ppatomctrl.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420
  1. /*
  2. * Copyright 2015 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include "pp_debug.h"
  24. #include <linux/module.h>
  25. #include <linux/slab.h>
  26. #include "ppatomctrl.h"
  27. #include "atombios.h"
  28. #include "cgs_common.h"
  29. #include "ppevvmath.h"
  30. #define MEM_ID_MASK 0xff000000
  31. #define MEM_ID_SHIFT 24
  32. #define CLOCK_RANGE_MASK 0x00ffffff
  33. #define CLOCK_RANGE_SHIFT 0
  34. #define LOW_NIBBLE_MASK 0xf
  35. #define DATA_EQU_PREV 0
  36. #define DATA_FROM_TABLE 4
  37. union voltage_object_info {
  38. struct _ATOM_VOLTAGE_OBJECT_INFO v1;
  39. struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
  40. struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
  41. };
  42. static int atomctrl_retrieve_ac_timing(
  43. uint8_t index,
  44. ATOM_INIT_REG_BLOCK *reg_block,
  45. pp_atomctrl_mc_reg_table *table)
  46. {
  47. uint32_t i, j;
  48. uint8_t tmem_id;
  49. ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
  50. ((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
  51. uint8_t num_ranges = 0;
  52. while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
  53. num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
  54. tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
  55. if (index == tmem_id) {
  56. table->mc_reg_table_entry[num_ranges].mclk_max =
  57. (uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
  58. CLOCK_RANGE_SHIFT);
  59. for (i = 0, j = 1; i < table->last; i++) {
  60. if ((table->mc_reg_address[i].uc_pre_reg_data &
  61. LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
  62. table->mc_reg_table_entry[num_ranges].mc_data[i] =
  63. (uint32_t)*((uint32_t *)reg_data + j);
  64. j++;
  65. } else if ((table->mc_reg_address[i].uc_pre_reg_data &
  66. LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
  67. table->mc_reg_table_entry[num_ranges].mc_data[i] =
  68. table->mc_reg_table_entry[num_ranges].mc_data[i-1];
  69. }
  70. }
  71. num_ranges++;
  72. }
  73. reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
  74. ((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
  75. }
  76. PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
  77. "Invalid VramInfo table.", return -1);
  78. table->num_entries = num_ranges;
  79. return 0;
  80. }
  81. /**
  82. * Get memory clock AC timing registers index from VBIOS table
  83. * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
  84. * @param reg_block the address ATOM_INIT_REG_BLOCK
  85. * @param table the address of MCRegTable
  86. * @return 0
  87. */
  88. static int atomctrl_set_mc_reg_address_table(
  89. ATOM_INIT_REG_BLOCK *reg_block,
  90. pp_atomctrl_mc_reg_table *table)
  91. {
  92. uint8_t i = 0;
  93. uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
  94. / sizeof(ATOM_INIT_REG_INDEX_FORMAT));
  95. ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
  96. num_entries--; /* subtract 1 data end mark entry */
  97. PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
  98. "Invalid VramInfo table.", return -1);
  99. /* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
  100. while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
  101. (i < num_entries)) {
  102. table->mc_reg_address[i].s1 =
  103. (uint16_t)(le16_to_cpu(format->usRegIndex));
  104. table->mc_reg_address[i].uc_pre_reg_data =
  105. format->ucPreRegDataLength;
  106. i++;
  107. format = (ATOM_INIT_REG_INDEX_FORMAT *)
  108. ((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
  109. }
  110. table->last = i;
  111. return 0;
  112. }
  113. int atomctrl_initialize_mc_reg_table(
  114. struct pp_hwmgr *hwmgr,
  115. uint8_t module_index,
  116. pp_atomctrl_mc_reg_table *table)
  117. {
  118. ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
  119. ATOM_INIT_REG_BLOCK *reg_block;
  120. int result = 0;
  121. u8 frev, crev;
  122. u16 size;
  123. vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
  124. cgs_atom_get_data_table(hwmgr->device,
  125. GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
  126. if (module_index >= vram_info->ucNumOfVRAMModule) {
  127. pr_err("Invalid VramInfo table.");
  128. result = -1;
  129. } else if (vram_info->sHeader.ucTableFormatRevision < 2) {
  130. pr_err("Invalid VramInfo table.");
  131. result = -1;
  132. }
  133. if (0 == result) {
  134. reg_block = (ATOM_INIT_REG_BLOCK *)
  135. ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
  136. result = atomctrl_set_mc_reg_address_table(reg_block, table);
  137. }
  138. if (0 == result) {
  139. result = atomctrl_retrieve_ac_timing(module_index,
  140. reg_block, table);
  141. }
  142. return result;
  143. }
  144. /**
  145. * Set DRAM timings based on engine clock and memory clock.
