tcp_output.c 106 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes: Pedro Roque : Retransmit queue handled by TCP.
  22. * : Fragmentation on mtu decrease
  23. * : Segment collapse on retransmit
  24. * : AF independence
  25. *
  26. * Linus Torvalds : send_delayed_ack
  27. * David S. Miller : Charge memory using the right skb
  28. * during syn/ack processing.
  29. * David S. Miller : Output engine completely rewritten.
  30. * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
  31. * Cacophonix Gaul : draft-minshall-nagle-01
  32. * J Hadi Salim : ECN support
  33. *
  34. */
  35. #define pr_fmt(fmt) "TCP: " fmt
  36. #include <net/tcp.h>
  37. #include <linux/compiler.h>
  38. #include <linux/gfp.h>
  39. #include <linux/module.h>
  40. /* People can turn this off for buggy TCP's found in printers etc. */
  41. int sysctl_tcp_retrans_collapse __read_mostly = 1;
  42. /* People can turn this on to work with those rare, broken TCPs that
  43. * interpret the window field as a signed quantity.
  44. */
  45. int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
  46. /* Default TSQ limit of four TSO segments */
  47. int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
  48. /* This limits the percentage of the congestion window which we
  49. * will allow a single TSO frame to consume. Building TSO frames
  50. * which are too large can cause TCP streams to be bursty.
  51. */
  52. int sysctl_tcp_tso_win_divisor __read_mostly = 3;
  53. /* By default, RFC2861 behavior. */
  54. int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
  55. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  56. int push_one, gfp_t gfp);
  57. /* Account for new data that has been sent to the network. */
  58. static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
  59. {
  60. struct inet_connection_sock *icsk = inet_csk(sk);
  61. struct tcp_sock *tp = tcp_sk(sk);
  62. unsigned int prior_packets = tp->packets_out;
  63. tcp_advance_send_head(sk, skb);
  64. tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
  65. tp->packets_out += tcp_skb_pcount(skb);
  66. if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  67. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  68. tcp_rearm_rto(sk);
  69. }
  70. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  71. tcp_skb_pcount(skb));
  72. }
  73. /* SND.NXT, if window was not shrunk.
  74. * If window has been shrunk, what should we make? It is not clear at all.
  75. * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  76. * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  77. * invalid. OK, let's make this for now:
  78. */
  79. static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  80. {
  81. const struct tcp_sock *tp = tcp_sk(sk);
  82. if (!before(tcp_wnd_end(tp), tp->snd_nxt))
  83. return tp->snd_nxt;
  84. else
  85. return tcp_wnd_end(tp);
  86. }
  87. /* Calculate mss to advertise in SYN segment.
  88. * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
  89. *
  90. * 1. It is independent of path mtu.
  91. * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
  92. * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
  93. * attached devices, because some buggy hosts are confused by
  94. * large MSS.
  95. * 4. We do not make 3, we advertise MSS, calculated from first
  96. * hop device mtu, but allow to raise it to ip_rt_min_advmss.
  97. * This may be overridden via information stored in routing table.
  98. * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
  99. * probably even Jumbo".
  100. */
  101. static __u16 tcp_advertise_mss(struct sock *sk)
  102. {
  103. struct tcp_sock *tp = tcp_sk(sk);
  104. const struct dst_entry *dst = __sk_dst_get(sk);
  105. int mss = tp->advmss;
  106. if (dst) {
  107. unsigned int metric = dst_metric_advmss(dst);
  108. if (metric < mss) {
  109. mss = metric;
  110. tp->advmss = mss;
  111. }
  112. }
  113. return (__u16)mss;
  114. }
  115. /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
  116. * This is the first part of cwnd validation mechanism.
  117. */
  118. void tcp_cwnd_restart(struct sock *sk, s32 delta)
  119. {
  120. struct tcp_sock *tp = tcp_sk(sk);
  121. u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
  122. u32 cwnd = tp->snd_cwnd;
  123. tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
  124. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  125. restart_cwnd = min(restart_cwnd, cwnd);
  126. while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
  127. cwnd >>= 1;
  128. tp->snd_cwnd = max(cwnd, restart_cwnd);
  129. tp->snd_cwnd_stamp = tcp_time_stamp;
  130. tp->snd_cwnd_used = 0;
  131. }
  132. /* Congestion state accounting after a packet has been sent. */
  133. static void tcp_event_data_sent(struct tcp_sock *tp,
  134. struct sock *sk)
  135. {
  136. struct inet_connection_sock *icsk = inet_csk(sk);
  137. const u32 now = tcp_time_stamp;
  138. if (tcp_packets_in_flight(tp) == 0)
  139. tcp_ca_event(sk, CA_EVENT_TX_START);
  140. tp->lsndtime = now;
  141. /* If it is a reply for ato after last received
  142. * packet, enter pingpong mode.
  143. */
  144. if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
  145. icsk->icsk_ack.pingpong = 1;
  146. }
  147. /* Account for an ACK we sent. */
  148. static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
  149. {
  150. tcp_dec_quickack_mode(sk, pkts);
  151. inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
  152. }
  153. u32 tcp_default_init_rwnd(u32 mss)
  154. {
  155. /* Initial receive window should be twice of TCP_INIT_CWND to
  156. * enable proper sending of new unsent data during fast recovery
  157. * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
  158. * limit when mss is larger than 1460.
  159. */
  160. u32 init_rwnd = TCP_INIT_CWND * 2;
  161. if (mss > 1460)
  162. init_rwnd = max((1460 * init_rwnd) / mss, 2U);
  163. return init_rwnd;
  164. }
  165. /* Determine a window scaling and initial window to offer.
  166. * Based on the assumption that the given amount of space
  167. * will be offered. Store the results in the tp structure.
  168. * NOTE: for smooth operation initial space offering should
  169. * be a multiple of mss if possible. We assume here that mss >= 1.
  170. * This MUST be enforced by all callers.
  171. */
  172. void tcp_select_initial_window(int __space, __u32 mss,
  173. __u32 *rcv_wnd, __u32 *window_clamp,
  174. int wscale_ok, __u8 *rcv_wscale,
  175. __u32 init_rcv_wnd)
  176. {
  177. unsigned int space = (__space < 0 ? 0 : __space);
  178. /* If no clamp set the clamp to the max possible scaled window */
  179. if (*window_clamp == 0)
  180. (*window_clamp) = (65535 << 14);
  181. space = min(*window_clamp, space);
  182. /* Quantize space offering to a multiple of mss if possible. */
  183. if (space > mss)
  184. space = (space / mss) * mss;
  185. /* NOTE: offering an initial window larger than 32767
  186. * will break some buggy TCP stacks. If the admin tells us
  187. * it is likely we could be speaking with such a buggy stack
  188. * we will truncate our initial window offering to 32K-1
  189. * unless the remote has sent us a window scaling option,
  190. * which we interpret as a sign the remote TCP is not
  191. * misinterpreting the window field as a signed quantity.
  192. */
  193. if (sysctl_tcp_workaround_signed_windows)
  194. (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
  195. else
  196. (*rcv_wnd) = space;
  197. (*rcv_wscale) = 0;
  198. if (wscale_ok) {
  199. /* Set window scaling on max possible window
  200. * See RFC1323 for an explanation of the limit to 14
  201. */
  202. space = max_t(u32, space, sysctl_tcp_rmem[2]);
  203. space = max_t(u32, space, sysctl_rmem_max);
  204. space = min_t(u32, space, *window_clamp);
  205. while (space > 65535 && (*rcv_wscale) < 14) {
  206. space >>= 1;
  207. (*rcv_wscale)++;
  208. }
  209. }
  210. if (mss > (1 << *rcv_wscale)) {
  211. if (!init_rcv_wnd) /* Use default unless specified otherwise */
  212. init_rcv_wnd = tcp_default_init_rwnd(mss);
  213. *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
  214. }
  215. /* Set the clamp no higher than max representable value */
  216. (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
  217. }
  218. EXPORT_SYMBOL(tcp_select_initial_window);
  219. /* Chose a new window to advertise, update state in tcp_sock for the
  220. * socket, and return result with RFC1323 scaling applied. The return
  221. * value can be stuffed directly into th->window for an outgoing
  222. * frame.
  223. */
  224. static u16 tcp_select_window(struct sock *sk)
  225. {
  226. struct tcp_sock *tp = tcp_sk(sk);
  227. u32 old_win = tp->rcv_wnd;
  228. u32 cur_win = tcp_receive_window(tp);
  229. u32 new_win = __tcp_select_window(sk);
  230. /* Never shrink the offered window */
  231. if (new_win < cur_win) {
  232. /* Danger Will Robinson!
  233. * Don't update rcv_wup/rcv_wnd here or else
  234. * we will not be able to advertise a zero
  235. * window in time. --DaveM
  236. *
  237. * Relax Will Robinson.
  238. */
  239. if (new_win == 0)
  240. NET_INC_STATS(sock_net(sk),
  241. LINUX_MIB_TCPWANTZEROWINDOWADV);
  242. new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
  243. }
  244. tp->rcv_wnd = new_win;
  245. tp->rcv_wup = tp->rcv_nxt;
  246. /* Make sure we do not exceed the maximum possible
  247. * scaled window.
  248. */
  249. if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
  250. new_win = min(new_win, MAX_TCP_WINDOW);
  251. else
  252. new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
  253. /* RFC1323 scaling applied */
  254. new_win >>= tp->rx_opt.rcv_wscale;
  255. /* If we advertise zero window, disable fast path. */
  256. if (new_win == 0) {
  257. tp->pred_flags = 0;
  258. if (old_win)
  259. NET_INC_STATS(sock_net(sk),
  260. LINUX_MIB_TCPTOZEROWINDOWADV);
  261. } else if (old_win == 0) {
  262. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
  263. }
  264. return new_win;
  265. }
  266. /* Packet ECN state for a SYN-ACK */
  267. static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
  268. {
  269. const struct tcp_sock *tp = tcp_sk(sk);
  270. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
  271. if (!(tp->ecn_flags & TCP_ECN_OK))
  272. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
  273. else if (tcp_ca_needs_ecn(sk))
  274. INET_ECN_xmit(sk);
  275. }
  276. /* Packet ECN state for a SYN. */
  277. static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
  278. {
  279. struct tcp_sock *tp = tcp_sk(sk);
  280. bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
  281. tcp_ca_needs_ecn(sk);
  282. if (!use_ecn) {
  283. const struct dst_entry *dst = __sk_dst_get(sk);
  284. if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
  285. use_ecn = true;
  286. }
  287. tp->ecn_flags = 0;
  288. if (use_ecn) {
  289. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
  290. tp->ecn_flags = TCP_ECN_OK;
  291. if (tcp_ca_needs_ecn(sk))
  292. INET_ECN_xmit(sk);
  293. }
  294. }
  295. static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
  296. {
  297. if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
  298. /* tp->ecn_flags are cleared at a later point in time when
  299. * SYN ACK is ultimatively being received.
  300. */
  301. TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
  302. }
  303. static void
  304. tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
  305. {
  306. if (inet_rsk(req)->ecn_ok)
  307. th->ece = 1;
  308. }
  309. /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
  310. * be sent.
  311. */
  312. static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
  313. struct tcphdr *th, int tcp_header_len)
  314. {
  315. struct tcp_sock *tp = tcp_sk(sk);
  316. if (tp->ecn_flags & TCP_ECN_OK) {
  317. /* Not-retransmitted data segment: set ECT and inject CWR. */
  318. if (skb->len != tcp_header_len &&
  319. !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
  320. INET_ECN_xmit(sk);
  321. if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
  322. tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
  323. th->cwr = 1;
  324. skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
  325. }
  326. } else if (!tcp_ca_needs_ecn(sk)) {
  327. /* ACK or retransmitted segment: clear ECT|CE */
  328. INET_ECN_dontxmit(sk);
  329. }
  330. if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
  331. th->ece = 1;
  332. }
  333. }
  334. /* Constructs common control bits of non-data skb. If SYN/FIN is present,
  335. * auto increment end seqno.
  336. */
  337. static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
  338. {
  339. skb->ip_summed = CHECKSUM_PARTIAL;
  340. skb->csum = 0;
  341. TCP_SKB_CB(skb)->tcp_flags = flags;
  342. TCP_SKB_CB(skb)->sacked = 0;
  343. tcp_skb_pcount_set(skb, 1);
  344. TCP_SKB_CB(skb)->seq = seq;
  345. if (flags & (TCPHDR_SYN | TCPHDR_FIN))
  346. seq++;
  347. TCP_SKB_CB(skb)->end_seq = seq;
  348. }
  349. static inline bool tcp_urg_mode(const struct tcp_sock *tp)
  350. {
  351. return tp->snd_una != tp->snd_up;
  352. }
  353. #define OPTION_SACK_ADVERTISE (1 << 0)
  354. #define OPTION_TS (1 << 1)
  355. #define OPTION_MD5 (1 << 2)
  356. #define OPTION_WSCALE (1 << 3)
  357. #define OPTION_FAST_OPEN_COOKIE (1 << 8)
  358. struct tcp_out_options {
  359. u16 options; /* bit field of OPTION_* */
  360. u16 mss; /* 0 to disable */
  361. u8 ws; /* window scale, 0 to disable */
  362. u8 num_sack_blocks; /* number of SACK blocks to include */
  363. u8 hash_size; /* bytes in hash_location */
  364. __u8 *hash_location; /* temporary pointer, overloaded */
  365. __u32 tsval, tsecr; /* need to include OPTION_TS */
  366. struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
  367. };
  368. /* Write previously computed TCP options to the packet.
  369. *
  370. * Beware: Something in the Internet is very sensitive to the ordering of
  371. * TCP options, we learned this through the hard way, so be careful here.
  372. * Luckily we can at least blame others for their non-compliance but from
  373. * inter-operability perspective it seems that we're somewhat stuck with
  374. * the ordering which we have been using if we want to keep working with
  375. * those broken things (not that it currently hurts anybody as there isn't
  376. * particular reason why the ordering would need to be changed).
  377. *
  378. * At least SACK_PERM as the first option is known to lead to a disaster
  379. * (but it may well be that other scenarios fail similarly).
  380. */
  381. static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
  382. struct tcp_out_options *opts)
  383. {
  384. u16 options = opts->options; /* mungable copy */
  385. if (unlikely(OPTION_MD5 & options)) {
  386. *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
  387. (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
  388. /* overload cookie hash location */
  389. opts->hash_location = (__u8 *)ptr;
  390. ptr += 4;
  391. }
  392. if (unlikely(opts->mss)) {
  393. *ptr++ = htonl((TCPOPT_MSS << 24) |
  394. (TCPOLEN_MSS << 16) |
  395. opts->mss);
  396. }
  397. if (likely(OPTION_TS & options)) {
  398. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  399. *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
  400. (TCPOLEN_SACK_PERM << 16) |
  401. (TCPOPT_TIMESTAMP << 8) |
  402. TCPOLEN_TIMESTAMP);
  403. options &= ~OPTION_SACK_ADVERTISE;
  404. } else {
  405. *ptr++ = htonl((TCPOPT_NOP << 24) |
  406. (TCPOPT_NOP << 16) |
  407. (TCPOPT_TIMESTAMP << 8) |
  408. TCPOLEN_TIMESTAMP);
  409. }
  410. *ptr++ = htonl(opts->tsval);
  411. *ptr++ = htonl(opts->tsecr);
  412. }
  413. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  414. *ptr++ = htonl((TCPOPT_NOP << 24) |
  415. (TCPOPT_NOP << 16) |
  416. (TCPOPT_SACK_PERM << 8) |
  417. TCPOLEN_SACK_PERM);
  418. }
  419. if (unlikely(OPTION_WSCALE & options)) {
  420. *ptr++ = htonl((TCPOPT_NOP << 24) |
  421. (TCPOPT_WINDOW << 16) |
  422. (TCPOLEN_WINDOW << 8) |
  423. opts->ws);
  424. }
  425. if (unlikely(opts->num_sack_blocks)) {
  426. struct tcp_sack_block *sp = tp->rx_opt.dsack ?
