fork.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/mm.h>
  30. #include <linux/vmacache.h>
  31. #include <linux/nsproxy.h>
  32. #include <linux/capability.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/security.h>
  36. #include <linux/hugetlb.h>
  37. #include <linux/seccomp.h>
  38. #include <linux/swap.h>
  39. #include <linux/syscalls.h>
  40. #include <linux/jiffies.h>
  41. #include <linux/futex.h>
  42. #include <linux/compat.h>
  43. #include <linux/kthread.h>
  44. #include <linux/task_io_accounting_ops.h>
  45. #include <linux/rcupdate.h>
  46. #include <linux/ptrace.h>
  47. #include <linux/mount.h>
  48. #include <linux/audit.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/ftrace.h>
  51. #include <linux/proc_fs.h>
  52. #include <linux/profile.h>
  53. #include <linux/rmap.h>
  54. #include <linux/ksm.h>
  55. #include <linux/acct.h>
  56. #include <linux/tsacct_kern.h>
  57. #include <linux/cn_proc.h>
  58. #include <linux/freezer.h>
  59. #include <linux/delayacct.h>
  60. #include <linux/taskstats_kern.h>
  61. #include <linux/random.h>
  62. #include <linux/tty.h>
  63. #include <linux/blkdev.h>
  64. #include <linux/fs_struct.h>
  65. #include <linux/magic.h>
  66. #include <linux/perf_event.h>
  67. #include <linux/posix-timers.h>
  68. #include <linux/user-return-notifier.h>
  69. #include <linux/oom.h>
  70. #include <linux/khugepaged.h>
  71. #include <linux/signalfd.h>
  72. #include <linux/uprobes.h>
  73. #include <linux/aio.h>
  74. #include <linux/compiler.h>
  75. #include <linux/sysctl.h>
  76. #include <asm/pgtable.h>
  77. #include <asm/pgalloc.h>
  78. #include <asm/uaccess.h>
  79. #include <asm/mmu_context.h>
  80. #include <asm/cacheflush.h>
  81. #include <asm/tlbflush.h>
  82. #include <trace/events/sched.h>
  83. #define CREATE_TRACE_POINTS
  84. #include <trace/events/task.h>
  85. /*
  86. * Minimum number of threads to boot the kernel
  87. */
  88. #define MIN_THREADS 20
  89. /*
  90. * Maximum number of threads
  91. */
  92. #define MAX_THREADS FUTEX_TID_MASK
  93. /*
  94. * Protected counters by write_lock_irq(&tasklist_lock)
  95. */
  96. unsigned long total_forks; /* Handle normal Linux uptimes. */
  97. int nr_threads; /* The idle threads do not count.. */
  98. int max_threads; /* tunable limit on nr_threads */
  99. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  100. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  101. #ifdef CONFIG_PROVE_RCU
  102. int lockdep_tasklist_lock_is_held(void)
  103. {
  104. return lockdep_is_held(&tasklist_lock);
  105. }
  106. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  107. #endif /* #ifdef CONFIG_PROVE_RCU */
  108. int nr_processes(void)
  109. {
  110. int cpu;
  111. int total = 0;
  112. for_each_possible_cpu(cpu)
  113. total += per_cpu(process_counts, cpu);
  114. return total;
  115. }
  116. void __weak arch_release_task_struct(struct task_struct *tsk)
  117. {
  118. }
  119. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  120. static struct kmem_cache *task_struct_cachep;
  121. static inline struct task_struct *alloc_task_struct_node(int node)
  122. {
  123. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  124. }
  125. static inline void free_task_struct(struct task_struct *tsk)
  126. {
  127. kmem_cache_free(task_struct_cachep, tsk);
  128. }
  129. #endif
  130. void __weak arch_release_thread_info(struct thread_info *ti)
  131. {
  132. }
  133. #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
  134. /*
  135. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  136. * kmemcache based allocator.
  137. */
  138. # if THREAD_SIZE >= PAGE_SIZE
  139. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  140. int node)
  141. {
  142. struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
  143. THREAD_SIZE_ORDER);
  144. return page ? page_address(page) : NULL;
  145. }
  146. static inline void free_thread_info(struct thread_info *ti)
  147. {
  148. free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  149. }
  150. # else
  151. static struct kmem_cache *thread_info_cache;
  152. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  153. int node)
  154. {
  155. return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
  156. }
  157. static void free_thread_info(struct thread_info *ti)
  158. {
  159. kmem_cache_free(thread_info_cache, ti);
  160. }
  161. void thread_info_cache_init(void)
  162. {
  163. thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
  164. THREAD_SIZE, 0, NULL);
  165. BUG_ON(thread_info_cache == NULL);
  166. }
  167. # endif
  168. #endif
  169. /* SLAB cache for signal_struct structures (tsk->signal) */
  170. static struct kmem_cache *signal_cachep;
  171. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  172. struct kmem_cache *sighand_cachep;
  173. /* SLAB cache for files_struct structures (tsk->files) */
  174. struct kmem_cache *files_cachep;
  175. /* SLAB cache for fs_struct structures (tsk->fs) */
  176. struct kmem_cache *fs_cachep;
  177. /* SLAB cache for vm_area_struct structures */
  178. struct kmem_cache *vm_area_cachep;
  179. /* SLAB cache for mm_struct structures (tsk->mm) */
  180. static struct kmem_cache *mm_cachep;
  181. static void account_kernel_stack(struct thread_info *ti, int account)
  182. {
  183. struct zone *zone = page_zone(virt_to_page(ti));
  184. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  185. }
  186. void free_task(struct task_struct *tsk)
  187. {
  188. account_kernel_stack(tsk->stack, -1);
  189. arch_release_thread_info(tsk->stack);
  190. free_thread_info(tsk->stack);
  191. rt_mutex_debug_task_free(tsk);
  192. ftrace_graph_exit_task(tsk);
  193. put_seccomp_filter(tsk);
  194. arch_release_task_struct(tsk);
  195. free_task_struct(tsk);
  196. }
  197. EXPORT_SYMBOL(free_task);
  198. static inline void free_signal_struct(struct signal_struct *sig)
  199. {
  200. taskstats_tgid_free(sig);
  201. sched_autogroup_exit(sig);
  202. kmem_cache_free(signal_cachep, sig);
  203. }
  204. static inline void put_signal_struct(struct signal_struct *sig)
  205. {
  206. if (atomic_dec_and_test(&sig->sigcnt))
  207. free_signal_struct(sig);
  208. }
  209. void __put_task_struct(struct task_struct *tsk)
  210. {
  211. WARN_ON(!tsk->exit_state);
  212. WARN_ON(atomic_read(&tsk->usage));
  213. WARN_ON(tsk == current);
  214. task_numa_free(tsk);
  215. security_task_free(tsk);
  216. exit_creds(tsk);
  217. delayacct_tsk_free(tsk);
  218. put_signal_struct(tsk->signal);
  219. if (!profile_handoff_task(tsk))
  220. free_task(tsk);
  221. }
  222. EXPORT_SYMBOL_GPL(__put_task_struct);
  223. void __init __weak arch_task_cache_init(void) { }
  224. /*
  225. * set_max_threads
  226. */
  227. static void set_max_threads(unsigned int max_threads_suggested)
  228. {
  229. u64 threads;
  230. /*
  231. * The number of threads shall be limited such that the thread
  232. * structures may only consume a small part of the available memory.
