rmap.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. */
  39. #include <linux/mm.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/swap.h>
  42. #include <linux/swapops.h>
  43. #include <linux/slab.h>
  44. #include <linux/init.h>
  45. #include <linux/rmap.h>
  46. #include <linux/rcupdate.h>
  47. #include <linux/module.h>
  48. #include <linux/kallsyms.h>
  49. #include <asm/tlbflush.h>
  50. struct kmem_cache *anon_vma_cachep;
  51. /* This must be called under the mmap_sem. */
  52. int anon_vma_prepare(struct vm_area_struct *vma)
  53. {
  54. struct anon_vma *anon_vma = vma->anon_vma;
  55. might_sleep();
  56. if (unlikely(!anon_vma)) {
  57. struct mm_struct *mm = vma->vm_mm;
  58. struct anon_vma *allocated, *locked;
  59. anon_vma = find_mergeable_anon_vma(vma);
  60. if (anon_vma) {
  61. allocated = NULL;
  62. locked = anon_vma;
  63. spin_lock(&locked->lock);
  64. } else {
  65. anon_vma = anon_vma_alloc();
  66. if (unlikely(!anon_vma))
  67. return -ENOMEM;
  68. allocated = anon_vma;
  69. locked = NULL;
  70. }
  71. /* page_table_lock to protect against threads */
  72. spin_lock(&mm->page_table_lock);
  73. if (likely(!vma->anon_vma)) {
  74. vma->anon_vma = anon_vma;
  75. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  76. allocated = NULL;
  77. }
  78. spin_unlock(&mm->page_table_lock);
  79. if (locked)
  80. spin_unlock(&locked->lock);
  81. if (unlikely(allocated))
  82. anon_vma_free(allocated);
  83. }
  84. return 0;
  85. }
  86. void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
  87. {
  88. BUG_ON(vma->anon_vma != next->anon_vma);
  89. list_del(&next->anon_vma_node);
  90. }
  91. void __anon_vma_link(struct vm_area_struct *vma)
  92. {
  93. struct anon_vma *anon_vma = vma->anon_vma;
  94. if (anon_vma)
  95. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  96. }
  97. void anon_vma_link(struct vm_area_struct *vma)
  98. {
  99. struct anon_vma *anon_vma = vma->anon_vma;
  100. if (anon_vma) {
  101. spin_lock(&anon_vma->lock);
  102. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  103. spin_unlock(&anon_vma->lock);
  104. }
  105. }
  106. void anon_vma_unlink(struct vm_area_struct *vma)
  107. {
  108. struct anon_vma *anon_vma = vma->anon_vma;
  109. int empty;
  110. if (!anon_vma)
  111. return;
  112. spin_lock(&anon_vma->lock);
  113. list_del(&vma->anon_vma_node);
  114. /* We must garbage collect the anon_vma if it's empty */
  115. empty = list_empty(&anon_vma->head);
  116. spin_unlock(&anon_vma->lock);
  117. if (empty)
  118. anon_vma_free(anon_vma);
  119. }
  120. static void anon_vma_ctor(struct kmem_cache *cachep, void *data)
  121. {
  122. struct anon_vma *anon_vma = data;
  123. spin_lock_init(&anon_vma->lock);
  124. INIT_LIST_HEAD(&anon_vma->head);
  125. }
  126. void __init anon_vma_init(void)
  127. {
  128. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  129. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  130. }
  131. /*
  132. * Getting a lock on a stable anon_vma from a page off the LRU is
  133. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  134. */
  135. static struct anon_vma *page_lock_anon_vma(struct page *page)
  136. {
  137. struct anon_vma *anon_vma;
  138. unsigned long anon_mapping;
  139. rcu_read_lock();
  140. anon_mapping = (unsigned long) page->mapping;
  141. if (!(anon_mapping & PAGE_MAPPING_ANON))
  142. goto out;
  143. if (!page_mapped(page))
  144. goto out;
  145. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  146. spin_lock(&anon_vma->lock);
  147. return anon_vma;
  148. out:
  149. rcu_read_unlock();
  150. return NULL;
  151. }
  152. static void page_unlock_anon_vma(struct anon_vma *anon_vma)
  153. {
  154. spin_unlock(&anon_vma->lock);
  155. rcu_read_unlock();
  156. }
  157. /*
  158. * At what user virtual address is page expected in @vma?
  159. * Returns virtual address or -EFAULT if page's index/offset is not
  160. * within the range mapped the @vma.