  427. tp->duplicate_sack : tp->selective_acks;
  428. int this_sack;
  429. *ptr++ = htonl((TCPOPT_NOP << 24) |
  430. (TCPOPT_NOP << 16) |
  431. (TCPOPT_SACK << 8) |
  432. (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
  433. TCPOLEN_SACK_PERBLOCK)));
  434. for (this_sack = 0; this_sack < opts->num_sack_blocks;
  435. ++this_sack) {
  436. *ptr++ = htonl(sp[this_sack].start_seq);
  437. *ptr++ = htonl(sp[this_sack].end_seq);
  438. }
  439. tp->rx_opt.dsack = 0;
  440. }
  441. if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
  442. struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
  443. u8 *p = (u8 *)ptr;
  444. u32 len; /* Fast Open option length */
  445. if (foc->exp) {
  446. len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
  447. *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
  448. TCPOPT_FASTOPEN_MAGIC);
  449. p += TCPOLEN_EXP_FASTOPEN_BASE;
  450. } else {
  451. len = TCPOLEN_FASTOPEN_BASE + foc->len;
  452. *p++ = TCPOPT_FASTOPEN;
  453. *p++ = len;
  454. }
  455. memcpy(p, foc->val, foc->len);
  456. if ((len & 3) == 2) {
  457. p[foc->len] = TCPOPT_NOP;
  458. p[foc->len + 1] = TCPOPT_NOP;
  459. }
  460. ptr += (len + 3) >> 2;
  461. }
  462. }
  463. /* Compute TCP options for SYN packets. This is not the final
  464. * network wire format yet.
  465. */
  466. static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
  467. struct tcp_out_options *opts,
  468. struct tcp_md5sig_key **md5)
  469. {
  470. struct tcp_sock *tp = tcp_sk(sk);
  471. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  472. struct tcp_fastopen_request *fastopen = tp->fastopen_req;
  473. #ifdef CONFIG_TCP_MD5SIG
  474. *md5 = tp->af_specific->md5_lookup(sk, sk);
  475. if (*md5) {
  476. opts->options |= OPTION_MD5;
  477. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  478. }
  479. #else
  480. *md5 = NULL;
  481. #endif
  482. /* We always get an MSS option. The option bytes which will be seen in
  483. * normal data packets should timestamps be used, must be in the MSS
  484. * advertised. But we subtract them from tp->mss_cache so that
  485. * calculations in tcp_sendmsg are simpler etc. So account for this
  486. * fact here if necessary. If we don't do this correctly, as a
  487. * receiver we won't recognize data packets as being full sized when we
  488. * should, and thus we won't abide by the delayed ACK rules correctly.
  489. * SACKs don't matter, we never delay an ACK when we have any of those
  490. * going out. */
  491. opts->mss = tcp_advertise_mss(sk);
  492. remaining -= TCPOLEN_MSS_ALIGNED;
  493. if (likely(sysctl_tcp_timestamps && !*md5)) {
  494. opts->options |= OPTION_TS;
  495. opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
  496. opts->tsecr = tp->rx_opt.ts_recent;
  497. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  498. }
  499. if (likely(sysctl_tcp_window_scaling)) {
  500. opts->ws = tp->rx_opt.rcv_wscale;
  501. opts->options |= OPTION_WSCALE;
  502. remaining -= TCPOLEN_WSCALE_ALIGNED;
  503. }
  504. if (likely(sysctl_tcp_sack)) {
  505. opts->options |= OPTION_SACK_ADVERTISE;
  506. if (unlikely(!(OPTION_TS & opts->options)))
  507. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  508. }
  509. if (fastopen && fastopen->cookie.len >= 0) {
  510. u32 need = fastopen->cookie.len;
  511. need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  512. TCPOLEN_FASTOPEN_BASE;
  513. need = (need + 3) & ~3U; /* Align to 32 bits */
  514. if (remaining >= need) {
  515. opts->options |= OPTION_FAST_OPEN_COOKIE;
  516. opts->fastopen_cookie = &fastopen->cookie;
  517. remaining -= need;
  518. tp->syn_fastopen = 1;
  519. tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
  520. }
  521. }
  522. return MAX_TCP_OPTION_SPACE - remaining;
  523. }
  524. /* Set up TCP options for SYN-ACKs. */
  525. static unsigned int tcp_synack_options(struct request_sock *req,
  526. unsigned int mss, struct sk_buff *skb,
  527. struct tcp_out_options *opts,
  528. const struct tcp_md5sig_key *md5,
  529. struct tcp_fastopen_cookie *foc)
  530. {
  531. struct inet_request_sock *ireq = inet_rsk(req);
  532. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  533. #ifdef CONFIG_TCP_MD5SIG
  534. if (md5) {
  535. opts->options |= OPTION_MD5;
  536. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  537. /* We can't fit any SACK blocks in a packet with MD5 + TS
  538. * options. There was discussion about disabling SACK
  539. * rather than TS in order to fit in better with old,
  540. * buggy kernels, but that was deemed to be unnecessary.
  541. */
  542. ireq->tstamp_ok &= !ireq->sack_ok;
  543. }
  544. #endif
  545. /* We always send an MSS option. */
  546. opts->mss = mss;
  547. remaining -= TCPOLEN_MSS_ALIGNED;
  548. if (likely(ireq->wscale_ok)) {
  549. opts->ws = ireq->rcv_wscale;
  550. opts->options |= OPTION_WSCALE;
  551. remaining -= TCPOLEN_WSCALE_ALIGNED;
  552. }
  553. if (likely(ireq->tstamp_ok)) {
  554. opts->options |= OPTION_TS;
  555. opts->tsval = tcp_skb_timestamp(skb);
  556. opts->tsecr = req->ts_recent;
  557. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  558. }
  559. if (likely(ireq->sack_ok)) {
  560. opts->options |= OPTION_SACK_ADVERTISE;
  561. if (unlikely(!ireq->tstamp_ok))
  562. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  563. }
  564. if (foc != NULL && foc->len >= 0) {
  565. u32 need = foc->len;
  566. need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  567. TCPOLEN_FASTOPEN_BASE;
  568. need = (need + 3) & ~3U; /* Align to 32 bits */
  569. if (remaining >= need) {
  570. opts->options |= OPTION_FAST_OPEN_COOKIE;
  571. opts->fastopen_cookie = foc;
  572. remaining -= need;
  573. }
  574. }
  575. return MAX_TCP_OPTION_SPACE - remaining;
  576. }
  577. /* Compute TCP options for ESTABLISHED sockets. This is not the
  578. * final wire format yet.
  579. */
  580. static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
  581. struct tcp_out_options *opts,
  582. struct tcp_md5sig_key **md5)
  583. {
  584. struct tcp_sock *tp = tcp_sk(sk);
  585. unsigned int size = 0;
  586. unsigned int eff_sacks;
  587. opts->options = 0;
  588. #ifdef CONFIG_TCP_MD5SIG
  589. *md5 = tp->af_specific->md5_lookup(sk, sk);
  590. if (unlikely(*md5)) {
  591. opts->options |= OPTION_MD5;
  592. size += TCPOLEN_MD5SIG_ALIGNED;
  593. }
  594. #else
  595. *md5 = NULL;
  596. #endif
  597. if (likely(tp->rx_opt.tstamp_ok)) {
  598. opts->options |= OPTION_TS;
  599. opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
  600. opts->tsecr = tp->rx_opt.ts_recent;
  601. size += TCPOLEN_TSTAMP_ALIGNED;
  602. }
  603. eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
  604. if (unlikely(eff_sacks)) {
  605. const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
  606. opts->num_sack_blocks =
  607. min_t(unsigned int, eff_sacks,
  608. (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
  609. TCPOLEN_SACK_PERBLOCK);
  610. size += TCPOLEN_SACK_BASE_ALIGNED +
  611. opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
  612. }
  613. return size;
  614. }
  615. /* TCP SMALL QUEUES (TSQ)
  616. *
  617. * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
  618. * to reduce RTT and bufferbloat.
  619. * We do this using a special skb destructor (tcp_wfree).
  620. *
  621. * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
  622. * needs to be reallocated in a driver.
  623. * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
  624. *
  625. * Since transmit from skb destructor is forbidden, we use a tasklet
  626. * to process all sockets that eventually need to send more skbs.
  627. * We use one tasklet per cpu, with its own queue of sockets.
  628. */
  629. struct tsq_tasklet {
  630. struct tasklet_struct tasklet;
  631. struct list_head head; /* queue of tcp sockets */
  632. };
  633. static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
  634. static void tcp_tsq_handler(struct sock *sk)
  635. {
  636. if ((1 << sk->sk_state) &
  637. (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
  638. TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
  639. struct tcp_sock *tp = tcp_sk(sk);
  640. if (tp->lost_out > tp->retrans_out &&
  641. tp->snd_cwnd > tcp_packets_in_flight(tp))
  642. tcp_xmit_retransmit_queue(sk);
  643. tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
  644. 0, GFP_ATOMIC);
  645. }
  646. }
  647. /*
  648. * One tasklet per cpu tries to send more skbs.
  649. * We run in tasklet context but need to disable irqs when
  650. * transferring tsq->head because tcp_wfree() might
  651. * interrupt us (non NAPI drivers)
  652. */
  653. static void tcp_tasklet_func(unsigned long data)
  654. {
  655. struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
  656. LIST_HEAD(list);
  657. unsigned long flags;
  658. struct list_head *q, *n;
  659. struct tcp_sock *tp;
  660. struct sock *sk;
  661. local_irq_save(flags);
  662. list_splice_init(&tsq->head, &list);
  663. local_irq_restore(flags);
  664. list_for_each_safe(q, n, &list) {
  665. tp = list_entry(q, struct tcp_sock, tsq_node);
  666. list_del(&tp->tsq_node);
  667. sk = (struct sock *)tp;
  668. bh_lock_sock(sk);
  669. if (!sock_owned_by_user(sk)) {
  670. tcp_tsq_handler(sk);
  671. } else {
  672. /* defer the work to tcp_release_cb() */
  673. set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
  674. }
  675. bh_unlock_sock(sk);
  676. clear_bit(TSQ_QUEUED, &tp->tsq_flags);
  677. sk_free(sk);
  678. }
  679. }
  680. #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
  681. (1UL << TCP_WRITE_TIMER_DEFERRED) | \
  682. (1UL << TCP_DELACK_TIMER_DEFERRED) | \
  683. (1UL << TCP_MTU_REDUCED_DEFERRED))
  684. /**
  685. * tcp_release_cb - tcp release_sock() callback
  686. * @sk: socket
  687. *
  688. * called from release_sock() to perform protocol dependent
  689. * actions before socket release.
  690. */
  691. void tcp_release_cb(struct sock *sk)
  692. {
  693. struct tcp_sock *tp = tcp_sk(sk);
  694. unsigned long flags, nflags;
  695. /* perform an atomic operation only if at least one flag is set */
  696. do {
  697. flags = tp->tsq_flags;
  698. if (!(flags & TCP_DEFERRED_ALL))
  699. return;
  700. nflags = flags & ~TCP_DEFERRED_ALL;
  701. } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
  702. if (flags & (1UL << TCP_TSQ_DEFERRED))
  703. tcp_tsq_handler(sk);
  704. /* Here begins the tricky part :
  705. * We are called from release_sock() with :
  706. * 1) BH disabled
  707. * 2) sk_lock.slock spinlock held
  708. * 3) socket owned by us (sk->sk_lock.owned == 1)
  709. *
  710. * But following code is meant to be called from BH handlers,
  711. * so we should keep BH disabled, but early release socket ownership
  712. */
  713. sock_release_ownership(sk);
  714. if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
  715. tcp_write_timer_handler(sk);
  716. __sock_put(sk);
  717. }
  718. if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
  719. tcp_delack_timer_handler(sk);
  720. __sock_put(sk);
  721. }
  722. if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
  723. inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
  724. __sock_put(sk);
  725. }
  726. }
  727. EXPORT_SYMBOL(tcp_release_cb);
  728. void __init tcp_tasklet_init(void)
  729. {
  730. int i;
  731. for_each_possible_cpu(i) {
  732. struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
  733. INIT_LIST_HEAD(&tsq->head);
  734. tasklet_init(&tsq->tasklet,
  735. tcp_tasklet_func,
  736. (unsigned long)tsq);
  737. }
  738. }
  739. /*
  740. * Write buffer destructor automatically called from kfree_skb.
  741. * We can't xmit new skbs from this context, as we might already
  742. * hold qdisc lock.
  743. */
  744. void tcp_wfree(struct sk_buff *skb)
  745. {
  746. struct sock *sk = skb->sk;
  747. struct tcp_sock *tp = tcp_sk(sk);
  748. int wmem;
  749. /* Keep one reference on sk_wmem_alloc.
  750. * Will be released by sk_free() from here or tcp_tasklet_func()
  751. */
  752. wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
  753. /* If this softirq is serviced by ksoftirqd, we are likely under stress.
  754. * Wait until our queues (qdisc + devices) are drained.
  755. * This gives :
  756. * - less callbacks to tcp_write_xmit(), reducing stress (batches)
  757. * - chance for incoming ACK (processed by another cpu maybe)
  758. * to migrate this flow (skb->ooo_okay will be eventually set)
  759. */
  760. if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
  761. goto out;
  762. if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
  763. !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
  764. unsigned long flags;
  765. struct tsq_tasklet *tsq;
  766. /* queue this socket to tasklet queue */
  767. local_irq_save(flags);
  768. tsq = this_cpu_ptr(&tsq_tasklet);
  769. list_add(&tp->tsq_node, &tsq->head);
  770. tasklet_schedule(&tsq->tasklet);
  771. local_irq_restore(flags);
  772. return;
  773. }
  774. out:
  775. sk_free(sk);
  776. }
  777. /* This routine actually transmits TCP packets queued in by
  778. * tcp_do_sendmsg(). This is used by both the initial
  779. * transmission and possible later retransmissions.
  780. * All SKB's seen here are completely headerless. It is our
  781. * job to build the TCP header, and pass the packet down to
  782. * IP so it can do the same plus pass the packet off to the
  783. * device.
  784. *
  785. * We are working here with either a clone of the original
  786. * SKB, or a fresh unique copy made by the retransmit engine.
  787. */
  788. static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
  789. gfp_t gfp_mask)
  790. {
  791. const struct inet_connection_sock *icsk = inet_csk(sk);
  792. struct inet_sock *inet;
  793. struct tcp_sock *tp;
  794. struct tcp_skb_cb *tcb;
  795. struct tcp_out_options opts;
  796. unsigned int tcp_options_size, tcp_header_size;
  797. struct tcp_md5sig_key *md5;
  798. struct tcphdr *th;
  799. int err;
  800. BUG_ON(!skb || !tcp_skb_pcount(skb));
  801. tp = tcp_sk(sk);
  802. if (clone_it) {
  803. skb_mstamp_get(&skb->skb_mstamp);
  804. TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
  805. - tp->snd_una;
  806. tcp_rate_skb_sent(sk, skb);
  807. if (unlikely(skb_cloned(skb)))
  808. skb = pskb_copy(skb, gfp_mask);
  809. else
  810. skb = skb_clone(skb, gfp_mask);
  811. if (unlikely(!skb))
  812. return -ENOBUFS;
  813. }
  814. inet = inet_sk(sk);
  815. tcb = TCP_SKB_CB(skb);
  816. memset(&opts, 0, sizeof(opts));
  817. if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
  818. tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
  819. else
  820. tcp_options_size = tcp_established_options(sk, skb, &opts,
  821. &md5);
  822. tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
  823. /* if no packet is in qdisc/device queue, then allow XPS to select
  824. * another queue. We can be called from tcp_tsq_handler()
  825. * which holds one reference to sk_wmem_alloc.