  233. */
  234. if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
  235. threads = MAX_THREADS;
  236. else
  237. threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
  238. (u64) THREAD_SIZE * 8UL);
  239. if (threads > max_threads_suggested)
  240. threads = max_threads_suggested;
  241. max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
  242. }
  243. #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
  244. /* Initialized by the architecture: */
  245. int arch_task_struct_size __read_mostly;
  246. #endif
  247. void __init fork_init(void)
  248. {
  249. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  250. #ifndef ARCH_MIN_TASKALIGN
  251. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  252. #endif
  253. /* create a slab on which task_structs can be allocated */
  254. task_struct_cachep =
  255. kmem_cache_create("task_struct", arch_task_struct_size,
  256. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  257. #endif
  258. /* do the arch specific task caches init */
  259. arch_task_cache_init();
  260. set_max_threads(MAX_THREADS);
  261. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  262. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  263. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  264. init_task.signal->rlim[RLIMIT_NPROC];
  265. }
  266. int __weak arch_dup_task_struct(struct task_struct *dst,
  267. struct task_struct *src)
  268. {
  269. *dst = *src;
  270. return 0;
  271. }
  272. void set_task_stack_end_magic(struct task_struct *tsk)
  273. {
  274. unsigned long *stackend;
  275. stackend = end_of_stack(tsk);
  276. *stackend = STACK_END_MAGIC; /* for overflow detection */
  277. }
  278. static struct task_struct *dup_task_struct(struct task_struct *orig)
  279. {
  280. struct task_struct *tsk;
  281. struct thread_info *ti;
  282. int node = tsk_fork_get_node(orig);
  283. int err;
  284. tsk = alloc_task_struct_node(node);
  285. if (!tsk)
  286. return NULL;
  287. ti = alloc_thread_info_node(tsk, node);
  288. if (!ti)
  289. goto free_tsk;
  290. err = arch_dup_task_struct(tsk, orig);
  291. if (err)
  292. goto free_ti;
  293. tsk->stack = ti;
  294. #ifdef CONFIG_SECCOMP
  295. /*
  296. * We must handle setting up seccomp filters once we're under
  297. * the sighand lock in case orig has changed between now and
  298. * then. Until then, filter must be NULL to avoid messing up
  299. * the usage counts on the error path calling free_task.
  300. */
  301. tsk->seccomp.filter = NULL;
  302. #endif
  303. setup_thread_stack(tsk, orig);
  304. clear_user_return_notifier(tsk);
  305. clear_tsk_need_resched(tsk);
  306. set_task_stack_end_magic(tsk);
  307. #ifdef CONFIG_CC_STACKPROTECTOR
  308. tsk->stack_canary = get_random_int();
  309. #endif
  310. /*
  311. * One for us, one for whoever does the "release_task()" (usually
  312. * parent)
  313. */
  314. atomic_set(&tsk->usage, 2);
  315. #ifdef CONFIG_BLK_DEV_IO_TRACE
  316. tsk->btrace_seq = 0;
  317. #endif
  318. tsk->splice_pipe = NULL;
  319. tsk->task_frag.page = NULL;
  320. account_kernel_stack(ti, 1);
  321. return tsk;
  322. free_ti:
  323. free_thread_info(ti);
  324. free_tsk:
  325. free_task_struct(tsk);
  326. return NULL;
  327. }
  328. #ifdef CONFIG_MMU
  329. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  330. {
  331. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  332. struct rb_node **rb_link, *rb_parent;
  333. int retval;
  334. unsigned long charge;
  335. uprobe_start_dup_mmap();
  336. down_write(&oldmm->mmap_sem);
  337. flush_cache_dup_mm(oldmm);
  338. uprobe_dup_mmap(oldmm, mm);
  339. /*
  340. * Not linked in yet - no deadlock potential:
  341. */
  342. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  343. /* No ordering required: file already has been exposed. */
  344. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  345. mm->total_vm = oldmm->total_vm;
  346. mm->shared_vm = oldmm->shared_vm;
  347. mm->exec_vm = oldmm->exec_vm;
  348. mm->stack_vm = oldmm->stack_vm;
  349. rb_link = &mm->mm_rb.rb_node;
  350. rb_parent = NULL;
  351. pprev = &mm->mmap;
  352. retval = ksm_fork(mm, oldmm);
  353. if (retval)
  354. goto out;
  355. retval = khugepaged_fork(mm, oldmm);
  356. if (retval)
  357. goto out;
  358. prev = NULL;
  359. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  360. struct file *file;
  361. if (mpnt->vm_flags & VM_DONTCOPY) {
  362. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  363. -vma_pages(mpnt));
  364. continue;
  365. }
  366. charge = 0;
  367. if (mpnt->vm_flags & VM_ACCOUNT) {
  368. unsigned long len = vma_pages(mpnt);
  369. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  370. goto fail_nomem;
  371. charge = len;
  372. }
  373. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  374. if (!tmp)
  375. goto fail_nomem;
  376. *tmp = *mpnt;
  377. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  378. retval = vma_dup_policy(mpnt, tmp);
  379. if (retval)
  380. goto fail_nomem_policy;
  381. tmp->vm_mm = mm;
  382. if (anon_vma_fork(tmp, mpnt))
  383. goto fail_nomem_anon_vma_fork;
  384. tmp->vm_flags &= ~VM_LOCKED;
  385. tmp->vm_next = tmp->vm_prev = NULL;
  386. file = tmp->vm_file;
  387. if (file) {
  388. struct inode *inode = file_inode(file);
  389. struct address_space *mapping = file->f_mapping;
  390. get_file(file);
  391. if (tmp->vm_flags & VM_DENYWRITE)
  392. atomic_dec(&inode->i_writecount);
  393. i_mmap_lock_write(mapping);
  394. if (tmp->vm_flags & VM_SHARED)
  395. atomic_inc(&mapping->i_mmap_writable);
  396. flush_dcache_mmap_lock(mapping);
  397. /* insert tmp into the share list, just after mpnt */
  398. vma_interval_tree_insert_after(tmp, mpnt,
  399. &mapping->i_mmap);
  400. flush_dcache_mmap_unlock(mapping);
  401. i_mmap_unlock_write(mapping);
  402. }
  403. /*
  404. * Clear hugetlb-related page reserves for children. This only
  405. * affects MAP_PRIVATE mappings. Faults generated by the child
  406. * are not guaranteed to succeed, even if read-only
  407. */
  408. if (is_vm_hugetlb_page(tmp))
  409. reset_vma_resv_huge_pages(tmp);
  410. /*
  411. * Link in the new vma and copy the page table entries.