  146. */
  147. int atomctrl_set_engine_dram_timings_rv770(
  148. struct pp_hwmgr *hwmgr,
  149. uint32_t engine_clock,
  150. uint32_t memory_clock)
  151. {
  152. SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
  153. /* They are both in 10KHz Units. */
  154. engine_clock_parameters.ulTargetEngineClock =
  155. cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
  156. ((COMPUTE_ENGINE_PLL_PARAM << 24)));
  157. /* in 10 khz units.*/
  158. engine_clock_parameters.sReserved.ulClock =
  159. cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
  160. return cgs_atom_exec_cmd_table(hwmgr->device,
  161. GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
  162. &engine_clock_parameters);
  163. }
  164. /**
  165. * Private Function to get the PowerPlay Table Address.
  166. * WARNING: The tabled returned by this function is in
  167. * dynamically allocated memory.
  168. * The caller has to release if by calling kfree.
  169. */
  170. static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
  171. {
  172. int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
  173. u8 frev, crev;
  174. u16 size;
  175. union voltage_object_info *voltage_info;
  176. voltage_info = (union voltage_object_info *)
  177. cgs_atom_get_data_table(device, index,
  178. &size, &frev, &crev);
  179. if (voltage_info != NULL)
  180. return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
  181. else
  182. return NULL;
  183. }
  184. static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
  185. const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
  186. uint8_t voltage_type, uint8_t voltage_mode)
  187. {
  188. unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
  189. unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
  190. uint8_t *start = (uint8_t *)voltage_object_info_table;
  191. while (offset < size) {
  192. const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
  193. (const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
  194. if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
  195. voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
  196. return voltage_object;
  197. offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
  198. }
  199. return NULL;
  200. }
  201. /** atomctrl_get_memory_pll_dividers_si().
  202. *
  203. * @param hwmgr input parameter: pointer to HwMgr
  204. * @param clock_value input parameter: memory clock
  205. * @param dividers output parameter: memory PLL dividers
  206. * @param strobe_mode input parameter: 1 for strobe mode, 0 for performance mode
  207. */
  208. int atomctrl_get_memory_pll_dividers_si(
  209. struct pp_hwmgr *hwmgr,
  210. uint32_t clock_value,
  211. pp_atomctrl_memory_clock_param *mpll_param,
  212. bool strobe_mode)
  213. {
  214. COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
  215. int result;
  216. mpll_parameters.ulClock = cpu_to_le32(clock_value);
  217. mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
  218. result = cgs_atom_exec_cmd_table
  219. (hwmgr->device,
  220. GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
  221. &mpll_parameters);
  222. if (0 == result) {
  223. mpll_param->mpll_fb_divider.clk_frac =
  224. le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
  225. mpll_param->mpll_fb_divider.cl_kf =
  226. le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
  227. mpll_param->mpll_post_divider =
  228. (uint32_t)mpll_parameters.ucPostDiv;
  229. mpll_param->vco_mode =
  230. (uint32_t)(mpll_parameters.ucPllCntlFlag &
  231. MPLL_CNTL_FLAG_VCO_MODE_MASK);
  232. mpll_param->yclk_sel =
  233. (uint32_t)((mpll_parameters.ucPllCntlFlag &
  234. MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
  235. mpll_param->qdr =
  236. (uint32_t)((mpll_parameters.ucPllCntlFlag &
  237. MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
  238. mpll_param->half_rate =
  239. (uint32_t)((mpll_parameters.ucPllCntlFlag &
  240. MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
  241. mpll_param->dll_speed =
  242. (uint32_t)(mpll_parameters.ucDllSpeed);
  243. mpll_param->bw_ctrl =
  244. (uint32_t)(mpll_parameters.ucBWCntl);
  245. }
  246. return result;
  247. }
  248. /** atomctrl_get_memory_pll_dividers_vi().