  826. *
  827. * TODO: Ideally, in-flight pure ACK packets should not matter here.
  828. * One way to get this would be to set skb->truesize = 2 on them.
  829. */
  830. skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
  831. skb_push(skb, tcp_header_size);
  832. skb_reset_transport_header(skb);
  833. skb_orphan(skb);
  834. skb->sk = sk;
  835. skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
  836. skb_set_hash_from_sk(skb, sk);
  837. atomic_add(skb->truesize, &sk->sk_wmem_alloc);
  838. /* Build TCP header and checksum it. */
  839. th = (struct tcphdr *)skb->data;
  840. th->source = inet->inet_sport;
  841. th->dest = inet->inet_dport;
  842. th->seq = htonl(tcb->seq);
  843. th->ack_seq = htonl(tp->rcv_nxt);
  844. *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
  845. tcb->tcp_flags);
  846. th->check = 0;
  847. th->urg_ptr = 0;
  848. /* The urg_mode check is necessary during a below snd_una win probe */
  849. if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
  850. if (before(tp->snd_up, tcb->seq + 0x10000)) {
  851. th->urg_ptr = htons(tp->snd_up - tcb->seq);
  852. th->urg = 1;
  853. } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
  854. th->urg_ptr = htons(0xFFFF);
  855. th->urg = 1;
  856. }
  857. }
  858. tcp_options_write((__be32 *)(th + 1), tp, &opts);
  859. skb_shinfo(skb)->gso_type = sk->sk_gso_type;
  860. if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
  861. th->window = htons(tcp_select_window(sk));
  862. tcp_ecn_send(sk, skb, th, tcp_header_size);
  863. } else {
  864. /* RFC1323: The window in SYN & SYN/ACK segments
  865. * is never scaled.
  866. */
  867. th->window = htons(min(tp->rcv_wnd, 65535U));
  868. }
  869. #ifdef CONFIG_TCP_MD5SIG
  870. /* Calculate the MD5 hash, as we have all we need now */
  871. if (md5) {
  872. sk_nocaps_add(sk, NETIF_F_GSO_MASK);
  873. tp->af_specific->calc_md5_hash(opts.hash_location,
  874. md5, sk, skb);
  875. }
  876. #endif
  877. icsk->icsk_af_ops->send_check(sk, skb);
  878. if (likely(tcb->tcp_flags & TCPHDR_ACK))
  879. tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
  880. if (skb->len != tcp_header_size) {
  881. tcp_event_data_sent(tp, sk);
  882. tp->data_segs_out += tcp_skb_pcount(skb);
  883. }
  884. if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
  885. TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
  886. tcp_skb_pcount(skb));
  887. tp->segs_out += tcp_skb_pcount(skb);
  888. /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
  889. skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
  890. skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
  891. /* Our usage of tstamp should remain private */
  892. skb->tstamp.tv64 = 0;
  893. /* Cleanup our debris for IP stacks */
  894. memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
  895. sizeof(struct inet6_skb_parm)));
  896. err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
  897. if (likely(err <= 0))
  898. return err;
  899. tcp_enter_cwr(sk);
  900. return net_xmit_eval(err);
  901. }
  902. /* This routine just queues the buffer for sending.
  903. *
  904. * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
  905. * otherwise socket can stall.
  906. */
  907. static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
  908. {
  909. struct tcp_sock *tp = tcp_sk(sk);
  910. /* Advance write_seq and place onto the write_queue. */
  911. tp->write_seq = TCP_SKB_CB(skb)->end_seq;
  912. __skb_header_release(skb);
  913. tcp_add_write_queue_tail(sk, skb);
  914. sk->sk_wmem_queued += skb->truesize;
  915. sk_mem_charge(sk, skb->truesize);
  916. }
  917. /* Initialize TSO segments for a packet. */
  918. static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  919. {
  920. if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
  921. /* Avoid the costly divide in the normal
  922. * non-TSO case.
  923. */
  924. tcp_skb_pcount_set(skb, 1);
  925. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  926. } else {
  927. tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
  928. TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
  929. }
  930. }
  931. /* When a modification to fackets out becomes necessary, we need to check
  932. * skb is counted to fackets_out or not.
  933. */
  934. static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
  935. int decr)
  936. {
  937. struct tcp_sock *tp = tcp_sk(sk);
  938. if (!tp->sacked_out || tcp_is_reno(tp))
  939. return;
  940. if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
  941. tp->fackets_out -= decr;
  942. }
  943. /* Pcount in the middle of the write queue got changed, we need to do various
  944. * tweaks to fix counters
  945. */
  946. static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
  947. {
  948. struct tcp_sock *tp = tcp_sk(sk);
  949. tp->packets_out -= decr;
  950. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  951. tp->sacked_out -= decr;
  952. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  953. tp->retrans_out -= decr;
  954. if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
  955. tp->lost_out -= decr;
  956. /* Reno case is special. Sigh... */
  957. if (tcp_is_reno(tp) && decr > 0)
  958. tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
  959. tcp_adjust_fackets_out(sk, skb, decr);
  960. if (tp->lost_skb_hint &&
  961. before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
  962. (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
  963. tp->lost_cnt_hint -= decr;
  964. tcp_verify_left_out(tp);
  965. }
  966. static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
  967. {
  968. return TCP_SKB_CB(skb)->txstamp_ack ||
  969. (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
  970. }
  971. static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
  972. {
  973. struct skb_shared_info *shinfo = skb_shinfo(skb);
  974. if (unlikely(tcp_has_tx_tstamp(skb)) &&
  975. !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
  976. struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
  977. u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  978. shinfo->tx_flags &= ~tsflags;
  979. shinfo2->tx_flags |= tsflags;
  980. swap(shinfo->tskey, shinfo2->tskey);
  981. TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
  982. TCP_SKB_CB(skb)->txstamp_ack = 0;
  983. }
  984. }
  985. static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
  986. {
  987. TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
  988. TCP_SKB_CB(skb)->eor = 0;
  989. }
  990. /* Function to create two new TCP segments. Shrinks the given segment
  991. * to the specified size and appends a new segment with the rest of the
  992. * packet to the list. This won't be called frequently, I hope.
  993. * Remember, these are still headerless SKBs at this point.
  994. */
  995. int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
  996. unsigned int mss_now, gfp_t gfp)
  997. {
  998. struct tcp_sock *tp = tcp_sk(sk);
  999. struct sk_buff *buff;
  1000. int nsize, old_factor;
  1001. int nlen;
  1002. u8 flags;
  1003. if (WARN_ON(len > skb->len))
  1004. return -EINVAL;
  1005. nsize = skb_headlen(skb) - len;
  1006. if (nsize < 0)
  1007. nsize = 0;
  1008. if (skb_unclone(skb, gfp))
  1009. return -ENOMEM;
  1010. /* Get a new skb... force flag on. */
  1011. buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
  1012. if (!buff)
  1013. return -ENOMEM; /* We'll just try again later. */
  1014. sk->sk_wmem_queued += buff->truesize;
  1015. sk_mem_charge(sk, buff->truesize);
  1016. nlen = skb->len - len - nsize;
  1017. buff->truesize += nlen;
  1018. skb->truesize -= nlen;
  1019. /* Correct the sequence numbers. */
  1020. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1021. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1022. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1023. /* PSH and FIN should only be set in the second packet. */
  1024. flags = TCP_SKB_CB(skb)->tcp_flags;
  1025. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1026. TCP_SKB_CB(buff)->tcp_flags = flags;
  1027. TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
  1028. tcp_skb_fragment_eor(skb, buff);
  1029. if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
  1030. /* Copy and checksum data tail into the new buffer. */
  1031. buff->csum = csum_partial_copy_nocheck(skb->data + len,
  1032. skb_put(buff, nsize),
  1033. nsize, 0);
  1034. skb_trim(skb, len);
  1035. skb->csum = csum_block_sub(skb->csum, buff->csum, len);
  1036. } else {
  1037. skb->ip_summed = CHECKSUM_PARTIAL;
  1038. skb_split(skb, buff, len);
  1039. }
  1040. buff->ip_summed = skb->ip_summed;
  1041. buff->tstamp = skb->tstamp;
  1042. tcp_fragment_tstamp(skb, buff);
  1043. old_factor = tcp_skb_pcount(skb);
  1044. /* Fix up tso_factor for both original and new SKB. */
  1045. tcp_set_skb_tso_segs(skb, mss_now);
  1046. tcp_set_skb_tso_segs(buff, mss_now);
  1047. /* Update delivered info for the new segment */
  1048. TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
  1049. /* If this packet has been sent out already, we must
  1050. * adjust the various packet counters.
  1051. */
  1052. if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
  1053. int diff = old_factor - tcp_skb_pcount(skb) -
  1054. tcp_skb_pcount(buff);
  1055. if (diff)
  1056. tcp_adjust_pcount(sk, skb, diff);
  1057. }
  1058. /* Link BUFF into the send queue. */
  1059. __skb_header_release(buff);
  1060. tcp_insert_write_queue_after(skb, buff, sk);
  1061. return 0;
  1062. }
  1063. /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
  1064. * eventually). The difference is that pulled data not copied, but
  1065. * immediately discarded.
  1066. */
  1067. static void __pskb_trim_head(struct sk_buff *skb, int len)
  1068. {
  1069. struct skb_shared_info *shinfo;
  1070. int i, k, eat;
  1071. eat = min_t(int, len, skb_headlen(skb));
  1072. if (eat) {
  1073. __skb_pull(skb, eat);
  1074. len -= eat;
  1075. if (!len)
  1076. return;
  1077. }
  1078. eat = len;
  1079. k = 0;
  1080. shinfo = skb_shinfo(skb);
  1081. for (i = 0; i < shinfo->nr_frags; i++) {
  1082. int size = skb_frag_size(&shinfo->frags[i]);
  1083. if (size <= eat) {
  1084. skb_frag_unref(skb, i);
  1085. eat -= size;
  1086. } else {
  1087. shinfo->frags[k] = shinfo->frags[i];
  1088. if (eat) {
  1089. shinfo->frags[k].page_offset += eat;
  1090. skb_frag_size_sub(&shinfo->frags[k], eat);
  1091. eat = 0;
  1092. }
  1093. k++;
  1094. }
  1095. }
  1096. shinfo->nr_frags = k;
  1097. skb_reset_tail_pointer(skb);
  1098. skb->data_len -= len;
  1099. skb->len = skb->data_len;
  1100. }
  1101. /* Remove acked data from a packet in the transmit queue. */
  1102. int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
  1103. {
  1104. if (skb_unclone(skb, GFP_ATOMIC))
  1105. return -ENOMEM;
  1106. __pskb_trim_head(skb, len);
  1107. TCP_SKB_CB(skb)->seq += len;
  1108. skb->ip_summed = CHECKSUM_PARTIAL;
  1109. skb->truesize -= len;
  1110. sk->sk_wmem_queued -= len;
  1111. sk_mem_uncharge(sk, len);
  1112. sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
  1113. /* Any change of skb->len requires recalculation of tso factor. */
  1114. if (tcp_skb_pcount(skb) > 1)
  1115. tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
  1116. return 0;
  1117. }
  1118. /* Calculate MSS not accounting any TCP options. */
  1119. static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1120. {
  1121. const struct tcp_sock *tp = tcp_sk(sk);
  1122. const struct inet_connection_sock *icsk = inet_csk(sk);
  1123. int mss_now;
  1124. /* Calculate base mss without TCP options:
  1125. It is MMS_S - sizeof(tcphdr) of rfc1122
  1126. */
  1127. mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
  1128. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1129. if (icsk->icsk_af_ops->net_frag_header_len) {
  1130. const struct dst_entry *dst = __sk_dst_get(sk);
  1131. if (dst && dst_allfrag(dst))
  1132. mss_now -= icsk->icsk_af_ops->net_frag_header_len;
  1133. }
  1134. /* Clamp it (mss_clamp does not include tcp options) */
  1135. if (mss_now > tp->rx_opt.mss_clamp)
  1136. mss_now = tp->rx_opt.mss_clamp;
  1137. /* Now subtract optional transport overhead */
  1138. mss_now -= icsk->icsk_ext_hdr_len;
  1139. /* Then reserve room for full set of TCP options and 8 bytes of data */
  1140. if (mss_now < 48)
  1141. mss_now = 48;
  1142. return mss_now;
  1143. }
  1144. /* Calculate MSS. Not accounting for SACKs here. */
  1145. int tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1146. {
  1147. /* Subtract TCP options size, not including SACKs */
  1148. return __tcp_mtu_to_mss(sk, pmtu) -
  1149. (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
  1150. }
  1151. /* Inverse of above */
  1152. int tcp_mss_to_mtu(struct sock *sk, int mss)
  1153. {
  1154. const struct tcp_sock *tp = tcp_sk(sk);
  1155. const struct inet_connection_sock *icsk = inet_csk(sk);
  1156. int mtu;
  1157. mtu = mss +
  1158. tp->tcp_header_len +
  1159. icsk->icsk_ext_hdr_len +
  1160. icsk->icsk_af_ops->net_header_len;
  1161. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1162. if (icsk->icsk_af_ops->net_frag_header_len) {
  1163. const struct dst_entry *dst = __sk_dst_get(sk);
  1164. if (dst && dst_allfrag(dst))
  1165. mtu += icsk->icsk_af_ops->net_frag_header_len;
  1166. }
  1167. return mtu;
  1168. }
  1169. EXPORT_SYMBOL(tcp_mss_to_mtu);
  1170. /* MTU probing init per socket */
  1171. void tcp_mtup_init(struct sock *sk)
  1172. {
  1173. struct tcp_sock *tp = tcp_sk(sk);
  1174. struct inet_connection_sock *icsk = inet_csk(sk);
  1175. struct net *net = sock_net(sk);
  1176. icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
  1177. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
  1178. icsk->icsk_af_ops->net_header_len;
  1179. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
  1180. icsk->icsk_mtup.probe_size = 0;
  1181. if (icsk->icsk_mtup.enabled)
  1182. icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
  1183. }
  1184. EXPORT_SYMBOL(tcp_mtup_init);
  1185. /* This function synchronize snd mss to current pmtu/exthdr set.
  1186. tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
  1187. for TCP options, but includes only bare TCP header.
  1188. tp->rx_opt.mss_clamp is mss negotiated at connection setup.
  1189. It is minimum of user_mss and mss received with SYN.
  1190. It also does not include TCP options.
  1191. inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
  1192. tp->mss_cache is current effective sending mss, including
  1193. all tcp options except for SACKs. It is evaluated,
  1194. taking into account current pmtu, but never exceeds
  1195. tp->rx_opt.mss_clamp.
