gc.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407
  1. /* Key garbage collector
  2. *
  3. * Copyright (C) 2009-2011 Red Hat, Inc. All Rights Reserved.
  4. * Written by David Howells (dhowells@redhat.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public Licence
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the Licence, or (at your option) any later version.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/slab.h>
  13. #include <linux/security.h>
  14. #include <keys/keyring-type.h>
  15. #include "internal.h"
  16. /*
  17. * Delay between key revocation/expiry in seconds
  18. */
  19. unsigned key_gc_delay = 5 * 60;
  20. /*
  21. * Reaper for unused keys.
  22. */
  23. static void key_garbage_collector(struct work_struct *work);
  24. DECLARE_WORK(key_gc_work, key_garbage_collector);
  25. /*
  26. * Reaper for links from keyrings to dead keys.
  27. */
  28. static void key_gc_timer_func(unsigned long);
  29. static DEFINE_TIMER(key_gc_timer, key_gc_timer_func, 0, 0);
  30. static time_t key_gc_next_run = LONG_MAX;
  31. static struct key_type *key_gc_dead_keytype;
  32. static unsigned long key_gc_flags;
  33. #define KEY_GC_KEY_EXPIRED 0 /* A key expired and needs unlinking */
  34. #define KEY_GC_REAP_KEYTYPE 1 /* A keytype is being unregistered */
  35. #define KEY_GC_REAPING_KEYTYPE 2 /* Cleared when keytype reaped */
  36. /*
  37. * Any key whose type gets unregistered will be re-typed to this if it can't be
  38. * immediately unlinked.
  39. */
  40. struct key_type key_type_dead = {
  41. .name = "dead",
  42. };
  43. /*
  44. * Schedule a garbage collection run.
  45. * - time precision isn't particularly important
  46. */
  47. void key_schedule_gc(time_t gc_at)
  48. {
  49. unsigned long expires;
  50. time_t now = current_kernel_time().tv_sec;
  51. kenter("%ld", gc_at - now);
  52. if (gc_at <= now || test_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags)) {
  53. kdebug("IMMEDIATE");
  54. schedule_work(&key_gc_work);
  55. } else if (gc_at < key_gc_next_run) {
  56. kdebug("DEFERRED");
  57. key_gc_next_run = gc_at;
  58. expires = jiffies + (gc_at - now) * HZ;
  59. mod_timer(&key_gc_timer, expires);
  60. }
  61. }
  62. /*
  63. * Schedule a dead links collection run.
  64. */
  65. void key_schedule_gc_links(void)
  66. {
  67. set_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags);
  68. schedule_work(&key_gc_work);
  69. }
  70. /*
  71. * Some key's cleanup time was met after it expired, so we need to get the
  72. * reaper to go through a cycle finding expired keys.
  73. */
  74. static void key_gc_timer_func(unsigned long data)
  75. {
  76. kenter("");
  77. key_gc_next_run = LONG_MAX;
  78. key_schedule_gc_links();
  79. }
  80. /*
  81. * wait_on_bit() sleep function for uninterruptible waiting
  82. */
  83. static int key_gc_wait_bit(void *flags)
  84. {
  85. schedule();
  86. return 0;
  87. }
  88. /*
  89. * Reap keys of dead type.
  90. *
  91. * We use three flags to make sure we see three complete cycles of the garbage
  92. * collector: the first to mark keys of that type as being dead, the second to
  93. * collect dead links and the third to clean up the dead keys. We have to be
  94. * careful as there may already be a cycle in progress.
  95. *
  96. * The caller must be holding key_types_sem.
  97. */
  98. void key_gc_keytype(struct key_type *ktype)
  99. {
  100. kenter("%s", ktype->name);
  101. key_gc_dead_keytype = ktype;
  102. set_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
  103. smp_mb();
  104. set_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags);
  105. kdebug("schedule");
  106. schedule_work(&key_gc_work);
  107. kdebug("sleep");
  108. wait_on_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE, key_gc_wait_bit,
  109. TASK_UNINTERRUPTIBLE);
  110. key_gc_dead_keytype = NULL;
  111. kleave("");
  112. }
  113. static int key_gc_keyring_func(const void *object, void *iterator_data)
  114. {
  115. const struct key *key = object;
  116. time_t *limit = iterator_data;
  117. return key_is_dead(key, *limit);
  118. }
  119. /*
  120. * Garbage collect pointers from a keyring.
  121. *
  122. * Not called with any locks held. The keyring's key struct will not be
  123. * deallocated under us as only our caller may deallocate it.