  249. *
  250. * @param hwmgr input parameter: pointer to HwMgr
  251. * @param clock_value input parameter: memory clock
  252. * @param dividers output parameter: memory PLL dividers
  253. */
  254. int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
  255. uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
  256. {
  257. COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
  258. int result;
  259. mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
  260. result = cgs_atom_exec_cmd_table(hwmgr->device,
  261. GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
  262. &mpll_parameters);
  263. if (!result)
  264. mpll_param->mpll_post_divider =
  265. (uint32_t)mpll_parameters.ulClock.ucPostDiv;
  266. return result;
  267. }
  268. int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
  269. uint32_t clock_value,
  270. pp_atomctrl_clock_dividers_kong *dividers)
  271. {
  272. COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
  273. int result;
  274. pll_parameters.ulClock = cpu_to_le32(clock_value);
  275. result = cgs_atom_exec_cmd_table
  276. (hwmgr->device,
  277. GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
  278. &pll_parameters);
  279. if (0 == result) {
  280. dividers->pll_post_divider = pll_parameters.ucPostDiv;
  281. dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
  282. }
  283. return result;
  284. }
  285. int atomctrl_get_engine_pll_dividers_vi(
  286. struct pp_hwmgr *hwmgr,
  287. uint32_t clock_value,
  288. pp_atomctrl_clock_dividers_vi *dividers)
  289. {
  290. COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
  291. int result;
  292. pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
  293. pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
  294. result = cgs_atom_exec_cmd_table
  295. (hwmgr->device,
  296. GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
  297. &pll_patameters);
  298. if (0 == result) {
  299. dividers->pll_post_divider =
  300. pll_patameters.ulClock.ucPostDiv;
  301. dividers->real_clock =
  302. le32_to_cpu(pll_patameters.ulClock.ulClock);
  303. dividers->ul_fb_div.ul_fb_div_frac =
  304. le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
  305. dividers->ul_fb_div.ul_fb_div =
  306. le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
  307. dividers->uc_pll_ref_div =
  308. pll_patameters.ucPllRefDiv;
  309. dividers->uc_pll_post_div =
  310. pll_patameters.ucPllPostDiv;
  311. dividers->uc_pll_cntl_flag =
  312. pll_patameters.ucPllCntlFlag;
  313. }
  314. return result;
  315. }
  316. int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
  317. uint32_t clock_value,
  318. pp_atomctrl_clock_dividers_ai *dividers)
  319. {
  320. COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
  321. int result;
  322. pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
  323. pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
  324. result = cgs_atom_exec_cmd_table
  325. (hwmgr->device,
  326. GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
  327. &pll_patameters);
  328. if (0 == result) {
  329. dividers->usSclk_fcw_frac = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
  330. dividers->usSclk_fcw_int = le16_to_cpu(pll_patameters.usSclk_fcw_int);
  331. dividers->ucSclkPostDiv = pll_patameters.ucSclkPostDiv;
  332. dividers->ucSclkVcoMode = pll_patameters.ucSclkVcoMode;
  333. dividers->ucSclkPllRange = pll_patameters.ucSclkPllRange;
  334. dividers->ucSscEnable = pll_patameters.ucSscEnable;
  335. dividers->usSsc_fcw1_frac = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
  336. dividers->usSsc_fcw1_int = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
  337. dividers->usPcc_fcw_int = le16_to_cpu(pll_patameters.usPcc_fcw_int);
  338. dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
  339. dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
  340. }
  341. return result;
  342. }
  343. int atomctrl_get_dfs_pll_dividers_vi(
  344. struct pp_hwmgr *hwmgr,
  345. uint32_t clock_value,
  346. pp_atomctrl_clock_dividers_vi *dividers)
  347. {
  348. COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
  349. int result;
  350. pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
  351. pll_patameters.ulClock.ucPostDiv =
  352. COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
  353. result = cgs_atom_exec_cmd_table
  354. (hwmgr->device,
  355. GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
  356. &pll_patameters);
  357. if (0 == result) {
  358. dividers->pll_post_divider =
  359. pll_patameters.ulClock.ucPostDiv;
  360. dividers->real_clock =
  361. le32_to_cpu(pll_patameters.ulClock.ulClock);
  362. dividers->ul_fb_div.ul_fb_div_frac =
  363. le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
  364. dividers->ul_fb_div.ul_fb_div =
  365. le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
  366. dividers->uc_pll_ref_div =
  367. pll_patameters.ucPllRefDiv;
  368. dividers->uc_pll_post_div =
  369. pll_patameters.ucPllPostDiv;
  370. dividers->uc_pll_cntl_flag =
  371. pll_patameters.ucPllCntlFlag;
  372. }
  373. return result;
  374. }
  375. /**
  376. * Get the reference clock in 10KHz
  377. */
  378. uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
  379. {
  380. ATOM_FIRMWARE_INFO *fw_info;
  381. u8 frev, crev;
  382. u16 size;
  383. uint32_t clock;
  384. fw_info = (ATOM_FIRMWARE_INFO *)
  385. cgs_atom_get_data_table(hwmgr->device,
  386. GetIndexIntoMasterTable(DATA, FirmwareInfo),
  387. &size, &frev, &crev);
  388. if (fw_info == NULL)
  389. clock = 2700;
  390. else
  391. clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
  392. return clock;
  393. }
  394. /**
  395. * Returns true if the given voltage type is controlled by GPIO pins.
