intel_breadcrumbs.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873
  1. /*
  2. * Copyright © 2015 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. */
  24. #include <linux/kthread.h>
  25. #include <uapi/linux/sched/types.h>
  26. #include "i915_drv.h"
  27. static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
  28. {
  29. struct intel_wait *wait;
  30. unsigned int result = 0;
  31. lockdep_assert_held(&b->irq_lock);
  32. wait = b->irq_wait;
  33. if (wait) {
  34. result = ENGINE_WAKEUP_WAITER;
  35. if (wake_up_process(wait->tsk))
  36. result |= ENGINE_WAKEUP_ASLEEP;
  37. }
  38. return result;
  39. }
  40. unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
  41. {
  42. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  43. unsigned long flags;
  44. unsigned int result;
  45. spin_lock_irqsave(&b->irq_lock, flags);
  46. result = __intel_breadcrumbs_wakeup(b);
  47. spin_unlock_irqrestore(&b->irq_lock, flags);
  48. return result;
  49. }
  50. static unsigned long wait_timeout(void)
  51. {
  52. return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
  53. }
  54. static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
  55. {
  56. DRM_DEBUG_DRIVER("%s missed breadcrumb at %pF, irq posted? %s\n",
  57. engine->name, __builtin_return_address(0),
  58. yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
  59. &engine->irq_posted)));
  60. set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
  61. }
  62. static void intel_breadcrumbs_hangcheck(unsigned long data)
  63. {
  64. struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
  65. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  66. if (!b->irq_armed)
  67. return;
  68. if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
  69. b->hangcheck_interrupts = atomic_read(&engine->irq_count);
  70. mod_timer(&b->hangcheck, wait_timeout());
  71. return;
  72. }
  73. /* We keep the hangcheck timer alive until we disarm the irq, even
  74. * if there are no waiters at present.
  75. *
  76. * If the waiter was currently running, assume it hasn't had a chance
  77. * to process the pending interrupt (e.g, low priority task on a loaded
  78. * system) and wait until it sleeps before declaring a missed interrupt.
  79. *
  80. * If the waiter was asleep (and not even pending a wakeup), then we
  81. * must have missed an interrupt as the GPU has stopped advancing
  82. * but we still have a waiter. Assuming all batches complete within
  83. * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
  84. */
  85. if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
  86. missed_breadcrumb(engine);
  87. mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
  88. } else {
  89. mod_timer(&b->hangcheck, wait_timeout());
  90. }
  91. }
  92. static void intel_breadcrumbs_fake_irq(unsigned long data)
  93. {
  94. struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
  95. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  96. /* The timer persists in case we cannot enable interrupts,
  97. * or if we have previously seen seqno/interrupt incoherency
  98. * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
  99. * Here the worker will wake up every jiffie in order to kick the
  100. * oldest waiter to do the coherent seqno check.
  101. */
  102. spin_lock_irq(&b->irq_lock);
  103. if (!__intel_breadcrumbs_wakeup(b))
  104. __intel_engine_disarm_breadcrumbs(engine);
  105. spin_unlock_irq(&b->irq_lock);
  106. if (!b->irq_armed)
  107. return;
  108. mod_timer(&b->fake_irq, jiffies + 1);
  109. /* Ensure that even if the GPU hangs, we get woken up.
  110. *
  111. * However, note that if no one is waiting, we never notice
  112. * a gpu hang. Eventually, we will have to wait for a resource
  113. * held by the GPU and so trigger a hangcheck. In the most
  114. * pathological case, this will be upon memory starvation! To
  115. * prevent this, we also queue the hangcheck from the retire
  116. * worker.
  117. */
  118. i915_queue_hangcheck(engine->i915);
  119. }
  120. static void irq_enable(struct intel_engine_cs *engine)
  121. {
  122. /* Enabling the IRQ may miss the generation of the interrupt, but
  123. * we still need to force the barrier before reading the seqno,
  124. * just in case.