  1196. NOTE1. rfc1122 clearly states that advertised MSS
  1197. DOES NOT include either tcp or ip options.
  1198. NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
  1199. are READ ONLY outside this function. --ANK (980731)
  1200. */
  1201. unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
  1202. {
  1203. struct tcp_sock *tp = tcp_sk(sk);
  1204. struct inet_connection_sock *icsk = inet_csk(sk);
  1205. int mss_now;
  1206. if (icsk->icsk_mtup.search_high > pmtu)
  1207. icsk->icsk_mtup.search_high = pmtu;
  1208. mss_now = tcp_mtu_to_mss(sk, pmtu);
  1209. mss_now = tcp_bound_to_half_wnd(tp, mss_now);
  1210. /* And store cached results */
  1211. icsk->icsk_pmtu_cookie = pmtu;
  1212. if (icsk->icsk_mtup.enabled)
  1213. mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
  1214. tp->mss_cache = mss_now;
  1215. return mss_now;
  1216. }
  1217. EXPORT_SYMBOL(tcp_sync_mss);
  1218. /* Compute the current effective MSS, taking SACKs and IP options,
  1219. * and even PMTU discovery events into account.
  1220. */
  1221. unsigned int tcp_current_mss(struct sock *sk)
  1222. {
  1223. const struct tcp_sock *tp = tcp_sk(sk);
  1224. const struct dst_entry *dst = __sk_dst_get(sk);
  1225. u32 mss_now;
  1226. unsigned int header_len;
  1227. struct tcp_out_options opts;
  1228. struct tcp_md5sig_key *md5;
  1229. mss_now = tp->mss_cache;
  1230. if (dst) {
  1231. u32 mtu = dst_mtu(dst);
  1232. if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
  1233. mss_now = tcp_sync_mss(sk, mtu);
  1234. }
  1235. header_len = tcp_established_options(sk, NULL, &opts, &md5) +
  1236. sizeof(struct tcphdr);
  1237. /* The mss_cache is sized based on tp->tcp_header_len, which assumes
  1238. * some common options. If this is an odd packet (because we have SACK
  1239. * blocks etc) then our calculated header_len will be different, and
  1240. * we have to adjust mss_now correspondingly */
  1241. if (header_len != tp->tcp_header_len) {
  1242. int delta = (int) header_len - tp->tcp_header_len;
  1243. mss_now -= delta;
  1244. }
  1245. return mss_now;
  1246. }
  1247. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  1248. * As additional protections, we do not touch cwnd in retransmission phases,
  1249. * and if application hit its sndbuf limit recently.
  1250. */
  1251. static void tcp_cwnd_application_limited(struct sock *sk)
  1252. {
  1253. struct tcp_sock *tp = tcp_sk(sk);
  1254. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  1255. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  1256. /* Limited by application or receiver window. */
  1257. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  1258. u32 win_used = max(tp->snd_cwnd_used, init_win);
  1259. if (win_used < tp->snd_cwnd) {
  1260. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  1261. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  1262. }
  1263. tp->snd_cwnd_used = 0;
  1264. }
  1265. tp->snd_cwnd_stamp = tcp_time_stamp;
  1266. }
  1267. static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
  1268. {
  1269. struct tcp_sock *tp = tcp_sk(sk);
  1270. /* Track the maximum number of outstanding packets in each
  1271. * window, and remember whether we were cwnd-limited then.
  1272. */
  1273. if (!before(tp->snd_una, tp->max_packets_seq) ||
  1274. tp->packets_out > tp->max_packets_out) {
  1275. tp->max_packets_out = tp->packets_out;
  1276. tp->max_packets_seq = tp->snd_nxt;
  1277. tp->is_cwnd_limited = is_cwnd_limited;
  1278. }
  1279. if (tcp_is_cwnd_limited(sk)) {
  1280. /* Network is feed fully. */
  1281. tp->snd_cwnd_used = 0;
  1282. tp->snd_cwnd_stamp = tcp_time_stamp;
  1283. } else {
  1284. /* Network starves. */
  1285. if (tp->packets_out > tp->snd_cwnd_used)
  1286. tp->snd_cwnd_used = tp->packets_out;
  1287. if (sysctl_tcp_slow_start_after_idle &&
  1288. (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
  1289. tcp_cwnd_application_limited(sk);
  1290. /* The following conditions together indicate the starvation
  1291. * is caused by insufficient sender buffer:
  1292. * 1) just sent some data (see tcp_write_xmit)
  1293. * 2) not cwnd limited (this else condition)
  1294. * 3) no more data to send (null tcp_send_head )
  1295. * 4) application is hitting buffer limit (SOCK_NOSPACE)
  1296. */
  1297. if (!tcp_send_head(sk) && sk->sk_socket &&
  1298. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
  1299. (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
  1300. tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
  1301. }
  1302. }
  1303. /* Minshall's variant of the Nagle send check. */
  1304. static bool tcp_minshall_check(const struct tcp_sock *tp)
  1305. {
  1306. return after(tp->snd_sml, tp->snd_una) &&
  1307. !after(tp->snd_sml, tp->snd_nxt);
  1308. }
  1309. /* Update snd_sml if this skb is under mss
  1310. * Note that a TSO packet might end with a sub-mss segment
  1311. * The test is really :
  1312. * if ((skb->len % mss) != 0)
  1313. * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1314. * But we can avoid doing the divide again given we already have
  1315. * skb_pcount = skb->len / mss_now
  1316. */
  1317. static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
  1318. const struct sk_buff *skb)
  1319. {
  1320. if (skb->len < tcp_skb_pcount(skb) * mss_now)
  1321. tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1322. }
  1323. /* Return false, if packet can be sent now without violation Nagle's rules:
  1324. * 1. It is full sized. (provided by caller in %partial bool)
  1325. * 2. Or it contains FIN. (already checked by caller)
  1326. * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
  1327. * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
  1328. * With Minshall's modification: all sent small packets are ACKed.
  1329. */
  1330. static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
  1331. int nonagle)
  1332. {
  1333. return partial &&
  1334. ((nonagle & TCP_NAGLE_CORK) ||
  1335. (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
  1336. }
  1337. /* Return how many segs we'd like on a TSO packet,
  1338. * to send one TSO packet per ms
  1339. */
  1340. u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
  1341. int min_tso_segs)
  1342. {
  1343. u32 bytes, segs;
  1344. bytes = min(sk->sk_pacing_rate >> 10,
  1345. sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
  1346. /* Goal is to send at least one packet per ms,
  1347. * not one big TSO packet every 100 ms.
  1348. * This preserves ACK clocking and is consistent
  1349. * with tcp_tso_should_defer() heuristic.
  1350. */
  1351. segs = max_t(u32, bytes / mss_now, min_tso_segs);
  1352. return min_t(u32, segs, sk->sk_gso_max_segs);
  1353. }
  1354. EXPORT_SYMBOL(tcp_tso_autosize);
  1355. /* Return the number of segments we want in the skb we are transmitting.
  1356. * See if congestion control module wants to decide; otherwise, autosize.
  1357. */
  1358. static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
  1359. {
  1360. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1361. u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
  1362. return tso_segs ? :
  1363. tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
  1364. }
  1365. /* Returns the portion of skb which can be sent right away */
  1366. static unsigned int tcp_mss_split_point(const struct sock *sk,
  1367. const struct sk_buff *skb,
  1368. unsigned int mss_now,
  1369. unsigned int max_segs,
  1370. int nonagle)
  1371. {
  1372. const struct tcp_sock *tp = tcp_sk(sk);
  1373. u32 partial, needed, window, max_len;
  1374. window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1375. max_len = mss_now * max_segs;
  1376. if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
  1377. return max_len;
  1378. needed = min(skb->len, window);
  1379. if (max_len <= needed)
  1380. return max_len;
  1381. partial = needed % mss_now;
  1382. /* If last segment is not a full MSS, check if Nagle rules allow us
  1383. * to include this last segment in this skb.
  1384. * Otherwise, we'll split the skb at last MSS boundary
  1385. */
  1386. if (tcp_nagle_check(partial != 0, tp, nonagle))
  1387. return needed - partial;
  1388. return needed;
  1389. }
  1390. /* Can at least one segment of SKB be sent right now, according to the
  1391. * congestion window rules? If so, return how many segments are allowed.
  1392. */
  1393. static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
  1394. const struct sk_buff *skb)
  1395. {
  1396. u32 in_flight, cwnd, halfcwnd;
  1397. /* Don't be strict about the congestion window for the final FIN. */
  1398. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
  1399. tcp_skb_pcount(skb) == 1)
  1400. return 1;
  1401. in_flight = tcp_packets_in_flight(tp);
  1402. cwnd = tp->snd_cwnd;
  1403. if (in_flight >= cwnd)
  1404. return 0;
  1405. /* For better scheduling, ensure we have at least
  1406. * 2 GSO packets in flight.
  1407. */
  1408. halfcwnd = max(cwnd >> 1, 1U);
  1409. return min(halfcwnd, cwnd - in_flight);
  1410. }
  1411. /* Initialize TSO state of a skb.
  1412. * This must be invoked the first time we consider transmitting
  1413. * SKB onto the wire.
  1414. */
  1415. static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  1416. {
  1417. int tso_segs = tcp_skb_pcount(skb);
  1418. if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
  1419. tcp_set_skb_tso_segs(skb, mss_now);
  1420. tso_segs = tcp_skb_pcount(skb);
  1421. }
  1422. return tso_segs;
  1423. }
  1424. /* Return true if the Nagle test allows this packet to be
  1425. * sent now.
  1426. */
  1427. static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
  1428. unsigned int cur_mss, int nonagle)
  1429. {
  1430. /* Nagle rule does not apply to frames, which sit in the middle of the
  1431. * write_queue (they have no chances to get new data).
  1432. *
  1433. * This is implemented in the callers, where they modify the 'nonagle'
  1434. * argument based upon the location of SKB in the send queue.
  1435. */
  1436. if (nonagle & TCP_NAGLE_PUSH)
  1437. return true;
  1438. /* Don't use the nagle rule for urgent data (or for the final FIN). */
  1439. if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
  1440. return true;
  1441. if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
  1442. return true;
  1443. return false;
  1444. }
  1445. /* Does at least the first segment of SKB fit into the send window? */
  1446. static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
  1447. const struct sk_buff *skb,
  1448. unsigned int cur_mss)
  1449. {
  1450. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  1451. if (skb->len > cur_mss)
  1452. end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
  1453. return !after(end_seq, tcp_wnd_end(tp));
  1454. }
  1455. /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
  1456. * should be put on the wire right now. If so, it returns the number of
  1457. * packets allowed by the congestion window.
  1458. */
  1459. static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
  1460. unsigned int cur_mss, int nonagle)
  1461. {
  1462. const struct tcp_sock *tp = tcp_sk(sk);
  1463. unsigned int cwnd_quota;
  1464. tcp_init_tso_segs(skb, cur_mss);
  1465. if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
  1466. return 0;
  1467. cwnd_quota = tcp_cwnd_test(tp, skb);
  1468. if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
  1469. cwnd_quota = 0;
  1470. return cwnd_quota;
  1471. }
  1472. /* Test if sending is allowed right now. */
  1473. bool tcp_may_send_now(struct sock *sk)
  1474. {
  1475. const struct tcp_sock *tp = tcp_sk(sk);
  1476. struct sk_buff *skb = tcp_send_head(sk);
  1477. return skb &&
  1478. tcp_snd_test(sk, skb, tcp_current_mss(sk),
  1479. (tcp_skb_is_last(sk, skb) ?
  1480. tp->nonagle : TCP_NAGLE_PUSH));
  1481. }
  1482. /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
  1483. * which is put after SKB on the list. It is very much like
  1484. * tcp_fragment() except that it may make several kinds of assumptions
  1485. * in order to speed up the splitting operation. In particular, we
  1486. * know that all the data is in scatter-gather pages, and that the
  1487. * packet has never been sent out before (and thus is not cloned).
  1488. */
  1489. static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
  1490. unsigned int mss_now, gfp_t gfp)
  1491. {
  1492. struct sk_buff *buff;
  1493. int nlen = skb->len - len;
  1494. u8 flags;
  1495. /* All of a TSO frame must be composed of paged data. */
  1496. if (skb->len != skb->data_len)
  1497. return tcp_fragment(sk, skb, len, mss_now, gfp);
  1498. buff = sk_stream_alloc_skb(sk, 0, gfp, true);
  1499. if (unlikely(!buff))
  1500. return -ENOMEM;
  1501. sk->sk_wmem_queued += buff->truesize;
  1502. sk_mem_charge(sk, buff->truesize);
  1503. buff->truesize += nlen;
  1504. skb->truesize -= nlen;
  1505. /* Correct the sequence numbers. */
  1506. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1507. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1508. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1509. /* PSH and FIN should only be set in the second packet. */
  1510. flags = TCP_SKB_CB(skb)->tcp_flags;
  1511. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1512. TCP_SKB_CB(buff)->tcp_flags = flags;
  1513. /* This packet was never sent out yet, so no SACK bits. */
  1514. TCP_SKB_CB(buff)->sacked = 0;
  1515. tcp_skb_fragment_eor(skb, buff);
  1516. buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
  1517. skb_split(skb, buff, len);
  1518. tcp_fragment_tstamp(skb, buff);
  1519. /* Fix up tso_factor for both original and new SKB. */
  1520. tcp_set_skb_tso_segs(skb, mss_now);
  1521. tcp_set_skb_tso_segs(buff, mss_now);
  1522. /* Link BUFF into the send queue. */
  1523. __skb_header_release(buff);
  1524. tcp_insert_write_queue_after(skb, buff, sk);
  1525. return 0;
  1526. }
  1527. /* Try to defer sending, if possible, in order to minimize the amount
  1528. * of TSO splitting we do. View it as a kind of TSO Nagle test.
  1529. *
  1530. * This algorithm is from John Heffner.
  1531. */
  1532. static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
  1533. bool *is_cwnd_limited, u32 max_segs)
  1534. {
  1535. const struct inet_connection_sock *icsk = inet_csk(sk);
  1536. u32 age, send_win, cong_win, limit, in_flight;
  1537. struct tcp_sock *tp = tcp_sk(sk);
  1538. struct skb_mstamp now;
  1539. struct sk_buff *head;
  1540. int win_divisor;
  1541. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1542. goto send_now;
  1543. if (icsk->icsk_ca_state >= TCP_CA_Recovery)
  1544. goto send_now;
  1545. /* Avoid bursty behavior by allowing defer
  1546. * only if the last write was recent.
  1547. */
  1548. if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
  1549. goto send_now;
  1550. in_flight = tcp_packets_in_flight(tp);
  1551. BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
  1552. send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1553. /* From in_flight test above, we know that cwnd > in_flight. */
  1554. cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
  1555. limit = min(send_win, cong_win);
  1556. /* If a full-sized TSO skb can be sent, do it. */
  1557. if (limit >= max_segs * tp->mss_cache)
  1558. goto send_now;
  1559. /* Middle in queue won't get any more data, full sendable already? */
  1560. if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
  1561. goto send_now;
  1562. win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
  1563. if (win_divisor) {
  1564. u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
  1565. /* If at least some fraction of a window is available,
  1566. * just use it.
  1567. */
  1568. chunk /= win_divisor;
  1569. if (limit >= chunk)
  1570. goto send_now;
  1571. } else {
  1572. /* Different approach, try not to defer past a single
  1573. * ACK. Receiver should ACK every other full sized
  1574. * frame, so if we have space for more than 3 frames
  1575. * then send now.
