123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555 |
- /*
- * Copyright 2015 Advanced Micro Devices, Inc.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
- * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
- * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
- * OTHER DEALINGS IN THE SOFTWARE.
- *
- */
- #include <asm/div64.h>
- #define SHIFT_AMOUNT 16 /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */
- #define PRECISION 5 /* Change this value to change the number of decimal places in the final output - 5 is a good default */
- #define SHIFTED_2 (2 << SHIFT_AMOUNT)
- #define MAX (1 << (SHIFT_AMOUNT - 1)) - 1 /* 32767 - Might change in the future */
- /* -------------------------------------------------------------------------------
- * NEW TYPE - fINT
- * -------------------------------------------------------------------------------
- * A variable of type fInt can be accessed in 3 ways using the dot (.) operator
- * fInt A;
- * A.full => The full number as it is. Generally not easy to read
- * A.partial.real => Only the integer portion
- * A.partial.decimal => Only the fractional portion
- */
- typedef union _fInt {
- int full;
- struct _partial {
- unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/
- int real: 32 - SHIFT_AMOUNT;
- } partial;
- } fInt;
- /* -------------------------------------------------------------------------------
- * Function Declarations
- * -------------------------------------------------------------------------------
- */
- static fInt ConvertToFraction(int); /* Use this to convert an INT to a FINT */
- static fInt Convert_ULONG_ToFraction(uint32_t); /* Use this to convert an uint32_t to a FINT */
- static fInt GetScaledFraction(int, int); /* Use this to convert an INT to a FINT after scaling it by a factor */
- static int ConvertBackToInteger(fInt); /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */
- static fInt fNegate(fInt); /* Returns -1 * input fInt value */
- static fInt fAdd (fInt, fInt); /* Returns the sum of two fInt numbers */
- static fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Adding negative numbers */
- static fInt fMultiply (fInt, fInt); /* Returns the product of two fInt numbers */
- static fInt fDivide (fInt A, fInt B); /* Returns A/B */
- static fInt fGetSquare(fInt); /* Returns the square of a fInt number */
- static fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */
- static int uAbs(int); /* Returns the Absolute value of the Int */
- static int uPow(int base, int exponent); /* Returns base^exponent an INT */
- static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
- static bool Equal(fInt, fInt); /* Returns true if two fInts are equal to each other */
- static bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */
- static fInt fExponential(fInt exponent); /* Can be used to calculate e^exponent */
- static fInt fNaturalLog(fInt value); /* Can be used to calculate ln(value) */
- /* Fuse decoding functions
- * -------------------------------------------------------------------------------------
- */
- static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
- static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
- static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);
- /* Internal Support Functions - Use these ONLY for testing or adding to internal functions
- * -------------------------------------------------------------------------------------
- * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons.
- */
- static fInt Divide (int, int); /* Divide two INTs and return result as FINT */
- static fInt fNegate(fInt);
- static int uGetScaledDecimal (fInt); /* Internal function */
- static int GetReal (fInt A); /* Internal function */
- /* -------------------------------------------------------------------------------------
- * TROUBLESHOOTING INFORMATION
- * -------------------------------------------------------------------------------------
- * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767)
- * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767)
- * 3) fMultiply - OutputOutOfRangeException:
- * 4) fGetSquare - OutputOutOfRangeException:
- * 5) fDivide - DivideByZeroException
- * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number
- */
- /* -------------------------------------------------------------------------------------
- * START OF CODE
- * -------------------------------------------------------------------------------------
- */
- static fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/
- {
- uint32_t i;
- bool bNegated = false;
- fInt fPositiveOne = ConvertToFraction(1);
- fInt fZERO = ConvertToFraction(0);
- fInt lower_bound = Divide(78, 10000);
- fInt solution = fPositiveOne; /*Starting off with baseline of 1 */
- fInt error_term;