  125. */
  126. set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
  127. /* Caller disables interrupts */
  128. spin_lock(&engine->i915->irq_lock);
  129. engine->irq_enable(engine);
  130. spin_unlock(&engine->i915->irq_lock);
  131. }
  132. static void irq_disable(struct intel_engine_cs *engine)
  133. {
  134. /* Caller disables interrupts */
  135. spin_lock(&engine->i915->irq_lock);
  136. engine->irq_disable(engine);
  137. spin_unlock(&engine->i915->irq_lock);
  138. }
  139. void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
  140. {
  141. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  142. lockdep_assert_held(&b->irq_lock);
  143. GEM_BUG_ON(b->irq_wait);
  144. if (b->irq_enabled) {
  145. irq_disable(engine);
  146. b->irq_enabled = false;
  147. }
  148. b->irq_armed = false;
  149. }
  150. void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
  151. {
  152. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  153. struct intel_wait *wait, *n, *first;
  154. if (!b->irq_armed)
  155. return;
  156. /* We only disarm the irq when we are idle (all requests completed),
  157. * so if the bottom-half remains asleep, it missed the request
  158. * completion.
  159. */
  160. spin_lock_irq(&b->rb_lock);
  161. spin_lock(&b->irq_lock);
  162. first = fetch_and_zero(&b->irq_wait);
  163. __intel_engine_disarm_breadcrumbs(engine);
  164. spin_unlock(&b->irq_lock);
  165. rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
  166. RB_CLEAR_NODE(&wait->node);
  167. if (wake_up_process(wait->tsk) && wait == first)
  168. missed_breadcrumb(engine);
  169. }
  170. b->waiters = RB_ROOT;
  171. spin_unlock_irq(&b->rb_lock);
  172. }
  173. static bool use_fake_irq(const struct intel_breadcrumbs *b)
  174. {
  175. const struct intel_engine_cs *engine =
  176. container_of(b, struct intel_engine_cs, breadcrumbs);
  177. if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
  178. return false;
  179. /* Only start with the heavy weight fake irq timer if we have not
  180. * seen any interrupts since enabling it the first time. If the
  181. * interrupts are still arriving, it means we made a mistake in our
  182. * engine->seqno_barrier(), a timing error that should be transient
  183. * and unlikely to reoccur.
  184. */
  185. return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
  186. }
  187. static void enable_fake_irq(struct intel_breadcrumbs *b)
  188. {
  189. /* Ensure we never sleep indefinitely */
  190. if (!b->irq_enabled || use_fake_irq(b))
  191. mod_timer(&b->fake_irq, jiffies + 1);
  192. else
  193. mod_timer(&b->hangcheck, wait_timeout());
  194. }
  195. static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
  196. {
  197. struct intel_engine_cs *engine =
  198. container_of(b, struct intel_engine_cs, breadcrumbs);
  199. struct drm_i915_private *i915 = engine->i915;
  200. lockdep_assert_held(&b->irq_lock);
  201. if (b->irq_armed)
  202. return;
  203. /* The breadcrumb irq will be disarmed on the interrupt after the
  204. * waiters are signaled. This gives us a single interrupt window in
  205. * which we can add a new waiter and avoid the cost of re-enabling
  206. * the irq.
  207. */
  208. b->irq_armed = true;
  209. GEM_BUG_ON(b->irq_enabled);
  210. if (I915_SELFTEST_ONLY(b->mock)) {
  211. /* For our mock objects we want to avoid interaction
  212. * with the real hardware (which is not set up). So
  213. * we simply pretend we have enabled the powerwell
  214. * and the irq, and leave it up to the mock
  215. * implementation to call intel_engine_wakeup()
  216. * itself when it wants to simulate a user interrupt,
  217. */
  218. return;
  219. }
  220. /* Since we are waiting on a request, the GPU should be busy
  221. * and should have its own rpm reference. This is tracked
  222. * by i915->gt.awake, we can forgo holding our own wakref
  223. * for the interrupt as before i915->gt.awake is released (when
  224. * the driver is idle) we disarm the breadcrumbs.