  1576. */
  1577. if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
  1578. goto send_now;
  1579. }
  1580. head = tcp_write_queue_head(sk);
  1581. skb_mstamp_get(&now);
  1582. age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
  1583. /* If next ACK is likely to come too late (half srtt), do not defer */
  1584. if (age < (tp->srtt_us >> 4))
  1585. goto send_now;
  1586. /* Ok, it looks like it is advisable to defer. */
  1587. if (cong_win < send_win && cong_win <= skb->len)
  1588. *is_cwnd_limited = true;
  1589. return true;
  1590. send_now:
  1591. return false;
  1592. }
  1593. static inline void tcp_mtu_check_reprobe(struct sock *sk)
  1594. {
  1595. struct inet_connection_sock *icsk = inet_csk(sk);
  1596. struct tcp_sock *tp = tcp_sk(sk);
  1597. struct net *net = sock_net(sk);
  1598. u32 interval;
  1599. s32 delta;
  1600. interval = net->ipv4.sysctl_tcp_probe_interval;
  1601. delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
  1602. if (unlikely(delta >= interval * HZ)) {
  1603. int mss = tcp_current_mss(sk);
  1604. /* Update current search range */
  1605. icsk->icsk_mtup.probe_size = 0;
  1606. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
  1607. sizeof(struct tcphdr) +
  1608. icsk->icsk_af_ops->net_header_len;
  1609. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
  1610. /* Update probe time stamp */
  1611. icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
  1612. }
  1613. }
  1614. /* Create a new MTU probe if we are ready.
  1615. * MTU probe is regularly attempting to increase the path MTU by
  1616. * deliberately sending larger packets. This discovers routing
  1617. * changes resulting in larger path MTUs.
  1618. *
  1619. * Returns 0 if we should wait to probe (no cwnd available),
  1620. * 1 if a probe was sent,
  1621. * -1 otherwise
  1622. */
  1623. static int tcp_mtu_probe(struct sock *sk)
  1624. {
  1625. struct tcp_sock *tp = tcp_sk(sk);
  1626. struct inet_connection_sock *icsk = inet_csk(sk);
  1627. struct sk_buff *skb, *nskb, *next;
  1628. struct net *net = sock_net(sk);
  1629. int len;
  1630. int probe_size;
  1631. int size_needed;
  1632. int copy;
  1633. int mss_now;
  1634. int interval;
  1635. /* Not currently probing/verifying,
  1636. * not in recovery,
  1637. * have enough cwnd, and
  1638. * not SACKing (the variable headers throw things off) */
  1639. if (!icsk->icsk_mtup.enabled ||
  1640. icsk->icsk_mtup.probe_size ||
  1641. inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
  1642. tp->snd_cwnd < 11 ||
  1643. tp->rx_opt.num_sacks || tp->rx_opt.dsack)
  1644. return -1;
  1645. /* Use binary search for probe_size between tcp_mss_base,
  1646. * and current mss_clamp. if (search_high - search_low)
  1647. * smaller than a threshold, backoff from probing.
  1648. */
  1649. mss_now = tcp_current_mss(sk);
  1650. probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
  1651. icsk->icsk_mtup.search_low) >> 1);
  1652. size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
  1653. interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
  1654. /* When misfortune happens, we are reprobing actively,
  1655. * and then reprobe timer has expired. We stick with current
  1656. * probing process by not resetting search range to its orignal.
  1657. */
  1658. if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
  1659. interval < net->ipv4.sysctl_tcp_probe_threshold) {
  1660. /* Check whether enough time has elaplased for
  1661. * another round of probing.
  1662. */
  1663. tcp_mtu_check_reprobe(sk);
  1664. return -1;
  1665. }
  1666. /* Have enough data in the send queue to probe? */
  1667. if (tp->write_seq - tp->snd_nxt < size_needed)
  1668. return -1;
  1669. if (tp->snd_wnd < size_needed)
  1670. return -1;
  1671. if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
  1672. return 0;
  1673. /* Do we need to wait to drain cwnd? With none in flight, don't stall */
  1674. if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
  1675. if (!tcp_packets_in_flight(tp))
  1676. return -1;
  1677. else
  1678. return 0;
  1679. }
  1680. /* We're allowed to probe. Build it now. */
  1681. nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
  1682. if (!nskb)
  1683. return -1;
  1684. sk->sk_wmem_queued += nskb->truesize;
  1685. sk_mem_charge(sk, nskb->truesize);
  1686. skb = tcp_send_head(sk);
  1687. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
  1688. TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
  1689. TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
  1690. TCP_SKB_CB(nskb)->sacked = 0;
  1691. nskb->csum = 0;
  1692. nskb->ip_summed = skb->ip_summed;
  1693. tcp_insert_write_queue_before(nskb, skb, sk);
  1694. len = 0;
  1695. tcp_for_write_queue_from_safe(skb, next, sk) {
  1696. copy = min_t(int, skb->len, probe_size - len);
  1697. if (nskb->ip_summed) {
  1698. skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
  1699. } else {
  1700. __wsum csum = skb_copy_and_csum_bits(skb, 0,
  1701. skb_put(nskb, copy),
  1702. copy, 0);
  1703. nskb->csum = csum_block_add(nskb->csum, csum, len);
  1704. }
  1705. if (skb->len <= copy) {
  1706. /* We've eaten all the data from this skb.
  1707. * Throw it away. */
  1708. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1709. tcp_unlink_write_queue(skb, sk);
  1710. sk_wmem_free_skb(sk, skb);
  1711. } else {
  1712. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
  1713. ~(TCPHDR_FIN|TCPHDR_PSH);
  1714. if (!skb_shinfo(skb)->nr_frags) {
  1715. skb_pull(skb, copy);
  1716. if (skb->ip_summed != CHECKSUM_PARTIAL)
  1717. skb->csum = csum_partial(skb->data,
  1718. skb->len, 0);
  1719. } else {
  1720. __pskb_trim_head(skb, copy);
  1721. tcp_set_skb_tso_segs(skb, mss_now);
  1722. }
  1723. TCP_SKB_CB(skb)->seq += copy;
  1724. }
  1725. len += copy;
  1726. if (len >= probe_size)
  1727. break;
  1728. }
  1729. tcp_init_tso_segs(nskb, nskb->len);
  1730. /* We're ready to send. If this fails, the probe will
  1731. * be resegmented into mss-sized pieces by tcp_write_xmit().
  1732. */
  1733. if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
  1734. /* Decrement cwnd here because we are sending
  1735. * effectively two packets. */
  1736. tp->snd_cwnd--;
  1737. tcp_event_new_data_sent(sk, nskb);
  1738. icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
  1739. tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
  1740. tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
  1741. return 1;
  1742. }
  1743. return -1;
  1744. }
  1745. /* TCP Small Queues :
  1746. * Control number of packets in qdisc/devices to two packets / or ~1 ms.
  1747. * (These limits are doubled for retransmits)
  1748. * This allows for :
  1749. * - better RTT estimation and ACK scheduling
  1750. * - faster recovery
  1751. * - high rates
  1752. * Alas, some drivers / subsystems require a fair amount
  1753. * of queued bytes to ensure line rate.
  1754. * One example is wifi aggregation (802.11 AMPDU)
  1755. */
  1756. static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
  1757. unsigned int factor)
  1758. {
  1759. unsigned int limit;
  1760. limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
  1761. limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
  1762. limit <<= factor;
  1763. if (atomic_read(&sk->sk_wmem_alloc) > limit) {
  1764. set_bit(TSQ_THROTTLED, &tcp_sk(sk)->tsq_flags);
  1765. /* It is possible TX completion already happened
  1766. * before we set TSQ_THROTTLED, so we must
  1767. * test again the condition.
  1768. */
  1769. smp_mb__after_atomic();
  1770. if (atomic_read(&sk->sk_wmem_alloc) > limit)
  1771. return true;
  1772. }
  1773. return false;
  1774. }
  1775. static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
  1776. {
  1777. const u32 now = tcp_time_stamp;
  1778. if (tp->chrono_type > TCP_CHRONO_UNSPEC)
  1779. tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start;
  1780. tp->chrono_start = now;
  1781. tp->chrono_type = new;
  1782. }
  1783. void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
  1784. {
  1785. struct tcp_sock *tp = tcp_sk(sk);
  1786. /* If there are multiple conditions worthy of tracking in a
  1787. * chronograph then the highest priority enum takes precedence
  1788. * over the other conditions. So that if something "more interesting"
  1789. * starts happening, stop the previous chrono and start a new one.
  1790. */
  1791. if (type > tp->chrono_type)
  1792. tcp_chrono_set(tp, type);
  1793. }
  1794. void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
  1795. {
  1796. struct tcp_sock *tp = tcp_sk(sk);
  1797. /* There are multiple conditions worthy of tracking in a
  1798. * chronograph, so that the highest priority enum takes
  1799. * precedence over the other conditions (see tcp_chrono_start).
  1800. * If a condition stops, we only stop chrono tracking if
  1801. * it's the "most interesting" or current chrono we are
  1802. * tracking and starts busy chrono if we have pending data.
  1803. */
  1804. if (tcp_write_queue_empty(sk))
  1805. tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
  1806. else if (type == tp->chrono_type)
  1807. tcp_chrono_set(tp, TCP_CHRONO_BUSY);
  1808. }
  1809. /* This routine writes packets to the network. It advances the
  1810. * send_head. This happens as incoming acks open up the remote
  1811. * window for us.
  1812. *
  1813. * LARGESEND note: !tcp_urg_mode is overkill, only frames between
  1814. * snd_up-64k-mss .. snd_up cannot be large. However, taking into
  1815. * account rare use of URG, this is not a big flaw.
  1816. *
  1817. * Send at most one packet when push_one > 0. Temporarily ignore
  1818. * cwnd limit to force at most one packet out when push_one == 2.
  1819. * Returns true, if no segments are in flight and we have queued segments,
  1820. * but cannot send anything now because of SWS or another problem.
  1821. */
  1822. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  1823. int push_one, gfp_t gfp)
  1824. {
  1825. struct tcp_sock *tp = tcp_sk(sk);
  1826. struct sk_buff *skb;
  1827. unsigned int tso_segs, sent_pkts;
  1828. int cwnd_quota;
  1829. int result;
  1830. bool is_cwnd_limited = false, is_rwnd_limited = false;
  1831. u32 max_segs;
  1832. sent_pkts = 0;
  1833. if (!push_one) {
  1834. /* Do MTU probing. */
  1835. result = tcp_mtu_probe(sk);
  1836. if (!result) {
  1837. return false;
  1838. } else if (result > 0) {
  1839. sent_pkts = 1;
  1840. }
  1841. }
  1842. max_segs = tcp_tso_segs(sk, mss_now);
  1843. while ((skb = tcp_send_head(sk))) {
  1844. unsigned int limit;
  1845. tso_segs = tcp_init_tso_segs(skb, mss_now);
  1846. BUG_ON(!tso_segs);
  1847. if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
  1848. /* "skb_mstamp" is used as a start point for the retransmit timer */
  1849. skb_mstamp_get(&skb->skb_mstamp);
  1850. goto repair; /* Skip network transmission */
  1851. }
  1852. cwnd_quota = tcp_cwnd_test(tp, skb);
  1853. if (!cwnd_quota) {
  1854. if (push_one == 2)
  1855. /* Force out a loss probe pkt. */
  1856. cwnd_quota = 1;
  1857. else
  1858. break;
  1859. }
  1860. if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
  1861. is_rwnd_limited = true;
  1862. break;
  1863. }
  1864. if (tso_segs == 1) {
  1865. if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
  1866. (tcp_skb_is_last(sk, skb) ?
  1867. nonagle : TCP_NAGLE_PUSH))))
  1868. break;
  1869. } else {
  1870. if (!push_one &&
  1871. tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
  1872. max_segs))
  1873. break;
  1874. }
  1875. limit = mss_now;
  1876. if (tso_segs > 1 && !tcp_urg_mode(tp))
  1877. limit = tcp_mss_split_point(sk, skb, mss_now,
  1878. min_t(unsigned int,
  1879. cwnd_quota,
  1880. max_segs),
  1881. nonagle);
  1882. if (skb->len > limit &&
  1883. unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
  1884. break;
  1885. if (tcp_small_queue_check(sk, skb, 0))
  1886. break;
  1887. if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
  1888. break;
  1889. repair:
  1890. /* Advance the send_head. This one is sent out.
  1891. * This call will increment packets_out.
  1892. */
  1893. tcp_event_new_data_sent(sk, skb);
  1894. tcp_minshall_update(tp, mss_now, skb);
  1895. sent_pkts += tcp_skb_pcount(skb);
  1896. if (push_one)
  1897. break;
  1898. }
  1899. if (is_rwnd_limited)
  1900. tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
  1901. else
  1902. tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
  1903. if (likely(sent_pkts)) {
  1904. if (tcp_in_cwnd_reduction(sk))
  1905. tp->prr_out += sent_pkts;
  1906. /* Send one loss probe per tail loss episode. */
  1907. if (push_one != 2)
  1908. tcp_schedule_loss_probe(sk);
  1909. is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
  1910. tcp_cwnd_validate(sk, is_cwnd_limited);
  1911. return false;
  1912. }
  1913. return !tp->packets_out && tcp_send_head(sk);
  1914. }
  1915. bool tcp_schedule_loss_probe(struct sock *sk)
  1916. {
  1917. struct inet_connection_sock *icsk = inet_csk(sk);
  1918. struct tcp_sock *tp = tcp_sk(sk);
  1919. u32 timeout, tlp_time_stamp, rto_time_stamp;
  1920. u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
  1921. if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
  1922. return false;
  1923. /* No consecutive loss probes. */
  1924. if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
  1925. tcp_rearm_rto(sk);
  1926. return false;
  1927. }
  1928. /* Don't do any loss probe on a Fast Open connection before 3WHS
  1929. * finishes.
  1930. */
  1931. if (tp->fastopen_rsk)
  1932. return false;
  1933. /* TLP is only scheduled when next timer event is RTO. */
  1934. if (icsk->icsk_pending != ICSK_TIME_RETRANS)
  1935. return false;
  1936. /* Schedule a loss probe in 2*RTT for SACK capable connections
  1937. * in Open state, that are either limited by cwnd or application.
  1938. */
  1939. if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
  1940. !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  1941. return false;
  1942. if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
  1943. tcp_send_head(sk))
  1944. return false;
  1945. /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
  1946. * for delayed ack when there's one outstanding packet. If no RTT
  1947. * sample is available then probe after TCP_TIMEOUT_INIT.
  1948. */
  1949. timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
  1950. if (tp->packets_out == 1)
  1951. timeout = max_t(u32, timeout,
  1952. (rtt + (rtt >> 1) + TCP_DELACK_MAX));
  1953. timeout = max_t(u32, timeout, msecs_to_jiffies(10));
  1954. /* If RTO is shorter, just schedule TLP in its place. */
  1955. tlp_time_stamp = tcp_time_stamp + timeout;
  1956. rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
  1957. if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
  1958. s32 delta = rto_time_stamp - tcp_time_stamp;
  1959. if (delta > 0)
  1960. timeout = delta;
  1961. }
  1962. inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
  1963. TCP_RTO_MAX);
  1964. return true;
  1965. }
  1966. /* Thanks to skb fast clones, we can detect if a prior transmit of
  1967. * a packet is still in a qdisc or driver queue.
  1968. * In this case, there is very little point doing a retransmit !
  1969. */
  1970. static bool skb_still_in_host_queue(const struct sock *sk,
  1971. const struct sk_buff *skb)
  1972. {
  1973. if (unlikely(skb_fclone_busy(sk, skb))) {
  1974. NET_INC_STATS(sock_net(sk),
  1975. LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
  1976. return true;
  1977. }
  1978. return false;
  1979. }
  1980. /* When probe timeout (PTO) fires, try send a new segment if possible, else
  1981. * retransmit the last segment.