  412. */
  413. *pprev = tmp;
  414. pprev = &tmp->vm_next;
  415. tmp->vm_prev = prev;
  416. prev = tmp;
  417. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  418. rb_link = &tmp->vm_rb.rb_right;
  419. rb_parent = &tmp->vm_rb;
  420. mm->map_count++;
  421. retval = copy_page_range(mm, oldmm, mpnt);
  422. if (tmp->vm_ops && tmp->vm_ops->open)
  423. tmp->vm_ops->open(tmp);
  424. if (retval)
  425. goto out;
  426. }
  427. /* a new mm has just been created */
  428. arch_dup_mmap(oldmm, mm);
  429. retval = 0;
  430. out:
  431. up_write(&mm->mmap_sem);
  432. flush_tlb_mm(oldmm);
  433. up_write(&oldmm->mmap_sem);
  434. uprobe_end_dup_mmap();
  435. return retval;
  436. fail_nomem_anon_vma_fork:
  437. mpol_put(vma_policy(tmp));
  438. fail_nomem_policy:
  439. kmem_cache_free(vm_area_cachep, tmp);
  440. fail_nomem:
  441. retval = -ENOMEM;
  442. vm_unacct_memory(charge);
  443. goto out;
  444. }
  445. static inline int mm_alloc_pgd(struct mm_struct *mm)
  446. {
  447. mm->pgd = pgd_alloc(mm);
  448. if (unlikely(!mm->pgd))
  449. return -ENOMEM;
  450. return 0;
  451. }
  452. static inline void mm_free_pgd(struct mm_struct *mm)
  453. {
  454. pgd_free(mm, mm->pgd);
  455. }
  456. #else
  457. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  458. {
  459. down_write(&oldmm->mmap_sem);
  460. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  461. up_write(&oldmm->mmap_sem);
  462. return 0;
  463. }
  464. #define mm_alloc_pgd(mm) (0)
  465. #define mm_free_pgd(mm)
  466. #endif /* CONFIG_MMU */
  467. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  468. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  469. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  470. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  471. static int __init coredump_filter_setup(char *s)
  472. {
  473. default_dump_filter =
  474. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  475. MMF_DUMP_FILTER_MASK;
  476. return 1;
  477. }
  478. __setup("coredump_filter=", coredump_filter_setup);
  479. #include <linux/init_task.h>
  480. static void mm_init_aio(struct mm_struct *mm)
  481. {
  482. #ifdef CONFIG_AIO
  483. spin_lock_init(&mm->ioctx_lock);
  484. mm->ioctx_table = NULL;
  485. #endif
  486. }
  487. static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  488. {
  489. #ifdef CONFIG_MEMCG
  490. mm->owner = p;
  491. #endif
  492. }
  493. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  494. {
  495. mm->mmap = NULL;
  496. mm->mm_rb = RB_ROOT;
  497. mm->vmacache_seqnum = 0;
  498. atomic_set(&mm->mm_users, 1);
  499. atomic_set(&mm->mm_count, 1);
  500. init_rwsem(&mm->mmap_sem);
  501. INIT_LIST_HEAD(&mm->mmlist);
  502. mm->core_state = NULL;
  503. atomic_long_set(&mm->nr_ptes, 0);
  504. mm_nr_pmds_init(mm);
  505. mm->map_count = 0;
  506. mm->locked_vm = 0;
  507. mm->pinned_vm = 0;
  508. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  509. spin_lock_init(&mm->page_table_lock);
  510. mm_init_cpumask(mm);
  511. mm_init_aio(mm);
  512. mm_init_owner(mm, p);
  513. mmu_notifier_mm_init(mm);
  514. clear_tlb_flush_pending(mm);
  515. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  516. mm->pmd_huge_pte = NULL;
  517. #endif
  518. if (current->mm) {
  519. mm->flags = current->mm->flags & MMF_INIT_MASK;
  520. mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
  521. } else {
  522. mm->flags = default_dump_filter;
  523. mm->def_flags = 0;
  524. }
  525. if (mm_alloc_pgd(mm))
  526. goto fail_nopgd;
  527. if (init_new_context(p, mm))
  528. goto fail_nocontext;
  529. return mm;
  530. fail_nocontext:
  531. mm_free_pgd(mm);
  532. fail_nopgd:
  533. free_mm(mm);
  534. return NULL;
  535. }
  536. static void check_mm(struct mm_struct *mm)
  537. {
  538. int i;
  539. for (i = 0; i < NR_MM_COUNTERS; i++) {
  540. long x = atomic_long_read(&mm->rss_stat.count[i]);
  541. if (unlikely(x))
  542. printk(KERN_ALERT "BUG: Bad rss-counter state "
  543. "mm:%p idx:%d val:%ld\n", mm, i, x);
  544. }
  545. if (atomic_long_read(&mm->nr_ptes))
  546. pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
  547. atomic_long_read(&mm->nr_ptes));
  548. if (mm_nr_pmds(mm))
  549. pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
  550. mm_nr_pmds(mm));
  551. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  552. VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
  553. #endif
  554. }
  555. /*
  556. * Allocate and initialize an mm_struct.
  557. */
  558. struct mm_struct *mm_alloc(void)
  559. {
  560. struct mm_struct *mm;
  561. mm = allocate_mm();
  562. if (!mm)
  563. return NULL;
  564. memset(mm, 0, sizeof(*mm));
  565. return mm_init(mm, current);
  566. }
  567. /*
  568. * Called when the last reference to the mm
  569. * is dropped: either by a lazy thread or by
  570. * mmput. Free the page directory and the mm.
  571. */
  572. void __mmdrop(struct mm_struct *mm)
  573. {
  574. BUG_ON(mm == &init_mm);
  575. mm_free_pgd(mm);
  576. destroy_context(mm);
  577. mmu_notifier_mm_destroy(mm);
  578. check_mm(mm);
  579. free_mm(mm);
  580. }
  581. EXPORT_SYMBOL_GPL(__mmdrop);
  582. /*
  583. * Decrement the use count and release all resources for an mm.
  584. */
  585. void mmput(struct mm_struct *mm)
  586. {
  587. might_sleep();
  588. if (atomic_dec_and_test(&mm->mm_users)) {
  589. uprobe_clear_state(mm);
  590. exit_aio(mm);
  591. ksm_exit(mm);
  592. khugepaged_exit(mm); /* must run before exit_mmap */
  593. exit_mmap(mm);
  594. set_mm_exe_file(mm, NULL);
  595. if (!list_empty(&mm->mmlist)) {
  596. spin_lock(&mmlist_lock);
  597. list_del(&mm->mmlist);
  598. spin_unlock(&mmlist_lock);
  599. }
  600. if (mm->binfmt)
  601. module_put(mm->binfmt->module);
  602. mmdrop(mm);
  603. }
  604. }
  605. EXPORT_SYMBOL_GPL(mmput);
  606. /**
  607. * set_mm_exe_file - change a reference to the mm's executable file
  608. *
  609. * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
  610. *
  611. * Main users are mmput() and sys_execve(). Callers prevent concurrent
  612. * invocations: in mmput() nobody alive left, in execve task is single
  613. * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
  614. * mm->exe_file, but does so without using set_mm_exe_file() in order
  615. * to do avoid the need for any locks.
  616. */
  617. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  618. {
  619. struct file *old_exe_file;
  620. /*
  621. * It is safe to dereference the exe_file without RCU as
  622. * this function is only called if nobody else can access
  623. * this mm -- see comment above for justification.
  624. */
  625. old_exe_file = rcu_dereference_raw(mm->exe_file);
  626. if (new_exe_file)
  627. get_file(new_exe_file);
  628. rcu_assign_pointer(mm->exe_file, new_exe_file);
  629. if (old_exe_file)
  630. fput(old_exe_file);
  631. }
  632. /**
  633. * get_mm_exe_file - acquire a reference to the mm's executable file
  634. *
  635. * Returns %NULL if mm has no associated executable file.
  636. * User must release file via fput().
  637. */
  638. struct file *get_mm_exe_file(struct mm_struct *mm)
  639. {
  640. struct file *exe_file;
  641. rcu_read_lock();
  642. exe_file = rcu_dereference(mm->exe_file);
  643. if (exe_file && !get_file_rcu(exe_file))
  644. exe_file = NULL;
  645. rcu_read_unlock();
  646. return exe_file;
  647. }
  648. EXPORT_SYMBOL(get_mm_exe_file);
  649. /**
  650. * get_task_mm - acquire a reference to the task's mm
  651. *
  652. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  653. * this kernel workthread has transiently adopted a user mm with use_mm,
  654. * to do its AIO) is not set and if so returns a reference to it, after
  655. * bumping up the use count. User must release the mm via mmput()
  656. * after use. Typically used by /proc and ptrace.
  657. */
  658. struct mm_struct *get_task_mm(struct task_struct *task)
  659. {
  660. struct mm_struct *mm;
  661. task_lock(task);
  662. mm = task->mm;
  663. if (mm) {
  664. if (task->flags & PF_KTHREAD)
  665. mm = NULL;
  666. else
  667. atomic_inc(&mm->mm_users);
  668. }
  669. task_unlock(task);
  670. return mm;
  671. }
  672. EXPORT_SYMBOL_GPL(get_task_mm);
  673. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  674. {
  675. struct mm_struct *mm;
  676. int err;
  677. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  678. if (err)
  679. return ERR_PTR(err);
  680. mm = get_task_mm(task);
  681. if (mm && mm != current->mm &&
  682. !ptrace_may_access(task, mode)) {
  683. mmput(mm);
  684. mm = ERR_PTR(-EACCES);
  685. }
  686. mutex_unlock(&task->signal->cred_guard_mutex);
  687. return mm;
  688. }
  689. static void complete_vfork_done(struct task_struct *tsk)
  690. {
  691. struct completion *vfork;
  692. task_lock(tsk);
  693. vfork = tsk->vfork_done;
  694. if (likely(vfork)) {
  695. tsk->vfork_done = NULL;
  696. complete(vfork);
  697. }
  698. task_unlock(tsk);
  699. }
  700. static int wait_for_vfork_done(struct task_struct *child,
  701. struct completion *vfork)
  702. {
  703. int killed;
  704. freezer_do_not_count();
  705. killed = wait_for_completion_killable(vfork);
  706. freezer_count();
  707. if (killed) {
  708. task_lock(child);
  709. child->vfork_done = NULL;
  710. task_unlock(child);
  711. }
  712. put_task_struct(child);
  713. return killed;
  714. }
  715. /* Please note the differences between mmput and mm_release.