  225. */
  226. /* No interrupts? Kick the waiter every jiffie! */
  227. if (intel_irqs_enabled(i915)) {
  228. if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
  229. irq_enable(engine);
  230. b->irq_enabled = true;
  231. }
  232. enable_fake_irq(b);
  233. }
  234. static inline struct intel_wait *to_wait(struct rb_node *node)
  235. {
  236. return rb_entry(node, struct intel_wait, node);
  237. }
  238. static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
  239. struct intel_wait *wait)
  240. {
  241. lockdep_assert_held(&b->rb_lock);
  242. GEM_BUG_ON(b->irq_wait == wait);
  243. /* This request is completed, so remove it from the tree, mark it as
  244. * complete, and *then* wake up the associated task. N.B. when the
  245. * task wakes up, it will find the empty rb_node, discern that it
  246. * has already been removed from the tree and skip the serialisation
  247. * of the b->rb_lock and b->irq_lock. This means that the destruction
  248. * of the intel_wait is not serialised with the interrupt handler
  249. * by the waiter - it must instead be serialised by the caller.
  250. */
  251. rb_erase(&wait->node, &b->waiters);
  252. RB_CLEAR_NODE(&wait->node);
  253. wake_up_process(wait->tsk); /* implicit smp_wmb() */
  254. }
  255. static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
  256. struct rb_node *next)
  257. {
  258. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  259. spin_lock(&b->irq_lock);
  260. GEM_BUG_ON(!b->irq_armed);
  261. GEM_BUG_ON(!b->irq_wait);
  262. b->irq_wait = to_wait(next);
  263. spin_unlock(&b->irq_lock);
  264. /* We always wake up the next waiter that takes over as the bottom-half
  265. * as we may delegate not only the irq-seqno barrier to the next waiter
  266. * but also the task of waking up concurrent waiters.
  267. */
  268. if (next)
  269. wake_up_process(to_wait(next)->tsk);
  270. }
  271. static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
  272. struct intel_wait *wait)
  273. {
  274. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  275. struct rb_node **p, *parent, *completed;
  276. bool first;
  277. u32 seqno;
  278. /* Insert the request into the retirement ordered list
  279. * of waiters by walking the rbtree. If we are the oldest
  280. * seqno in the tree (the first to be retired), then
  281. * set ourselves as the bottom-half.
  282. *
  283. * As we descend the tree, prune completed branches since we hold the
  284. * spinlock we know that the first_waiter must be delayed and can
  285. * reduce some of the sequential wake up latency if we take action
  286. * ourselves and wake up the completed tasks in parallel. Also, by
  287. * removing stale elements in the tree, we may be able to reduce the
  288. * ping-pong between the old bottom-half and ourselves as first-waiter.
  289. */
  290. first = true;
  291. parent = NULL;
  292. completed = NULL;
  293. seqno = intel_engine_get_seqno(engine);
  294. /* If the request completed before we managed to grab the spinlock,
  295. * return now before adding ourselves to the rbtree. We let the
  296. * current bottom-half handle any pending wakeups and instead
  297. * try and get out of the way quickly.
  298. */
  299. if (i915_seqno_passed(seqno, wait->seqno)) {
  300. RB_CLEAR_NODE(&wait->node);
  301. return first;
  302. }
  303. p = &b->waiters.rb_node;
  304. while (*p) {
  305. parent = *p;
  306. if (wait->seqno == to_wait(parent)->seqno) {
  307. /* We have multiple waiters on the same seqno, select
  308. * the highest priority task (that with the smallest
  309. * task->prio) to serve as the bottom-half for this
  310. * group.
