intel_ringbuffer.c 85 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. int __intel_ring_space(int head, int tail, int size)
  36. {
  37. int space = head - tail;
  38. if (space <= 0)
  39. space += size;
  40. return space - I915_RING_FREE_SPACE;
  41. }
  42. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  43. {
  44. if (ringbuf->last_retired_head != -1) {
  45. ringbuf->head = ringbuf->last_retired_head;
  46. ringbuf->last_retired_head = -1;
  47. }
  48. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  49. ringbuf->tail, ringbuf->size);
  50. }
  51. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  52. {
  53. intel_ring_update_space(ringbuf);
  54. return ringbuf->space;
  55. }
  56. bool intel_ring_stopped(struct intel_engine_cs *ring)
  57. {
  58. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  59. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  60. }
  61. static void __intel_ring_advance(struct intel_engine_cs *ring)
  62. {
  63. struct intel_ringbuffer *ringbuf = ring->buffer;
  64. ringbuf->tail &= ringbuf->size - 1;
  65. if (intel_ring_stopped(ring))
  66. return;
  67. ring->write_tail(ring, ringbuf->tail);
  68. }
  69. static int
  70. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  71. u32 invalidate_domains,
  72. u32 flush_domains)
  73. {
  74. struct intel_engine_cs *ring = req->ring;
  75. u32 cmd;
  76. int ret;
  77. cmd = MI_FLUSH;
  78. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  79. cmd |= MI_NO_WRITE_FLUSH;
  80. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  81. cmd |= MI_READ_FLUSH;
  82. ret = intel_ring_begin(req, 2);
  83. if (ret)
  84. return ret;
  85. intel_ring_emit(ring, cmd);
  86. intel_ring_emit(ring, MI_NOOP);
  87. intel_ring_advance(ring);
  88. return 0;
  89. }
  90. static int
  91. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  92. u32 invalidate_domains,
  93. u32 flush_domains)
  94. {
  95. struct intel_engine_cs *ring = req->ring;
  96. struct drm_device *dev = ring->dev;
  97. u32 cmd;
  98. int ret;
  99. /*
  100. * read/write caches:
  101. *
  102. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  103. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  104. * also flushed at 2d versus 3d pipeline switches.
  105. *
  106. * read-only caches:
  107. *
  108. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  109. * MI_READ_FLUSH is set, and is always flushed on 965.
  110. *
  111. * I915_GEM_DOMAIN_COMMAND may not exist?
  112. *
  113. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  114. * invalidated when MI_EXE_FLUSH is set.
  115. *
  116. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  117. * invalidated with every MI_FLUSH.
  118. *
  119. * TLBs:
  120. *
  121. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  122. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  123. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  124. * are flushed at any MI_FLUSH.
  125. */
  126. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  127. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  128. cmd &= ~MI_NO_WRITE_FLUSH;
  129. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  130. cmd |= MI_EXE_FLUSH;
  131. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  132. (IS_G4X(dev) || IS_GEN5(dev)))
  133. cmd |= MI_INVALIDATE_ISP;
  134. ret = intel_ring_begin(req, 2);
  135. if (ret)
  136. return ret;
  137. intel_ring_emit(ring, cmd);
  138. intel_ring_emit(ring, MI_NOOP);
  139. intel_ring_advance(ring);
  140. return 0;
  141. }
  142. /**
  143. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  144. * implementing two workarounds on gen6. From section 1.4.7.1
  145. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  146. *
  147. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  148. * produced by non-pipelined state commands), software needs to first
  149. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  150. * 0.
  151. *
  152. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  153. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  154. *
  155. * And the workaround for these two requires this workaround first:
  156. *
  157. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  158. * BEFORE the pipe-control with a post-sync op and no write-cache
  159. * flushes.
  160. *
  161. * And this last workaround is tricky because of the requirements on
  162. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  163. * volume 2 part 1:
  164. *
  165. * "1 of the following must also be set:
  166. * - Render Target Cache Flush Enable ([12] of DW1)
  167. * - Depth Cache Flush Enable ([0] of DW1)
  168. * - Stall at Pixel Scoreboard ([1] of DW1)
  169. * - Depth Stall ([13] of DW1)
  170. * - Post-Sync Operation ([13] of DW1)
  171. * - Notify Enable ([8] of DW1)"
  172. *
  173. * The cache flushes require the workaround flush that triggered this
  174. * one, so we can't use it. Depth stall would trigger the same.
  175. * Post-sync nonzero is what triggered this second workaround, so we
  176. * can't use that one either. Notify enable is IRQs, which aren't
  177. * really our business. That leaves only stall at scoreboard.
  178. */
  179. static int
  180. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  181. {
  182. struct intel_engine_cs *ring = req->ring;
  183. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  184. int ret;
  185. ret = intel_ring_begin(req, 6);
  186. if (ret)
  187. return ret;
  188. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  189. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  190. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  191. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  192. intel_ring_emit(ring, 0); /* low dword */
  193. intel_ring_emit(ring, 0); /* high dword */
  194. intel_ring_emit(ring, MI_NOOP);
  195. intel_ring_advance(ring);
  196. ret = intel_ring_begin(req, 6);
  197. if (ret)
  198. return ret;
  199. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  200. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  201. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  202. intel_ring_emit(ring, 0);
  203. intel_ring_emit(ring, 0);
  204. intel_ring_emit(ring, MI_NOOP);
  205. intel_ring_advance(ring);
  206. return 0;
  207. }
  208. static int
  209. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  210. u32 invalidate_domains, u32 flush_domains)
  211. {
  212. struct intel_engine_cs *ring = req->ring;
  213. u32 flags = 0;
  214. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  215. int ret;
  216. /* Force SNB workarounds for PIPE_CONTROL flushes */
  217. ret = intel_emit_post_sync_nonzero_flush(req);
  218. if (ret)
  219. return ret;
  220. /* Just flush everything. Experiments have shown that reducing the
  221. * number of bits based on the write domains has little performance
  222. * impact.
  223. */
  224. if (flush_domains) {
  225. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  226. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  227. /*
  228. * Ensure that any following seqno writes only happen
  229. * when the render cache is indeed flushed.
  230. */
  231. flags |= PIPE_CONTROL_CS_STALL;
  232. }
  233. if (invalidate_domains) {
  234. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  235. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  238. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  239. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  240. /*
  241. * TLB invalidate requires a post-sync write.
  242. */
  243. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  244. }
  245. ret = intel_ring_begin(req, 4);
  246. if (ret)
  247. return ret;
  248. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  249. intel_ring_emit(ring, flags);
  250. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  251. intel_ring_emit(ring, 0);
  252. intel_ring_advance(ring);
  253. return 0;
  254. }
  255. static int
  256. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  257. {
  258. struct intel_engine_cs *ring = req->ring;
  259. int ret;
  260. ret = intel_ring_begin(req, 4);
  261. if (ret)
  262. return ret;
  263. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  264. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  265. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  266. intel_ring_emit(ring, 0);
  267. intel_ring_emit(ring, 0);
  268. intel_ring_advance(ring);
  269. return 0;
  270. }
  271. static int
  272. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  273. u32 invalidate_domains, u32 flush_domains)
  274. {
  275. struct intel_engine_cs *ring = req->ring;
  276. u32 flags = 0;
  277. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  278. int ret;
  279. /*
  280. * Ensure that any following seqno writes only happen when the render
  281. * cache is indeed flushed.
  282. *
  283. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  284. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  285. * don't try to be clever and just set it unconditionally.
  286. */
  287. flags |= PIPE_CONTROL_CS_STALL;
  288. /* Just flush everything. Experiments have shown that reducing the
  289. * number of bits based on the write domains has little performance
  290. * impact.
  291. */
  292. if (flush_domains) {
  293. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  294. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  295. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  296. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  297. }
  298. if (invalidate_domains) {
  299. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  300. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  301. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  302. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  303. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  304. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  305. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  306. /*
  307. * TLB invalidate requires a post-sync write.
  308. */
  309. flags |= PIPE_CONTROL_QW_WRITE;
  310. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  311. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  312. /* Workaround: we must issue a pipe_control with CS-stall bit
  313. * set before a pipe_control command that has the state cache
  314. * invalidate bit set. */
  315. gen7_render_ring_cs_stall_wa(req);
  316. }
  317. ret = intel_ring_begin(req, 4);
  318. if (ret)
  319. return ret;
  320. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  321. intel_ring_emit(ring, flags);
  322. intel_ring_emit(ring, scratch_addr);
  323. intel_ring_emit(ring, 0);
  324. intel_ring_advance(ring);
  325. return 0;
  326. }
  327. static int
  328. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  329. u32 flags, u32 scratch_addr)
  330. {
  331. struct intel_engine_cs *ring = req->ring;
  332. int ret;
  333. ret = intel_ring_begin(req, 6);
  334. if (ret)
  335. return ret;
  336. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  337. intel_ring_emit(ring, flags);
  338. intel_ring_emit(ring, scratch_addr);
  339. intel_ring_emit(ring, 0);
  340. intel_ring_emit(ring, 0);
  341. intel_ring_emit(ring, 0);
  342. intel_ring_advance(ring);
  343. return 0;
  344. }
  345. static int
  346. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  347. u32 invalidate_domains, u32 flush_domains)
  348. {
  349. u32 flags = 0;
  350. u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  351. int ret;
  352. flags |= PIPE_CONTROL_CS_STALL;
  353. if (flush_domains) {
  354. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  355. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  356. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  357. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  358. }
  359. if (invalidate_domains) {
  360. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  361. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  362. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  365. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  366. flags |= PIPE_CONTROL_QW_WRITE;
  367. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  368. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  369. ret = gen8_emit_pipe_control(req,
  370. PIPE_CONTROL_CS_STALL |
  371. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  372. 0);
  373. if (ret)
  374. return ret;
  375. }
  376. return gen8_emit_pipe_control(req, flags, scratch_addr);
  377. }
  378. static void ring_write_tail(struct intel_engine_cs *ring,
  379. u32 value)
  380. {
  381. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  382. I915_WRITE_TAIL(ring, value);
  383. }
  384. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  385. {
  386. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  387. u64 acthd;
  388. if (INTEL_INFO(ring->dev)->gen >= 8)
  389. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  390. RING_ACTHD_UDW(ring->mmio_base));
  391. else if (INTEL_INFO(ring->dev)->gen >= 4)
  392. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  393. else
  394. acthd = I915_READ(ACTHD);
  395. return acthd;
  396. }
  397. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  398. {
  399. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  400. u32 addr;
  401. addr = dev_priv->status_page_dmah->busaddr;
  402. if (INTEL_INFO(ring->dev)->gen >= 4)
  403. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  404. I915_WRITE(HWS_PGA, addr);
  405. }
  406. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  407. {
  408. struct drm_device *dev = ring->dev;
  409. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  410. i915_reg_t mmio;
  411. /* The ring status page addresses are no longer next to the rest of
  412. * the ring registers as of gen7.