  716. * mmput is called whenever we stop holding onto a mm_struct,
  717. * error success whatever.
  718. *
  719. * mm_release is called after a mm_struct has been removed
  720. * from the current process.
  721. *
  722. * This difference is important for error handling, when we
  723. * only half set up a mm_struct for a new process and need to restore
  724. * the old one. Because we mmput the new mm_struct before
  725. * restoring the old one. . .
  726. * Eric Biederman 10 January 1998
  727. */
  728. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  729. {
  730. /* Get rid of any futexes when releasing the mm */
  731. #ifdef CONFIG_FUTEX
  732. if (unlikely(tsk->robust_list)) {
  733. exit_robust_list(tsk);
  734. tsk->robust_list = NULL;
  735. }
  736. #ifdef CONFIG_COMPAT
  737. if (unlikely(tsk->compat_robust_list)) {
  738. compat_exit_robust_list(tsk);
  739. tsk->compat_robust_list = NULL;
  740. }
  741. #endif
  742. if (unlikely(!list_empty(&tsk->pi_state_list)))
  743. exit_pi_state_list(tsk);
  744. #endif
  745. uprobe_free_utask(tsk);
  746. /* Get rid of any cached register state */
  747. deactivate_mm(tsk, mm);
  748. /*
  749. * If we're exiting normally, clear a user-space tid field if
  750. * requested. We leave this alone when dying by signal, to leave
  751. * the value intact in a core dump, and to save the unnecessary
  752. * trouble, say, a killed vfork parent shouldn't touch this mm.
  753. * Userland only wants this done for a sys_exit.
  754. */
  755. if (tsk->clear_child_tid) {
  756. if (!(tsk->flags & PF_SIGNALED) &&
  757. atomic_read(&mm->mm_users) > 1) {
  758. /*
  759. * We don't check the error code - if userspace has
  760. * not set up a proper pointer then tough luck.
  761. */
  762. put_user(0, tsk->clear_child_tid);
  763. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  764. 1, NULL, NULL, 0);
  765. }
  766. tsk->clear_child_tid = NULL;
  767. }
  768. /*
  769. * All done, finally we can wake up parent and return this mm to him.
  770. * Also kthread_stop() uses this completion for synchronization.
  771. */
  772. if (tsk->vfork_done)
  773. complete_vfork_done(tsk);
  774. }
  775. /*
  776. * Allocate a new mm structure and copy contents from the
  777. * mm structure of the passed in task structure.
  778. */
  779. static struct mm_struct *dup_mm(struct task_struct *tsk)
  780. {
  781. struct mm_struct *mm, *oldmm = current->mm;
  782. int err;
  783. mm = allocate_mm();
  784. if (!mm)
  785. goto fail_nomem;
  786. memcpy(mm, oldmm, sizeof(*mm));
  787. if (!mm_init(mm, tsk))
  788. goto fail_nomem;
  789. err = dup_mmap(mm, oldmm);
  790. if (err)
  791. goto free_pt;
  792. mm->hiwater_rss = get_mm_rss(mm);
  793. mm->hiwater_vm = mm->total_vm;
  794. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  795. goto free_pt;
  796. return mm;
  797. free_pt:
  798. /* don't put binfmt in mmput, we haven't got module yet */
  799. mm->binfmt = NULL;
  800. mmput(mm);
  801. fail_nomem:
  802. return NULL;
  803. }
  804. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  805. {
  806. struct mm_struct *mm, *oldmm;
  807. int retval;
  808. tsk->min_flt = tsk->maj_flt = 0;
  809. tsk->nvcsw = tsk->nivcsw = 0;
  810. #ifdef CONFIG_DETECT_HUNG_TASK
  811. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  812. #endif
  813. tsk->mm = NULL;
  814. tsk->active_mm = NULL;
  815. /*
  816. * Are we cloning a kernel thread?
  817. *
  818. * We need to steal a active VM for that..
  819. */
  820. oldmm = current->mm;
  821. if (!oldmm)
  822. return 0;
  823. /* initialize the new vmacache entries */
  824. vmacache_flush(tsk);
  825. if (clone_flags & CLONE_VM) {
  826. atomic_inc(&oldmm->mm_users);
  827. mm = oldmm;
  828. goto good_mm;
  829. }
  830. retval = -ENOMEM;
  831. mm = dup_mm(tsk);
  832. if (!mm)
  833. goto fail_nomem;
  834. good_mm:
  835. tsk->mm = mm;
  836. tsk->active_mm = mm;
  837. return 0;
  838. fail_nomem:
  839. return retval;
  840. }
  841. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  842. {
  843. struct fs_struct *fs = current->fs;
  844. if (clone_flags & CLONE_FS) {
  845. /* tsk->fs is already what we want */
  846. spin_lock(&fs->lock);
  847. if (fs->in_exec) {
  848. spin_unlock(&fs->lock);
  849. return -EAGAIN;
  850. }
  851. fs->users++;
  852. spin_unlock(&fs->lock);
  853. return 0;
  854. }
  855. tsk->fs = copy_fs_struct(fs);
  856. if (!tsk->fs)
  857. return -ENOMEM;
  858. return 0;
  859. }
  860. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  861. {
  862. struct files_struct *oldf, *newf;
  863. int error = 0;
  864. /*
  865. * A background process may not have any files ...
  866. */
  867. oldf = current->files;
  868. if (!oldf)
  869. goto out;
  870. if (clone_flags & CLONE_FILES) {
  871. atomic_inc(&oldf->count);
  872. goto out;
  873. }
  874. newf = dup_fd(oldf, &error);
  875. if (!newf)
  876. goto out;
  877. tsk->files = newf;
  878. error = 0;
  879. out:
  880. return error;
  881. }
  882. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  883. {
  884. #ifdef CONFIG_BLOCK
  885. struct io_context *ioc = current->io_context;
  886. struct io_context *new_ioc;
  887. if (!ioc)
  888. return 0;
  889. /*
  890. * Share io context with parent, if CLONE_IO is set
  891. */
  892. if (clone_flags & CLONE_IO) {
  893. ioc_task_link(ioc);
  894. tsk->io_context = ioc;
  895. } else if (ioprio_valid(ioc->ioprio)) {
  896. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  897. if (unlikely(!new_ioc))
  898. return -ENOMEM;
  899. new_ioc->ioprio = ioc->ioprio;
  900. put_io_context(new_ioc);
  901. }
  902. #endif
  903. return 0;
  904. }
  905. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  906. {
  907. struct sighand_struct *sig;
  908. if (clone_flags & CLONE_SIGHAND) {
  909. atomic_inc(&current->sighand->count);
  910. return 0;
  911. }
  912. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  913. rcu_assign_pointer(tsk->sighand, sig);
  914. if (!sig)
  915. return -ENOMEM;
  916. atomic_set(&sig->count, 1);
  917. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  918. return 0;
  919. }
  920. void __cleanup_sighand(struct sighand_struct *sighand)
  921. {
  922. if (atomic_dec_and_test(&sighand->count)) {
  923. signalfd_cleanup(sighand);
  924. /*
  925. * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
  926. * without an RCU grace period, see __lock_task_sighand().
  927. */
  928. kmem_cache_free(sighand_cachep, sighand);
  929. }
  930. }
  931. /*
  932. * Initialize POSIX timer handling for a thread group.