  161. */
  162. static inline unsigned long
  163. vma_address(struct page *page, struct vm_area_struct *vma)
  164. {
  165. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  166. unsigned long address;
  167. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  168. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  169. /* page should be within @vma mapping range */
  170. return -EFAULT;
  171. }
  172. return address;
  173. }
  174. /*
  175. * At what user virtual address is page expected in vma? checking that the
  176. * page matches the vma: currently only used on anon pages, by unuse_vma;
  177. */
  178. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  179. {
  180. if (PageAnon(page)) {
  181. if ((void *)vma->anon_vma !=
  182. (void *)page->mapping - PAGE_MAPPING_ANON)
  183. return -EFAULT;
  184. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  185. if (!vma->vm_file ||
  186. vma->vm_file->f_mapping != page->mapping)
  187. return -EFAULT;
  188. } else
  189. return -EFAULT;
  190. return vma_address(page, vma);
  191. }
  192. /*
  193. * Check that @page is mapped at @address into @mm.
  194. *
  195. * On success returns with pte mapped and locked.
  196. */
  197. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  198. unsigned long address, spinlock_t **ptlp)
  199. {
  200. pgd_t *pgd;
  201. pud_t *pud;
  202. pmd_t *pmd;
  203. pte_t *pte;
  204. spinlock_t *ptl;
  205. pgd = pgd_offset(mm, address);
  206. if (!pgd_present(*pgd))
  207. return NULL;
  208. pud = pud_offset(pgd, address);
  209. if (!pud_present(*pud))
  210. return NULL;
  211. pmd = pmd_offset(pud, address);
  212. if (!pmd_present(*pmd))
  213. return NULL;
  214. pte = pte_offset_map(pmd, address);
  215. /* Make a quick check before getting the lock */
  216. if (!pte_present(*pte)) {
  217. pte_unmap(pte);
  218. return NULL;
  219. }
  220. ptl = pte_lockptr(mm, pmd);
  221. spin_lock(ptl);
  222. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  223. *ptlp = ptl;
  224. return pte;
  225. }
  226. pte_unmap_unlock(pte, ptl);
  227. return NULL;
  228. }
  229. /*
  230. * Subfunctions of page_referenced: page_referenced_one called
  231. * repeatedly from either page_referenced_anon or page_referenced_file.
  232. */
  233. static int page_referenced_one(struct page *page,
  234. struct vm_area_struct *vma, unsigned int *mapcount)
  235. {
  236. struct mm_struct *mm = vma->vm_mm;
  237. unsigned long address;
  238. pte_t *pte;
  239. spinlock_t *ptl;
  240. int referenced = 0;
  241. address = vma_address(page, vma);
  242. if (address == -EFAULT)
  243. goto out;
  244. pte = page_check_address(page, mm, address, &ptl);
  245. if (!pte)
  246. goto out;
  247. if (vma->vm_flags & VM_LOCKED) {
  248. referenced++;
  249. *mapcount = 1; /* break early from loop */
  250. } else if (ptep_clear_flush_young(vma, address, pte))
  251. referenced++;
  252. /* Pretend the page is referenced if the task has the
  253. swap token and is in the middle of a page fault. */
  254. if (mm != current->mm && has_swap_token(mm) &&
  255. rwsem_is_locked(&mm->mmap_sem))
  256. referenced++;
  257. (*mapcount)--;
  258. pte_unmap_unlock(pte, ptl);
  259. out:
  260. return referenced;
  261. }
  262. static int page_referenced_anon(struct page *page)
  263. {
  264. unsigned int mapcount;
  265. struct anon_vma *anon_vma;
  266. struct vm_area_struct *vma;
  267. int referenced = 0;
  268. anon_vma = page_lock_anon_vma(page);
  269. if (!anon_vma)
  270. return referenced;
  271. mapcount = page_mapcount(page);
  272. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  273. referenced += page_referenced_one(page, vma, &mapcount);
  274. if (!mapcount)
  275. break;
  276. }
  277. page_unlock_anon_vma(anon_vma);
  278. return referenced;
  279. }
  280. /**
  281. * page_referenced_file - referenced check for object-based rmap
  282. * @page: the page we're checking references on.
  283. *
  284. * For an object-based mapped page, find all the places it is mapped and
  285. * check/clear the referenced flag. This is done by following the page->mapping
  286. * pointer, then walking the chain of vmas it holds. It returns the number
  287. * of references it found.