  124. */
  125. static void key_gc_keyring(struct key *keyring, time_t limit)
  126. {
  127. int result;
  128. kenter("%x{%s}", keyring->serial, keyring->description ?: "");
  129. if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
  130. (1 << KEY_FLAG_REVOKED)))
  131. goto dont_gc;
  132. /* scan the keyring looking for dead keys */
  133. rcu_read_lock();
  134. result = assoc_array_iterate(&keyring->keys,
  135. key_gc_keyring_func, &limit);
  136. rcu_read_unlock();
  137. if (result == true)
  138. goto do_gc;
  139. dont_gc:
  140. kleave(" [no gc]");
  141. return;
  142. do_gc:
  143. keyring_gc(keyring, limit);
  144. kleave(" [gc]");
  145. }
  146. /*
  147. * Garbage collect a list of unreferenced, detached keys
  148. */
  149. static noinline void key_gc_unused_keys(struct list_head *keys)
  150. {
  151. while (!list_empty(keys)) {
  152. struct key *key =
  153. list_entry(keys->next, struct key, graveyard_link);
  154. list_del(&key->graveyard_link);
  155. kdebug("- %u", key->serial);
  156. key_check(key);
  157. security_key_free(key);
  158. /* deal with the user's key tracking and quota */
  159. if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
  160. spin_lock(&key->user->lock);
  161. key->user->qnkeys--;
  162. key->user->qnbytes -= key->quotalen;
  163. spin_unlock(&key->user->lock);
  164. }
  165. atomic_dec(&key->user->nkeys);
  166. if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
  167. atomic_dec(&key->user->nikeys);
  168. key_user_put(key->user);
  169. /* now throw away the key memory */
  170. if (key->type->destroy)
  171. key->type->destroy(key);
  172. kfree(key->description);
  173. #ifdef KEY_DEBUGGING
  174. key->magic = KEY_DEBUG_MAGIC_X;
  175. #endif
  176. kmem_cache_free(key_jar, key);
  177. }
  178. }
  179. /*
  180. * Garbage collector for unused keys.
  181. *
  182. * This is done in process context so that we don't have to disable interrupts
  183. * all over the place. key_put() schedules this rather than trying to do the
  184. * cleanup itself, which means key_put() doesn't have to sleep.
  185. */
  186. static void key_garbage_collector(struct work_struct *work)
  187. {
  188. static LIST_HEAD(graveyard);
  189. static u8 gc_state; /* Internal persistent state */
  190. #define KEY_GC_REAP_AGAIN 0x01 /* - Need another cycle */
  191. #define KEY_GC_REAPING_LINKS 0x02 /* - We need to reap links */
  192. #define KEY_GC_SET_TIMER 0x04 /* - We need to restart the timer */
  193. #define KEY_GC_REAPING_DEAD_1 0x10 /* - We need to mark dead keys */
  194. #define KEY_GC_REAPING_DEAD_2 0x20 /* - We need to reap dead key links */
  195. #define KEY_GC_REAPING_DEAD_3 0x40 /* - We need to reap dead keys */
  196. #define KEY_GC_FOUND_DEAD_KEY 0x80 /* - We found at least one dead key */
  197. struct rb_node *cursor;
  198. struct key *key;
  199. time_t new_timer, limit;
  200. kenter("[%lx,%x]", key_gc_flags, gc_state);
  201. limit = current_kernel_time().tv_sec;
  202. if (limit > key_gc_delay)
  203. limit -= key_gc_delay;
  204. else
  205. limit = key_gc_delay;
  206. /* Work out what we're going to be doing in this pass */
  207. gc_state &= KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2;
  208. gc_state <<= 1;
  209. if (test_and_clear_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags))
  210. gc_state |= KEY_GC_REAPING_LINKS | KEY_GC_SET_TIMER;
  211. if (test_and_clear_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags))
  212. gc_state |= KEY_GC_REAPING_DEAD_1;
  213. kdebug("new pass %x", gc_state);
  214. new_timer = LONG_MAX;
  215. /* As only this function is permitted to remove things from the key
  216. * serial tree, if cursor is non-NULL then it will always point to a
  217. * valid node in the tree - even if lock got dropped.
