_disable,
  738. .enable = vc4_crtc_enable,
  739. .mode_fixup = vc4_crtc_mode_fixup,
  740. .atomic_check = vc4_crtc_atomic_check,
  741. .atomic_flush = vc4_crtc_atomic_flush,
  742. };
  743. static const struct vc4_crtc_data pv0_data = {
  744. .hvs_channel = 0,
  745. .encoder_types = {
  746. [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
  747. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
  748. },
  749. };
  750. static const struct vc4_crtc_data pv1_data = {
  751. .hvs_channel = 2,
  752. .encoder_types = {
  753. [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
  754. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
  755. },
  756. };
  757. static const struct vc4_crtc_data pv2_data = {
  758. .hvs_channel = 1,
  759. .encoder_types = {
  760. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
  761. [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
  762. },
  763. };
  764. static const struct of_device_id vc4_crtc_dt_match[] = {
  765. { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
  766. { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
  767. { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
  768. {}
  769. };
  770. static void vc4_set_crtc_possible_masks(struct drm_device *drm,
  771. struct drm_crtc *crtc)
  772. {
  773. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  774. const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
  775. const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
  776. struct drm_encoder *encoder;
  777. drm_for_each_encoder(encoder, drm) {
  778. struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
  779. int i;
  780. for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
  781. if (vc4_encoder->type == encoder_types[i]) {
  782. vc4_encoder->clock_select = i;
  783. encoder->possible_crtcs |= drm_crtc_mask(crtc);
  784. break;
  785. }
  786. }
  787. }
  788. }
  789. static void
  790. vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
  791. {
  792. struct drm_device *drm = vc4_crtc->base.dev;
  793. struct vc4_dev *vc4 = to_vc4_dev(drm);
  794. u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
  795. /* Top/base are supposed to be 4-pixel aligned, but the
  796. * Raspberry Pi firmware fills the low bits (which are
  797. * presumably ignored).
  798. */
  799. u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
  800. u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
  801. vc4_crtc->cob_size = top - base + 4;
  802. }
  803. static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
  804. {
  805. struct platform_device *pdev = to_platform_device(dev);
  806. struct drm_device *drm = dev_get_drvdata(master);
  807. struct vc4_crtc *vc4_crtc;
  808. struct drm_crtc *crtc;
  809. struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
  810. const struct of_device_id *match;
  811. int ret, i;
  812. vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
  813. if (!vc4_crtc)
  814. return -ENOMEM;
  815. crtc = &vc4_crtc->base;
  816. match = of_match_device(vc4_crtc_dt_match, dev);
  817. if (!match)
  818. return -ENODEV;
  819. vc4_crtc->data = match->data;
  820. vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
  821. if (IS_ERR(vc4_crtc->regs))
  822. return PTR_ERR(vc4_crtc->regs);
  823. /* For now, we create just the primary and the legacy cursor
  824. * planes. We should be able to stack more planes on easily,
  825. * but to do that we would need to compute the bandwidth
  826. * requirement of the plane configuration, and reject ones
  827. * that will take too much.
  828. */
  829. primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
  830. if (IS_ERR(primary_plane)) {
  831. dev_err(dev, "failed to construct primary plane\n");
  832. ret = PTR_ERR(primary_plane);
  833. goto err;
  834. }
  835. drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
  836. &vc4_crtc_funcs, NULL);
  837. drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
  838. primary_plane->crtc = crtc;
  839. vc4_crtc->channel = vc4_crtc->data->hvs_channel;
  840. drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
  841. /* Set up some arbitrary number of planes. We're not limited
  842. * by a set number of physical registers, just the space in
  843. * the HVS (16k) and how small an plane can be (28 bytes).
  844. * However, each plane we set up takes up some memory, and
  845. * increases the cost of looping over planes, which atomic
  846. * modesetting does quite a bit. As a result, we pick a
  847. * modest number of planes to expose, that should hopefully
  848. * still cover any sane usecase.
  849. */
  850. for (i = 0; i < 8; i++) {
  851. struct drm_plane *plane =
  852. vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
  853. if (IS_ERR(plane))
  854. continue;
  855. plane->possible_crtcs = 1 << drm_crtc_index(crtc);
  856. }
  857. /* Set up the legacy cursor after overlay initialization,
  858. * since we overlay planes on the CRTC in the order they were
  859. * initialized.
  860. */
  861. cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
  862. if (!IS_ERR(cursor_plane)) {
  863. cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
  864. cursor_plane->crtc = crtc;
  865. crtc->cursor = cursor_plane;
  866. }
  867. vc4_crtc_get_cob_allocation(vc4_crtc);
  868. CRTC_WRITE(PV_INTEN, 0);
  869. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  870. ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
  871. vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
  872. if (ret)
  873. goto err_destroy_planes;
  874. vc4_set_crtc_possible_masks(drm, crtc);
  875. for (i = 0; i < crtc->gamma_size; i++) {
  876. vc4_crtc->lut_r[i] = i;
  877. vc4_crtc->lut_g[i] = i;
  878. vc4_crtc->lut_b[i] = i;
  879. }
  880. platform_set_drvdata(pdev, vc4_crtc);
  881. return 0;
  882. err_destroy_planes:
  883. list_for_each_entry_safe(destroy_plane, temp,
  884. &drm->mode_config.plane_list, head) {
  885. if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
  886. destroy_plane->funcs->destroy(destroy_plane);
  887. }
  888. err:
  889. return ret;
  890. }
  891. static void vc4_crtc_unbind(struct device *dev, struct device *master,
  892. void *data)
  893. {
  894. struct platform_device *pdev = to_platform_device(dev);
  895. struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
  896. vc4_crtc_destroy(&vc4_crtc->base);
  897. CRTC_WRITE(PV_INTEN, 0);
  898. platform_set_drvdata(pdev, NULL);
  899. }
  900. static const struct component_ops vc4_crtc_ops = {
  901. .bind = vc4_crtc_bind,
  902. .unbind = vc4_crtc_unbind,
  903. };
  904. static int vc4_crtc_dev_probe(struct platform_device *pdev)
  905. {
  906. return component_add(&pdev->dev, &vc4_crtc_ops);
  907. }
  908. static int vc4_crtc_dev_remove(struct platform_device *pdev)
  909. {
  910. component_del(&pdev->dev, &vc4_crtc_ops);
  911. return 0;
  912. }
  913. struct platform_driver vc4_crtc_driver = {
  914. .probe = vc4_crtc_dev_probe,
  915. .remove = vc4_crtc_dev_remove,
  916. .driver = {
  917. .name = "vc4_crtc",
  918. .of_match_table = vc4_crtc_dt_match,
  919. },
  920. };