  288. *
  289. * This function is only called from page_referenced for object-based pages.
  290. */
  291. static int page_referenced_file(struct page *page)
  292. {
  293. unsigned int mapcount;
  294. struct address_space *mapping = page->mapping;
  295. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  296. struct vm_area_struct *vma;
  297. struct prio_tree_iter iter;
  298. int referenced = 0;
  299. /*
  300. * The caller's checks on page->mapping and !PageAnon have made
  301. * sure that this is a file page: the check for page->mapping
  302. * excludes the case just before it gets set on an anon page.
  303. */
  304. BUG_ON(PageAnon(page));
  305. /*
  306. * The page lock not only makes sure that page->mapping cannot
  307. * suddenly be NULLified by truncation, it makes sure that the
  308. * structure at mapping cannot be freed and reused yet,
  309. * so we can safely take mapping->i_mmap_lock.
  310. */
  311. BUG_ON(!PageLocked(page));
  312. spin_lock(&mapping->i_mmap_lock);
  313. /*
  314. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  315. * is more likely to be accurate if we note it after spinning.
  316. */
  317. mapcount = page_mapcount(page);
  318. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  319. if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
  320. == (VM_LOCKED|VM_MAYSHARE)) {
  321. referenced++;
  322. break;
  323. }
  324. referenced += page_referenced_one(page, vma, &mapcount);
  325. if (!mapcount)
  326. break;
  327. }
  328. spin_unlock(&mapping->i_mmap_lock);
  329. return referenced;
  330. }
  331. /**
  332. * page_referenced - test if the page was referenced
  333. * @page: the page to test
  334. * @is_locked: caller holds lock on the page
  335. *
  336. * Quick test_and_clear_referenced for all mappings to a page,
  337. * returns the number of ptes which referenced the page.
  338. */
  339. int page_referenced(struct page *page, int is_locked)
  340. {
  341. int referenced = 0;
  342. if (page_test_and_clear_young(page))
  343. referenced++;
  344. if (TestClearPageReferenced(page))
  345. referenced++;
  346. if (page_mapped(page) && page->mapping) {
  347. if (PageAnon(page))
  348. referenced += page_referenced_anon(page);
  349. else if (is_locked)
  350. referenced += page_referenced_file(page);
  351. else if (TestSetPageLocked(page))
  352. referenced++;
  353. else {
  354. if (page->mapping)
  355. referenced += page_referenced_file(page);
  356. unlock_page(page);
  357. }
  358. }
  359. return referenced;
  360. }
  361. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
  362. {
  363. struct mm_struct *mm = vma->vm_mm;
  364. unsigned long address;
  365. pte_t *pte;
  366. spinlock_t *ptl;
  367. int ret = 0;
  368. address = vma_address(page, vma);
  369. if (address == -EFAULT)
  370. goto out;
  371. pte = page_check_address(page, mm, address, &ptl);
  372. if (!pte)
  373. goto out;
  374. if (pte_dirty(*pte) || pte_write(*pte)) {
  375. pte_t entry;
  376. flush_cache_page(vma, address, pte_pfn(*pte));
  377. entry = ptep_clear_flush(vma, address, pte);
  378. entry = pte_wrprotect(entry);
  379. entry = pte_mkclean(entry);
  380. set_pte_at(mm, address, pte, entry);
  381. ret = 1;
  382. }
  383. pte_unmap_unlock(pte, ptl);
  384. out:
  385. return ret;
  386. }
  387. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  388. {
  389. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  390. struct vm_area_struct *vma;
  391. struct prio_tree_iter iter;
  392. int ret = 0;
  393. BUG_ON(PageAnon(page));
  394. spin_lock(&mapping->i_mmap_lock);
  395. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  396. if (vma->vm_flags & VM_SHARED)
  397. ret += page_mkclean_one(page, vma);
  398. }
  399. spin_unlock(&mapping->i_mmap_lock);
  400. return ret;
  401. }
  402. int page_mkclean(struct page *page)
  403. {
  404. int ret = 0;
  405. BUG_ON(!PageLocked(page));
  406. if (page_mapped(page)) {
  407. struct address_space *mapping = page_mapping(page);
  408. if (mapping) {
  409. ret = page_mkclean_file(mapping, page);
  410. if (page_test_dirty(page)) {
  411. page_clear_dirty(page);
  412. ret = 1;
  413. }
  414. }
  415. }
  416. return ret;
  417. }
  418. EXPORT_SYMBOL_GPL(page_mkclean);
  419. /**
  420. * page_set_anon_rmap - setup new anonymous rmap
  421. * @page: the page to add the mapping to
  422. * @vma: the vm area in which the mapping is added
  423. * @address: the user virtual address mapped
  424. */
  425. static void __page_set_anon_rmap(struct page *page,
  426. struct vm_area_struct *vma, unsigned long address)
  427. {
  428. struct anon_vma *anon_vma = vma->anon_vma;
  429. BUG_ON(!anon_vma);
  430. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  431. page->mapping = (struct address_space *) anon_vma;
  432. page->index = linear_page_index(vma, address);
  433. /*
  434. * nr_mapped state can be updated without turning off
  435. * interrupts because it is not modified via interrupt.