  1982. */
  1983. void tcp_send_loss_probe(struct sock *sk)
  1984. {
  1985. struct tcp_sock *tp = tcp_sk(sk);
  1986. struct sk_buff *skb;
  1987. int pcount;
  1988. int mss = tcp_current_mss(sk);
  1989. skb = tcp_send_head(sk);
  1990. if (skb) {
  1991. if (tcp_snd_wnd_test(tp, skb, mss)) {
  1992. pcount = tp->packets_out;
  1993. tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
  1994. if (tp->packets_out > pcount)
  1995. goto probe_sent;
  1996. goto rearm_timer;
  1997. }
  1998. skb = tcp_write_queue_prev(sk, skb);
  1999. } else {
  2000. skb = tcp_write_queue_tail(sk);
  2001. }
  2002. /* At most one outstanding TLP retransmission. */
  2003. if (tp->tlp_high_seq)
  2004. goto rearm_timer;
  2005. /* Retransmit last segment. */
  2006. if (WARN_ON(!skb))
  2007. goto rearm_timer;
  2008. if (skb_still_in_host_queue(sk, skb))
  2009. goto rearm_timer;
  2010. pcount = tcp_skb_pcount(skb);
  2011. if (WARN_ON(!pcount))
  2012. goto rearm_timer;
  2013. if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
  2014. if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
  2015. GFP_ATOMIC)))
  2016. goto rearm_timer;
  2017. skb = tcp_write_queue_next(sk, skb);
  2018. }
  2019. if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
  2020. goto rearm_timer;
  2021. if (__tcp_retransmit_skb(sk, skb, 1))
  2022. goto rearm_timer;
  2023. /* Record snd_nxt for loss detection. */
  2024. tp->tlp_high_seq = tp->snd_nxt;
  2025. probe_sent:
  2026. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
  2027. /* Reset s.t. tcp_rearm_rto will restart timer from now */
  2028. inet_csk(sk)->icsk_pending = 0;
  2029. rearm_timer:
  2030. tcp_rearm_rto(sk);
  2031. }
  2032. /* Push out any pending frames which were held back due to
  2033. * TCP_CORK or attempt at coalescing tiny packets.
  2034. * The socket must be locked by the caller.
  2035. */
  2036. void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
  2037. int nonagle)
  2038. {
  2039. /* If we are closed, the bytes will have to remain here.
  2040. * In time closedown will finish, we empty the write queue and
  2041. * all will be happy.
  2042. */
  2043. if (unlikely(sk->sk_state == TCP_CLOSE))
  2044. return;
  2045. if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
  2046. sk_gfp_mask(sk, GFP_ATOMIC)))
  2047. tcp_check_probe_timer(sk);
  2048. }
  2049. /* Send _single_ skb sitting at the send head. This function requires
  2050. * true push pending frames to setup probe timer etc.
  2051. */
  2052. void tcp_push_one(struct sock *sk, unsigned int mss_now)
  2053. {
  2054. struct sk_buff *skb = tcp_send_head(sk);
  2055. BUG_ON(!skb || skb->len < mss_now);
  2056. tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
  2057. }
  2058. /* This function returns the amount that we can raise the
  2059. * usable window based on the following constraints
  2060. *
  2061. * 1. The window can never be shrunk once it is offered (RFC 793)
  2062. * 2. We limit memory per socket
  2063. *
  2064. * RFC 1122:
  2065. * "the suggested [SWS] avoidance algorithm for the receiver is to keep
  2066. * RECV.NEXT + RCV.WIN fixed until:
  2067. * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
  2068. *
  2069. * i.e. don't raise the right edge of the window until you can raise
  2070. * it at least MSS bytes.
  2071. *
  2072. * Unfortunately, the recommended algorithm breaks header prediction,
  2073. * since header prediction assumes th->window stays fixed.
  2074. *
  2075. * Strictly speaking, keeping th->window fixed violates the receiver
  2076. * side SWS prevention criteria. The problem is that under this rule
  2077. * a stream of single byte packets will cause the right side of the
  2078. * window to always advance by a single byte.
  2079. *
  2080. * Of course, if the sender implements sender side SWS prevention
  2081. * then this will not be a problem.
  2082. *
  2083. * BSD seems to make the following compromise:
  2084. *
  2085. * If the free space is less than the 1/4 of the maximum
  2086. * space available and the free space is less than 1/2 mss,
  2087. * then set the window to 0.
  2088. * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
  2089. * Otherwise, just prevent the window from shrinking
  2090. * and from being larger than the largest representable value.
  2091. *
  2092. * This prevents incremental opening of the window in the regime
  2093. * where TCP is limited by the speed of the reader side taking
  2094. * data out of the TCP receive queue. It does nothing about
  2095. * those cases where the window is constrained on the sender side
  2096. * because the pipeline is full.
  2097. *
  2098. * BSD also seems to "accidentally" limit itself to windows that are a
  2099. * multiple of MSS, at least until the free space gets quite small.
  2100. * This would appear to be a side effect of the mbuf implementation.
  2101. * Combining these two algorithms results in the observed behavior
  2102. * of having a fixed window size at almost all times.
  2103. *
  2104. * Below we obtain similar behavior by forcing the offered window to
  2105. * a multiple of the mss when it is feasible to do so.
  2106. *
  2107. * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
  2108. * Regular options like TIMESTAMP are taken into account.
  2109. */
  2110. u32 __tcp_select_window(struct sock *sk)
  2111. {
  2112. struct inet_connection_sock *icsk = inet_csk(sk);
  2113. struct tcp_sock *tp = tcp_sk(sk);
  2114. /* MSS for the peer's data. Previous versions used mss_clamp
  2115. * here. I don't know if the value based on our guesses
  2116. * of peer's MSS is better for the performance. It's more correct
  2117. * but may be worse for the performance because of rcv_mss
  2118. * fluctuations. --SAW 1998/11/1
  2119. */
  2120. int mss = icsk->icsk_ack.rcv_mss;
  2121. int free_space = tcp_space(sk);
  2122. int allowed_space = tcp_full_space(sk);
  2123. int full_space = min_t(int, tp->window_clamp, allowed_space);
  2124. int window;
  2125. if (mss > full_space)
  2126. mss = full_space;
  2127. if (free_space < (full_space >> 1)) {
  2128. icsk->icsk_ack.quick = 0;
  2129. if (tcp_under_memory_pressure(sk))
  2130. tp->rcv_ssthresh = min(tp->rcv_ssthresh,
  2131. 4U * tp->advmss);
  2132. /* free_space might become our new window, make sure we don't
  2133. * increase it due to wscale.
  2134. */
  2135. free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
  2136. /* if free space is less than mss estimate, or is below 1/16th
  2137. * of the maximum allowed, try to move to zero-window, else
  2138. * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
  2139. * new incoming data is dropped due to memory limits.
  2140. * With large window, mss test triggers way too late in order
  2141. * to announce zero window in time before rmem limit kicks in.
  2142. */
  2143. if (free_space < (allowed_space >> 4) || free_space < mss)
  2144. return 0;
  2145. }
  2146. if (free_space > tp->rcv_ssthresh)
  2147. free_space = tp->rcv_ssthresh;
  2148. /* Don't do rounding if we are using window scaling, since the
  2149. * scaled window will not line up with the MSS boundary anyway.
  2150. */
  2151. window = tp->rcv_wnd;
  2152. if (tp->rx_opt.rcv_wscale) {
  2153. window = free_space;
  2154. /* Advertise enough space so that it won't get scaled away.
  2155. * Import case: prevent zero window announcement if
  2156. * 1<<rcv_wscale > mss.
  2157. */
  2158. if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
  2159. window = (((window >> tp->rx_opt.rcv_wscale) + 1)
  2160. << tp->rx_opt.rcv_wscale);
  2161. } else {
  2162. /* Get the largest window that is a nice multiple of mss.
  2163. * Window clamp already applied above.
  2164. * If our current window offering is within 1 mss of the
  2165. * free space we just keep it. This prevents the divide
  2166. * and multiply from happening most of the time.
  2167. * We also don't do any window rounding when the free space
  2168. * is too small.
  2169. */
  2170. if (window <= free_space - mss || window > free_space)
  2171. window = (free_space / mss) * mss;
  2172. else if (mss == full_space &&
  2173. free_space > window + (full_space >> 1))
  2174. window = free_space;
  2175. }
  2176. return window;
  2177. }
  2178. void tcp_skb_collapse_tstamp(struct sk_buff *skb,
  2179. const struct sk_buff *next_skb)
  2180. {
  2181. if (unlikely(tcp_has_tx_tstamp(next_skb))) {
  2182. const struct skb_shared_info *next_shinfo =
  2183. skb_shinfo(next_skb);
  2184. struct skb_shared_info *shinfo = skb_shinfo(skb);
  2185. shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  2186. shinfo->tskey = next_shinfo->tskey;
  2187. TCP_SKB_CB(skb)->txstamp_ack |=
  2188. TCP_SKB_CB(next_skb)->txstamp_ack;
  2189. }
  2190. }
  2191. /* Collapses two adjacent SKB's during retransmission. */
  2192. static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
  2193. {
  2194. struct tcp_sock *tp = tcp_sk(sk);
  2195. struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
  2196. int skb_size, next_skb_size;
  2197. skb_size = skb->len;
  2198. next_skb_size = next_skb->len;
  2199. BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
  2200. if (next_skb_size) {
  2201. if (next_skb_size <= skb_availroom(skb))
  2202. skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
  2203. next_skb_size);
  2204. else if (!skb_shift(skb, next_skb, next_skb_size))
  2205. return false;
  2206. }
  2207. tcp_highest_sack_combine(sk, next_skb, skb);
  2208. tcp_unlink_write_queue(next_skb, sk);
  2209. if (next_skb->ip_summed == CHECKSUM_PARTIAL)
  2210. skb->ip_summed = CHECKSUM_PARTIAL;
  2211. if (skb->ip_summed != CHECKSUM_PARTIAL)
  2212. skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
  2213. /* Update sequence range on original skb. */
  2214. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
  2215. /* Merge over control information. This moves PSH/FIN etc. over */
  2216. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
  2217. /* All done, get rid of second SKB and account for it so
  2218. * packet counting does not break.
  2219. */
  2220. TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
  2221. TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
  2222. /* changed transmit queue under us so clear hints */
  2223. tcp_clear_retrans_hints_partial(tp);
  2224. if (next_skb == tp->retransmit_skb_hint)
  2225. tp->retransmit_skb_hint = skb;
  2226. tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
  2227. tcp_skb_collapse_tstamp(skb, next_skb);
  2228. sk_wmem_free_skb(sk, next_skb);
  2229. return true;
  2230. }
  2231. /* Check if coalescing SKBs is legal. */
  2232. static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
  2233. {
  2234. if (tcp_skb_pcount(skb) > 1)
  2235. return false;
  2236. if (skb_cloned(skb))
  2237. return false;
  2238. if (skb == tcp_send_head(sk))
  2239. return false;
  2240. /* Some heuristics for collapsing over SACK'd could be invented */
  2241. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  2242. return false;
  2243. return true;
  2244. }
  2245. /* Collapse packets in the retransmit queue to make to create
  2246. * less packets on the wire. This is only done on retransmission.
  2247. */
  2248. static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
  2249. int space)
  2250. {
  2251. struct tcp_sock *tp = tcp_sk(sk);
  2252. struct sk_buff *skb = to, *tmp;
  2253. bool first = true;
  2254. if (!sysctl_tcp_retrans_collapse)
  2255. return;
  2256. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2257. return;
  2258. tcp_for_write_queue_from_safe(skb, tmp, sk) {
  2259. if (!tcp_can_collapse(sk, skb))
  2260. break;
  2261. if (!tcp_skb_can_collapse_to(to))
  2262. break;
  2263. space -= skb->len;
  2264. if (first) {
  2265. first = false;
  2266. continue;
  2267. }
  2268. if (space < 0)
  2269. break;
  2270. if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
  2271. break;
  2272. if (!tcp_collapse_retrans(sk, to))
  2273. break;
  2274. }
  2275. }
  2276. /* This retransmits one SKB. Policy decisions and retransmit queue
  2277. * state updates are done by the caller. Returns non-zero if an
  2278. * error occurred which prevented the send.
  2279. */
  2280. int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2281. {
  2282. struct inet_connection_sock *icsk = inet_csk(sk);
  2283. struct tcp_sock *tp = tcp_sk(sk);
  2284. unsigned int cur_mss;
  2285. int diff, len, err;
  2286. /* Inconclusive MTU probe */
  2287. if (icsk->icsk_mtup.probe_size)
  2288. icsk->icsk_mtup.probe_size = 0;
  2289. /* Do not sent more than we queued. 1/4 is reserved for possible
  2290. * copying overhead: fragmentation, tunneling, mangling etc.
  2291. */
  2292. if (atomic_read(&sk->sk_wmem_alloc) >
  2293. min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
  2294. sk->sk_sndbuf))
  2295. return -EAGAIN;
  2296. if (skb_still_in_host_queue(sk, skb))
  2297. return -EBUSY;
  2298. if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
  2299. if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  2300. BUG();
  2301. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2302. return -ENOMEM;
  2303. }
  2304. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2305. return -EHOSTUNREACH; /* Routing failure or similar. */
  2306. cur_mss = tcp_current_mss(sk);
  2307. /* If receiver has shrunk his window, and skb is out of
  2308. * new window, do not retransmit it. The exception is the
  2309. * case, when window is shrunk to zero. In this case
  2310. * our retransmit serves as a zero window probe.
  2311. */
  2312. if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
  2313. TCP_SKB_CB(skb)->seq != tp->snd_una)
  2314. return -EAGAIN;
  2315. len = cur_mss * segs;
  2316. if (skb->len > len) {
  2317. if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
  2318. return -ENOMEM; /* We'll try again later. */
  2319. } else {
  2320. if (skb_unclone(skb, GFP_ATOMIC))
  2321. return -ENOMEM;
  2322. diff = tcp_skb_pcount(skb);
  2323. tcp_set_skb_tso_segs(skb, cur_mss);
  2324. diff -= tcp_skb_pcount(skb);
  2325. if (diff)
  2326. tcp_adjust_pcount(sk, skb, diff);
  2327. if (skb->len < cur_mss)
  2328. tcp_retrans_try_collapse(sk, skb, cur_mss);
  2329. }
  2330. /* RFC3168, section 6.1.1.1. ECN fallback */
  2331. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
  2332. tcp_ecn_clear_syn(sk, skb);
  2333. /* make sure skb->data is aligned on arches that require it
  2334. * and check if ack-trimming & collapsing extended the headroom
  2335. * beyond what csum_start can cover.