  311. */
  312. if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
  313. p = &parent->rb_right;
  314. first = false;
  315. } else {
  316. p = &parent->rb_left;
  317. }
  318. } else if (i915_seqno_passed(wait->seqno,
  319. to_wait(parent)->seqno)) {
  320. p = &parent->rb_right;
  321. if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
  322. completed = parent;
  323. else
  324. first = false;
  325. } else {
  326. p = &parent->rb_left;
  327. }
  328. }
  329. rb_link_node(&wait->node, parent, p);
  330. rb_insert_color(&wait->node, &b->waiters);
  331. if (first) {
  332. spin_lock(&b->irq_lock);
  333. b->irq_wait = wait;
  334. /* After assigning ourselves as the new bottom-half, we must
  335. * perform a cursory check to prevent a missed interrupt.
  336. * Either we miss the interrupt whilst programming the hardware,
  337. * or if there was a previous waiter (for a later seqno) they
  338. * may be woken instead of us (due to the inherent race
  339. * in the unlocked read of b->irq_seqno_bh in the irq handler)
  340. * and so we miss the wake up.
  341. */
  342. __intel_breadcrumbs_enable_irq(b);
  343. spin_unlock(&b->irq_lock);
  344. }
  345. if (completed) {
  346. /* Advance the bottom-half (b->irq_wait) before we wake up
  347. * the waiters who may scribble over their intel_wait
  348. * just as the interrupt handler is dereferencing it via
  349. * b->irq_wait.
  350. */
  351. if (!first) {
  352. struct rb_node *next = rb_next(completed);
  353. GEM_BUG_ON(next == &wait->node);
  354. __intel_breadcrumbs_next(engine, next);
  355. }
  356. do {
  357. struct intel_wait *crumb = to_wait(completed);
  358. completed = rb_prev(completed);
  359. __intel_breadcrumbs_finish(b, crumb);
  360. } while (completed);
  361. }
  362. GEM_BUG_ON(!b->irq_wait);
  363. GEM_BUG_ON(!b->irq_armed);
  364. GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
  365. return first;
  366. }
  367. bool intel_engine_add_wait(struct intel_engine_cs *engine,
  368. struct intel_wait *wait)
  369. {
  370. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  371. bool first;
  372. spin_lock_irq(&b->rb_lock);
  373. first = __intel_engine_add_wait(engine, wait);
  374. spin_unlock_irq(&b->rb_lock);
  375. return first;
  376. }
  377. static inline bool chain_wakeup(struct rb_node *rb, int priority)
  378. {
  379. return rb && to_wait(rb)->tsk->prio <= priority;
  380. }
  381. static inline int wakeup_priority(struct intel_breadcrumbs *b,
  382. struct task_struct *tsk)
  383. {
  384. if (tsk == b->signaler)
  385. return INT_MIN;
  386. else
  387. return tsk->prio;
  388. }
  389. static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
  390. struct intel_wait *wait)
  391. {
  392. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  393. lockdep_assert_held(&b->rb_lock);
  394. if (RB_EMPTY_NODE(&wait->node))
  395. goto out;
  396. if (b->irq_wait == wait) {
  397. const int priority = wakeup_priority(b, wait->tsk);
  398. struct rb_node *next;
  399. /* We are the current bottom-half. Find the next candidate,
  400. * the first waiter in the queue on the remaining oldest
  401. * request. As multiple seqnos may complete in the time it
  402. * takes us to wake up and find the next waiter, we have to
  403. * wake up that waiter for it to perform its own coherent
  404. * completion check.
  405. */
  406. next = rb_next(&wait->node);
  407. if (chain_wakeup(next, priority)) {
  408. /* If the next waiter is already complete,
  409. * wake it up and continue onto the next waiter. So
  410. * if have a small herd, they will wake up in parallel
  411. * rather than sequentially, which should reduce
  412. * the overall latency in waking all the completed
  413. * clients.
  414. *
  415. * However, waking up a chain adds extra latency to
  416. * the first_waiter. This is undesirable if that
  417. * waiter is a high priority task.