  413. */
  414. if (IS_GEN7(dev)) {
  415. switch (ring->id) {
  416. case RCS:
  417. mmio = RENDER_HWS_PGA_GEN7;
  418. break;
  419. case BCS:
  420. mmio = BLT_HWS_PGA_GEN7;
  421. break;
  422. /*
  423. * VCS2 actually doesn't exist on Gen7. Only shut up
  424. * gcc switch check warning
  425. */
  426. case VCS2:
  427. case VCS:
  428. mmio = BSD_HWS_PGA_GEN7;
  429. break;
  430. case VECS:
  431. mmio = VEBOX_HWS_PGA_GEN7;
  432. break;
  433. }
  434. } else if (IS_GEN6(ring->dev)) {
  435. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  436. } else {
  437. /* XXX: gen8 returns to sanity */
  438. mmio = RING_HWS_PGA(ring->mmio_base);
  439. }
  440. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  441. POSTING_READ(mmio);
  442. /*
  443. * Flush the TLB for this page
  444. *
  445. * FIXME: These two bits have disappeared on gen8, so a question
  446. * arises: do we still need this and if so how should we go about
  447. * invalidating the TLB?
  448. */
  449. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  450. i915_reg_t reg = RING_INSTPM(ring->mmio_base);
  451. /* ring should be idle before issuing a sync flush*/
  452. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  453. I915_WRITE(reg,
  454. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  455. INSTPM_SYNC_FLUSH));
  456. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  457. 1000))
  458. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  459. ring->name);
  460. }
  461. }
  462. static bool stop_ring(struct intel_engine_cs *ring)
  463. {
  464. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  465. if (!IS_GEN2(ring->dev)) {
  466. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  467. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  468. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  469. /* Sometimes we observe that the idle flag is not
  470. * set even though the ring is empty. So double
  471. * check before giving up.
  472. */
  473. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  474. return false;
  475. }
  476. }
  477. I915_WRITE_CTL(ring, 0);
  478. I915_WRITE_HEAD(ring, 0);
  479. ring->write_tail(ring, 0);
  480. if (!IS_GEN2(ring->dev)) {
  481. (void)I915_READ_CTL(ring);
  482. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  483. }
  484. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  485. }
  486. static int init_ring_common(struct intel_engine_cs *ring)
  487. {
  488. struct drm_device *dev = ring->dev;
  489. struct drm_i915_private *dev_priv = dev->dev_private;
  490. struct intel_ringbuffer *ringbuf = ring->buffer;
  491. struct drm_i915_gem_object *obj = ringbuf->obj;
  492. int ret = 0;
  493. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  494. if (!stop_ring(ring)) {
  495. /* G45 ring initialization often fails to reset head to zero */
  496. DRM_DEBUG_KMS("%s head not reset to zero "
  497. "ctl %08x head %08x tail %08x start %08x\n",
  498. ring->name,
  499. I915_READ_CTL(ring),
  500. I915_READ_HEAD(ring),
  501. I915_READ_TAIL(ring),
  502. I915_READ_START(ring));
  503. if (!stop_ring(ring)) {
  504. DRM_ERROR("failed to set %s head to zero "
  505. "ctl %08x head %08x tail %08x start %08x\n",
  506. ring->name,
  507. I915_READ_CTL(ring),
  508. I915_READ_HEAD(ring),
  509. I915_READ_TAIL(ring),
  510. I915_READ_START(ring));
  511. ret = -EIO;
  512. goto out;
  513. }
  514. }
  515. if (I915_NEED_GFX_HWS(dev))
  516. intel_ring_setup_status_page(ring);
  517. else
  518. ring_setup_phys_status_page(ring);
  519. /* Enforce ordering by reading HEAD register back */
  520. I915_READ_HEAD(ring);
  521. /* Initialize the ring. This must happen _after_ we've cleared the ring
  522. * registers with the above sequence (the readback of the HEAD registers
  523. * also enforces ordering), otherwise the hw might lose the new ring
  524. * register values. */
  525. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  526. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  527. if (I915_READ_HEAD(ring))
  528. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  529. ring->name, I915_READ_HEAD(ring));
  530. I915_WRITE_HEAD(ring, 0);
  531. (void)I915_READ_HEAD(ring);
  532. I915_WRITE_CTL(ring,
  533. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  534. | RING_VALID);
  535. /* If the head is still not zero, the ring is dead */
  536. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  537. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  538. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  539. DRM_ERROR("%s initialization failed "
  540. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  541. ring->name,
  542. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  543. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  544. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  545. ret = -EIO;
  546. goto out;
  547. }
  548. ringbuf->last_retired_head = -1;
  549. ringbuf->head = I915_READ_HEAD(ring);
  550. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  551. intel_ring_update_space(ringbuf);
  552. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  553. out:
  554. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  555. return ret;
  556. }
  557. void
  558. intel_fini_pipe_control(struct intel_engine_cs *ring)
  559. {
  560. struct drm_device *dev = ring->dev;
  561. if (ring->scratch.obj == NULL)
  562. return;
  563. if (INTEL_INFO(dev)->gen >= 5) {
  564. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  565. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  566. }
  567. drm_gem_object_unreference(&ring->scratch.obj->base);
  568. ring->scratch.obj = NULL;
  569. }
  570. int
  571. intel_init_pipe_control(struct intel_engine_cs *ring)
  572. {
  573. int ret;
  574. WARN_ON(ring->scratch.obj);
  575. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  576. if (ring->scratch.obj == NULL) {
  577. DRM_ERROR("Failed to allocate seqno page\n");
  578. ret = -ENOMEM;
  579. goto err;
  580. }
  581. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  582. if (ret)
  583. goto err_unref;
  584. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  585. if (ret)
  586. goto err_unref;
  587. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  588. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  589. if (ring->scratch.cpu_page == NULL) {
  590. ret = -ENOMEM;
  591. goto err_unpin;
  592. }
  593. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  594. ring->name, ring->scratch.gtt_offset);
  595. return 0;
  596. err_unpin:
  597. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  598. err_unref:
  599. drm_gem_object_unreference(&ring->scratch.obj->base);
  600. err:
  601. return ret;
  602. }
  603. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  604. {
  605. int ret, i;
  606. struct intel_engine_cs *ring = req->ring;
  607. struct drm_device *dev = ring->dev;
  608. struct drm_i915_private *dev_priv = dev->dev_private;
  609. struct i915_workarounds *w = &dev_priv->workarounds;
  610. if (w->count == 0)
  611. return 0;
  612. ring->gpu_caches_dirty = true;
  613. ret = intel_ring_flush_all_caches(req);
  614. if (ret)
  615. return ret;
  616. ret = intel_ring_begin(req, (w->count * 2 + 2));
  617. if (ret)
  618. return ret;
  619. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  620. for (i = 0; i < w->count; i++) {
  621. intel_ring_emit_reg(ring, w->reg[i].addr);
  622. intel_ring_emit(ring, w->reg[i].value);
  623. }
  624. intel_ring_emit(ring, MI_NOOP);
  625. intel_ring_advance(ring);
  626. ring->gpu_caches_dirty = true;
  627. ret = intel_ring_flush_all_caches(req);
  628. if (ret)
  629. return ret;
  630. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  631. return 0;
  632. }
  633. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  634. {
  635. int ret;
  636. ret = intel_ring_workarounds_emit(req);
  637. if (ret != 0)
  638. return ret;
  639. ret = i915_gem_render_state_init(req);
  640. if (ret)
  641. DRM_ERROR("init render state: %d\n", ret);
  642. return ret;
  643. }
  644. static int wa_add(struct drm_i915_private *dev_priv,
  645. i915_reg_t addr,
  646. const u32 mask, const u32 val)
  647. {
  648. const u32 idx = dev_priv->workarounds.count;
  649. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  650. return -ENOSPC;
  651. dev_priv->workarounds.reg[idx].addr = addr;
  652. dev_priv->workarounds.reg[idx].value = val;
  653. dev_priv->workarounds.reg[idx].mask = mask;
  654. dev_priv->workarounds.count++;
  655. return 0;
  656. }
  657. #define WA_REG(addr, mask, val) do { \
  658. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  659. if (r) \
  660. return r; \
  661. } while (0)
  662. #define WA_SET_BIT_MASKED(addr, mask) \
  663. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  664. #define WA_CLR_BIT_MASKED(addr, mask) \
  665. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  666. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  667. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  668. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  669. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  670. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  671. static int gen8_init_workarounds(struct intel_engine_cs *ring)
  672. {
  673. struct drm_device *dev = ring->dev;
  674. struct drm_i915_private *dev_priv = dev->dev_private;
  675. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  676. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  677. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  678. /* WaDisablePartialInstShootdown:bdw,chv */
  679. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  680. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  681. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  682. * workaround for for a possible hang in the unlikely event a TLB
  683. * invalidation occurs during a PSD flush.
  684. */
  685. /* WaForceEnableNonCoherent:bdw,chv */
  686. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  687. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  688. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  689. HDC_FORCE_NON_COHERENT);
  690. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  691. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  692. * polygons in the same 8x4 pixel/sample area to be processed without
  693. * stalling waiting for the earlier ones to write to Hierarchical Z
  694. * buffer."
  695. *
  696. * This optimization is off by default for BDW and CHV; turn it on.
  697. */
  698. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  699. /* Wa4x4STCOptimizationDisable:bdw,chv */
  700. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  701. /*
  702. * BSpec recommends 8x4 when MSAA is used,
  703. * however in practice 16x4 seems fastest.