  218. */
  219. spin_lock(&key_serial_lock);
  220. cursor = rb_first(&key_serial_tree);
  221. continue_scanning:
  222. while (cursor) {
  223. key = rb_entry(cursor, struct key, serial_node);
  224. cursor = rb_next(cursor);
  225. if (atomic_read(&key->usage) == 0)
  226. goto found_unreferenced_key;
  227. if (unlikely(gc_state & KEY_GC_REAPING_DEAD_1)) {
  228. if (key->type == key_gc_dead_keytype) {
  229. gc_state |= KEY_GC_FOUND_DEAD_KEY;
  230. set_bit(KEY_FLAG_DEAD, &key->flags);
  231. key->perm = 0;
  232. goto skip_dead_key;
  233. }
  234. }
  235. if (gc_state & KEY_GC_SET_TIMER) {
  236. if (key->expiry > limit && key->expiry < new_timer) {
  237. kdebug("will expire %x in %ld",
  238. key_serial(key), key->expiry - limit);
  239. new_timer = key->expiry;
  240. }
  241. }
  242. if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2))
  243. if (key->type == key_gc_dead_keytype)
  244. gc_state |= KEY_GC_FOUND_DEAD_KEY;
  245. if ((gc_state & KEY_GC_REAPING_LINKS) ||
  246. unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) {
  247. if (key->type == &key_type_keyring)
  248. goto found_keyring;
  249. }
  250. if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3))
  251. if (key->type == key_gc_dead_keytype)
  252. goto destroy_dead_key;
  253. skip_dead_key:
  254. if (spin_is_contended(&key_serial_lock) || need_resched())
  255. goto contended;
  256. }
  257. contended:
  258. spin_unlock(&key_serial_lock);
  259. maybe_resched:
  260. if (cursor) {
  261. cond_resched();
  262. spin_lock(&key_serial_lock);
  263. goto continue_scanning;
  264. }
  265. /* We've completed the pass. Set the timer if we need to and queue a
  266. * new cycle if necessary. We keep executing cycles until we find one
  267. * where we didn't reap any keys.
  268. */
  269. kdebug("pass complete");
  270. if (gc_state & KEY_GC_SET_TIMER && new_timer != (time_t)LONG_MAX) {
  271. new_timer += key_gc_delay;
  272. key_schedule_gc(new_timer);
  273. }
  274. if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2) ||
  275. !list_empty(&graveyard)) {
  276. /* Make sure that all pending keyring payload destructions are
  277. * fulfilled and that people aren't now looking at dead or
  278. * dying keys that they don't have a reference upon or a link
  279. * to.
  280. */
  281. kdebug("gc sync");
  282. synchronize_rcu();
  283. }
  284. if (!list_empty(&graveyard)) {
  285. kdebug("gc keys");
  286. key_gc_unused_keys(&graveyard);
  287. }
  288. if (unlikely(gc_state & (KEY_GC_REAPING_DEAD_1 |
  289. KEY_GC_REAPING_DEAD_2))) {
  290. if (!(gc_state & KEY_GC_FOUND_DEAD_KEY)) {
  291. /* No remaining dead keys: short circuit the remaining
  292. * keytype reap cycles.
  293. */
  294. kdebug("dead short");
  295. gc_state &= ~(KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2);
  296. gc_state |= KEY_GC_REAPING_DEAD_3;
  297. } else {
  298. gc_state |= KEY_GC_REAP_AGAIN;
  299. }
  300. }
  301. if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3)) {
  302. kdebug("dead wake");
  303. smp_mb();
  304. clear_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
  305. wake_up_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE);
  306. }
  307. if (gc_state & KEY_GC_REAP_AGAIN)
  308. schedule_work(&key_gc_work);
  309. kleave(" [end %x]", gc_state);
  310. return;
  311. /* We found an unreferenced key - once we've removed it from the tree,
  312. * we can safely drop the lock.
  313. */
  314. found_unreferenced_key:
  315. kdebug("unrefd key %d", key->serial);
  316. rb_erase(&key->serial_node, &key_serial_tree);
  317. spin_unlock(&key_serial_lock);
  318. list_add_tail(&key->graveyard_link, &graveyard);
  319. gc_state |= KEY_GC_REAP_AGAIN;
  320. goto maybe_resched;
  321. /* We found a keyring and we need to check the payload for links to
  322. * dead or expired keys. We don't flag another reap immediately as we
  323. * have to wait for the old payload to be destroyed by RCU before we
  324. * can reap the keys to which it refers.
  325. */
  326. found_keyring:
  327. spin_unlock(&key_serial_lock);
  328. key_gc_keyring(key, limit);
  329. goto maybe_resched;
  330. /* We found a dead key that is still referenced. Reset its type and
  331. * destroy its payload with its semaphore held.
  332. */
  333. destroy_dead_key:
  334. spin_unlock(&key_serial_lock);
  335. kdebug("destroy key %d", key->serial);
  336. down_write(&key->sem);
  337. key->type = &key_type_dead;
  338. if (key_gc_dead_keytype->destroy)
  339. key_gc_dead_keytype->destroy(key);
  340. memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
  341. up_write(&key->sem);
  342. goto maybe_resched;
  343. }