  418. */
  419. u32 seqno = intel_engine_get_seqno(engine);
  420. while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
  421. struct rb_node *n = rb_next(next);
  422. __intel_breadcrumbs_finish(b, to_wait(next));
  423. next = n;
  424. if (!chain_wakeup(next, priority))
  425. break;
  426. }
  427. }
  428. __intel_breadcrumbs_next(engine, next);
  429. } else {
  430. GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
  431. }
  432. GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
  433. rb_erase(&wait->node, &b->waiters);
  434. out:
  435. GEM_BUG_ON(b->irq_wait == wait);
  436. GEM_BUG_ON(rb_first(&b->waiters) !=
  437. (b->irq_wait ? &b->irq_wait->node : NULL));
  438. }
  439. void intel_engine_remove_wait(struct intel_engine_cs *engine,
  440. struct intel_wait *wait)
  441. {
  442. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  443. /* Quick check to see if this waiter was already decoupled from
  444. * the tree by the bottom-half to avoid contention on the spinlock
  445. * by the herd.
  446. */
  447. if (RB_EMPTY_NODE(&wait->node)) {
  448. GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
  449. return;
  450. }
  451. spin_lock_irq(&b->rb_lock);
  452. __intel_engine_remove_wait(engine, wait);
  453. spin_unlock_irq(&b->rb_lock);
  454. }
  455. static bool signal_valid(const struct drm_i915_gem_request *request)
  456. {
  457. return intel_wait_check_request(&request->signaling.wait, request);
  458. }
  459. static bool signal_complete(const struct drm_i915_gem_request *request)
  460. {
  461. if (!request)
  462. return false;
  463. /* If another process served as the bottom-half it may have already
  464. * signalled that this wait is already completed.
  465. */
  466. if (intel_wait_complete(&request->signaling.wait))
  467. return signal_valid(request);
  468. /* Carefully check if the request is complete, giving time for the
  469. * seqno to be visible or if the GPU hung.
  470. */
  471. if (__i915_request_irq_complete(request))
  472. return true;
  473. return false;
  474. }
  475. static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
  476. {
  477. return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
  478. }
  479. static void signaler_set_rtpriority(void)
  480. {
  481. struct sched_param param = { .sched_priority = 1 };
  482. sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
  483. }
  484. static int intel_breadcrumbs_signaler(void *arg)
  485. {
  486. struct intel_engine_cs *engine = arg;
  487. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  488. struct drm_i915_gem_request *request;
  489. /* Install ourselves with high priority to reduce signalling latency */
  490. signaler_set_rtpriority();
  491. do {
  492. bool do_schedule = true;
  493. set_current_state(TASK_INTERRUPTIBLE);
  494. /* We are either woken up by the interrupt bottom-half,
  495. * or by a client adding a new signaller. In both cases,
  496. * the GPU seqno may have advanced beyond our oldest signal.
  497. * If it has, propagate the signal, remove the waiter and
  498. * check again with the next oldest signal. Otherwise we
  499. * need to wait for a new interrupt from the GPU or for
  500. * a new client.
  501. */
  502. rcu_read_lock();
  503. request = rcu_dereference(b->first_signal);
  504. if (request)
  505. request = i915_gem_request_get_rcu(request);
  506. rcu_read_unlock();
  507. if (signal_complete(request)) {
  508. local_bh_disable();
  509. dma_fence_signal(&request->fence);
  510. local_bh_enable(); /* kick start the tasklets */
  511. spin_lock_irq(&b->rb_lock);
  512. /* Wake up all other completed waiters and select the
  513. * next bottom-half for the next user interrupt.
  514. */
  515. __intel_engine_remove_wait(engine,
  516. &request->signaling.wait);
  517. /* Find the next oldest signal. Note that as we have
  518. * not been holding the lock, another client may
  519. * have installed an even older signal than the one
  520. * we just completed - so double check we are still
  521. * the oldest before picking the next one.