  2336. */
  2337. if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
  2338. skb_headroom(skb) >= 0xFFFF)) {
  2339. struct sk_buff *nskb;
  2340. skb_mstamp_get(&skb->skb_mstamp);
  2341. nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
  2342. err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
  2343. -ENOBUFS;
  2344. } else {
  2345. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2346. }
  2347. if (likely(!err)) {
  2348. segs = tcp_skb_pcount(skb);
  2349. TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
  2350. /* Update global TCP statistics. */
  2351. TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
  2352. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2353. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  2354. tp->total_retrans += segs;
  2355. }
  2356. return err;
  2357. }
  2358. int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2359. {
  2360. struct tcp_sock *tp = tcp_sk(sk);
  2361. int err = __tcp_retransmit_skb(sk, skb, segs);
  2362. if (err == 0) {
  2363. #if FASTRETRANS_DEBUG > 0
  2364. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2365. net_dbg_ratelimited("retrans_out leaked\n");
  2366. }
  2367. #endif
  2368. TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
  2369. tp->retrans_out += tcp_skb_pcount(skb);
  2370. /* Save stamp of the first retransmit. */
  2371. if (!tp->retrans_stamp)
  2372. tp->retrans_stamp = tcp_skb_timestamp(skb);
  2373. } else if (err != -EBUSY) {
  2374. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
  2375. }
  2376. if (tp->undo_retrans < 0)
  2377. tp->undo_retrans = 0;
  2378. tp->undo_retrans += tcp_skb_pcount(skb);
  2379. return err;
  2380. }
  2381. /* Check if we forward retransmits are possible in the current
  2382. * window/congestion state.
  2383. */
  2384. static bool tcp_can_forward_retransmit(struct sock *sk)
  2385. {
  2386. const struct inet_connection_sock *icsk = inet_csk(sk);
  2387. const struct tcp_sock *tp = tcp_sk(sk);
  2388. /* Forward retransmissions are possible only during Recovery. */
  2389. if (icsk->icsk_ca_state != TCP_CA_Recovery)
  2390. return false;
  2391. /* No forward retransmissions in Reno are possible. */
  2392. if (tcp_is_reno(tp))
  2393. return false;
  2394. /* Yeah, we have to make difficult choice between forward transmission
  2395. * and retransmission... Both ways have their merits...
  2396. *
  2397. * For now we do not retransmit anything, while we have some new
  2398. * segments to send. In the other cases, follow rule 3 for
  2399. * NextSeg() specified in RFC3517.
  2400. */
  2401. if (tcp_may_send_now(sk))
  2402. return false;
  2403. return true;
  2404. }
  2405. /* This gets called after a retransmit timeout, and the initially
  2406. * retransmitted data is acknowledged. It tries to continue
  2407. * resending the rest of the retransmit queue, until either
  2408. * we've sent it all or the congestion window limit is reached.
  2409. * If doing SACK, the first ACK which comes back for a timeout
  2410. * based retransmit packet might feed us FACK information again.
  2411. * If so, we use it to avoid unnecessarily retransmissions.
  2412. */
  2413. void tcp_xmit_retransmit_queue(struct sock *sk)
  2414. {
  2415. const struct inet_connection_sock *icsk = inet_csk(sk);
  2416. struct tcp_sock *tp = tcp_sk(sk);
  2417. struct sk_buff *skb;
  2418. struct sk_buff *hole = NULL;
  2419. u32 max_segs, last_lost;
  2420. int mib_idx;
  2421. int fwd_rexmitting = 0;
  2422. if (!tp->packets_out)
  2423. return;
  2424. if (!tp->lost_out)
  2425. tp->retransmit_high = tp->snd_una;
  2426. if (tp->retransmit_skb_hint) {
  2427. skb = tp->retransmit_skb_hint;
  2428. last_lost = TCP_SKB_CB(skb)->end_seq;
  2429. if (after(last_lost, tp->retransmit_high))
  2430. last_lost = tp->retransmit_high;
  2431. } else {
  2432. skb = tcp_write_queue_head(sk);
  2433. last_lost = tp->snd_una;
  2434. }
  2435. max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
  2436. tcp_for_write_queue_from(skb, sk) {
  2437. __u8 sacked;
  2438. int segs;
  2439. if (skb == tcp_send_head(sk))
  2440. break;
  2441. /* we could do better than to assign each time */
  2442. if (!hole)
  2443. tp->retransmit_skb_hint = skb;
  2444. segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
  2445. if (segs <= 0)
  2446. return;
  2447. sacked = TCP_SKB_CB(skb)->sacked;
  2448. /* In case tcp_shift_skb_data() have aggregated large skbs,
  2449. * we need to make sure not sending too bigs TSO packets
  2450. */
  2451. segs = min_t(int, segs, max_segs);
  2452. if (fwd_rexmitting) {
  2453. begin_fwd:
  2454. if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
  2455. break;
  2456. mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
  2457. } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
  2458. tp->retransmit_high = last_lost;
  2459. if (!tcp_can_forward_retransmit(sk))
  2460. break;
  2461. /* Backtrack if necessary to non-L'ed skb */
  2462. if (hole) {
  2463. skb = hole;
  2464. hole = NULL;
  2465. }
  2466. fwd_rexmitting = 1;
  2467. goto begin_fwd;
  2468. } else if (!(sacked & TCPCB_LOST)) {
  2469. if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
  2470. hole = skb;
  2471. continue;
  2472. } else {
  2473. last_lost = TCP_SKB_CB(skb)->end_seq;
  2474. if (icsk->icsk_ca_state != TCP_CA_Loss)
  2475. mib_idx = LINUX_MIB_TCPFASTRETRANS;
  2476. else
  2477. mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
  2478. }
  2479. if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
  2480. continue;
  2481. if (tcp_small_queue_check(sk, skb, 1))
  2482. return;
  2483. if (tcp_retransmit_skb(sk, skb, segs))
  2484. return;
  2485. NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
  2486. if (tcp_in_cwnd_reduction(sk))
  2487. tp->prr_out += tcp_skb_pcount(skb);
  2488. if (skb == tcp_write_queue_head(sk))
  2489. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2490. inet_csk(sk)->icsk_rto,
  2491. TCP_RTO_MAX);
  2492. }
  2493. }
  2494. /* We allow to exceed memory limits for FIN packets to expedite
  2495. * connection tear down and (memory) recovery.
  2496. * Otherwise tcp_send_fin() could be tempted to either delay FIN
  2497. * or even be forced to close flow without any FIN.
  2498. * In general, we want to allow one skb per socket to avoid hangs
  2499. * with edge trigger epoll()
  2500. */
  2501. void sk_forced_mem_schedule(struct sock *sk, int size)
  2502. {
  2503. int amt;
  2504. if (size <= sk->sk_forward_alloc)
  2505. return;
  2506. amt = sk_mem_pages(size);
  2507. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  2508. sk_memory_allocated_add(sk, amt);
  2509. if (mem_cgroup_sockets_enabled && sk->sk_memcg)
  2510. mem_cgroup_charge_skmem(sk->sk_memcg, amt);
  2511. }
  2512. /* Send a FIN. The caller locks the socket for us.
  2513. * We should try to send a FIN packet really hard, but eventually give up.
  2514. */
  2515. void tcp_send_fin(struct sock *sk)
  2516. {
  2517. struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
  2518. struct tcp_sock *tp = tcp_sk(sk);
  2519. /* Optimization, tack on the FIN if we have one skb in write queue and
  2520. * this skb was not yet sent, or we are under memory pressure.
  2521. * Note: in the latter case, FIN packet will be sent after a timeout,
  2522. * as TCP stack thinks it has already been transmitted.
  2523. */
  2524. if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
  2525. coalesce:
  2526. TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
  2527. TCP_SKB_CB(tskb)->end_seq++;
  2528. tp->write_seq++;
  2529. if (!tcp_send_head(sk)) {
  2530. /* This means tskb was already sent.
  2531. * Pretend we included the FIN on previous transmit.
  2532. * We need to set tp->snd_nxt to the value it would have
  2533. * if FIN had been sent. This is because retransmit path
  2534. * does not change tp->snd_nxt.
  2535. */
  2536. tp->snd_nxt++;
  2537. return;
  2538. }
  2539. } else {
  2540. skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
  2541. if (unlikely(!skb)) {
  2542. if (tskb)
  2543. goto coalesce;
  2544. return;
  2545. }
  2546. skb_reserve(skb, MAX_TCP_HEADER);
  2547. sk_forced_mem_schedule(sk, skb->truesize);
  2548. /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
  2549. tcp_init_nondata_skb(skb, tp->write_seq,
  2550. TCPHDR_ACK | TCPHDR_FIN);
  2551. tcp_queue_skb(sk, skb);
  2552. }
  2553. __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
  2554. }
  2555. /* We get here when a process closes a file descriptor (either due to
  2556. * an explicit close() or as a byproduct of exit()'ing) and there
  2557. * was unread data in the receive queue. This behavior is recommended
  2558. * by RFC 2525, section 2.17. -DaveM
  2559. */
  2560. void tcp_send_active_reset(struct sock *sk, gfp_t priority)
  2561. {
  2562. struct sk_buff *skb;
  2563. /* NOTE: No TCP options attached and we never retransmit this. */
  2564. skb = alloc_skb(MAX_TCP_HEADER, priority);
  2565. if (!skb) {
  2566. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2567. return;
  2568. }
  2569. /* Reserve space for headers and prepare control bits. */
  2570. skb_reserve(skb, MAX_TCP_HEADER);
  2571. tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
  2572. TCPHDR_ACK | TCPHDR_RST);
  2573. skb_mstamp_get(&skb->skb_mstamp);
  2574. /* Send it off. */
  2575. if (tcp_transmit_skb(sk, skb, 0, priority))
  2576. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2577. TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
  2578. }
  2579. /* Send a crossed SYN-ACK during socket establishment.
  2580. * WARNING: This routine must only be called when we have already sent
  2581. * a SYN packet that crossed the incoming SYN that caused this routine
  2582. * to get called. If this assumption fails then the initial rcv_wnd
  2583. * and rcv_wscale values will not be correct.
  2584. */
  2585. int tcp_send_synack(struct sock *sk)
  2586. {
  2587. struct sk_buff *skb;
  2588. skb = tcp_write_queue_head(sk);
  2589. if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
  2590. pr_debug("%s: wrong queue state\n", __func__);
  2591. return -EFAULT;
  2592. }
  2593. if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
  2594. if (skb_cloned(skb)) {
  2595. struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
  2596. if (!nskb)
  2597. return -ENOMEM;
  2598. tcp_unlink_write_queue(skb, sk);
  2599. __skb_header_release(nskb);
  2600. __tcp_add_write_queue_head(sk, nskb);
  2601. sk_wmem_free_skb(sk, skb);
  2602. sk->sk_wmem_queued += nskb->truesize;
  2603. sk_mem_charge(sk, nskb->truesize);
  2604. skb = nskb;
  2605. }
  2606. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
  2607. tcp_ecn_send_synack(sk, skb);
  2608. }
  2609. return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2610. }
  2611. /**
  2612. * tcp_make_synack - Prepare a SYN-ACK.
  2613. * sk: listener socket
  2614. * dst: dst entry attached to the SYNACK
  2615. * req: request_sock pointer
  2616. *
  2617. * Allocate one skb and build a SYNACK packet.
  2618. * @dst is consumed : Caller should not use it again.
  2619. */
  2620. struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
  2621. struct request_sock *req,
  2622. struct tcp_fastopen_cookie *foc,
  2623. enum tcp_synack_type synack_type)
  2624. {
  2625. struct inet_request_sock *ireq = inet_rsk(req);
  2626. const struct tcp_sock *tp = tcp_sk(sk);
  2627. struct tcp_md5sig_key *md5 = NULL;
  2628. struct tcp_out_options opts;
  2629. struct sk_buff *skb;
  2630. int tcp_header_size;
  2631. struct tcphdr *th;
  2632. u16 user_mss;
  2633. int mss;
  2634. skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
  2635. if (unlikely(!skb)) {
  2636. dst_release(dst);
  2637. return NULL;
  2638. }
  2639. /* Reserve space for headers. */
  2640. skb_reserve(skb, MAX_TCP_HEADER);
  2641. switch (synack_type) {
  2642. case TCP_SYNACK_NORMAL:
  2643. skb_set_owner_w(skb, req_to_sk(req));
  2644. break;
  2645. case TCP_SYNACK_COOKIE:
  2646. /* Under synflood, we do not attach skb to a socket,
  2647. * to avoid false sharing.
  2648. */
  2649. break;
  2650. case TCP_SYNACK_FASTOPEN:
  2651. /* sk is a const pointer, because we want to express multiple
  2652. * cpu might call us concurrently.
  2653. * sk->sk_wmem_alloc in an atomic, we can promote to rw.
  2654. */
  2655. skb_set_owner_w(skb, (struct sock *)sk);
  2656. break;
  2657. }
  2658. skb_dst_set(skb, dst);
  2659. mss = dst_metric_advmss(dst);
  2660. user_mss = READ_ONCE(tp->rx_opt.user_mss);
  2661. if (user_mss && user_mss < mss)
  2662. mss = user_mss;
  2663. memset(&opts, 0, sizeof(opts));
  2664. #ifdef CONFIG_SYN_COOKIES
  2665. if (unlikely(req->cookie_ts))
  2666. skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
  2667. else
  2668. #endif
  2669. skb_mstamp_get(&skb->skb_mstamp);
  2670. #ifdef CONFIG_TCP_MD5SIG
  2671. rcu_read_lock();
  2672. md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
  2673. #endif
  2674. skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
  2675. tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
  2676. sizeof(*th);
  2677. skb_push(skb, tcp_header_size);
  2678. skb_reset_transport_header(skb);
  2679. th = (struct tcphdr *)skb->data;
  2680. memset(th, 0, sizeof(struct tcphdr));
  2681. th->syn = 1;
  2682. th->ack = 1;
  2683. tcp_ecn_make_synack(req, th);
  2684. th->source = htons(ireq->ir_num);
  2685. th->dest = ireq->ir_rmt_port;
  2686. /* Setting of flags are superfluous here for callers (and ECE is
  2687. * not even correctly set)
  2688. */
  2689. tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
  2690. TCPHDR_SYN | TCPHDR_ACK);
  2691. th->seq = htonl(TCP_SKB_CB(skb)->seq);
  2692. /* XXX data is queued and acked as is. No buffer/window check */
  2693. th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
  2694. /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
  2695. th->window = htons(min(req->rsk_rcv_wnd, 65535U));
  2696. tcp_options_write((__be32 *)(th + 1), NULL, &opts);
  2697. th->doff = (tcp_header_size >> 2);
  2698. __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
  2699. #ifdef CONFIG_TCP_MD5SIG
  2700. /* Okay, we have all we need - do the md5 hash if needed */
  2701. if (md5)
  2702. tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
  2703. md5, req_to_sk(req), skb);
  2704. rcu_read_unlock();
  2705. #endif
  2706. /* Do not fool tcpdump (if any), clean our debris */
  2707. skb->tstamp.tv64 = 0;
  2708. return skb;
  2709. }
  2710. EXPORT_SYMBOL(tcp_make_synack);
  2711. static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
  2712. {
  2713. struct inet_connection_sock *icsk = inet_csk(sk);
  2714. const struct tcp_congestion_ops *ca;
  2715. u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
  2716. if (ca_key == TCP_CA_UNSPEC)
  2717. return;
  2718. rcu_read_lock();
  2719. ca = tcp_ca_find_key(ca_key);
  2720. if (likely(ca && try_module_get(ca->owner))) {
  2721. module_put(icsk->icsk_ca_ops->owner);
  2722. icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
  2723. icsk->icsk_ca_ops = ca;
  2724. }
  2725. rcu_read_unlock();
  2726. }
  2727. /* Do all connect socket setups that can be done AF independent. */
  2728. static void tcp_connect_init(struct sock *sk)
  2729. {
  2730. const struct dst_entry *dst = __sk_dst_get(sk);
  2731. struct tcp_sock *tp = tcp_sk(sk);
  2732. __u8 rcv_wscale;
  2733. /* We'll fix this up when we get a response from the other end.