  933. */
  934. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  935. {
  936. unsigned long cpu_limit;
  937. cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  938. if (cpu_limit != RLIM_INFINITY) {
  939. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  940. sig->cputimer.running = 1;
  941. }
  942. /* The timer lists. */
  943. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  944. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  945. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  946. }
  947. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  948. {
  949. struct signal_struct *sig;
  950. if (clone_flags & CLONE_THREAD)
  951. return 0;
  952. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  953. tsk->signal = sig;
  954. if (!sig)
  955. return -ENOMEM;
  956. sig->nr_threads = 1;
  957. atomic_set(&sig->live, 1);
  958. atomic_set(&sig->sigcnt, 1);
  959. /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
  960. sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  961. tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
  962. init_waitqueue_head(&sig->wait_chldexit);
  963. sig->curr_target = tsk;
  964. init_sigpending(&sig->shared_pending);
  965. INIT_LIST_HEAD(&sig->posix_timers);
  966. seqlock_init(&sig->stats_lock);
  967. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  968. sig->real_timer.function = it_real_fn;
  969. task_lock(current->group_leader);
  970. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  971. task_unlock(current->group_leader);
  972. posix_cpu_timers_init_group(sig);
  973. tty_audit_fork(sig);
  974. sched_autogroup_fork(sig);
  975. sig->oom_score_adj = current->signal->oom_score_adj;
  976. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  977. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  978. current->signal->is_child_subreaper;
  979. mutex_init(&sig->cred_guard_mutex);
  980. return 0;
  981. }
  982. static void copy_seccomp(struct task_struct *p)
  983. {
  984. #ifdef CONFIG_SECCOMP
  985. /*
  986. * Must be called with sighand->lock held, which is common to
  987. * all threads in the group. Holding cred_guard_mutex is not
  988. * needed because this new task is not yet running and cannot
  989. * be racing exec.
  990. */
  991. assert_spin_locked(&current->sighand->siglock);
  992. /* Ref-count the new filter user, and assign it. */
  993. get_seccomp_filter(current);
  994. p->seccomp = current->seccomp;
  995. /*
  996. * Explicitly enable no_new_privs here in case it got set
  997. * between the task_struct being duplicated and holding the
  998. * sighand lock. The seccomp state and nnp must be in sync.
  999. */
  1000. if (task_no_new_privs(current))
  1001. task_set_no_new_privs(p);
  1002. /*
  1003. * If the parent gained a seccomp mode after copying thread
  1004. * flags and between before we held the sighand lock, we have
  1005. * to manually enable the seccomp thread flag here.
  1006. */
  1007. if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
  1008. set_tsk_thread_flag(p, TIF_SECCOMP);
  1009. #endif
  1010. }
  1011. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  1012. {
  1013. current->clear_child_tid = tidptr;
  1014. return task_pid_vnr(current);
  1015. }
  1016. static void rt_mutex_init_task(struct task_struct *p)
  1017. {
  1018. raw_spin_lock_init(&p->pi_lock);
  1019. #ifdef CONFIG_RT_MUTEXES
  1020. p->pi_waiters = RB_ROOT;
  1021. p->pi_waiters_leftmost = NULL;
  1022. p->pi_blocked_on = NULL;
  1023. #endif
  1024. }
  1025. /*
  1026. * Initialize POSIX timer handling for a single task.
  1027. */
  1028. static void posix_cpu_timers_init(struct task_struct *tsk)
  1029. {
  1030. tsk->cputime_expires.prof_exp = 0;
  1031. tsk->cputime_expires.virt_exp = 0;
  1032. tsk->cputime_expires.sched_exp = 0;
  1033. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  1034. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  1035. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  1036. }
  1037. static inline void
  1038. init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
  1039. {
  1040. task->pids[type].pid = pid;
  1041. }
  1042. /*
  1043. * This creates a new process as a copy of the old one,
  1044. * but does not actually start it yet.
  1045. *
  1046. * It copies the registers, and all the appropriate
  1047. * parts of the process environment (as per the clone
  1048. * flags). The actual kick-off is left to the caller.
  1049. */
  1050. static struct task_struct *copy_process(unsigned long clone_flags,
  1051. unsigned long stack_start,
  1052. unsigned long stack_size,
  1053. int __user *child_tidptr,
  1054. struct pid *pid,
  1055. int trace,
  1056. unsigned long tls)
  1057. {
  1058. int retval;
  1059. struct task_struct *p;
  1060. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  1061. return ERR_PTR(-EINVAL);
  1062. if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
  1063. return ERR_PTR(-EINVAL);
  1064. /*
  1065. * Thread groups must share signals as well, and detached threads
  1066. * can only be started up within the thread group.
  1067. */
  1068. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  1069. return ERR_PTR(-EINVAL);
  1070. /*
  1071. * Shared signal handlers imply shared VM. By way of the above,
  1072. * thread groups also imply shared VM. Blocking this case allows
  1073. * for various simplifications in other code.
  1074. */
  1075. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  1076. return ERR_PTR(-EINVAL);
  1077. /*
  1078. * Siblings of global init remain as zombies on exit since they are
  1079. * not reaped by their parent (swapper). To solve this and to avoid
  1080. * multi-rooted process trees, prevent global and container-inits
  1081. * from creating siblings.
  1082. */
  1083. if ((clone_flags & CLONE_PARENT) &&
  1084. current->signal->flags & SIGNAL_UNKILLABLE)
  1085. return ERR_PTR(-EINVAL);
  1086. /*
  1087. * If the new process will be in a different pid or user namespace
  1088. * do not allow it to share a thread group or signal handlers or
  1089. * parent with the forking task.
  1090. */
  1091. if (clone_flags & CLONE_SIGHAND) {
  1092. if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
  1093. (task_active_pid_ns(current) !=
  1094. current->nsproxy->pid_ns_for_children))
  1095. return ERR_PTR(-EINVAL);
  1096. }
  1097. retval = security_task_create(clone_flags);
  1098. if (retval)
  1099. goto fork_out;
  1100. retval = -ENOMEM;
  1101. p = dup_task_struct(current);
  1102. if (!p)
  1103. goto fork_out;
  1104. ftrace_graph_init_task(p);
  1105. rt_mutex_init_task(p);
  1106. #ifdef CONFIG_PROVE_LOCKING
  1107. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1108. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1109. #endif
  1110. retval = -EAGAIN;
  1111. if (atomic_read(&p->real_cred->user->processes) >=
  1112. task_rlimit(p, RLIMIT_NPROC)) {
  1113. if (p->real_cred->user != INIT_USER &&
  1114. !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
  1115. goto bad_fork_free;
  1116. }
  1117. current->flags &= ~PF_NPROC_EXCEEDED;
  1118. retval = copy_creds(p, clone_flags);
  1119. if (retval < 0)
  1120. goto bad_fork_free;
  1121. /*
  1122. * If multiple threads are within copy_process(), then this check
  1123. * triggers too late. This doesn't hurt, the check is only there
  1124. * to stop root fork bombs.