  704. *
  705. * Note that PS/WM thread counts depend on the WIZ hashing
  706. * disable bit, which we don't touch here, but it's good
  707. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  708. */
  709. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  710. GEN6_WIZ_HASHING_MASK,
  711. GEN6_WIZ_HASHING_16x4);
  712. return 0;
  713. }
  714. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  715. {
  716. int ret;
  717. struct drm_device *dev = ring->dev;
  718. struct drm_i915_private *dev_priv = dev->dev_private;
  719. ret = gen8_init_workarounds(ring);
  720. if (ret)
  721. return ret;
  722. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  723. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  724. /* WaDisableDopClockGating:bdw */
  725. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  726. DOP_CLOCK_GATING_DISABLE);
  727. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  728. GEN8_SAMPLER_POWER_BYPASS_DIS);
  729. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  730. /* WaForceContextSaveRestoreNonCoherent:bdw */
  731. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  732. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  733. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  734. return 0;
  735. }
  736. static int chv_init_workarounds(struct intel_engine_cs *ring)
  737. {
  738. int ret;
  739. struct drm_device *dev = ring->dev;
  740. struct drm_i915_private *dev_priv = dev->dev_private;
  741. ret = gen8_init_workarounds(ring);
  742. if (ret)
  743. return ret;
  744. /* WaDisableThreadStallDopClockGating:chv */
  745. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  746. /* Improve HiZ throughput on CHV. */
  747. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  748. return 0;
  749. }
  750. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  751. {
  752. struct drm_device *dev = ring->dev;
  753. struct drm_i915_private *dev_priv = dev->dev_private;
  754. uint32_t tmp;
  755. /* WaEnableLbsSlaRetryTimerDecrement:skl */
  756. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  757. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  758. /* WaDisableKillLogic:bxt,skl */
  759. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  760. ECOCHK_DIS_TLB);
  761. /* WaDisablePartialInstShootdown:skl,bxt */
  762. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  763. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  764. /* Syncing dependencies between camera and graphics:skl,bxt */
  765. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  766. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  767. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  768. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  769. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  770. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  771. GEN9_DG_MIRROR_FIX_ENABLE);
  772. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  773. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  774. IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  775. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  776. GEN9_RHWO_OPTIMIZATION_DISABLE);
  777. /*
  778. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  779. * but we do that in per ctx batchbuffer as there is an issue
  780. * with this register not getting restored on ctx restore
  781. */
  782. }
  783. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  784. if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
  785. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  786. GEN9_ENABLE_YV12_BUGFIX);
  787. /* Wa4x4STCOptimizationDisable:skl,bxt */
  788. /* WaDisablePartialResolveInVc:skl,bxt */
  789. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  790. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  791. /* WaCcsTlbPrefetchDisable:skl,bxt */
  792. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  793. GEN9_CCS_TLB_PREFETCH_ENABLE);
  794. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  795. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
  796. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  797. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  798. PIXEL_MASK_CAMMING_DISABLE);
  799. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  800. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  801. if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
  802. IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
  803. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  804. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  805. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
  806. if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
  807. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  808. GEN8_SAMPLER_POWER_BYPASS_DIS);
  809. /* WaDisableSTUnitPowerOptimization:skl,bxt */
  810. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  811. return 0;
  812. }
  813. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  814. {
  815. struct drm_device *dev = ring->dev;
  816. struct drm_i915_private *dev_priv = dev->dev_private;
  817. u8 vals[3] = { 0, 0, 0 };
  818. unsigned int i;
  819. for (i = 0; i < 3; i++) {
  820. u8 ss;
  821. /*
  822. * Only consider slices where one, and only one, subslice has 7
  823. * EUs
  824. */
  825. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  826. continue;
  827. /*
  828. * subslice_7eu[i] != 0 (because of the check above) and
  829. * ss_max == 4 (maximum number of subslices possible per slice)
  830. *
  831. * -> 0 <= ss <= 3;
  832. */
  833. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  834. vals[i] = 3 - ss;
  835. }
  836. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  837. return 0;
  838. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  839. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  840. GEN9_IZ_HASHING_MASK(2) |
  841. GEN9_IZ_HASHING_MASK(1) |
  842. GEN9_IZ_HASHING_MASK(0),
  843. GEN9_IZ_HASHING(2, vals[2]) |
  844. GEN9_IZ_HASHING(1, vals[1]) |
  845. GEN9_IZ_HASHING(0, vals[0]));
  846. return 0;
  847. }
  848. static int skl_init_workarounds(struct intel_engine_cs *ring)
  849. {
  850. int ret;
  851. struct drm_device *dev = ring->dev;
  852. struct drm_i915_private *dev_priv = dev->dev_private;
  853. ret = gen9_init_workarounds(ring);
  854. if (ret)
  855. return ret;
  856. if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
  857. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  858. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  859. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  860. }
  861. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  862. * involving this register should also be added to WA batch as required.
  863. */
  864. if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
  865. /* WaDisableLSQCROPERFforOCL:skl */
  866. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  867. GEN8_LQSC_RO_PERF_DIS);
  868. /* WaEnableGapsTsvCreditFix:skl */
  869. if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
  870. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  871. GEN9_GAPS_TSV_CREDIT_DISABLE));
  872. }
  873. /* WaDisablePowerCompilerClockGating:skl */
  874. if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
  875. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  876. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  877. if (IS_SKL_REVID(dev, 0, SKL_REVID_F0)) {
  878. /*
  879. *Use Force Non-Coherent whenever executing a 3D context. This
  880. * is a workaround for a possible hang in the unlikely event
  881. * a TLB invalidation occurs during a PSD flush.
  882. */
  883. /* WaForceEnableNonCoherent:skl */
  884. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  885. HDC_FORCE_NON_COHERENT);
  886. /* WaDisableHDCInvalidation:skl */
  887. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  888. BDW_DISABLE_HDC_INVALIDATION);
  889. }
  890. /* WaBarrierPerformanceFixDisable:skl */
  891. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
  892. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  893. HDC_FENCE_DEST_SLM_DISABLE |
  894. HDC_BARRIER_PERFORMANCE_DISABLE);
  895. /* WaDisableSbeCacheDispatchPortSharing:skl */
  896. if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
  897. WA_SET_BIT_MASKED(
  898. GEN7_HALF_SLICE_CHICKEN1,
  899. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  900. return skl_tune_iz_hashing(ring);
  901. }
  902. static int bxt_init_workarounds(struct intel_engine_cs *ring)
  903. {
  904. int ret;
  905. struct drm_device *dev = ring->dev;
  906. struct drm_i915_private *dev_priv = dev->dev_private;
  907. ret = gen9_init_workarounds(ring);
  908. if (ret)
  909. return ret;
  910. /* WaStoreMultiplePTEenable:bxt */
  911. /* This is a requirement according to Hardware specification */
  912. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  913. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  914. /* WaSetClckGatingDisableMedia:bxt */
  915. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  916. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  917. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  918. }
  919. /* WaDisableThreadStallDopClockGating:bxt */
  920. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  921. STALL_DOP_GATING_DISABLE);
  922. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  923. if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
  924. WA_SET_BIT_MASKED(
  925. GEN7_HALF_SLICE_CHICKEN1,
  926. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  927. }
  928. return 0;
  929. }
  930. int init_workarounds_ring(struct intel_engine_cs *ring)
  931. {
  932. struct drm_device *dev = ring->dev;
  933. struct drm_i915_private *dev_priv = dev->dev_private;
  934. WARN_ON(ring->id != RCS);
  935. dev_priv->workarounds.count = 0;
  936. if (IS_BROADWELL(dev))
  937. return bdw_init_workarounds(ring);
  938. if (IS_CHERRYVIEW(dev))
  939. return chv_init_workarounds(ring);
  940. if (IS_SKYLAKE(dev))
  941. return skl_init_workarounds(ring);
  942. if (IS_BROXTON(dev))
  943. return bxt_init_workarounds(ring);
  944. return 0;
  945. }
  946. static int init_render_ring(struct intel_engine_cs *ring)
  947. {
  948. struct drm_device *dev = ring->dev;
  949. struct drm_i915_private *dev_priv = dev->dev_private;
  950. int ret = init_ring_common(ring);
  951. if (ret)
  952. return ret;
  953. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  954. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  955. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  956. /* We need to disable the AsyncFlip performance optimisations in order
  957. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  958. * programmed to '1' on all products.
  959. *
  960. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  961. */
  962. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  963. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  964. /* Required for the hardware to program scanline values for waiting */
  965. /* WaEnableFlushTlbInvalidationMode:snb */
  966. if (INTEL_INFO(dev)->gen == 6)
  967. I915_WRITE(GFX_MODE,
  968. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  969. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  970. if (IS_GEN7(dev))
  971. I915_WRITE(GFX_MODE_GEN7,
  972. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  973. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  974. if (IS_GEN6(dev)) {
  975. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  976. * "If this bit is set, STCunit will have LRA as replacement
  977. * policy. [...] This bit must be reset. LRA replacement
  978. * policy is not supported."
  979. */
  980. I915_WRITE(CACHE_MODE_0,
  981. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  982. }
  983. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  984. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  985. if (HAS_L3_DPF(dev))
  986. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  987. return init_workarounds_ring(ring);
  988. }
  989. static void render_ring_cleanup(struct intel_engine_cs *ring)
  990. {
  991. struct drm_device *dev = ring->dev;
  992. struct drm_i915_private *dev_priv = dev->dev_private;
  993. if (dev_priv->semaphore_obj) {
  994. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  995. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  996. dev_priv->semaphore_obj = NULL;
  997. }
  998. intel_fini_pipe_control(ring);
  999. }
  1000. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1001. unsigned int num_dwords)
  1002. {
  1003. #define MBOX_UPDATE_DWORDS 8
  1004. struct intel_engine_cs *signaller = signaller_req->ring;
  1005. struct drm_device *dev = signaller->dev;
  1006. struct drm_i915_private *dev_priv = dev->dev_private;
  1007. struct intel_engine_cs *waiter;
  1008. int i, ret, num_rings;
  1009. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1010. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1011. #undef MBOX_UPDATE_DWORDS
  1012. ret = intel_ring_begin(signaller_req, num_dwords);
  1013. if (ret)
  1014. return ret;
  1015. for_each_ring(waiter, dev_priv, i) {
  1016. u32 seqno;
  1017. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1018. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1019. continue;
  1020. seqno = i915_gem_request_get_seqno(signaller_req);
  1021. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1022. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1023. PIPE_CONTROL_QW_WRITE |
  1024. PIPE_CONTROL_FLUSH_ENABLE);
  1025. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1026. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1027. intel_ring_emit(signaller, seqno);
  1028. intel_ring_emit(signaller, 0);
  1029. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1030. MI_SEMAPHORE_TARGET(waiter->id));
  1031. intel_ring_emit(signaller, 0);
  1032. }
  1033. return 0;
  1034. }
  1035. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1036. unsigned int num_dwords)
  1037. {
  1038. #define MBOX_UPDATE_DWORDS 6
  1039. struct intel_engine_cs *signaller = signaller_req->ring;
  1040. struct drm_device *dev = signaller->dev;
  1041. struct drm_i915_private *dev_priv = dev->dev_private;
  1042. struct intel_engine_cs *waiter;
  1043. int i, ret, num_rings;
  1044. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1045. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1046. #undef MBOX_UPDATE_DWORDS
  1047. ret = intel_ring_begin(signaller_req, num_dwords);
  1048. if (ret)
  1049. return ret;
  1050. for_each_ring(waiter, dev_priv, i) {
  1051. u32 seqno;
  1052. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1053. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1054. continue;
  1055. seqno = i915_gem_request_get_seqno(signaller_req);
  1056. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1057. MI_FLUSH_DW_OP_STOREDW);
  1058. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1059. MI_FLUSH_DW_USE_GTT);
  1060. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1061. intel_ring_emit(signaller, seqno);
  1062. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1063. MI_SEMAPHORE_TARGET(waiter->id));
  1064. intel_ring_emit(signaller, 0);
  1065. }
  1066. return 0;
  1067. }
  1068. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1069. unsigned int num_dwords)
  1070. {
  1071. struct intel_engine_cs *signaller = signaller_req->ring;
  1072. struct drm_device *dev = signaller->dev;
  1073. struct drm_i915_private *dev_priv = dev->dev_private;
  1074. struct intel_engine_cs *useless;
  1075. int i, ret, num_rings;
  1076. #define MBOX_UPDATE_DWORDS 3
  1077. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1078. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1079. #undef MBOX_UPDATE_DWORDS
  1080. ret = intel_ring_begin(signaller_req, num_dwords);
  1081. if (ret)
  1082. return ret;
  1083. for_each_ring(useless, dev_priv, i) {
  1084. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
  1085. if (i915_mmio_reg_valid(mbox_reg)) {
  1086. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1087. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1088. intel_ring_emit_reg(signaller, mbox_reg);
  1089. intel_ring_emit(signaller, seqno);
  1090. }
  1091. }
  1092. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1093. if (num_rings % 2 == 0)
  1094. intel_ring_emit(signaller, MI_NOOP);
  1095. return 0;
  1096. }
  1097. /**
  1098. * gen6_add_request - Update the semaphore mailbox registers
  1099. *
  1100. * @request - request to write to the ring
  1101. *
  1102. * Update the mailbox registers in the *other* rings with the current seqno.