  396. * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
  397. * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
  398. * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
  399. */
  400. bool atomctrl_is_voltage_controled_by_gpio_v3(
  401. struct pp_hwmgr *hwmgr,
  402. uint8_t voltage_type,
  403. uint8_t voltage_mode)
  404. {
  405. ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
  406. (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
  407. bool ret;
  408. PP_ASSERT_WITH_CODE((NULL != voltage_info),
  409. "Could not find Voltage Table in BIOS.", return false;);
  410. ret = (NULL != atomctrl_lookup_voltage_type_v3
  411. (voltage_info, voltage_type, voltage_mode)) ? true : false;
  412. return ret;
  413. }
  414. int atomctrl_get_voltage_table_v3(
  415. struct pp_hwmgr *hwmgr,
  416. uint8_t voltage_type,
  417. uint8_t voltage_mode,
  418. pp_atomctrl_voltage_table *voltage_table)
  419. {
  420. ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
  421. (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
  422. const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
  423. unsigned int i;
  424. PP_ASSERT_WITH_CODE((NULL != voltage_info),
  425. "Could not find Voltage Table in BIOS.", return -1;);
  426. voltage_object = atomctrl_lookup_voltage_type_v3
  427. (voltage_info, voltage_type, voltage_mode);
  428. if (voltage_object == NULL)
  429. return -1;
  430. PP_ASSERT_WITH_CODE(
  431. (voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
  432. PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
  433. "Too many voltage entries!",
  434. return -1;
  435. );
  436. for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
  437. voltage_table->entries[i].value =
  438. le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
  439. voltage_table->entries[i].smio_low =
  440. le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
  441. }
  442. voltage_table->mask_low =
  443. le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
  444. voltage_table->count =
  445. voltage_object->asGpioVoltageObj.ucGpioEntryNum;
  446. voltage_table->phase_delay =
  447. voltage_object->asGpioVoltageObj.ucPhaseDelay;
  448. return 0;
  449. }
  450. static bool atomctrl_lookup_gpio_pin(
  451. ATOM_GPIO_PIN_LUT * gpio_lookup_table,
  452. const uint32_t pinId,
  453. pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
  454. {
  455. unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
  456. unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
  457. uint8_t *start = (uint8_t *)gpio_lookup_table;
  458. while (offset < size) {
  459. const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
  460. (const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
  461. if (pinId == pin_assignment->ucGPIO_ID) {
  462. gpio_pin_assignment->uc_gpio_pin_bit_shift =
  463. pin_assignment->ucGpioPinBitShift;
  464. gpio_pin_assignment->us_gpio_pin_aindex =
  465. le16_to_cpu(pin_assignment->usGpioPin_AIndex);
  466. return true;
  467. }
  468. offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
  469. }
  470. return false;
  471. }
  472. /**
  473. * Private Function to get the PowerPlay Table Address.
  474. * WARNING: The tabled returned by this function is in
  475. * dynamically allocated memory.
  476. * The caller has to release if by calling kfree.
  477. */
  478. static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
  479. {
  480. u8 frev, crev;
  481. u16 size;
  482. void *table_address;
  483. table_address = (ATOM_GPIO_PIN_LUT *)
  484. cgs_atom_get_data_table(device,
  485. GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
  486. &size, &frev, &crev);
  487. PP_ASSERT_WITH_CODE((NULL != table_address),
  488. "Error retrieving BIOS Table Address!", return NULL;);
  489. return (ATOM_GPIO_PIN_LUT *)table_address;
  490. }
  491. /**
  492. * Returns 1 if the given pin id find in lookup table.
  493. */
  494. bool atomctrl_get_pp_assign_pin(
  495. struct pp_hwmgr *hwmgr,
  496. const uint32_t pinId,
  497. pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
  498. {
  499. bool bRet = false;
  500. ATOM_GPIO_PIN_LUT *gpio_lookup_table =
  501. get_gpio_lookup_table(hwmgr->device);
  502. PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
  503. "Could not find GPIO lookup Table in BIOS.", return false);
  504. bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
  505. gpio_pin_assignment);
  506. return bRet;
  507. }
  508. int atomctrl_calculate_voltage_evv_on_sclk(
  509. struct pp_hwmgr *hwmgr,
  510. uint8_t voltage_type,
  511. uint32_t sclk,
  512. uint16_t virtual_voltage_Id,
  513. uint16_t *voltage,
  514. uint16_t dpm_level,
  515. bool debug)
  516. {
  517. ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
  518. EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
  519. EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
  520. EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
  521. EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
  522. EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
  523. EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
  524. EFUSE_INPUT_PARAMETER sInput_FuseValues;
  525. READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
  526. uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
  527. fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
  528. fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
  529. fInt fLkg_FT, repeat;
  530. fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
  531. fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
  532. fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
  533. fInt fSclk_margin, fSclk, fEVV_V;
  534. fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
  535. uint32_t ul_FT_Lkg_V0NORM;
  536. fInt fLn_MaxDivMin, fMin, fAverage, fRange;
  537. fInt fRoots[2];
  538. fInt fStepSize = GetScaledFraction(625, 100000);
  539. int result;
  540. getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
  541. cgs_atom_get_data_table(hwmgr->device,
  542. GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
  543. NULL, NULL, NULL);
  544. if (!getASICProfilingInfo)
  545. return -1;
  546. if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
  547. (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
  548. getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
  549. return -1;
  550. /*-----------------------------------------------------------
  551. *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
  552. *-----------------------------------------------------------
  553. */
  554. fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
  555. switch (dpm_level) {
  556. case 1:
  557. fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm1));
  558. fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
  559. break;
  560. case 2:
  561. fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm2));
  562. fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
  563. break;
  564. case 3:
  565. fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm3));
  566. fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
  567. break;
  568. case 4:
  569. fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm4));
  570. fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
  571. break;
  572. case 5:
  573. fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm5));
  574. fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