  1125. */
  1126. retval = -EAGAIN;
  1127. if (nr_threads >= max_threads)
  1128. goto bad_fork_cleanup_count;
  1129. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1130. p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  1131. p->flags |= PF_FORKNOEXEC;
  1132. INIT_LIST_HEAD(&p->children);
  1133. INIT_LIST_HEAD(&p->sibling);
  1134. rcu_copy_process(p);
  1135. p->vfork_done = NULL;
  1136. spin_lock_init(&p->alloc_lock);
  1137. init_sigpending(&p->pending);
  1138. p->utime = p->stime = p->gtime = 0;
  1139. p->utimescaled = p->stimescaled = 0;
  1140. #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  1141. p->prev_cputime.utime = p->prev_cputime.stime = 0;
  1142. #endif
  1143. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  1144. seqlock_init(&p->vtime_seqlock);
  1145. p->vtime_snap = 0;
  1146. p->vtime_snap_whence = VTIME_SLEEPING;
  1147. #endif
  1148. #if defined(SPLIT_RSS_COUNTING)
  1149. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1150. #endif
  1151. p->default_timer_slack_ns = current->timer_slack_ns;
  1152. task_io_accounting_init(&p->ioac);
  1153. acct_clear_integrals(p);
  1154. posix_cpu_timers_init(p);
  1155. p->start_time = ktime_get_ns();
  1156. p->real_start_time = ktime_get_boot_ns();
  1157. p->io_context = NULL;
  1158. p->audit_context = NULL;
  1159. if (clone_flags & CLONE_THREAD)
  1160. threadgroup_change_begin(current);
  1161. cgroup_fork(p);
  1162. #ifdef CONFIG_NUMA
  1163. p->mempolicy = mpol_dup(p->mempolicy);
  1164. if (IS_ERR(p->mempolicy)) {
  1165. retval = PTR_ERR(p->mempolicy);
  1166. p->mempolicy = NULL;
  1167. goto bad_fork_cleanup_threadgroup_lock;
  1168. }
  1169. #endif
  1170. #ifdef CONFIG_CPUSETS
  1171. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1172. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1173. seqcount_init(&p->mems_allowed_seq);
  1174. #endif
  1175. #ifdef CONFIG_TRACE_IRQFLAGS
  1176. p->irq_events = 0;
  1177. p->hardirqs_enabled = 0;
  1178. p->hardirq_enable_ip = 0;
  1179. p->hardirq_enable_event = 0;
  1180. p->hardirq_disable_ip = _THIS_IP_;
  1181. p->hardirq_disable_event = 0;
  1182. p->softirqs_enabled = 1;
  1183. p->softirq_enable_ip = _THIS_IP_;
  1184. p->softirq_enable_event = 0;
  1185. p->softirq_disable_ip = 0;
  1186. p->softirq_disable_event = 0;
  1187. p->hardirq_context = 0;
  1188. p->softirq_context = 0;
  1189. #endif
  1190. p->pagefault_disabled = 0;
  1191. #ifdef CONFIG_LOCKDEP
  1192. p->lockdep_depth = 0; /* no locks held yet */
  1193. p->curr_chain_key = 0;
  1194. p->lockdep_recursion = 0;
  1195. #endif
  1196. #ifdef CONFIG_DEBUG_MUTEXES
  1197. p->blocked_on = NULL; /* not blocked yet */
  1198. #endif
  1199. #ifdef CONFIG_BCACHE
  1200. p->sequential_io = 0;
  1201. p->sequential_io_avg = 0;
  1202. #endif
  1203. /* Perform scheduler related setup. Assign this task to a CPU. */
  1204. retval = sched_fork(clone_flags, p);
  1205. if (retval)
  1206. goto bad_fork_cleanup_policy;
  1207. retval = perf_event_init_task(p);
  1208. if (retval)
  1209. goto bad_fork_cleanup_policy;
  1210. retval = audit_alloc(p);
  1211. if (retval)
  1212. goto bad_fork_cleanup_perf;
  1213. /* copy all the process information */
  1214. shm_init_task(p);
  1215. retval = copy_semundo(clone_flags, p);
  1216. if (retval)
  1217. goto bad_fork_cleanup_audit;
  1218. retval = copy_files(clone_flags, p);
  1219. if (retval)
  1220. goto bad_fork_cleanup_semundo;
  1221. retval = copy_fs(clone_flags, p);
  1222. if (retval)
  1223. goto bad_fork_cleanup_files;
  1224. retval = copy_sighand(clone_flags, p);
  1225. if (retval)
  1226. goto bad_fork_cleanup_fs;
  1227. retval = copy_signal(clone_flags, p);
  1228. if (retval)
  1229. goto bad_fork_cleanup_sighand;
  1230. retval = copy_mm(clone_flags, p);
  1231. if (retval)
  1232. goto bad_fork_cleanup_signal;
  1233. retval = copy_namespaces(clone_flags, p);
  1234. if (retval)
  1235. goto bad_fork_cleanup_mm;
  1236. retval = copy_io(clone_flags, p);
  1237. if (retval)
  1238. goto bad_fork_cleanup_namespaces;
  1239. retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
  1240. if (retval)
  1241. goto bad_fork_cleanup_io;
  1242. if (pid != &init_struct_pid) {
  1243. pid = alloc_pid(p->nsproxy->pid_ns_for_children);
  1244. if (IS_ERR(pid)) {
  1245. retval = PTR_ERR(pid);
  1246. goto bad_fork_cleanup_io;
  1247. }
  1248. }
  1249. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1250. /*
  1251. * Clear TID on mm_release()?
  1252. */
  1253. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1254. #ifdef CONFIG_BLOCK
  1255. p->plug = NULL;
  1256. #endif
  1257. #ifdef CONFIG_FUTEX
  1258. p->robust_list = NULL;
  1259. #ifdef CONFIG_COMPAT
  1260. p->compat_robust_list = NULL;
  1261. #endif
  1262. INIT_LIST_HEAD(&p->pi_state_list);
  1263. p->pi_state_cache = NULL;
  1264. #endif
  1265. /*
  1266. * sigaltstack should be cleared when sharing the same VM
  1267. */
  1268. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1269. p->sas_ss_sp = p->sas_ss_size = 0;
  1270. /*
  1271. * Syscall tracing and stepping should be turned off in the
  1272. * child regardless of CLONE_PTRACE.
  1273. */
  1274. user_disable_single_step(p);
  1275. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1276. #ifdef TIF_SYSCALL_EMU
  1277. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1278. #endif
  1279. clear_all_latency_tracing(p);
  1280. /* ok, now we should be set up.. */
  1281. p->pid = pid_nr(pid);
  1282. if (clone_flags & CLONE_THREAD) {
  1283. p->exit_signal = -1;
  1284. p->group_leader = current->group_leader;
  1285. p->tgid = current->tgid;
  1286. } else {
  1287. if (clone_flags & CLONE_PARENT)
  1288. p->exit_signal = current->group_leader->exit_signal;
  1289. else
  1290. p->exit_signal = (clone_flags & CSIGNAL);
  1291. p->group_leader = p;
  1292. p->tgid = p->pid;
  1293. }
  1294. p->nr_dirtied = 0;
  1295. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1296. p->dirty_paused_when = 0;
  1297. p->pdeath_signal = 0;
  1298. INIT_LIST_HEAD(&p->thread_group);
  1299. p->task_works = NULL;
  1300. /*
  1301. * Make it visible to the rest of the system, but dont wake it up yet.
  1302. * Need tasklist lock for parent etc handling!
  1303. */
  1304. write_lock_irq(&tasklist_lock);
  1305. /* CLONE_PARENT re-uses the old parent */
  1306. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1307. p->real_parent = current->real_parent;
  1308. p->parent_exec_id = current->parent_exec_id;
  1309. } else {
  1310. p->real_parent = current;
  1311. p->parent_exec_id = current->self_exec_id;
  1312. }
  1313. spin_lock(&current->sighand->siglock);
  1314. /*
  1315. * Copy seccomp details explicitly here, in case they were changed
  1316. * before holding sighand lock.
  1317. */
  1318. copy_seccomp(p);
  1319. /*
  1320. * Process group and session signals need to be delivered to just the
  1321. * parent before the fork or both the parent and the child after the
  1322. * fork. Restart if a signal comes in before we add the new process to
  1323. * it's process group.