- static const uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
- static const uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
- if (GreaterThan(fZERO, exponent)) {
- exponent = fNegate(exponent);
- bNegated = true;
- }
- while (GreaterThan(exponent, lower_bound)) {
- for (i = 0; i < 11; i++) {
- if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) {
- exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000));
- solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000));
- }
- }
- }
- error_term = fAdd(fPositiveOne, exponent);
- solution = fMultiply(solution, error_term);
- if (bNegated)
- solution = fDivide(fPositiveOne, solution);
- return solution;
- }
- static fInt fNaturalLog(fInt value)
- {
- uint32_t i;
- fInt upper_bound = Divide(8, 1000);
- fInt fNegativeOne = ConvertToFraction(-1);
- fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */
- fInt error_term;
- static const uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
- static const uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
- while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) {
- for (i = 0; i < 10; i++) {
- if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) {
- value = fDivide(value, GetScaledFraction(k_array[i], 10000));
- solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000));
- }
- }
- }
- error_term = fAdd(fNegativeOne, value);
- return (fAdd(solution, error_term));
- }
- static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
- {
- fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
- fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
- fInt f_decoded_value;
- f_decoded_value = fDivide(f_fuse_value, f_bit_max_value);
- f_decoded_value = fMultiply(f_decoded_value, f_range);
- f_decoded_value = fAdd(f_decoded_value, f_min);
- return f_decoded_value;
- }
- static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
- {
- fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
- fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
- fInt f_CONSTANT_NEG13 = ConvertToFraction(-13);
- fInt f_CONSTANT1 = ConvertToFraction(1);
- fInt f_decoded_value;
- f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1);
- f_decoded_value = fNaturalLog(f_decoded_value);
- f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13));
- f_decoded_value = fAdd(f_decoded_value, f_average);
- return f_decoded_value;
- }
- static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
- {
- fInt fLeakage;
- fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
- fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse));
- fLeakage = fDivide(fLeakage, f_bit_max_value);
- fLeakage = fExponential(fLeakage);
- fLeakage = fMultiply(fLeakage, f_min);
- return fLeakage;
- }
- static fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
- {
- fInt temp;
- if (X <= MAX)
- temp.full = (X << SHIFT_AMOUNT);
- else
- temp.full = 0;
- return temp;
- }
- static fInt fNegate(fInt X)
- {
- fInt CONSTANT_NEGONE = ConvertToFraction(-1);
- return (fMultiply(X, CONSTANT_NEGONE));
- }
- static fInt Convert_ULONG_ToFraction(uint32_t X)
- {
- fInt temp;
- if (X <= MAX)
- temp.full = (X << SHIFT_AMOUNT);
- else
- temp.full = 0;
- return temp;
- }
- static fInt GetScaledFraction(int X, int factor)
- {
- int times_shifted, factor_shifted;
- bool bNEGATED;
- fInt fValue;
- times_shifted = 0;
- factor_shifted = 0;
- bNEGATED = false;
- if (X < 0) {
- X = -1*X;
- bNEGATED = true;
- }
- if (factor < 0) {
- factor = -1*factor;
- bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */
- }
- if ((X > MAX) || factor > MAX) {
- if ((X/factor) <= MAX) {
- while (X > MAX) {
- X = X >> 1;
- times_shifted++;
- }
- while (factor > MAX) {
- factor = factor >> 1;
- factor_shifted++;
- }
- } else {
- fValue.full = 0;
- return fValue;
- }
- }
- if (factor == 1)
- return ConvertToFraction(X);
- fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor));
- fValue.full = fValue.full << times_shifted;
- fValue.full = fValue.full >> factor_shifted;
- return fValue;
- }
- /* Addition using two fInts */
- static fInt fAdd (fInt X, fInt Y)
- {
- fInt Sum;
- Sum.full = X.full + Y.full;
- return Sum;
- }
- /* Addition using two fInts */
- static fInt fSubtract (fInt X, fInt Y)
- {
- fInt Difference;
- Difference.full = X.full - Y.full;
- return Difference;
- }
- static bool Equal(fInt A, fInt B)
- {
- if (A.full == B.full)
- return true;
- else
- return false;
- }
- static bool GreaterThan(fInt A, fInt B)
- {
- if (A.full > B.full)
- return true;
- else
- return false;
- }
- static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
- {
- fInt Product;
- int64_t tempProduct;
- bool X_LessThanOne, Y_LessThanOne;
- X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0);
- Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0);
- /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/