  1103. * This acts like a signal in the canonical semaphore.
  1104. */
  1105. static int
  1106. gen6_add_request(struct drm_i915_gem_request *req)
  1107. {
  1108. struct intel_engine_cs *ring = req->ring;
  1109. int ret;
  1110. if (ring->semaphore.signal)
  1111. ret = ring->semaphore.signal(req, 4);
  1112. else
  1113. ret = intel_ring_begin(req, 4);
  1114. if (ret)
  1115. return ret;
  1116. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1117. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1118. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1119. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1120. __intel_ring_advance(ring);
  1121. return 0;
  1122. }
  1123. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1124. u32 seqno)
  1125. {
  1126. struct drm_i915_private *dev_priv = dev->dev_private;
  1127. return dev_priv->last_seqno < seqno;
  1128. }
  1129. /**
  1130. * intel_ring_sync - sync the waiter to the signaller on seqno
  1131. *
  1132. * @waiter - ring that is waiting
  1133. * @signaller - ring which has, or will signal
  1134. * @seqno - seqno which the waiter will block on
  1135. */
  1136. static int
  1137. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1138. struct intel_engine_cs *signaller,
  1139. u32 seqno)
  1140. {
  1141. struct intel_engine_cs *waiter = waiter_req->ring;
  1142. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1143. int ret;
  1144. ret = intel_ring_begin(waiter_req, 4);
  1145. if (ret)
  1146. return ret;
  1147. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1148. MI_SEMAPHORE_GLOBAL_GTT |
  1149. MI_SEMAPHORE_POLL |
  1150. MI_SEMAPHORE_SAD_GTE_SDD);
  1151. intel_ring_emit(waiter, seqno);
  1152. intel_ring_emit(waiter,
  1153. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1154. intel_ring_emit(waiter,
  1155. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1156. intel_ring_advance(waiter);
  1157. return 0;
  1158. }
  1159. static int
  1160. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1161. struct intel_engine_cs *signaller,
  1162. u32 seqno)
  1163. {
  1164. struct intel_engine_cs *waiter = waiter_req->ring;
  1165. u32 dw1 = MI_SEMAPHORE_MBOX |
  1166. MI_SEMAPHORE_COMPARE |
  1167. MI_SEMAPHORE_REGISTER;
  1168. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1169. int ret;
  1170. /* Throughout all of the GEM code, seqno passed implies our current
  1171. * seqno is >= the last seqno executed. However for hardware the
  1172. * comparison is strictly greater than.
  1173. */
  1174. seqno -= 1;
  1175. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1176. ret = intel_ring_begin(waiter_req, 4);
  1177. if (ret)
  1178. return ret;
  1179. /* If seqno wrap happened, omit the wait with no-ops */
  1180. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1181. intel_ring_emit(waiter, dw1 | wait_mbox);
  1182. intel_ring_emit(waiter, seqno);
  1183. intel_ring_emit(waiter, 0);
  1184. intel_ring_emit(waiter, MI_NOOP);
  1185. } else {
  1186. intel_ring_emit(waiter, MI_NOOP);
  1187. intel_ring_emit(waiter, MI_NOOP);
  1188. intel_ring_emit(waiter, MI_NOOP);
  1189. intel_ring_emit(waiter, MI_NOOP);
  1190. }
  1191. intel_ring_advance(waiter);
  1192. return 0;
  1193. }
  1194. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1195. do { \
  1196. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1197. PIPE_CONTROL_DEPTH_STALL); \
  1198. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1199. intel_ring_emit(ring__, 0); \
  1200. intel_ring_emit(ring__, 0); \
  1201. } while (0)
  1202. static int
  1203. pc_render_add_request(struct drm_i915_gem_request *req)
  1204. {
  1205. struct intel_engine_cs *ring = req->ring;
  1206. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1207. int ret;
  1208. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1209. * incoherent with writes to memory, i.e. completely fubar,
  1210. * so we need to use PIPE_NOTIFY instead.
  1211. *
  1212. * However, we also need to workaround the qword write
  1213. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1214. * memory before requesting an interrupt.
  1215. */
  1216. ret = intel_ring_begin(req, 32);
  1217. if (ret)
  1218. return ret;
  1219. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1220. PIPE_CONTROL_WRITE_FLUSH |
  1221. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1222. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1223. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1224. intel_ring_emit(ring, 0);
  1225. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1226. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1227. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1228. scratch_addr += 2 * CACHELINE_BYTES;
  1229. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1230. scratch_addr += 2 * CACHELINE_BYTES;
  1231. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1232. scratch_addr += 2 * CACHELINE_BYTES;
  1233. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1234. scratch_addr += 2 * CACHELINE_BYTES;
  1235. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1236. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1237. PIPE_CONTROL_WRITE_FLUSH |
  1238. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1239. PIPE_CONTROL_NOTIFY);
  1240. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1241. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1242. intel_ring_emit(ring, 0);
  1243. __intel_ring_advance(ring);
  1244. return 0;
  1245. }
  1246. static u32
  1247. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1248. {
  1249. /* Workaround to force correct ordering between irq and seqno writes on
  1250. * ivb (and maybe also on snb) by reading from a CS register (like
  1251. * ACTHD) before reading the status page. */
  1252. if (!lazy_coherency) {
  1253. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1254. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1255. }
  1256. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1257. }
  1258. static u32
  1259. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1260. {
  1261. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1262. }
  1263. static void
  1264. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1265. {
  1266. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1267. }
  1268. static u32
  1269. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1270. {
  1271. return ring->scratch.cpu_page[0];
  1272. }
  1273. static void
  1274. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1275. {
  1276. ring->scratch.cpu_page[0] = seqno;
  1277. }
  1278. static bool
  1279. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1280. {
  1281. struct drm_device *dev = ring->dev;
  1282. struct drm_i915_private *dev_priv = dev->dev_private;
  1283. unsigned long flags;
  1284. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1285. return false;
  1286. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1287. if (ring->irq_refcount++ == 0)
  1288. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1289. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1290. return true;
  1291. }
  1292. static void
  1293. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1294. {
  1295. struct drm_device *dev = ring->dev;
  1296. struct drm_i915_private *dev_priv = dev->dev_private;
  1297. unsigned long flags;
  1298. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1299. if (--ring->irq_refcount == 0)
  1300. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1301. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1302. }
  1303. static bool
  1304. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1305. {
  1306. struct drm_device *dev = ring->dev;
  1307. struct drm_i915_private *dev_priv = dev->dev_private;
  1308. unsigned long flags;
  1309. if (!intel_irqs_enabled(dev_priv))
  1310. return false;
  1311. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1312. if (ring->irq_refcount++ == 0) {
  1313. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1314. I915_WRITE(IMR, dev_priv->irq_mask);
  1315. POSTING_READ(IMR);
  1316. }
  1317. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1318. return true;
  1319. }
  1320. static void
  1321. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1322. {
  1323. struct drm_device *dev = ring->dev;
  1324. struct drm_i915_private *dev_priv = dev->dev_private;
  1325. unsigned long flags;
  1326. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1327. if (--ring->irq_refcount == 0) {
  1328. dev_priv->irq_mask |= ring->irq_enable_mask;
  1329. I915_WRITE(IMR, dev_priv->irq_mask);
  1330. POSTING_READ(IMR);
  1331. }
  1332. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1333. }
  1334. static bool
  1335. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1336. {
  1337. struct drm_device *dev = ring->dev;
  1338. struct drm_i915_private *dev_priv = dev->dev_private;
  1339. unsigned long flags;
  1340. if (!intel_irqs_enabled(dev_priv))
  1341. return false;
  1342. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1343. if (ring->irq_refcount++ == 0) {
  1344. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1345. I915_WRITE16(IMR, dev_priv->irq_mask);
  1346. POSTING_READ16(IMR);
  1347. }
  1348. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1349. return true;
  1350. }
  1351. static void
  1352. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1353. {
  1354. struct drm_device *dev = ring->dev;
  1355. struct drm_i915_private *dev_priv = dev->dev_private;
  1356. unsigned long flags;
  1357. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1358. if (--ring->irq_refcount == 0) {
  1359. dev_priv->irq_mask |= ring->irq_enable_mask;
  1360. I915_WRITE16(IMR, dev_priv->irq_mask);
  1361. POSTING_READ16(IMR);
  1362. }
  1363. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1364. }
  1365. static int
  1366. bsd_ring_flush(struct drm_i915_gem_request *req,
  1367. u32 invalidate_domains,
  1368. u32 flush_domains)
  1369. {
  1370. struct intel_engine_cs *ring = req->ring;
  1371. int ret;
  1372. ret = intel_ring_begin(req, 2);
  1373. if (ret)
  1374. return ret;
  1375. intel_ring_emit(ring, MI_FLUSH);
  1376. intel_ring_emit(ring, MI_NOOP);
  1377. intel_ring_advance(ring);
  1378. return 0;
  1379. }
  1380. static int
  1381. i9xx_add_request(struct drm_i915_gem_request *req)
  1382. {
  1383. struct intel_engine_cs *ring = req->ring;
  1384. int ret;
  1385. ret = intel_ring_begin(req, 4);
  1386. if (ret)
  1387. return ret;
  1388. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1389. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1390. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1391. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1392. __intel_ring_advance(ring);
  1393. return 0;
  1394. }
  1395. static bool
  1396. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1397. {
  1398. struct drm_device *dev = ring->dev;
  1399. struct drm_i915_private *dev_priv = dev->dev_private;
  1400. unsigned long flags;
  1401. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1402. return false;
  1403. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1404. if (ring->irq_refcount++ == 0) {
  1405. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1406. I915_WRITE_IMR(ring,
  1407. ~(ring->irq_enable_mask |
  1408. GT_PARITY_ERROR(dev)));
  1409. else
  1410. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1411. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1412. }
  1413. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1414. return true;
  1415. }
  1416. static void
  1417. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1418. {
  1419. struct drm_device *dev = ring->dev;
  1420. struct drm_i915_private *dev_priv = dev->dev_private;
  1421. unsigned long flags;
  1422. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1423. if (--ring->irq_refcount == 0) {
  1424. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1425. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1426. else
  1427. I915_WRITE_IMR(ring, ~0);
  1428. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1429. }
  1430. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1431. }
  1432. static bool
  1433. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1434. {
  1435. struct drm_device *dev = ring->dev;
  1436. struct drm_i915_private *dev_priv = dev->dev_private;
  1437. unsigned long flags;
  1438. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1439. return false;
  1440. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1441. if (ring->irq_refcount++ == 0) {
  1442. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1443. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1444. }
  1445. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1446. return true;
  1447. }
  1448. static void
  1449. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1450. {
  1451. struct drm_device *dev = ring->dev;
  1452. struct drm_i915_private *dev_priv = dev->dev_private;
  1453. unsigned long flags;
  1454. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1455. if (--ring->irq_refcount == 0) {
  1456. I915_WRITE_IMR(ring, ~0);
  1457. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1458. }
  1459. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1460. }
  1461. static bool
  1462. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1463. {
  1464. struct drm_device *dev = ring->dev;
  1465. struct drm_i915_private *dev_priv = dev->dev_private;
  1466. unsigned long flags;
  1467. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1468. return false;
  1469. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1470. if (ring->irq_refcount++ == 0) {
  1471. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1472. I915_WRITE_IMR(ring,
  1473. ~(ring->irq_enable_mask |
  1474. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1475. } else {
  1476. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1477. }
  1478. POSTING_READ(RING_IMR(ring->mmio_base));
  1479. }
  1480. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1481. return true;
  1482. }
  1483. static void
  1484. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1485. {
  1486. struct drm_device *dev = ring->dev;
  1487. struct drm_i915_private *dev_priv = dev->dev_private;
  1488. unsigned long flags;
  1489. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1490. if (--ring->irq_refcount == 0) {
  1491. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1492. I915_WRITE_IMR(ring,
  1493. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1494. } else {
  1495. I915_WRITE_IMR(ring, ~0);
  1496. }
  1497. POSTING_READ(RING_IMR(ring->mmio_base));
  1498. }
  1499. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1500. }
  1501. static int
  1502. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1503. u64 offset, u32 length,
  1504. unsigned dispatch_flags)
  1505. {
  1506. struct intel_engine_cs *ring = req->ring;
  1507. int ret;
  1508. ret = intel_ring_begin(req, 2);
  1509. if (ret)
  1510. return ret;
  1511. intel_ring_emit(ring,
  1512. MI_BATCH_BUFFER_START |
  1513. MI_BATCH_GTT |
  1514. (dispatch_flags & I915_DISPATCH_SECURE ?