  1324. * A fatal signal pending means that current will exit, so the new
  1325. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1326. */
  1327. recalc_sigpending();
  1328. if (signal_pending(current)) {
  1329. spin_unlock(&current->sighand->siglock);
  1330. write_unlock_irq(&tasklist_lock);
  1331. retval = -ERESTARTNOINTR;
  1332. goto bad_fork_free_pid;
  1333. }
  1334. if (likely(p->pid)) {
  1335. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1336. init_task_pid(p, PIDTYPE_PID, pid);
  1337. if (thread_group_leader(p)) {
  1338. init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1339. init_task_pid(p, PIDTYPE_SID, task_session(current));
  1340. if (is_child_reaper(pid)) {
  1341. ns_of_pid(pid)->child_reaper = p;
  1342. p->signal->flags |= SIGNAL_UNKILLABLE;
  1343. }
  1344. p->signal->leader_pid = pid;
  1345. p->signal->tty = tty_kref_get(current->signal->tty);
  1346. list_add_tail(&p->sibling, &p->real_parent->children);
  1347. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1348. attach_pid(p, PIDTYPE_PGID);
  1349. attach_pid(p, PIDTYPE_SID);
  1350. __this_cpu_inc(process_counts);
  1351. } else {
  1352. current->signal->nr_threads++;
  1353. atomic_inc(&current->signal->live);
  1354. atomic_inc(&current->signal->sigcnt);
  1355. list_add_tail_rcu(&p->thread_group,
  1356. &p->group_leader->thread_group);
  1357. list_add_tail_rcu(&p->thread_node,
  1358. &p->signal->thread_head);
  1359. }
  1360. attach_pid(p, PIDTYPE_PID);
  1361. nr_threads++;
  1362. }
  1363. total_forks++;
  1364. spin_unlock(&current->sighand->siglock);
  1365. syscall_tracepoint_update(p);
  1366. write_unlock_irq(&tasklist_lock);
  1367. proc_fork_connector(p);
  1368. cgroup_post_fork(p);
  1369. if (clone_flags & CLONE_THREAD)
  1370. threadgroup_change_end(current);
  1371. perf_event_fork(p);
  1372. trace_task_newtask(p, clone_flags);
  1373. uprobe_copy_process(p, clone_flags);
  1374. return p;
  1375. bad_fork_free_pid:
  1376. if (pid != &init_struct_pid)
  1377. free_pid(pid);
  1378. bad_fork_cleanup_io:
  1379. if (p->io_context)
  1380. exit_io_context(p);
  1381. bad_fork_cleanup_namespaces:
  1382. exit_task_namespaces(p);
  1383. bad_fork_cleanup_mm:
  1384. if (p->mm)
  1385. mmput(p->mm);
  1386. bad_fork_cleanup_signal:
  1387. if (!(clone_flags & CLONE_THREAD))
  1388. free_signal_struct(p->signal);
  1389. bad_fork_cleanup_sighand:
  1390. __cleanup_sighand(p->sighand);
  1391. bad_fork_cleanup_fs:
  1392. exit_fs(p); /* blocking */
  1393. bad_fork_cleanup_files:
  1394. exit_files(p); /* blocking */
  1395. bad_fork_cleanup_semundo:
  1396. exit_sem(p);
  1397. bad_fork_cleanup_audit:
  1398. audit_free(p);
  1399. bad_fork_cleanup_perf:
  1400. perf_event_free_task(p);
  1401. bad_fork_cleanup_policy:
  1402. #ifdef CONFIG_NUMA
  1403. mpol_put(p->mempolicy);
  1404. bad_fork_cleanup_threadgroup_lock:
  1405. #endif
  1406. if (clone_flags & CLONE_THREAD)
  1407. threadgroup_change_end(current);
  1408. delayacct_tsk_free(p);
  1409. bad_fork_cleanup_count:
  1410. atomic_dec(&p->cred->user->processes);
  1411. exit_creds(p);
  1412. bad_fork_free:
  1413. free_task(p);
  1414. fork_out:
  1415. return ERR_PTR(retval);
  1416. }
  1417. static inline void init_idle_pids(struct pid_link *links)
  1418. {
  1419. enum pid_type type;
  1420. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1421. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1422. links[type].pid = &init_struct_pid;
  1423. }
  1424. }
  1425. struct task_struct *fork_idle(int cpu)
  1426. {
  1427. struct task_struct *task;
  1428. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
  1429. if (!IS_ERR(task)) {
  1430. init_idle_pids(task->pids);
  1431. init_idle(task, cpu);
  1432. }
  1433. return task;
  1434. }
  1435. /*
  1436. * Ok, this is the main fork-routine.
  1437. *
  1438. * It copies the process, and if successful kick-starts
  1439. * it and waits for it to finish using the VM if required.
  1440. */
  1441. long _do_fork(unsigned long clone_flags,
  1442. unsigned long stack_start,
  1443. unsigned long stack_size,
  1444. int __user *parent_tidptr,
  1445. int __user *child_tidptr,
  1446. unsigned long tls)
  1447. {
  1448. struct task_struct *p;
  1449. int trace = 0;
  1450. long nr;
  1451. /*
  1452. * Determine whether and which event to report to ptracer. When
  1453. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1454. * requested, no event is reported; otherwise, report if the event
  1455. * for the type of forking is enabled.
  1456. */
  1457. if (!(clone_flags & CLONE_UNTRACED)) {
  1458. if (clone_flags & CLONE_VFORK)
  1459. trace = PTRACE_EVENT_VFORK;
  1460. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1461. trace = PTRACE_EVENT_CLONE;
  1462. else
  1463. trace = PTRACE_EVENT_FORK;
  1464. if (likely(!ptrace_event_enabled(current, trace)))
  1465. trace = 0;
  1466. }
  1467. p = copy_process(clone_flags, stack_start, stack_size,
  1468. child_tidptr, NULL, trace, tls);
  1469. /*
  1470. * Do this prior waking up the new thread - the thread pointer
  1471. * might get invalid after that point, if the thread exits quickly.
  1472. */
  1473. if (!IS_ERR(p)) {
  1474. struct completion vfork;
  1475. struct pid *pid;
  1476. trace_sched_process_fork(current, p);
  1477. pid = get_task_pid(p, PIDTYPE_PID);
  1478. nr = pid_vnr(pid);
  1479. if (clone_flags & CLONE_PARENT_SETTID)
  1480. put_user(nr, parent_tidptr);
  1481. if (clone_flags & CLONE_VFORK) {
  1482. p->vfork_done = &vfork;
  1483. init_completion(&vfork);
  1484. get_task_struct(p);
  1485. }
  1486. wake_up_new_task(p);
  1487. /* forking complete and child started to run, tell ptracer */
  1488. if (unlikely(trace))
  1489. ptrace_event_pid(trace, pid);
  1490. if (clone_flags & CLONE_VFORK) {
  1491. if (!wait_for_vfork_done(p, &vfork))
  1492. ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
  1493. }
  1494. put_pid(pid);
  1495. } else {
  1496. nr = PTR_ERR(p);
  1497. }
  1498. return nr;
  1499. }
  1500. #ifndef CONFIG_HAVE_COPY_THREAD_TLS
  1501. /* For compatibility with architectures that call do_fork directly rather than
  1502. * using the syscall entry points below. */
  1503. long do_fork(unsigned long clone_flags,
  1504. unsigned long stack_start,
  1505. unsigned long stack_size,
  1506. int __user *parent_tidptr,
  1507. int __user *child_tidptr)
  1508. {
  1509. return _do_fork(clone_flags, stack_start, stack_size,
  1510. parent_tidptr, child_tidptr, 0);
  1511. }
  1512. #endif
  1513. /*
  1514. * Create a kernel thread.
  1515. */
  1516. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1517. {
  1518. return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1519. (unsigned long)arg, NULL, NULL, 0);
  1520. }
  1521. #ifdef __ARCH_WANT_SYS_FORK
  1522. SYSCALL_DEFINE0(fork)
  1523. {
  1524. #ifdef CONFIG_MMU
  1525. return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
  1526. #else
  1527. /* can not support in nommu mode */
  1528. return -EINVAL;
  1529. #endif
  1530. }
  1531. #endif
  1532. #ifdef __ARCH_WANT_SYS_VFORK
  1533. SYSCALL_DEFINE0(vfork)
  1534. {
  1535. return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1536. 0, NULL, NULL, 0);
  1537. }
  1538. #endif
  1539. #ifdef __ARCH_WANT_SYS_CLONE
  1540. #ifdef CONFIG_CLONE_BACKWARDS
  1541. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1542. int __user *, parent_tidptr,
  1543. unsigned long, tls,
  1544. int __user *, child_tidptr)
  1545. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1546. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1547. int __user *, parent_tidptr,
  1548. int __user *, child_tidptr,
  1549. unsigned long, tls)
  1550. #elif defined(CONFIG_CLONE_BACKWARDS3)
  1551. SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
  1552. int, stack_size,
  1553. int __user *, parent_tidptr,
  1554. int __user *, child_tidptr,
  1555. unsigned long, tls)
  1556. #else
  1557. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1558. int __user *, parent_tidptr,
  1559. int __user *, child_tidptr,
  1560. unsigned long, tls)
  1561. #endif
  1562. {
  1563. return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
  1564. }
  1565. #endif
  1566. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1567. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1568. #endif
  1569. static void sighand_ctor(void *data)
  1570. {
  1571. struct sighand_struct *sighand = data;
  1572. spin_lock_init(&sighand->siglock);
  1573. init_waitqueue_head(&sighand->signalfd_wqh);
  1574. }
  1575. void __init proc_caches_init(void)
  1576. {
  1577. sighand_cachep = kmem_cache_create("sighand_cache",
  1578. sizeof(struct sighand_struct), 0,
  1579. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1580. SLAB_NOTRACK, sighand_ctor);
  1581. signal_cachep = kmem_cache_create("signal_cache",
  1582. sizeof(struct signal_struct), 0,
  1583. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1584. files_cachep = kmem_cache_create("files_cache",
  1585. sizeof(struct files_struct), 0,
  1586. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1587. fs_cachep = kmem_cache_create("fs_cache",
  1588. sizeof(struct fs_struct), 0,
  1589. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1590. /*
  1591. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1592. * whole struct cpumask for the OFFSTACK case. We could change
  1593. * this to *only* allocate as much of it as required by the
  1594. * maximum number of CPU's we can ever have. The cpumask_allocation
  1595. * is at the end of the structure, exactly for that reason.