  522. */
  523. if (request == rcu_access_pointer(b->first_signal)) {
  524. struct rb_node *rb =
  525. rb_next(&request->signaling.node);
  526. rcu_assign_pointer(b->first_signal,
  527. rb ? to_signaler(rb) : NULL);
  528. }
  529. rb_erase(&request->signaling.node, &b->signals);
  530. RB_CLEAR_NODE(&request->signaling.node);
  531. spin_unlock_irq(&b->rb_lock);
  532. i915_gem_request_put(request);
  533. /* If the engine is saturated we may be continually
  534. * processing completed requests. This angers the
  535. * NMI watchdog if we never let anything else
  536. * have access to the CPU. Let's pretend to be nice
  537. * and relinquish the CPU if we burn through the
  538. * entire RT timeslice!
  539. */
  540. do_schedule = need_resched();
  541. }
  542. if (unlikely(do_schedule)) {
  543. DEFINE_WAIT(exec);
  544. if (kthread_should_park())
  545. kthread_parkme();
  546. if (kthread_should_stop()) {
  547. GEM_BUG_ON(request);
  548. break;
  549. }
  550. if (request)
  551. add_wait_queue(&request->execute, &exec);
  552. schedule();
  553. if (request)
  554. remove_wait_queue(&request->execute, &exec);
  555. }
  556. i915_gem_request_put(request);
  557. } while (1);
  558. __set_current_state(TASK_RUNNING);
  559. return 0;
  560. }
  561. void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
  562. {
  563. struct intel_engine_cs *engine = request->engine;
  564. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  565. struct rb_node *parent, **p;
  566. bool first, wakeup;
  567. u32 seqno;
  568. /* Note that we may be called from an interrupt handler on another
  569. * device (e.g. nouveau signaling a fence completion causing us
  570. * to submit a request, and so enable signaling). As such,
  571. * we need to make sure that all other users of b->rb_lock protect
  572. * against interrupts, i.e. use spin_lock_irqsave.
  573. */
  574. /* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
  575. GEM_BUG_ON(!irqs_disabled());
  576. lockdep_assert_held(&request->lock);
  577. seqno = i915_gem_request_global_seqno(request);
  578. if (!seqno)
  579. return;
  580. request->signaling.wait.tsk = b->signaler;
  581. request->signaling.wait.request = request;
  582. request->signaling.wait.seqno = seqno;
  583. i915_gem_request_get(request);
  584. spin_lock(&b->rb_lock);
  585. /* First add ourselves into the list of waiters, but register our
  586. * bottom-half as the signaller thread. As per usual, only the oldest
  587. * waiter (not just signaller) is tasked as the bottom-half waking
  588. * up all completed waiters after the user interrupt.
  589. *
  590. * If we are the oldest waiter, enable the irq (after which we
  591. * must double check that the seqno did not complete).
  592. */
  593. wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
  594. /* Now insert ourselves into the retirement ordered list of signals
  595. * on this engine. We track the oldest seqno as that will be the
  596. * first signal to complete.