  575. break;
  576. case 6:
  577. fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm6));
  578. fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
  579. break;
  580. case 7:
  581. fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm7));
  582. fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
  583. break;
  584. default:
  585. pr_err("DPM Level not supported\n");
  586. fPowerDPMx = Convert_ULONG_ToFraction(1);
  587. fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
  588. }
  589. /*-------------------------
  590. * DECODING FUSE VALUES
  591. * ------------------------
  592. */
  593. /*Decode RO_Fused*/
  594. sRO_fuse = getASICProfilingInfo->sRoFuse;
  595. sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
  596. sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
  597. sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
  598. sOutput_FuseValues.sEfuse = sInput_FuseValues;
  599. result = cgs_atom_exec_cmd_table(hwmgr->device,
  600. GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
  601. &sOutput_FuseValues);
  602. if (result)
  603. return result;
  604. /* Finally, the actual fuse value */
  605. ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
  606. fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
  607. fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
  608. fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
  609. sCACm_fuse = getASICProfilingInfo->sCACm;
  610. sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
  611. sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
  612. sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
  613. sOutput_FuseValues.sEfuse = sInput_FuseValues;
  614. result = cgs_atom_exec_cmd_table(hwmgr->device,
  615. GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
  616. &sOutput_FuseValues);
  617. if (result)
  618. return result;
  619. ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
  620. fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
  621. fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
  622. fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
  623. sCACb_fuse = getASICProfilingInfo->sCACb;
  624. sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
  625. sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
  626. sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
  627. sOutput_FuseValues.sEfuse = sInput_FuseValues;
  628. result = cgs_atom_exec_cmd_table(hwmgr->device,
  629. GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
  630. &sOutput_FuseValues);
  631. if (result)
  632. return result;
  633. ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
  634. fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
  635. fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
  636. fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
  637. sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
  638. sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
  639. sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
  640. sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
  641. sOutput_FuseValues.sEfuse = sInput_FuseValues;
  642. result = cgs_atom_exec_cmd_table(hwmgr->device,
  643. GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
  644. &sOutput_FuseValues);
  645. if (result)
  646. return result;
  647. ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
  648. fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
  649. fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
  650. fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
  651. fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
  652. sKv_m_fuse = getASICProfilingInfo->sKv_m;
  653. sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
  654. sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
  655. sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
  656. sOutput_FuseValues.sEfuse = sInput_FuseValues;
  657. result = cgs_atom_exec_cmd_table(hwmgr->device,
  658. GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
  659. &sOutput_FuseValues);
  660. if (result)
  661. return result;
  662. ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
  663. fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
  664. fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
  665. fRange = fMultiply(fRange, ConvertToFraction(-1));
  666. fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
  667. fAverage, fRange, sKv_m_fuse.ucEfuseLength);
  668. sKv_b_fuse = getASICProfilingInfo->sKv_b;
  669. sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
  670. sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
  671. sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
  672. sOutput_FuseValues.sEfuse = sInput_FuseValues;
  673. result = cgs_atom_exec_cmd_table(hwmgr->device,
  674. GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
  675. &sOutput_FuseValues);
  676. if (result)
  677. return result;
  678. ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
  679. fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
  680. fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
  681. fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
  682. fAverage, fRange, sKv_b_fuse.ucEfuseLength);
  683. /* Decoding the Leakage - No special struct container */
  684. /*
  685. * usLkgEuseIndex=56
  686. * ucLkgEfuseBitLSB=6
  687. * ucLkgEfuseLength=10
  688. * ulLkgEncodeLn_MaxDivMin=69077
  689. * ulLkgEncodeMax=1000000
  690. * ulLkgEncodeMin=1000
  691. * ulEfuseLogisticAlpha=13
  692. */
  693. sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
  694. sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
  695. sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
  696. sOutput_FuseValues.sEfuse = sInput_FuseValues;
  697. result = cgs_atom_exec_cmd_table(hwmgr->device,
  698. GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
  699. &sOutput_FuseValues);
  700. if (result)
  701. return result;
  702. ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
  703. fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
  704. fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
  705. fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
  706. fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
  707. fLkg_FT = fFT_Lkg_V0NORM;
  708. /*-------------------------------------------
  709. * PART 2 - Grabbing all required values
  710. *-------------------------------------------
  711. */
  712. fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
  713. ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
  714. fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
  715. ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
  716. fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
  717. ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
  718. fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
  719. ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
  720. fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
  721. ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
  722. fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
  723. ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
  724. fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
  725. ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
  726. fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
  727. ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