  1515. 0 : MI_BATCH_NON_SECURE_I965));
  1516. intel_ring_emit(ring, offset);
  1517. intel_ring_advance(ring);
  1518. return 0;
  1519. }
  1520. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1521. #define I830_BATCH_LIMIT (256*1024)
  1522. #define I830_TLB_ENTRIES (2)
  1523. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1524. static int
  1525. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1526. u64 offset, u32 len,
  1527. unsigned dispatch_flags)
  1528. {
  1529. struct intel_engine_cs *ring = req->ring;
  1530. u32 cs_offset = ring->scratch.gtt_offset;
  1531. int ret;
  1532. ret = intel_ring_begin(req, 6);
  1533. if (ret)
  1534. return ret;
  1535. /* Evict the invalid PTE TLBs */
  1536. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1537. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1538. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1539. intel_ring_emit(ring, cs_offset);
  1540. intel_ring_emit(ring, 0xdeadbeef);
  1541. intel_ring_emit(ring, MI_NOOP);
  1542. intel_ring_advance(ring);
  1543. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1544. if (len > I830_BATCH_LIMIT)
  1545. return -ENOSPC;
  1546. ret = intel_ring_begin(req, 6 + 2);
  1547. if (ret)
  1548. return ret;
  1549. /* Blit the batch (which has now all relocs applied) to the
  1550. * stable batch scratch bo area (so that the CS never
  1551. * stumbles over its tlb invalidation bug) ...
  1552. */
  1553. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1554. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1555. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1556. intel_ring_emit(ring, cs_offset);
  1557. intel_ring_emit(ring, 4096);
  1558. intel_ring_emit(ring, offset);
  1559. intel_ring_emit(ring, MI_FLUSH);
  1560. intel_ring_emit(ring, MI_NOOP);
  1561. intel_ring_advance(ring);
  1562. /* ... and execute it. */
  1563. offset = cs_offset;
  1564. }
  1565. ret = intel_ring_begin(req, 2);
  1566. if (ret)
  1567. return ret;
  1568. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1569. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1570. 0 : MI_BATCH_NON_SECURE));
  1571. intel_ring_advance(ring);
  1572. return 0;
  1573. }
  1574. static int
  1575. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1576. u64 offset, u32 len,
  1577. unsigned dispatch_flags)
  1578. {
  1579. struct intel_engine_cs *ring = req->ring;
  1580. int ret;
  1581. ret = intel_ring_begin(req, 2);
  1582. if (ret)
  1583. return ret;
  1584. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1585. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1586. 0 : MI_BATCH_NON_SECURE));
  1587. intel_ring_advance(ring);
  1588. return 0;
  1589. }
  1590. static void cleanup_phys_status_page(struct intel_engine_cs *ring)
  1591. {
  1592. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  1593. if (!dev_priv->status_page_dmah)
  1594. return;
  1595. drm_pci_free(ring->dev, dev_priv->status_page_dmah);
  1596. ring->status_page.page_addr = NULL;
  1597. }
  1598. static void cleanup_status_page(struct intel_engine_cs *ring)
  1599. {
  1600. struct drm_i915_gem_object *obj;
  1601. obj = ring->status_page.obj;
  1602. if (obj == NULL)
  1603. return;
  1604. kunmap(sg_page(obj->pages->sgl));
  1605. i915_gem_object_ggtt_unpin(obj);
  1606. drm_gem_object_unreference(&obj->base);
  1607. ring->status_page.obj = NULL;
  1608. }
  1609. static int init_status_page(struct intel_engine_cs *ring)
  1610. {
  1611. struct drm_i915_gem_object *obj = ring->status_page.obj;
  1612. if (obj == NULL) {
  1613. unsigned flags;
  1614. int ret;
  1615. obj = i915_gem_alloc_object(ring->dev, 4096);
  1616. if (obj == NULL) {
  1617. DRM_ERROR("Failed to allocate status page\n");
  1618. return -ENOMEM;
  1619. }
  1620. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1621. if (ret)
  1622. goto err_unref;
  1623. flags = 0;
  1624. if (!HAS_LLC(ring->dev))
  1625. /* On g33, we cannot place HWS above 256MiB, so
  1626. * restrict its pinning to the low mappable arena.
  1627. * Though this restriction is not documented for
  1628. * gen4, gen5, or byt, they also behave similarly
  1629. * and hang if the HWS is placed at the top of the
  1630. * GTT. To generalise, it appears that all !llc
  1631. * platforms have issues with us placing the HWS
  1632. * above the mappable region (even though we never
  1633. * actualy map it).
  1634. */
  1635. flags |= PIN_MAPPABLE;
  1636. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1637. if (ret) {
  1638. err_unref:
  1639. drm_gem_object_unreference(&obj->base);
  1640. return ret;
  1641. }
  1642. ring->status_page.obj = obj;
  1643. }
  1644. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1645. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1646. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1647. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1648. ring->name, ring->status_page.gfx_addr);
  1649. return 0;
  1650. }
  1651. static int init_phys_status_page(struct intel_engine_cs *ring)
  1652. {
  1653. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1654. if (!dev_priv->status_page_dmah) {
  1655. dev_priv->status_page_dmah =
  1656. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1657. if (!dev_priv->status_page_dmah)
  1658. return -ENOMEM;
  1659. }
  1660. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1661. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1662. return 0;
  1663. }
  1664. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1665. {
  1666. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1667. vunmap(ringbuf->virtual_start);
  1668. else
  1669. iounmap(ringbuf->virtual_start);
  1670. ringbuf->virtual_start = NULL;
  1671. ringbuf->vma = NULL;
  1672. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1673. }
  1674. static u32 *vmap_obj(struct drm_i915_gem_object *obj)
  1675. {
  1676. struct sg_page_iter sg_iter;
  1677. struct page **pages;
  1678. void *addr;
  1679. int i;
  1680. pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
  1681. if (pages == NULL)
  1682. return NULL;
  1683. i = 0;
  1684. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
  1685. pages[i++] = sg_page_iter_page(&sg_iter);
  1686. addr = vmap(pages, i, 0, PAGE_KERNEL);
  1687. drm_free_large(pages);
  1688. return addr;
  1689. }
  1690. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1691. struct intel_ringbuffer *ringbuf)
  1692. {
  1693. struct drm_i915_private *dev_priv = to_i915(dev);
  1694. struct drm_i915_gem_object *obj = ringbuf->obj;
  1695. int ret;
  1696. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1697. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
  1698. if (ret)
  1699. return ret;
  1700. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1701. if (ret) {
  1702. i915_gem_object_ggtt_unpin(obj);
  1703. return ret;
  1704. }
  1705. ringbuf->virtual_start = vmap_obj(obj);
  1706. if (ringbuf->virtual_start == NULL) {
  1707. i915_gem_object_ggtt_unpin(obj);
  1708. return -ENOMEM;
  1709. }
  1710. } else {
  1711. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1712. if (ret)
  1713. return ret;
  1714. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1715. if (ret) {
  1716. i915_gem_object_ggtt_unpin(obj);
  1717. return ret;
  1718. }
  1719. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1720. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1721. if (ringbuf->virtual_start == NULL) {
  1722. i915_gem_object_ggtt_unpin(obj);
  1723. return -EINVAL;
  1724. }
  1725. }
  1726. ringbuf->vma = i915_gem_obj_to_ggtt(obj);
  1727. return 0;
  1728. }
  1729. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1730. {
  1731. drm_gem_object_unreference(&ringbuf->obj->base);
  1732. ringbuf->obj = NULL;
  1733. }
  1734. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1735. struct intel_ringbuffer *ringbuf)
  1736. {
  1737. struct drm_i915_gem_object *obj;
  1738. obj = NULL;
  1739. if (!HAS_LLC(dev))
  1740. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1741. if (obj == NULL)
  1742. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1743. if (obj == NULL)
  1744. return -ENOMEM;
  1745. /* mark ring buffers as read-only from GPU side by default */
  1746. obj->gt_ro = 1;
  1747. ringbuf->obj = obj;
  1748. return 0;
  1749. }
  1750. struct intel_ringbuffer *
  1751. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1752. {
  1753. struct intel_ringbuffer *ring;
  1754. int ret;
  1755. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1756. if (ring == NULL) {
  1757. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1758. engine->name);
  1759. return ERR_PTR(-ENOMEM);
  1760. }
  1761. ring->ring = engine;
  1762. list_add(&ring->link, &engine->buffers);
  1763. ring->size = size;
  1764. /* Workaround an erratum on the i830 which causes a hang if
  1765. * the TAIL pointer points to within the last 2 cachelines
  1766. * of the buffer.