  1596. */
  1597. mm_cachep = kmem_cache_create("mm_struct",
  1598. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1599. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1600. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1601. mmap_init();
  1602. nsproxy_cache_init();
  1603. }
  1604. /*
  1605. * Check constraints on flags passed to the unshare system call.
  1606. */
  1607. static int check_unshare_flags(unsigned long unshare_flags)
  1608. {
  1609. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1610. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1611. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1612. CLONE_NEWUSER|CLONE_NEWPID))
  1613. return -EINVAL;
  1614. /*
  1615. * Not implemented, but pretend it works if there is nothing to
  1616. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1617. * needs to unshare vm.
  1618. */
  1619. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1620. /* FIXME: get_task_mm() increments ->mm_users */
  1621. if (atomic_read(&current->mm->mm_users) > 1)
  1622. return -EINVAL;
  1623. }
  1624. return 0;
  1625. }
  1626. /*
  1627. * Unshare the filesystem structure if it is being shared
  1628. */
  1629. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1630. {
  1631. struct fs_struct *fs = current->fs;
  1632. if (!(unshare_flags & CLONE_FS) || !fs)
  1633. return 0;
  1634. /* don't need lock here; in the worst case we'll do useless copy */
  1635. if (fs->users == 1)
  1636. return 0;
  1637. *new_fsp = copy_fs_struct(fs);
  1638. if (!*new_fsp)
  1639. return -ENOMEM;
  1640. return 0;
  1641. }
  1642. /*
  1643. * Unshare file descriptor table if it is being shared
  1644. */
  1645. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1646. {
  1647. struct files_struct *fd = current->files;
  1648. int error = 0;
  1649. if ((unshare_flags & CLONE_FILES) &&
  1650. (fd && atomic_read(&fd->count) > 1)) {
  1651. *new_fdp = dup_fd(fd, &error);
  1652. if (!*new_fdp)
  1653. return error;
  1654. }
  1655. return 0;
  1656. }
  1657. /*
  1658. * unshare allows a process to 'unshare' part of the process
  1659. * context which was originally shared using clone. copy_*
  1660. * functions used by do_fork() cannot be used here directly
  1661. * because they modify an inactive task_struct that is being
  1662. * constructed. Here we are modifying the current, active,
  1663. * task_struct.
  1664. */
  1665. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1666. {
  1667. struct fs_struct *fs, *new_fs = NULL;
  1668. struct files_struct *fd, *new_fd = NULL;
  1669. struct cred *new_cred = NULL;
  1670. struct nsproxy *new_nsproxy = NULL;
  1671. int do_sysvsem = 0;
  1672. int err;
  1673. /*
  1674. * If unsharing a user namespace must also unshare the thread.
  1675. */
  1676. if (unshare_flags & CLONE_NEWUSER)
  1677. unshare_flags |= CLONE_THREAD | CLONE_FS;
  1678. /*
  1679. * If unsharing a thread from a thread group, must also unshare vm.
  1680. */
  1681. if (unshare_flags & CLONE_THREAD)
  1682. unshare_flags |= CLONE_VM;
  1683. /*
  1684. * If unsharing vm, must also unshare signal handlers.
  1685. */
  1686. if (unshare_flags & CLONE_VM)
  1687. unshare_flags |= CLONE_SIGHAND;
  1688. /*
  1689. * If unsharing namespace, must also unshare filesystem information.
  1690. */
  1691. if (unshare_flags & CLONE_NEWNS)
  1692. unshare_flags |= CLONE_FS;
  1693. err = check_unshare_flags(unshare_flags);
  1694. if (err)
  1695. goto bad_unshare_out;
  1696. /*
  1697. * CLONE_NEWIPC must also detach from the undolist: after switching
  1698. * to a new ipc namespace, the semaphore arrays from the old
  1699. * namespace are unreachable.
  1700. */
  1701. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1702. do_sysvsem = 1;
  1703. err = unshare_fs(unshare_flags, &new_fs);
  1704. if (err)
  1705. goto bad_unshare_out;
  1706. err = unshare_fd(unshare_flags, &new_fd);
  1707. if (err)
  1708. goto bad_unshare_cleanup_fs;
  1709. err = unshare_userns(unshare_flags, &new_cred);
  1710. if (err)
  1711. goto bad_unshare_cleanup_fd;
  1712. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1713. new_cred, new_fs);
  1714. if (err)
  1715. goto bad_unshare_cleanup_cred;
  1716. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  1717. if (do_sysvsem) {
  1718. /*
  1719. * CLONE_SYSVSEM is equivalent to sys_exit().
  1720. */
  1721. exit_sem(current);
  1722. }
  1723. if (unshare_flags & CLONE_NEWIPC) {
  1724. /* Orphan segments in old ns (see sem above). */
  1725. exit_shm(current);
  1726. shm_init_task(current);
  1727. }
  1728. if (new_nsproxy)
  1729. switch_task_namespaces(current, new_nsproxy);
  1730. task_lock(current);
  1731. if (new_fs) {
  1732. fs = current->fs;
  1733. spin_lock(&fs->lock);
  1734. current->fs = new_fs;
  1735. if (--fs->users)
  1736. new_fs = NULL;
  1737. else
  1738. new_fs = fs;
  1739. spin_unlock(&fs->lock);
  1740. }
  1741. if (new_fd) {
  1742. fd = current->files;
  1743. current->files = new_fd;
  1744. new_fd = fd;
  1745. }
  1746. task_unlock(current);
  1747. if (new_cred) {
  1748. /* Install the new user namespace */
  1749. commit_creds(new_cred);
  1750. new_cred = NULL;
  1751. }
  1752. }
  1753. bad_unshare_cleanup_cred:
  1754. if (new_cred)
  1755. put_cred(new_cred);
  1756. bad_unshare_cleanup_fd:
  1757. if (new_fd)
  1758. put_files_struct(new_fd);
  1759. bad_unshare_cleanup_fs:
  1760. if (new_fs)
  1761. free_fs_struct(new_fs);
  1762. bad_unshare_out:
  1763. return err;
  1764. }
  1765. /*
  1766. * Helper to unshare the files of the current task.
  1767. * We don't want to expose copy_files internals to
  1768. * the exec layer of the kernel.
  1769. */
  1770. int unshare_files(struct files_struct **displaced)
  1771. {
  1772. struct task_struct *task = current;
  1773. struct files_struct *copy = NULL;
  1774. int error;
  1775. error = unshare_fd(CLONE_FILES, &copy);
  1776. if (error || !copy) {
  1777. *displaced = NULL;
  1778. return error;
  1779. }
  1780. *displaced = task->files;
  1781. task_lock(task);
  1782. task->files = copy;
  1783. task_unlock(task);
  1784. return 0;
  1785. }
  1786. int sysctl_max_threads(struct ctl_table *table, int write,
  1787. void __user *buffer, size_t *lenp, loff_t *ppos)
  1788. {
  1789. struct ctl_table t;
  1790. int ret;
  1791. int threads = max_threads;
  1792. int min = MIN_THREADS;
  1793. int max = MAX_THREADS;
  1794. t = *table;
  1795. t.data = &threads;
  1796. t.extra1 = &min;
  1797. t.extra2 = &max;
  1798. ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1799. if (ret || !write)
  1800. return ret;
  1801. set_max_threads(threads);
  1802. return 0;
  1803. }