  728. fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
  729. fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
  730. fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
  731. fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
  732. fMargin_FMAX_mean = GetScaledFraction(
  733. le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
  734. fMargin_Plat_mean = GetScaledFraction(
  735. le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
  736. fMargin_FMAX_sigma = GetScaledFraction(
  737. le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
  738. fMargin_Plat_sigma = GetScaledFraction(
  739. le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
  740. fMargin_DC_sigma = GetScaledFraction(
  741. le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
  742. fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
  743. fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
  744. fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
  745. fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
  746. fKv_m_fused = fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
  747. fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
  748. fSclk = GetScaledFraction(sclk, 100);
  749. fV_max = fDivide(GetScaledFraction(
  750. le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
  751. fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
  752. fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
  753. fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
  754. fV_FT = fDivide(GetScaledFraction(
  755. le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
  756. fV_min = fDivide(GetScaledFraction(
  757. le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
  758. /*-----------------------
  759. * PART 3
  760. *-----------------------
  761. */
  762. fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
  763. fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
  764. fC_Term = fAdd(fMargin_RO_c,
  765. fAdd(fMultiply(fSM_A0, fLkg_FT),
  766. fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
  767. fAdd(fMultiply(fSM_A3, fSclk),
  768. fSubtract(fSM_A7, fRO_fused)))));
  769. fVDDC_base = fSubtract(fRO_fused,
  770. fSubtract(fMargin_RO_c,
  771. fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
  772. fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
  773. repeat = fSubtract(fVDDC_base,
  774. fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
  775. fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
  776. fGetSquare(repeat)),
  777. fAdd(fMultiply(fMargin_RO_b, repeat),
  778. fMargin_RO_c));
  779. fDC_SCLK = fSubtract(fRO_fused,
  780. fSubtract(fRO_DC_margin,
  781. fSubtract(fSM_A3,
  782. fMultiply(fSM_A2, repeat))));
  783. fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
  784. fSigma_DC = fSubtract(fSclk, fDC_SCLK);
  785. fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
  786. fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
  787. fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
  788. fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
  789. fSquared_Sigma_DC = fGetSquare(fSigma_DC);
  790. fSquared_Sigma_CR = fGetSquare(fSigma_CR);
  791. fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
  792. fSclk_margin = fAdd(fMicro_FMAX,
  793. fAdd(fMicro_CR,
  794. fAdd(fMargin_fixed,
  795. fSqrt(fAdd(fSquared_Sigma_FMAX,
  796. fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
  797. /*
  798. fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
  799. fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
  800. fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
  801. */
  802. fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
  803. fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
  804. fC_Term = fAdd(fRO_DC_margin,
  805. fAdd(fMultiply(fSM_A0, fLkg_FT),
  806. fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
  807. fAdd(fSclk, fSclk_margin)),
  808. fAdd(fMultiply(fSM_A3,
  809. fAdd(fSclk, fSclk_margin)),
  810. fSubtract(fSM_A7, fRO_fused)))));
  811. SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
  812. if (GreaterThan(fRoots[0], fRoots[1]))
  813. fEVV_V = fRoots[1];
  814. else
  815. fEVV_V = fRoots[0];
  816. if (GreaterThan(fV_min, fEVV_V))
  817. fEVV_V = fV_min;
  818. else if (GreaterThan(fEVV_V, fV_max))
  819. fEVV_V = fSubtract(fV_max, fStepSize);
  820. fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
  821. /*-----------------
  822. * PART 4
  823. *-----------------
  824. */
  825. fV_x = fV_min;
  826. while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
  827. fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
  828. fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
  829. fGetSquare(fV_x)), fDerateTDP);
  830. fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
  831. fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
  832. fT_prod), fKv_b_fused), fV_x)), fV_x)));
  833. fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
  834. fKt_Beta_fused, fT_prod)));
  835. fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
  836. fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
  837. fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
  838. fKt_Beta_fused, fT_FT)));
  839. fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
  840. fTDP_Current = fDivide(fTDP_Power, fV_x);
  841. fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
  842. ConvertToFraction(10)));
  843. fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
  844. if (GreaterThan(fV_max, fV_NL) &&
  845. (GreaterThan(fV_NL, fEVV_V) ||
  846. Equal(fV_NL, fEVV_V))) {
  847. fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
  848. *voltage = (uint16_t)fV_NL.partial.real;
  849. break;
  850. } else
  851. fV_x = fAdd(fV_x, fStepSize);
  852. }
  853. return result;
  854. }
  855. /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
  856. * @param hwmgr input: pointer to hwManager
  857. * @param voltage_type input: type of EVV voltage VDDC or VDDGFX
  858. * @param sclk input: in 10Khz unit. DPM state SCLK frequency
  859. * which is define in PPTable SCLK/VDDC dependence
  860. * table associated with this virtual_voltage_Id
  861. * @param virtual_voltage_Id input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
  862. * @param voltage output: real voltage level in unit of mv
  863. */
  864. int atomctrl_get_voltage_evv_on_sclk(
  865. struct pp_hwmgr *hwmgr,
  866. uint8_t voltage_type,
  867. uint32_t sclk, uint16_t virtual_voltage_Id,
  868. uint16_t *voltage)
  869. {
  870. int result;
  871. GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
  872. get_voltage_info_param_space.ucVoltageType =
  873. voltage_type;
  874. get_voltage_info_param_space.ucVoltageMode =
  875. ATOM_GET_VOLTAGE_EVV_VOLTAGE;
  876. get_voltage_info_param_space.usVoltageLevel =
  877. cpu_to_le16(virtual_voltage_Id);
  878. get_voltage_info_param_space.ulSCLKFreq =
  879. cpu_to_le32(sclk);
  880. result = cgs_atom_exec_cmd_table(hwmgr->device,
  881. GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
  882. &get_voltage_info_param_space);
  883. if (0 != result)
  884. return result;
  885. *voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
  886. (&get_voltage_info_param_space))->usVoltageLevel);
  887. return result;
  888. }
  889. /**
  890. * atomctrl_get_voltage_evv gets voltage via call to ATOM COMMAND table.