  597. */
  598. parent = NULL;
  599. first = true;
  600. p = &b->signals.rb_node;
  601. while (*p) {
  602. parent = *p;
  603. if (i915_seqno_passed(seqno,
  604. to_signaler(parent)->signaling.wait.seqno)) {
  605. p = &parent->rb_right;
  606. first = false;
  607. } else {
  608. p = &parent->rb_left;
  609. }
  610. }
  611. rb_link_node(&request->signaling.node, parent, p);
  612. rb_insert_color(&request->signaling.node, &b->signals);
  613. if (first)
  614. rcu_assign_pointer(b->first_signal, request);
  615. spin_unlock(&b->rb_lock);
  616. if (wakeup)
  617. wake_up_process(b->signaler);
  618. }
  619. void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
  620. {
  621. struct intel_engine_cs *engine = request->engine;
  622. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  623. GEM_BUG_ON(!irqs_disabled());
  624. lockdep_assert_held(&request->lock);
  625. GEM_BUG_ON(!request->signaling.wait.seqno);
  626. spin_lock(&b->rb_lock);
  627. if (!RB_EMPTY_NODE(&request->signaling.node)) {
  628. if (request == rcu_access_pointer(b->first_signal)) {
  629. struct rb_node *rb =
  630. rb_next(&request->signaling.node);
  631. rcu_assign_pointer(b->first_signal,
  632. rb ? to_signaler(rb) : NULL);
  633. }
  634. rb_erase(&request->signaling.node, &b->signals);
  635. RB_CLEAR_NODE(&request->signaling.node);
  636. i915_gem_request_put(request);
  637. }
  638. __intel_engine_remove_wait(engine, &request->signaling.wait);
  639. spin_unlock(&b->rb_lock);
  640. request->signaling.wait.seqno = 0;
  641. }
  642. int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
  643. {
  644. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  645. struct task_struct *tsk;
  646. spin_lock_init(&b->rb_lock);
  647. spin_lock_init(&b->irq_lock);
  648. setup_timer(&b->fake_irq,
  649. intel_breadcrumbs_fake_irq,
  650. (unsigned long)engine);
  651. setup_timer(&b->hangcheck,
  652. intel_breadcrumbs_hangcheck,
  653. (unsigned long)engine);
  654. /* Spawn a thread to provide a common bottom-half for all signals.
  655. * As this is an asynchronous interface we cannot steal the current
  656. * task for handling the bottom-half to the user interrupt, therefore
  657. * we create a thread to do the coherent seqno dance after the
  658. * interrupt and then signal the waitqueue (via the dma-buf/fence).
  659. */
  660. tsk = kthread_run(intel_breadcrumbs_signaler, engine,
  661. "i915/signal:%d", engine->id);
  662. if (IS_ERR(tsk))
  663. return PTR_ERR(tsk);
  664. b->signaler = tsk;
  665. return 0;
  666. }
  667. static void cancel_fake_irq(struct intel_engine_cs *engine)
  668. {
  669. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  670. del_timer_sync(&b->hangcheck);
  671. del_timer_sync(&b->fake_irq);
  672. clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
  673. }
  674. void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
  675. {
  676. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  677. cancel_fake_irq(engine);
  678. spin_lock_irq(&b->irq_lock);
  679. if (b->irq_enabled)
  680. irq_enable(engine);
  681. else
  682. irq_disable(engine);
  683. /* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
  684. * GPU is active and may have already executed the MI_USER_INTERRUPT
  685. * before the CPU is ready to receive. However, the engine is currently
  686. * idle (we haven't started it yet), there is no possibility for a
  687. * missed interrupt as we enabled the irq and so we can clear the
  688. * immediate wakeup (until a real interrupt arrives for the waiter).
  689. */
  690. clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
  691. if (b->irq_armed)
  692. enable_fake_irq(b);
  693. spin_unlock_irq(&b->irq_lock);
  694. }
  695. void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
  696. {
  697. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  698. /* The engines should be idle and all requests accounted for! */
  699. WARN_ON(READ_ONCE(b->irq_wait));
  700. WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
  701. WARN_ON(rcu_access_pointer(b->first_signal));
  702. WARN_ON(!RB_EMPTY_ROOT(&b->signals));
  703. if (!IS_ERR_OR_NULL(b->signaler))
  704. kthread_stop(b->signaler);
  705. cancel_fake_irq(engine);
  706. }
  707. bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
  708. {
  709. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  710. bool busy = false;
  711. spin_lock_irq(&b->rb_lock);
  712. if (b->irq_wait) {
  713. wake_up_process(b->irq_wait->tsk);
  714. busy = true;
  715. }
  716. if (rcu_access_pointer(b->first_signal)) {
  717. wake_up_process(b->signaler);
  718. busy = true;
  719. }
  720. spin_unlock_irq(&b->rb_lock);
  721. return busy;
  722. }
  723. #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
  724. #include "selftests/intel_breadcrumbs.c"
  725. #endif