  1767. */
  1768. ring->effective_size = size;
  1769. if (IS_I830(engine->dev) || IS_845G(engine->dev))
  1770. ring->effective_size -= 2 * CACHELINE_BYTES;
  1771. ring->last_retired_head = -1;
  1772. intel_ring_update_space(ring);
  1773. ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
  1774. if (ret) {
  1775. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1776. engine->name, ret);
  1777. list_del(&ring->link);
  1778. kfree(ring);
  1779. return ERR_PTR(ret);
  1780. }
  1781. return ring;
  1782. }
  1783. void
  1784. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1785. {
  1786. intel_destroy_ringbuffer_obj(ring);
  1787. list_del(&ring->link);
  1788. kfree(ring);
  1789. }
  1790. static int intel_init_ring_buffer(struct drm_device *dev,
  1791. struct intel_engine_cs *ring)
  1792. {
  1793. struct intel_ringbuffer *ringbuf;
  1794. int ret;
  1795. WARN_ON(ring->buffer);
  1796. ring->dev = dev;
  1797. INIT_LIST_HEAD(&ring->active_list);
  1798. INIT_LIST_HEAD(&ring->request_list);
  1799. INIT_LIST_HEAD(&ring->execlist_queue);
  1800. INIT_LIST_HEAD(&ring->buffers);
  1801. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1802. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1803. init_waitqueue_head(&ring->irq_queue);
  1804. ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
  1805. if (IS_ERR(ringbuf)) {
  1806. ret = PTR_ERR(ringbuf);
  1807. goto error;
  1808. }
  1809. ring->buffer = ringbuf;
  1810. if (I915_NEED_GFX_HWS(dev)) {
  1811. ret = init_status_page(ring);
  1812. if (ret)
  1813. goto error;
  1814. } else {
  1815. WARN_ON(ring->id != RCS);
  1816. ret = init_phys_status_page(ring);
  1817. if (ret)
  1818. goto error;
  1819. }
  1820. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1821. if (ret) {
  1822. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1823. ring->name, ret);
  1824. intel_destroy_ringbuffer_obj(ringbuf);
  1825. goto error;
  1826. }
  1827. ret = i915_cmd_parser_init_ring(ring);
  1828. if (ret)
  1829. goto error;
  1830. return 0;
  1831. error:
  1832. intel_cleanup_ring_buffer(ring);
  1833. return ret;
  1834. }
  1835. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1836. {
  1837. struct drm_i915_private *dev_priv;
  1838. if (!intel_ring_initialized(ring))
  1839. return;
  1840. dev_priv = to_i915(ring->dev);
  1841. if (ring->buffer) {
  1842. intel_stop_ring_buffer(ring);
  1843. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1844. intel_unpin_ringbuffer_obj(ring->buffer);
  1845. intel_ringbuffer_free(ring->buffer);
  1846. ring->buffer = NULL;
  1847. }
  1848. if (ring->cleanup)
  1849. ring->cleanup(ring);
  1850. if (I915_NEED_GFX_HWS(ring->dev)) {
  1851. cleanup_status_page(ring);
  1852. } else {
  1853. WARN_ON(ring->id != RCS);
  1854. cleanup_phys_status_page(ring);
  1855. }
  1856. i915_cmd_parser_fini_ring(ring);
  1857. i915_gem_batch_pool_fini(&ring->batch_pool);
  1858. ring->dev = NULL;
  1859. }
  1860. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1861. {
  1862. struct intel_ringbuffer *ringbuf = ring->buffer;
  1863. struct drm_i915_gem_request *request;
  1864. unsigned space;
  1865. int ret;
  1866. if (intel_ring_space(ringbuf) >= n)
  1867. return 0;
  1868. /* The whole point of reserving space is to not wait! */
  1869. WARN_ON(ringbuf->reserved_in_use);
  1870. list_for_each_entry(request, &ring->request_list, list) {
  1871. space = __intel_ring_space(request->postfix, ringbuf->tail,
  1872. ringbuf->size);
  1873. if (space >= n)
  1874. break;
  1875. }
  1876. if (WARN_ON(&request->list == &ring->request_list))
  1877. return -ENOSPC;
  1878. ret = i915_wait_request(request);
  1879. if (ret)
  1880. return ret;
  1881. ringbuf->space = space;
  1882. return 0;
  1883. }
  1884. static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
  1885. {
  1886. uint32_t __iomem *virt;
  1887. int rem = ringbuf->size - ringbuf->tail;
  1888. virt = ringbuf->virtual_start + ringbuf->tail;
  1889. rem /= 4;
  1890. while (rem--)
  1891. iowrite32(MI_NOOP, virt++);
  1892. ringbuf->tail = 0;
  1893. intel_ring_update_space(ringbuf);
  1894. }
  1895. int intel_ring_idle(struct intel_engine_cs *ring)
  1896. {
  1897. struct drm_i915_gem_request *req;
  1898. /* Wait upon the last request to be completed */
  1899. if (list_empty(&ring->request_list))
  1900. return 0;
  1901. req = list_entry(ring->request_list.prev,
  1902. struct drm_i915_gem_request,
  1903. list);
  1904. /* Make sure we do not trigger any retires */
  1905. return __i915_wait_request(req,
  1906. atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
  1907. to_i915(ring->dev)->mm.interruptible,
  1908. NULL, NULL);
  1909. }
  1910. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1911. {
  1912. request->ringbuf = request->ring->buffer;
  1913. return 0;
  1914. }
  1915. int intel_ring_reserve_space(struct drm_i915_gem_request *request)
  1916. {
  1917. /*
  1918. * The first call merely notes the reserve request and is common for
  1919. * all back ends. The subsequent localised _begin() call actually
  1920. * ensures that the reservation is available. Without the begin, if
  1921. * the request creator immediately submitted the request without
  1922. * adding any commands to it then there might not actually be
  1923. * sufficient room for the submission commands.
  1924. */
  1925. intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
  1926. return intel_ring_begin(request, 0);
  1927. }
  1928. void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
  1929. {
  1930. WARN_ON(ringbuf->reserved_size);
  1931. WARN_ON(ringbuf->reserved_in_use);
  1932. ringbuf->reserved_size = size;
  1933. }
  1934. void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
  1935. {
  1936. WARN_ON(ringbuf->reserved_in_use);
  1937. ringbuf->reserved_size = 0;
  1938. ringbuf->reserved_in_use = false;
  1939. }
  1940. void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
  1941. {
  1942. WARN_ON(ringbuf->reserved_in_use);
  1943. ringbuf->reserved_in_use = true;
  1944. ringbuf->reserved_tail = ringbuf->tail;
  1945. }
  1946. void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
  1947. {
  1948. WARN_ON(!ringbuf->reserved_in_use);
  1949. if (ringbuf->tail > ringbuf->reserved_tail) {
  1950. WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
  1951. "request reserved size too small: %d vs %d!\n",
  1952. ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
  1953. } else {
  1954. /*
  1955. * The ring was wrapped while the reserved space was in use.
  1956. * That means that some unknown amount of the ring tail was
  1957. * no-op filled and skipped. Thus simply adding the ring size
  1958. * to the tail and doing the above space check will not work.
  1959. * Rather than attempt to track how much tail was skipped,
  1960. * it is much simpler to say that also skipping the sanity
  1961. * check every once in a while is not a big issue.
  1962. */
  1963. }
  1964. ringbuf->reserved_size = 0;
  1965. ringbuf->reserved_in_use = false;
  1966. }
  1967. static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
  1968. {
  1969. struct intel_ringbuffer *ringbuf = ring->buffer;
  1970. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  1971. int remain_actual = ringbuf->size - ringbuf->tail;
  1972. int ret, total_bytes, wait_bytes = 0;
  1973. bool need_wrap = false;
  1974. if (ringbuf->reserved_in_use)
  1975. total_bytes = bytes;
  1976. else
  1977. total_bytes = bytes + ringbuf->reserved_size;
  1978. if (unlikely(bytes > remain_usable)) {
  1979. /*
  1980. * Not enough space for the basic request. So need to flush
  1981. * out the remainder and then wait for base + reserved.
  1982. */
  1983. wait_bytes = remain_actual + total_bytes;
  1984. need_wrap = true;
  1985. } else {
  1986. if (unlikely(total_bytes > remain_usable)) {
  1987. /*
  1988. * The base request will fit but the reserved space
  1989. * falls off the end. So only need to to wait for the
  1990. * reserved size after flushing out the remainder.
  1991. */
  1992. wait_bytes = remain_actual + ringbuf->reserved_size;
  1993. need_wrap = true;
  1994. } else if (total_bytes > ringbuf->space) {
  1995. /* No wrapping required, just waiting. */
  1996. wait_bytes = total_bytes;
  1997. }
  1998. }
  1999. if (wait_bytes) {
  2000. ret = ring_wait_for_space(ring, wait_bytes);
  2001. if (unlikely(ret))
  2002. return ret;
  2003. if (need_wrap)
  2004. __wrap_ring_buffer(ringbuf);
  2005. }
  2006. return 0;
  2007. }
  2008. int intel_ring_begin(struct drm_i915_gem_request *req,
  2009. int num_dwords)
  2010. {
  2011. struct intel_engine_cs *ring;
  2012. struct drm_i915_private *dev_priv;
  2013. int ret;
  2014. WARN_ON(req == NULL);
  2015. ring = req->ring;
  2016. dev_priv = ring->dev->dev_private;
  2017. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  2018. dev_priv->mm.interruptible);
  2019. if (ret)
  2020. return ret;
  2021. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  2022. if (ret)
  2023. return ret;
  2024. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  2025. return 0;
  2026. }
  2027. /* Align the ring tail to a cacheline boundary */
  2028. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2029. {
  2030. struct intel_engine_cs *ring = req->ring;
  2031. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2032. int ret;
  2033. if (num_dwords == 0)
  2034. return 0;
  2035. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2036. ret = intel_ring_begin(req, num_dwords);
  2037. if (ret)
  2038. return ret;
  2039. while (num_dwords--)
  2040. intel_ring_emit(ring, MI_NOOP);
  2041. intel_ring_advance(ring);
  2042. return 0;
  2043. }
  2044. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  2045. {
  2046. struct drm_device *dev = ring->dev;
  2047. struct drm_i915_private *dev_priv = dev->dev_private;
  2048. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  2049. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  2050. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  2051. if (HAS_VEBOX(dev))
  2052. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  2053. }
  2054. ring->set_seqno(ring, seqno);
  2055. ring->hangcheck.seqno = seqno;
  2056. }
  2057. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  2058. u32 value)
  2059. {
  2060. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2061. /* Every tail move must follow the sequence below */
  2062. /* Disable notification that the ring is IDLE. The GT
  2063. * will then assume that it is busy and bring it out of rc6.