- /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION
- if (X_LessThanOne && Y_LessThanOne) {
- Product.full = X.full * Y.full;
- return Product
- }*/
- tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */
- tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */
- Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */
- return Product;
- }
- static fInt fDivide (fInt X, fInt Y)
- {
- fInt fZERO, fQuotient;
- int64_t longlongX, longlongY;
- fZERO = ConvertToFraction(0);
- if (Equal(Y, fZERO))
- return fZERO;
- longlongX = (int64_t)X.full;
- longlongY = (int64_t)Y.full;
- longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */
- div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */
- fQuotient.full = (int)longlongX;
- return fQuotient;
- }
- static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
- {
- fInt fullNumber, scaledDecimal, scaledReal;
- scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */
- scaledDecimal.full = uGetScaledDecimal(A);
- fullNumber = fAdd(scaledDecimal,scaledReal);
- return fullNumber.full;
- }
- static fInt fGetSquare(fInt A)
- {
- return fMultiply(A,A);
- }
- /* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
- static fInt fSqrt(fInt num)
- {
- fInt F_divide_Fprime, Fprime;
- fInt test;
- fInt twoShifted;
- int seed, counter, error;
- fInt x_new, x_old, C, y;
- fInt fZERO = ConvertToFraction(0);
- /* (0 > num) is the same as (num < 0), i.e., num is negative */
- if (GreaterThan(fZERO, num) || Equal(fZERO, num))
- return fZERO;
- C = num;
- if (num.partial.real > 3000)
- seed = 60;
- else if (num.partial.real > 1000)
- seed = 30;
- else if (num.partial.real > 100)
- seed = 10;
- else
- seed = 2;
- counter = 0;
- if (Equal(num, fZERO)) /*Square Root of Zero is zero */
- return fZERO;
- twoShifted = ConvertToFraction(2);
- x_new = ConvertToFraction(seed);
- do {
- counter++;
- x_old.full = x_new.full;
- test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */
- y = fSubtract(test, C); /*y = f(x) = x^2 - C; */
- Fprime = fMultiply(twoShifted, x_old);
- F_divide_Fprime = fDivide(y, Fprime);
- x_new = fSubtract(x_old, F_divide_Fprime);
- error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old);
- if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/
- return x_new;
- } while (uAbs(error) > 0);
- return (x_new);
- }
- static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
- {
- fInt *pRoots = &Roots[0];
- fInt temp, root_first, root_second;
- fInt f_CONSTANT10, f_CONSTANT100;
- f_CONSTANT100 = ConvertToFraction(100);
- f_CONSTANT10 = ConvertToFraction(10);
- while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) {
- A = fDivide(A, f_CONSTANT10);
- B = fDivide(B, f_CONSTANT10);
- C = fDivide(C, f_CONSTANT10);
- }
- temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */
- temp = fMultiply(temp, C); /* root = 4*A*C */
- temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */
- temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */
- root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */
- root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */
- root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
- root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
- root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
- root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
- *(pRoots + 0) = root_first;
- *(pRoots + 1) = root_second;
- }
- /* -----------------------------------------------------------------------------
- * SUPPORT FUNCTIONS
- * -----------------------------------------------------------------------------
- */
- /* Conversion Functions */
- static int GetReal (fInt A)
- {
- return (A.full >> SHIFT_AMOUNT);
- }
- static fInt Divide (int X, int Y)
- {
- fInt A, B, Quotient;
- A.full = X << SHIFT_AMOUNT;
- B.full = Y << SHIFT_AMOUNT;
- Quotient = fDivide(A, B);
- return Quotient;
- }
- static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
- {
- int dec[PRECISION];
- int i, scaledDecimal = 0, tmp = A.partial.decimal;
- for (i = 0; i < PRECISION; i++) {
- dec[i] = tmp / (1 << SHIFT_AMOUNT);
- tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]);
- tmp *= 10;
- scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 -i);
- }
- return scaledDecimal;
- }
- static int uPow(int base, int power)
- {
- if (power == 0)
- return 1;
- else
- return (base)*uPow(base, power - 1);
- }
- static int uAbs(int X)
- {
- if (X < 0)
- return (X * -1);
- else
- return X;
- }
- static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
- {
- fInt solution;
- solution = fDivide(A, fStepSize);
- solution.partial.decimal = 0; /*All fractional digits changes to 0 */
- if (error_term)
- solution.partial.real += 1; /*Error term of 1 added */
- solution = fMultiply(solution, fStepSize);
- solution = fAdd(solution, fStepSize);
- return solution;
- }
|