  2734. * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
  2735. */
  2736. tp->tcp_header_len = sizeof(struct tcphdr) +
  2737. (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
  2738. #ifdef CONFIG_TCP_MD5SIG
  2739. if (tp->af_specific->md5_lookup(sk, sk))
  2740. tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
  2741. #endif
  2742. /* If user gave his TCP_MAXSEG, record it to clamp */
  2743. if (tp->rx_opt.user_mss)
  2744. tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
  2745. tp->max_window = 0;
  2746. tcp_mtup_init(sk);
  2747. tcp_sync_mss(sk, dst_mtu(dst));
  2748. tcp_ca_dst_init(sk, dst);
  2749. if (!tp->window_clamp)
  2750. tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
  2751. tp->advmss = dst_metric_advmss(dst);
  2752. if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
  2753. tp->advmss = tp->rx_opt.user_mss;
  2754. tcp_initialize_rcv_mss(sk);
  2755. /* limit the window selection if the user enforce a smaller rx buffer */
  2756. if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
  2757. (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
  2758. tp->window_clamp = tcp_full_space(sk);
  2759. tcp_select_initial_window(tcp_full_space(sk),
  2760. tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
  2761. &tp->rcv_wnd,
  2762. &tp->window_clamp,
  2763. sysctl_tcp_window_scaling,
  2764. &rcv_wscale,
  2765. dst_metric(dst, RTAX_INITRWND));
  2766. tp->rx_opt.rcv_wscale = rcv_wscale;
  2767. tp->rcv_ssthresh = tp->rcv_wnd;
  2768. sk->sk_err = 0;
  2769. sock_reset_flag(sk, SOCK_DONE);
  2770. tp->snd_wnd = 0;
  2771. tcp_init_wl(tp, 0);
  2772. tp->snd_una = tp->write_seq;
  2773. tp->snd_sml = tp->write_seq;
  2774. tp->snd_up = tp->write_seq;
  2775. tp->snd_nxt = tp->write_seq;
  2776. if (likely(!tp->repair))
  2777. tp->rcv_nxt = 0;
  2778. else
  2779. tp->rcv_tstamp = tcp_time_stamp;
  2780. tp->rcv_wup = tp->rcv_nxt;
  2781. tp->copied_seq = tp->rcv_nxt;
  2782. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
  2783. inet_csk(sk)->icsk_retransmits = 0;
  2784. tcp_clear_retrans(tp);
  2785. }
  2786. static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
  2787. {
  2788. struct tcp_sock *tp = tcp_sk(sk);
  2789. struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
  2790. tcb->end_seq += skb->len;
  2791. __skb_header_release(skb);
  2792. __tcp_add_write_queue_tail(sk, skb);
  2793. sk->sk_wmem_queued += skb->truesize;
  2794. sk_mem_charge(sk, skb->truesize);
  2795. tp->write_seq = tcb->end_seq;
  2796. tp->packets_out += tcp_skb_pcount(skb);
  2797. }
  2798. /* Build and send a SYN with data and (cached) Fast Open cookie. However,
  2799. * queue a data-only packet after the regular SYN, such that regular SYNs
  2800. * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
  2801. * only the SYN sequence, the data are retransmitted in the first ACK.
  2802. * If cookie is not cached or other error occurs, falls back to send a
  2803. * regular SYN with Fast Open cookie request option.
  2804. */
  2805. static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
  2806. {
  2807. struct tcp_sock *tp = tcp_sk(sk);
  2808. struct tcp_fastopen_request *fo = tp->fastopen_req;
  2809. int syn_loss = 0, space, err = 0;
  2810. unsigned long last_syn_loss = 0;
  2811. struct sk_buff *syn_data;
  2812. tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
  2813. tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
  2814. &syn_loss, &last_syn_loss);
  2815. /* Recurring FO SYN losses: revert to regular handshake temporarily */
  2816. if (syn_loss > 1 &&
  2817. time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
  2818. fo->cookie.len = -1;
  2819. goto fallback;
  2820. }
  2821. if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
  2822. fo->cookie.len = -1;
  2823. else if (fo->cookie.len <= 0)
  2824. goto fallback;
  2825. /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
  2826. * user-MSS. Reserve maximum option space for middleboxes that add
  2827. * private TCP options. The cost is reduced data space in SYN :(
  2828. */
  2829. if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
  2830. tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
  2831. space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
  2832. MAX_TCP_OPTION_SPACE;
  2833. space = min_t(size_t, space, fo->size);
  2834. /* limit to order-0 allocations */
  2835. space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
  2836. syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
  2837. if (!syn_data)
  2838. goto fallback;
  2839. syn_data->ip_summed = CHECKSUM_PARTIAL;
  2840. memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
  2841. if (space) {
  2842. int copied = copy_from_iter(skb_put(syn_data, space), space,
  2843. &fo->data->msg_iter);
  2844. if (unlikely(!copied)) {
  2845. kfree_skb(syn_data);
  2846. goto fallback;
  2847. }
  2848. if (copied != space) {
  2849. skb_trim(syn_data, copied);
  2850. space = copied;
  2851. }
  2852. }
  2853. /* No more data pending in inet_wait_for_connect() */
  2854. if (space == fo->size)
  2855. fo->data = NULL;
  2856. fo->copied = space;
  2857. tcp_connect_queue_skb(sk, syn_data);
  2858. if (syn_data->len)
  2859. tcp_chrono_start(sk, TCP_CHRONO_BUSY);
  2860. err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
  2861. syn->skb_mstamp = syn_data->skb_mstamp;
  2862. /* Now full SYN+DATA was cloned and sent (or not),
  2863. * remove the SYN from the original skb (syn_data)
  2864. * we keep in write queue in case of a retransmit, as we
  2865. * also have the SYN packet (with no data) in the same queue.
  2866. */
  2867. TCP_SKB_CB(syn_data)->seq++;
  2868. TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
  2869. if (!err) {
  2870. tp->syn_data = (fo->copied > 0);
  2871. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
  2872. goto done;
  2873. }
  2874. fallback:
  2875. /* Send a regular SYN with Fast Open cookie request option */
  2876. if (fo->cookie.len > 0)
  2877. fo->cookie.len = 0;
  2878. err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
  2879. if (err)
  2880. tp->syn_fastopen = 0;
  2881. done:
  2882. fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
  2883. return err;
  2884. }
  2885. /* Build a SYN and send it off. */
  2886. int tcp_connect(struct sock *sk)
  2887. {
  2888. struct tcp_sock *tp = tcp_sk(sk);
  2889. struct sk_buff *buff;
  2890. int err;
  2891. tcp_connect_init(sk);
  2892. if (unlikely(tp->repair)) {
  2893. tcp_finish_connect(sk, NULL);
  2894. return 0;
  2895. }
  2896. buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
  2897. if (unlikely(!buff))
  2898. return -ENOBUFS;
  2899. tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
  2900. tp->retrans_stamp = tcp_time_stamp;
  2901. tcp_connect_queue_skb(sk, buff);
  2902. tcp_ecn_send_syn(sk, buff);
  2903. /* Send off SYN; include data in Fast Open. */
  2904. err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
  2905. tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
  2906. if (err == -ECONNREFUSED)
  2907. return err;
  2908. /* We change tp->snd_nxt after the tcp_transmit_skb() call
  2909. * in order to make this packet get counted in tcpOutSegs.
  2910. */
  2911. tp->snd_nxt = tp->write_seq;
  2912. tp->pushed_seq = tp->write_seq;
  2913. TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
  2914. /* Timer for repeating the SYN until an answer. */
  2915. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2916. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2917. return 0;
  2918. }
  2919. EXPORT_SYMBOL(tcp_connect);
  2920. /* Send out a delayed ack, the caller does the policy checking
  2921. * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
  2922. * for details.
  2923. */
  2924. void tcp_send_delayed_ack(struct sock *sk)
  2925. {
  2926. struct inet_connection_sock *icsk = inet_csk(sk);
  2927. int ato = icsk->icsk_ack.ato;
  2928. unsigned long timeout;
  2929. tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
  2930. if (ato > TCP_DELACK_MIN) {
  2931. const struct tcp_sock *tp = tcp_sk(sk);
  2932. int max_ato = HZ / 2;
  2933. if (icsk->icsk_ack.pingpong ||
  2934. (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
  2935. max_ato = TCP_DELACK_MAX;
  2936. /* Slow path, intersegment interval is "high". */
  2937. /* If some rtt estimate is known, use it to bound delayed ack.
  2938. * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
  2939. * directly.
  2940. */
  2941. if (tp->srtt_us) {
  2942. int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
  2943. TCP_DELACK_MIN);
  2944. if (rtt < max_ato)
  2945. max_ato = rtt;
  2946. }
  2947. ato = min(ato, max_ato);
  2948. }
  2949. /* Stay within the limit we were given */
  2950. timeout = jiffies + ato;
  2951. /* Use new timeout only if there wasn't a older one earlier. */
  2952. if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
  2953. /* If delack timer was blocked or is about to expire,
  2954. * send ACK now.
  2955. */
  2956. if (icsk->icsk_ack.blocked ||
  2957. time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
  2958. tcp_send_ack(sk);
  2959. return;
  2960. }
  2961. if (!time_before(timeout, icsk->icsk_ack.timeout))
  2962. timeout = icsk->icsk_ack.timeout;
  2963. }
  2964. icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
  2965. icsk->icsk_ack.timeout = timeout;
  2966. sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
  2967. }
  2968. /* This routine sends an ack and also updates the window. */
  2969. void tcp_send_ack(struct sock *sk)
  2970. {
  2971. struct sk_buff *buff;
  2972. /* If we have been reset, we may not send again. */
  2973. if (sk->sk_state == TCP_CLOSE)
  2974. return;
  2975. tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
  2976. /* We are not putting this on the write queue, so
  2977. * tcp_transmit_skb() will set the ownership to this
  2978. * sock.
  2979. */
  2980. buff = alloc_skb(MAX_TCP_HEADER,
  2981. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  2982. if (unlikely(!buff)) {
  2983. inet_csk_schedule_ack(sk);
  2984. inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
  2985. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  2986. TCP_DELACK_MAX, TCP_RTO_MAX);
  2987. return;
  2988. }
  2989. /* Reserve space for headers and prepare control bits. */
  2990. skb_reserve(buff, MAX_TCP_HEADER);
  2991. tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
  2992. /* We do not want pure acks influencing TCP Small Queues or fq/pacing
  2993. * too much.
  2994. * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
  2995. * We also avoid tcp_wfree() overhead (cache line miss accessing
  2996. * tp->tsq_flags) by using regular sock_wfree()
  2997. */
  2998. skb_set_tcp_pure_ack(buff);
  2999. /* Send it off, this clears delayed acks for us. */
  3000. skb_mstamp_get(&buff->skb_mstamp);
  3001. tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
  3002. }
  3003. EXPORT_SYMBOL_GPL(tcp_send_ack);
  3004. /* This routine sends a packet with an out of date sequence
  3005. * number. It assumes the other end will try to ack it.
  3006. *
  3007. * Question: what should we make while urgent mode?
  3008. * 4.4BSD forces sending single byte of data. We cannot send
  3009. * out of window data, because we have SND.NXT==SND.MAX...
  3010. *
  3011. * Current solution: to send TWO zero-length segments in urgent mode:
  3012. * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
  3013. * out-of-date with SND.UNA-1 to probe window.
  3014. */
  3015. static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
  3016. {
  3017. struct tcp_sock *tp = tcp_sk(sk);
  3018. struct sk_buff *skb;
  3019. /* We don't queue it, tcp_transmit_skb() sets ownership. */
  3020. skb = alloc_skb(MAX_TCP_HEADER,
  3021. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  3022. if (!skb)
  3023. return -1;
  3024. /* Reserve space for headers and set control bits. */
  3025. skb_reserve(skb, MAX_TCP_HEADER);
  3026. /* Use a previous sequence. This should cause the other
  3027. * end to send an ack. Don't queue or clone SKB, just
  3028. * send it.
  3029. */
  3030. tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
  3031. skb_mstamp_get(&skb->skb_mstamp);
  3032. NET_INC_STATS(sock_net(sk), mib);
  3033. return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
  3034. }
  3035. void tcp_send_window_probe(struct sock *sk)
  3036. {
  3037. if (sk->sk_state == TCP_ESTABLISHED) {
  3038. tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
  3039. tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
  3040. }
  3041. }
  3042. /* Initiate keepalive or window probe from timer. */
  3043. int tcp_write_wakeup(struct sock *sk, int mib)
  3044. {
  3045. struct tcp_sock *tp = tcp_sk(sk);
  3046. struct sk_buff *skb;
  3047. if (sk->sk_state == TCP_CLOSE)
  3048. return -1;
  3049. skb = tcp_send_head(sk);
  3050. if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
  3051. int err;
  3052. unsigned int mss = tcp_current_mss(sk);
  3053. unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  3054. if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
  3055. tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
  3056. /* We are probing the opening of a window
  3057. * but the window size is != 0
  3058. * must have been a result SWS avoidance ( sender )
  3059. */
  3060. if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
  3061. skb->len > mss) {
  3062. seg_size = min(seg_size, mss);
  3063. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3064. if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
  3065. return -1;
  3066. } else if (!tcp_skb_pcount(skb))
  3067. tcp_set_skb_tso_segs(skb, mss);
  3068. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3069. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  3070. if (!err)
  3071. tcp_event_new_data_sent(sk, skb);
  3072. return err;
  3073. } else {
  3074. if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
  3075. tcp_xmit_probe_skb(sk, 1, mib);
  3076. return tcp_xmit_probe_skb(sk, 0, mib);
  3077. }
  3078. }
  3079. /* A window probe timeout has occurred. If window is not closed send
  3080. * a partial packet else a zero probe.
  3081. */
  3082. void tcp_send_probe0(struct sock *sk)
  3083. {
  3084. struct inet_connection_sock *icsk = inet_csk(sk);
  3085. struct tcp_sock *tp = tcp_sk(sk);
  3086. struct net *net = sock_net(sk);
  3087. unsigned long probe_max;
  3088. int err;
  3089. err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
  3090. if (tp->packets_out || !tcp_send_head(sk)) {
  3091. /* Cancel probe timer, if it is not required. */
  3092. icsk->icsk_probes_out = 0;
  3093. icsk->icsk_backoff = 0;
  3094. return;
  3095. }
  3096. if (err <= 0) {
  3097. if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
  3098. icsk->icsk_backoff++;
  3099. icsk->icsk_probes_out++;
  3100. probe_max = TCP_RTO_MAX;
  3101. } else {
  3102. /* If packet was not sent due to local congestion,
  3103. * do not backoff and do not remember icsk_probes_out.
  3104. * Let local senders to fight for local resources.
  3105. *
  3106. * Use accumulated backoff yet.
  3107. */
  3108. if (!icsk->icsk_probes_out)
  3109. icsk->icsk_probes_out = 1;
  3110. probe_max = TCP_RESOURCE_PROBE_INTERVAL;
  3111. }
  3112. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3113. tcp_probe0_when(sk, probe_max),
  3114. TCP_RTO_MAX);
  3115. }
  3116. int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
  3117. {
  3118. const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
  3119. struct flowi fl;
  3120. int res;
  3121. tcp_rsk(req)->txhash = net_tx_rndhash();
  3122. res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
  3123. if (!res) {
  3124. __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
  3125. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  3126. if (unlikely(tcp_passive_fastopen(sk)))
  3127. tcp_sk(sk)->total_retrans++;
  3128. }
  3129. return res;
  3130. }
  3131. EXPORT_SYMBOL(tcp_rtx_synack);