  2064. */
  2065. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2066. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2067. /* Clear the context id. Here be magic! */
  2068. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2069. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2070. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2071. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2072. 50))
  2073. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2074. /* Now that the ring is fully powered up, update the tail */
  2075. I915_WRITE_TAIL(ring, value);
  2076. POSTING_READ(RING_TAIL(ring->mmio_base));
  2077. /* Let the ring send IDLE messages to the GT again,
  2078. * and so let it sleep to conserve power when idle.
  2079. */
  2080. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2081. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2082. }
  2083. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2084. u32 invalidate, u32 flush)
  2085. {
  2086. struct intel_engine_cs *ring = req->ring;
  2087. uint32_t cmd;
  2088. int ret;
  2089. ret = intel_ring_begin(req, 4);
  2090. if (ret)
  2091. return ret;
  2092. cmd = MI_FLUSH_DW;
  2093. if (INTEL_INFO(ring->dev)->gen >= 8)
  2094. cmd += 1;
  2095. /* We always require a command barrier so that subsequent
  2096. * commands, such as breadcrumb interrupts, are strictly ordered
  2097. * wrt the contents of the write cache being flushed to memory
  2098. * (and thus being coherent from the CPU).
  2099. */
  2100. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2101. /*
  2102. * Bspec vol 1c.5 - video engine command streamer:
  2103. * "If ENABLED, all TLBs will be invalidated once the flush
  2104. * operation is complete. This bit is only valid when the
  2105. * Post-Sync Operation field is a value of 1h or 3h."
  2106. */
  2107. if (invalidate & I915_GEM_GPU_DOMAINS)
  2108. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2109. intel_ring_emit(ring, cmd);
  2110. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2111. if (INTEL_INFO(ring->dev)->gen >= 8) {
  2112. intel_ring_emit(ring, 0); /* upper addr */
  2113. intel_ring_emit(ring, 0); /* value */
  2114. } else {
  2115. intel_ring_emit(ring, 0);
  2116. intel_ring_emit(ring, MI_NOOP);
  2117. }
  2118. intel_ring_advance(ring);
  2119. return 0;
  2120. }
  2121. static int
  2122. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2123. u64 offset, u32 len,
  2124. unsigned dispatch_flags)
  2125. {
  2126. struct intel_engine_cs *ring = req->ring;
  2127. bool ppgtt = USES_PPGTT(ring->dev) &&
  2128. !(dispatch_flags & I915_DISPATCH_SECURE);
  2129. int ret;
  2130. ret = intel_ring_begin(req, 4);
  2131. if (ret)
  2132. return ret;
  2133. /* FIXME(BDW): Address space and security selectors. */
  2134. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2135. (dispatch_flags & I915_DISPATCH_RS ?
  2136. MI_BATCH_RESOURCE_STREAMER : 0));
  2137. intel_ring_emit(ring, lower_32_bits(offset));
  2138. intel_ring_emit(ring, upper_32_bits(offset));
  2139. intel_ring_emit(ring, MI_NOOP);
  2140. intel_ring_advance(ring);
  2141. return 0;
  2142. }
  2143. static int
  2144. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2145. u64 offset, u32 len,
  2146. unsigned dispatch_flags)
  2147. {
  2148. struct intel_engine_cs *ring = req->ring;
  2149. int ret;
  2150. ret = intel_ring_begin(req, 2);
  2151. if (ret)
  2152. return ret;
  2153. intel_ring_emit(ring,
  2154. MI_BATCH_BUFFER_START |
  2155. (dispatch_flags & I915_DISPATCH_SECURE ?
  2156. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2157. (dispatch_flags & I915_DISPATCH_RS ?
  2158. MI_BATCH_RESOURCE_STREAMER : 0));
  2159. /* bit0-7 is the length on GEN6+ */
  2160. intel_ring_emit(ring, offset);
  2161. intel_ring_advance(ring);
  2162. return 0;
  2163. }
  2164. static int
  2165. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2166. u64 offset, u32 len,
  2167. unsigned dispatch_flags)
  2168. {
  2169. struct intel_engine_cs *ring = req->ring;
  2170. int ret;
  2171. ret = intel_ring_begin(req, 2);
  2172. if (ret)
  2173. return ret;
  2174. intel_ring_emit(ring,
  2175. MI_BATCH_BUFFER_START |
  2176. (dispatch_flags & I915_DISPATCH_SECURE ?
  2177. 0 : MI_BATCH_NON_SECURE_I965));
  2178. /* bit0-7 is the length on GEN6+ */
  2179. intel_ring_emit(ring, offset);
  2180. intel_ring_advance(ring);
  2181. return 0;
  2182. }
  2183. /* Blitter support (SandyBridge+) */
  2184. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2185. u32 invalidate, u32 flush)
  2186. {
  2187. struct intel_engine_cs *ring = req->ring;
  2188. struct drm_device *dev = ring->dev;
  2189. uint32_t cmd;
  2190. int ret;
  2191. ret = intel_ring_begin(req, 4);
  2192. if (ret)
  2193. return ret;
  2194. cmd = MI_FLUSH_DW;
  2195. if (INTEL_INFO(dev)->gen >= 8)
  2196. cmd += 1;
  2197. /* We always require a command barrier so that subsequent
  2198. * commands, such as breadcrumb interrupts, are strictly ordered
  2199. * wrt the contents of the write cache being flushed to memory
  2200. * (and thus being coherent from the CPU).
  2201. */
  2202. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2203. /*
  2204. * Bspec vol 1c.3 - blitter engine command streamer:
  2205. * "If ENABLED, all TLBs will be invalidated once the flush
  2206. * operation is complete. This bit is only valid when the
  2207. * Post-Sync Operation field is a value of 1h or 3h."
  2208. */
  2209. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2210. cmd |= MI_INVALIDATE_TLB;
  2211. intel_ring_emit(ring, cmd);
  2212. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2213. if (INTEL_INFO(dev)->gen >= 8) {
  2214. intel_ring_emit(ring, 0); /* upper addr */
  2215. intel_ring_emit(ring, 0); /* value */
  2216. } else {
  2217. intel_ring_emit(ring, 0);
  2218. intel_ring_emit(ring, MI_NOOP);
  2219. }
  2220. intel_ring_advance(ring);
  2221. return 0;
  2222. }
  2223. int intel_init_render_ring_buffer(struct drm_device *dev)
  2224. {
  2225. struct drm_i915_private *dev_priv = dev->dev_private;
  2226. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2227. struct drm_i915_gem_object *obj;
  2228. int ret;
  2229. ring->name = "render ring";
  2230. ring->id = RCS;
  2231. ring->exec_id = I915_EXEC_RENDER;
  2232. ring->mmio_base = RENDER_RING_BASE;
  2233. if (INTEL_INFO(dev)->gen >= 8) {
  2234. if (i915_semaphore_is_enabled(dev)) {
  2235. obj = i915_gem_alloc_object(dev, 4096);
  2236. if (obj == NULL) {
  2237. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2238. i915.semaphores = 0;
  2239. } else {
  2240. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2241. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2242. if (ret != 0) {
  2243. drm_gem_object_unreference(&obj->base);
  2244. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2245. i915.semaphores = 0;
  2246. } else
  2247. dev_priv->semaphore_obj = obj;
  2248. }
  2249. }
  2250. ring->init_context = intel_rcs_ctx_init;
  2251. ring->add_request = gen6_add_request;
  2252. ring->flush = gen8_render_ring_flush;
  2253. ring->irq_get = gen8_ring_get_irq;
  2254. ring->irq_put = gen8_ring_put_irq;
  2255. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2256. ring->get_seqno = gen6_ring_get_seqno;
  2257. ring->set_seqno = ring_set_seqno;
  2258. if (i915_semaphore_is_enabled(dev)) {
  2259. WARN_ON(!dev_priv->semaphore_obj);
  2260. ring->semaphore.sync_to = gen8_ring_sync;
  2261. ring->semaphore.signal = gen8_rcs_signal;
  2262. GEN8_RING_SEMAPHORE_INIT;
  2263. }
  2264. } else if (INTEL_INFO(dev)->gen >= 6) {
  2265. ring->init_context = intel_rcs_ctx_init;
  2266. ring->add_request = gen6_add_request;
  2267. ring->flush = gen7_render_ring_flush;
  2268. if (INTEL_INFO(dev)->gen == 6)
  2269. ring->flush = gen6_render_ring_flush;
  2270. ring->irq_get = gen6_ring_get_irq;
  2271. ring->irq_put = gen6_ring_put_irq;
  2272. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2273. ring->get_seqno = gen6_ring_get_seqno;
  2274. ring->set_seqno = ring_set_seqno;
  2275. if (i915_semaphore_is_enabled(dev)) {
  2276. ring->semaphore.sync_to = gen6_ring_sync;
  2277. ring->semaphore.signal = gen6_signal;
  2278. /*
  2279. * The current semaphore is only applied on pre-gen8
  2280. * platform. And there is no VCS2 ring on the pre-gen8
  2281. * platform. So the semaphore between RCS and VCS2 is
  2282. * initialized as INVALID. Gen8 will initialize the
  2283. * sema between VCS2 and RCS later.