  891. * @param hwmgr input: pointer to hwManager
  892. * @param virtual_voltage_id input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
  893. * @param voltage output: real voltage level in unit of mv
  894. */
  895. int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
  896. uint16_t virtual_voltage_id,
  897. uint16_t *voltage)
  898. {
  899. int result;
  900. int entry_id;
  901. GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
  902. /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
  903. for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
  904. if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
  905. /* found */
  906. break;
  907. }
  908. }
  909. PP_ASSERT_WITH_CODE(entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count,
  910. "Can't find requested voltage id in vddc_dependency_on_sclk table!",
  911. return -EINVAL;
  912. );
  913. get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
  914. get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
  915. get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
  916. get_voltage_info_param_space.ulSCLKFreq =
  917. cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
  918. result = cgs_atom_exec_cmd_table(hwmgr->device,
  919. GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
  920. &get_voltage_info_param_space);
  921. if (0 != result)
  922. return result;
  923. *voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
  924. (&get_voltage_info_param_space))->usVoltageLevel);
  925. return result;
  926. }
  927. /**
  928. * Get the mpll reference clock in 10KHz
  929. */
  930. uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
  931. {
  932. ATOM_COMMON_TABLE_HEADER *fw_info;
  933. uint32_t clock;
  934. u8 frev, crev;
  935. u16 size;
  936. fw_info = (ATOM_COMMON_TABLE_HEADER *)
  937. cgs_atom_get_data_table(hwmgr->device,
  938. GetIndexIntoMasterTable(DATA, FirmwareInfo),
  939. &size, &frev, &crev);
  940. if (fw_info == NULL)
  941. clock = 2700;
  942. else {
  943. if ((fw_info->ucTableFormatRevision == 2) &&
  944. (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
  945. ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
  946. (ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
  947. clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
  948. } else {
  949. ATOM_FIRMWARE_INFO *fwInfo_0_0 =
  950. (ATOM_FIRMWARE_INFO *)fw_info;
  951. clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
  952. }
  953. }
  954. return clock;
  955. }
  956. /**
  957. * Get the asic internal spread spectrum table
  958. */
  959. static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
  960. {
  961. ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
  962. u8 frev, crev;
  963. u16 size;
  964. table = (ATOM_ASIC_INTERNAL_SS_INFO *)
  965. cgs_atom_get_data_table(device,
  966. GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
  967. &size, &frev, &crev);
  968. return table;
  969. }
  970. /**
  971. * Get the asic internal spread spectrum assignment
  972. */
  973. static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
  974. const uint8_t clockSource,
  975. const uint32_t clockSpeed,
  976. pp_atomctrl_internal_ss_info *ssEntry)
  977. {
  978. ATOM_ASIC_INTERNAL_SS_INFO *table;
  979. ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
  980. int entry_found = 0;
  981. memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
  982. table = asic_internal_ss_get_ss_table(hwmgr->device);
  983. if (NULL == table)
  984. return -1;
  985. ssInfo = &table->asSpreadSpectrum[0];
  986. while (((uint8_t *)ssInfo - (uint8_t *)table) <
  987. le16_to_cpu(table->sHeader.usStructureSize)) {
  988. if ((clockSource == ssInfo->ucClockIndication) &&
  989. ((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
  990. entry_found = 1;
  991. break;
  992. }
  993. ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
  994. sizeof(ATOM_ASIC_SS_ASSIGNMENT));
  995. }
  996. if (entry_found) {
  997. ssEntry->speed_spectrum_percentage =
  998. le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
  999. ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
  1000. if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
  1001. (GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
  1002. (GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
  1003. ssEntry->speed_spectrum_rate /= 100;
  1004. }
  1005. switch (ssInfo->ucSpreadSpectrumMode) {
  1006. case 0:
  1007. ssEntry->speed_spectrum_mode =
  1008. pp_atomctrl_spread_spectrum_mode_down;
  1009. break;
  1010. case 1:
  1011. ssEntry->speed_spectrum_mode =
  1012. pp_atomctrl_spread_spectrum_mode_center;
  1013. break;
  1014. default:
  1015. ssEntry->speed_spectrum_mode =
  1016. pp_atomctrl_spread_spectrum_mode_down;
  1017. break;
  1018. }
  1019. }
  1020. return entry_found ? 0 : 1;
  1021. }
  1022. /**
  1023. * Get the memory clock spread spectrum info
  1024. */
  1025. int atomctrl_get_memory_clock_spread_spectrum(
  1026. struct pp_hwmgr *hwmgr,
  1027. const uint32_t memory_clock,
  1028. pp_atomctrl_internal_ss_info *ssInfo)
  1029. {
  1030. return asic_internal_ss_get_ss_asignment(hwmgr,
  1031. ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
  1032. }
  1033. /**
  1034. * Get the engine clock spread spectrum info
  1035. */
  1036. int atomctrl_get_engine_clock_spread_spectrum(
  1037. struct pp_hwmgr *hwmgr,
  1038. const uint32_t engine_clock,
  1039. pp_atomctrl_internal_ss_info *ssInfo)
  1040. {
  1041. return asic_internal_ss_get_ss_asignment(hwmgr,
  1042. ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
  1043. }
  1044. int atomctrl_read_efuse(void *device, uint16_t start_index,
  1045. uint16_t end_index, uint32_t mask, uint32_t *efuse)
  1046. {
  1047. int result;
  1048. READ_EFUSE_VALUE_PARAMETER efuse_param;