  2284. */
  2285. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2286. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2287. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2288. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2289. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2290. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2291. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2292. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2293. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2294. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2295. }
  2296. } else if (IS_GEN5(dev)) {
  2297. ring->add_request = pc_render_add_request;
  2298. ring->flush = gen4_render_ring_flush;
  2299. ring->get_seqno = pc_render_get_seqno;
  2300. ring->set_seqno = pc_render_set_seqno;
  2301. ring->irq_get = gen5_ring_get_irq;
  2302. ring->irq_put = gen5_ring_put_irq;
  2303. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2304. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2305. } else {
  2306. ring->add_request = i9xx_add_request;
  2307. if (INTEL_INFO(dev)->gen < 4)
  2308. ring->flush = gen2_render_ring_flush;
  2309. else
  2310. ring->flush = gen4_render_ring_flush;
  2311. ring->get_seqno = ring_get_seqno;
  2312. ring->set_seqno = ring_set_seqno;
  2313. if (IS_GEN2(dev)) {
  2314. ring->irq_get = i8xx_ring_get_irq;
  2315. ring->irq_put = i8xx_ring_put_irq;
  2316. } else {
  2317. ring->irq_get = i9xx_ring_get_irq;
  2318. ring->irq_put = i9xx_ring_put_irq;
  2319. }
  2320. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2321. }
  2322. ring->write_tail = ring_write_tail;
  2323. if (IS_HASWELL(dev))
  2324. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2325. else if (IS_GEN8(dev))
  2326. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2327. else if (INTEL_INFO(dev)->gen >= 6)
  2328. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2329. else if (INTEL_INFO(dev)->gen >= 4)
  2330. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2331. else if (IS_I830(dev) || IS_845G(dev))
  2332. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2333. else
  2334. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2335. ring->init_hw = init_render_ring;
  2336. ring->cleanup = render_ring_cleanup;
  2337. /* Workaround batchbuffer to combat CS tlb bug. */
  2338. if (HAS_BROKEN_CS_TLB(dev)) {
  2339. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2340. if (obj == NULL) {
  2341. DRM_ERROR("Failed to allocate batch bo\n");
  2342. return -ENOMEM;
  2343. }
  2344. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2345. if (ret != 0) {
  2346. drm_gem_object_unreference(&obj->base);
  2347. DRM_ERROR("Failed to ping batch bo\n");
  2348. return ret;
  2349. }
  2350. ring->scratch.obj = obj;
  2351. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2352. }
  2353. ret = intel_init_ring_buffer(dev, ring);
  2354. if (ret)
  2355. return ret;
  2356. if (INTEL_INFO(dev)->gen >= 5) {
  2357. ret = intel_init_pipe_control(ring);
  2358. if (ret)
  2359. return ret;
  2360. }
  2361. return 0;
  2362. }
  2363. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2364. {
  2365. struct drm_i915_private *dev_priv = dev->dev_private;
  2366. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2367. ring->name = "bsd ring";
  2368. ring->id = VCS;
  2369. ring->exec_id = I915_EXEC_BSD;
  2370. ring->write_tail = ring_write_tail;
  2371. if (INTEL_INFO(dev)->gen >= 6) {
  2372. ring->mmio_base = GEN6_BSD_RING_BASE;
  2373. /* gen6 bsd needs a special wa for tail updates */
  2374. if (IS_GEN6(dev))
  2375. ring->write_tail = gen6_bsd_ring_write_tail;
  2376. ring->flush = gen6_bsd_ring_flush;
  2377. ring->add_request = gen6_add_request;
  2378. ring->get_seqno = gen6_ring_get_seqno;
  2379. ring->set_seqno = ring_set_seqno;
  2380. if (INTEL_INFO(dev)->gen >= 8) {
  2381. ring->irq_enable_mask =
  2382. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2383. ring->irq_get = gen8_ring_get_irq;
  2384. ring->irq_put = gen8_ring_put_irq;
  2385. ring->dispatch_execbuffer =
  2386. gen8_ring_dispatch_execbuffer;
  2387. if (i915_semaphore_is_enabled(dev)) {
  2388. ring->semaphore.sync_to = gen8_ring_sync;
  2389. ring->semaphore.signal = gen8_xcs_signal;
  2390. GEN8_RING_SEMAPHORE_INIT;
  2391. }
  2392. } else {
  2393. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2394. ring->irq_get = gen6_ring_get_irq;
  2395. ring->irq_put = gen6_ring_put_irq;
  2396. ring->dispatch_execbuffer =
  2397. gen6_ring_dispatch_execbuffer;
  2398. if (i915_semaphore_is_enabled(dev)) {
  2399. ring->semaphore.sync_to = gen6_ring_sync;
  2400. ring->semaphore.signal = gen6_signal;
  2401. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2402. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2403. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2404. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2405. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2406. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2407. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2408. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2409. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2410. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2411. }
  2412. }
  2413. } else {
  2414. ring->mmio_base = BSD_RING_BASE;
  2415. ring->flush = bsd_ring_flush;
  2416. ring->add_request = i9xx_add_request;
  2417. ring->get_seqno = ring_get_seqno;
  2418. ring->set_seqno = ring_set_seqno;
  2419. if (IS_GEN5(dev)) {
  2420. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2421. ring->irq_get = gen5_ring_get_irq;
  2422. ring->irq_put = gen5_ring_put_irq;
  2423. } else {
  2424. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2425. ring->irq_get = i9xx_ring_get_irq;
  2426. ring->irq_put = i9xx_ring_put_irq;
  2427. }
  2428. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2429. }
  2430. ring->init_hw = init_ring_common;
  2431. return intel_init_ring_buffer(dev, ring);
  2432. }
  2433. /**
  2434. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2435. */
  2436. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2437. {
  2438. struct drm_i915_private *dev_priv = dev->dev_private;
  2439. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2440. ring->name = "bsd2 ring";
  2441. ring->id = VCS2;
  2442. ring->exec_id = I915_EXEC_BSD;
  2443. ring->write_tail = ring_write_tail;
  2444. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2445. ring->flush = gen6_bsd_ring_flush;
  2446. ring->add_request = gen6_add_request;
  2447. ring->get_seqno = gen6_ring_get_seqno;
  2448. ring->set_seqno = ring_set_seqno;
  2449. ring->irq_enable_mask =
  2450. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2451. ring->irq_get = gen8_ring_get_irq;
  2452. ring->irq_put = gen8_ring_put_irq;
  2453. ring->dispatch_execbuffer =
  2454. gen8_ring_dispatch_execbuffer;
  2455. if (i915_semaphore_is_enabled(dev)) {
  2456. ring->semaphore.sync_to = gen8_ring_sync;
  2457. ring->semaphore.signal = gen8_xcs_signal;
  2458. GEN8_RING_SEMAPHORE_INIT;
  2459. }
  2460. ring->init_hw = init_ring_common;
  2461. return intel_init_ring_buffer(dev, ring);
  2462. }
  2463. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2464. {
  2465. struct drm_i915_private *dev_priv = dev->dev_private;
  2466. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2467. ring->name = "blitter ring";
  2468. ring->id = BCS;
  2469. ring->exec_id = I915_EXEC_BLT;
  2470. ring->mmio_base = BLT_RING_BASE;
  2471. ring->write_tail = ring_write_tail;
  2472. ring->flush = gen6_ring_flush;
  2473. ring->add_request = gen6_add_request;
  2474. ring->get_seqno = gen6_ring_get_seqno;
  2475. ring->set_seqno = ring_set_seqno;
  2476. if (INTEL_INFO(dev)->gen >= 8) {
  2477. ring->irq_enable_mask =
  2478. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2479. ring->irq_get = gen8_ring_get_irq;
  2480. ring->irq_put = gen8_ring_put_irq;
  2481. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2482. if (i915_semaphore_is_enabled(dev)) {
  2483. ring->semaphore.sync_to = gen8_ring_sync;
  2484. ring->semaphore.signal = gen8_xcs_signal;
  2485. GEN8_RING_SEMAPHORE_INIT;
  2486. }
  2487. } else {
  2488. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2489. ring->irq_get = gen6_ring_get_irq;
  2490. ring->irq_put = gen6_ring_put_irq;
  2491. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2492. if (i915_semaphore_is_enabled(dev)) {
  2493. ring->semaphore.signal = gen6_signal;
  2494. ring->semaphore.sync_to = gen6_ring_sync;
  2495. /*
  2496. * The current semaphore is only applied on pre-gen8
  2497. * platform. And there is no VCS2 ring on the pre-gen8
  2498. * platform. So the semaphore between BCS and VCS2 is
  2499. * initialized as INVALID. Gen8 will initialize the
  2500. * sema between BCS and VCS2 later.
  2501. */
  2502. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2503. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2504. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2505. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2506. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2507. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2508. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2509. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2510. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2511. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2512. }
  2513. }
  2514. ring->init_hw = init_ring_common;
  2515. return intel_init_ring_buffer(dev, ring);
  2516. }
  2517. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2518. {
  2519. struct drm_i915_private *dev_priv = dev->dev_private;
  2520. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2521. ring->name = "video enhancement ring";
  2522. ring->id = VECS;
  2523. ring->exec_id = I915_EXEC_VEBOX;
  2524. ring->mmio_base = VEBOX_RING_BASE;
  2525. ring->write_tail = ring_write_tail;
  2526. ring->flush = gen6_ring_flush;
  2527. ring->add_request = gen6_add_request;
  2528. ring->get_seqno = gen6_ring_get_seqno;
  2529. ring->set_seqno = ring_set_seqno;
  2530. if (INTEL_INFO(dev)->gen >= 8) {
  2531. ring->irq_enable_mask =
  2532. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2533. ring->irq_get = gen8_ring_get_irq;
  2534. ring->irq_put = gen8_ring_put_irq;
  2535. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2536. if (i915_semaphore_is_enabled(dev)) {
  2537. ring->semaphore.sync_to = gen8_ring_sync;
  2538. ring->semaphore.signal = gen8_xcs_signal;
  2539. GEN8_RING_SEMAPHORE_INIT;
  2540. }
  2541. } else {
  2542. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2543. ring->irq_get = hsw_vebox_get_irq;
  2544. ring->irq_put = hsw_vebox_put_irq;
  2545. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2546. if (i915_semaphore_is_enabled(dev)) {
  2547. ring->semaphore.sync_to = gen6_ring_sync;
  2548. ring->semaphore.signal = gen6_signal;
  2549. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2550. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2551. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2552. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2553. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2554. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2555. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2556. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2557. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2558. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2559. }
  2560. }
  2561. ring->init_hw = init_ring_common;
  2562. return intel_init_ring_buffer(dev, ring);
  2563. }
  2564. int
  2565. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2566. {
  2567. struct intel_engine_cs *ring = req->ring;
  2568. int ret;
  2569. if (!ring->gpu_caches_dirty)
  2570. return 0;
  2571. ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2572. if (ret)
  2573. return ret;
  2574. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2575. ring->gpu_caches_dirty = false;
  2576. return 0;
  2577. }
  2578. int
  2579. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2580. {
  2581. struct intel_engine_cs *ring = req->ring;
  2582. uint32_t flush_domains;
  2583. int ret;
  2584. flush_domains = 0;
  2585. if (ring->gpu_caches_dirty)
  2586. flush_domains = I915_GEM_GPU_DOMAINS;
  2587. ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2588. if (ret)
  2589. return ret;
  2590. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2591. ring->gpu_caches_dirty = false;
  2592. return 0;
  2593. }
  2594. void
  2595. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2596. {
  2597. int ret;
  2598. if (!intel_ring_initialized(ring))
  2599. return;
  2600. ret = intel_ring_idle(ring);
  2601. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2602. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2603. ring->name, ret);
  2604. stop_ring(ring);
  2605. }