  1049. efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
  1050. efuse_param.sEfuse.ucBitShift = (uint8_t)
  1051. (start_index - ((start_index / 32) * 32));
  1052. efuse_param.sEfuse.ucBitLength = (uint8_t)
  1053. ((end_index - start_index) + 1);
  1054. result = cgs_atom_exec_cmd_table(device,
  1055. GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
  1056. &efuse_param);
  1057. if (!result)
  1058. *efuse = le32_to_cpu(efuse_param.ulEfuseValue) & mask;
  1059. return result;
  1060. }
  1061. int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
  1062. uint8_t level)
  1063. {
  1064. DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
  1065. int result;
  1066. memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
  1067. memory_clock & SET_CLOCK_FREQ_MASK;
  1068. memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
  1069. ADJUST_MC_SETTING_PARAM;
  1070. memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
  1071. result = cgs_atom_exec_cmd_table
  1072. (hwmgr->device,
  1073. GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
  1074. &memory_clock_parameters);
  1075. return result;
  1076. }
  1077. int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
  1078. uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
  1079. {
  1080. int result;
  1081. GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
  1082. get_voltage_info_param_space.ucVoltageType = voltage_type;
  1083. get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
  1084. get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
  1085. get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
  1086. result = cgs_atom_exec_cmd_table(hwmgr->device,
  1087. GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
  1088. &get_voltage_info_param_space);
  1089. if (0 != result)
  1090. return result;
  1091. *voltage = le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)
  1092. (&get_voltage_info_param_space))->ulVoltageLevel);
  1093. return result;
  1094. }
  1095. int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
  1096. {
  1097. int i;
  1098. u8 frev, crev;
  1099. u16 size;
  1100. ATOM_SMU_INFO_V2_1 *psmu_info =
  1101. (ATOM_SMU_INFO_V2_1 *)cgs_atom_get_data_table(hwmgr->device,
  1102. GetIndexIntoMasterTable(DATA, SMU_Info),
  1103. &size, &frev, &crev);
  1104. for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
  1105. table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
  1106. table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
  1107. table->entry[i].usFcw_pcc =
  1108. le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
  1109. table->entry[i].usFcw_trans_upper =
  1110. le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
  1111. table->entry[i].usRcw_trans_lower =
  1112. le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
  1113. }
  1114. return 0;
  1115. }
  1116. int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
  1117. struct pp_atom_ctrl__avfs_parameters *param)
  1118. {
  1119. ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
  1120. if (param == NULL)
  1121. return -EINVAL;
  1122. profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
  1123. cgs_atom_get_data_table(hwmgr->device,
  1124. GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
  1125. NULL, NULL, NULL);
  1126. if (!profile)
  1127. return -1;
  1128. param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
  1129. param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
  1130. param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
  1131. param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
  1132. param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
  1133. param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
  1134. param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
  1135. param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
  1136. param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
  1137. param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
  1138. param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
  1139. param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
  1140. param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
  1141. param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
  1142. param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
  1143. param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
  1144. param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
  1145. param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
  1146. param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
  1147. param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
  1148. param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
  1149. param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
  1150. param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
  1151. param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
  1152. param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
  1153. return 0;
  1154. }
  1155. int atomctrl_get_svi2_info(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
  1156. uint8_t *svd_gpio_id, uint8_t *svc_gpio_id,
  1157. uint16_t *load_line)
  1158. {
  1159. ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
  1160. (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
  1161. const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
  1162. PP_ASSERT_WITH_CODE((NULL != voltage_info),
  1163. "Could not find Voltage Table in BIOS.", return -EINVAL);
  1164. voltage_object = atomctrl_lookup_voltage_type_v3
  1165. (voltage_info, voltage_type, VOLTAGE_OBJ_SVID2);
  1166. *svd_gpio_id = voltage_object->asSVID2Obj.ucSVDGpioId;
  1167. *svc_gpio_id = voltage_object->asSVID2Obj.ucSVCGpioId;
  1168. *load_line = voltage_object->asSVID2Obj.usLoadLine_PSI;
  1169. return 0;
  1170. }