  436. */
  437. __inc_zone_page_state(page, NR_ANON_PAGES);
  438. }
  439. /**
  440. * page_set_anon_rmap - sanity check anonymous rmap addition
  441. * @page: the page to add the mapping to
  442. * @vma: the vm area in which the mapping is added
  443. * @address: the user virtual address mapped
  444. */
  445. static void __page_check_anon_rmap(struct page *page,
  446. struct vm_area_struct *vma, unsigned long address)
  447. {
  448. #ifdef CONFIG_DEBUG_VM
  449. /*
  450. * The page's anon-rmap details (mapping and index) are guaranteed to
  451. * be set up correctly at this point.
  452. *
  453. * We have exclusion against page_add_anon_rmap because the caller
  454. * always holds the page locked, except if called from page_dup_rmap,
  455. * in which case the page is already known to be setup.
  456. *
  457. * We have exclusion against page_add_new_anon_rmap because those pages
  458. * are initially only visible via the pagetables, and the pte is locked
  459. * over the call to page_add_new_anon_rmap.
  460. */
  461. struct anon_vma *anon_vma = vma->anon_vma;
  462. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  463. BUG_ON(page->mapping != (struct address_space *)anon_vma);
  464. BUG_ON(page->index != linear_page_index(vma, address));
  465. #endif
  466. }
  467. /**
  468. * page_add_anon_rmap - add pte mapping to an anonymous page
  469. * @page: the page to add the mapping to
  470. * @vma: the vm area in which the mapping is added
  471. * @address: the user virtual address mapped
  472. *
  473. * The caller needs to hold the pte lock and the page must be locked.
  474. */
  475. void page_add_anon_rmap(struct page *page,
  476. struct vm_area_struct *vma, unsigned long address)
  477. {
  478. VM_BUG_ON(!PageLocked(page));
  479. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  480. if (atomic_inc_and_test(&page->_mapcount))
  481. __page_set_anon_rmap(page, vma, address);
  482. else
  483. __page_check_anon_rmap(page, vma, address);
  484. }
  485. /*
  486. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  487. * @page: the page to add the mapping to
  488. * @vma: the vm area in which the mapping is added
  489. * @address: the user virtual address mapped
  490. *
  491. * Same as page_add_anon_rmap but must only be called on *new* pages.
  492. * This means the inc-and-test can be bypassed.
  493. * Page does not have to be locked.
  494. */
  495. void page_add_new_anon_rmap(struct page *page,
  496. struct vm_area_struct *vma, unsigned long address)
  497. {
  498. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  499. atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
  500. __page_set_anon_rmap(page, vma, address);
  501. }
  502. /**
  503. * page_add_file_rmap - add pte mapping to a file page
  504. * @page: the page to add the mapping to
  505. *
  506. * The caller needs to hold the pte lock.
  507. */
  508. void page_add_file_rmap(struct page *page)
  509. {
  510. if (atomic_inc_and_test(&page->_mapcount))
  511. __inc_zone_page_state(page, NR_FILE_MAPPED);
  512. }
  513. #ifdef CONFIG_DEBUG_VM
  514. /**
  515. * page_dup_rmap - duplicate pte mapping to a page
  516. * @page: the page to add the mapping to
  517. *
  518. * For copy_page_range only: minimal extract from page_add_file_rmap /
  519. * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
  520. * quicker.
  521. *
  522. * The caller needs to hold the pte lock.
  523. */
  524. void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
  525. {
  526. BUG_ON(page_mapcount(page) == 0);
  527. if (PageAnon(page))
  528. __page_check_anon_rmap(page, vma, address);
  529. atomic_inc(&page->_mapcount);
  530. }
  531. #endif
  532. /**
  533. * page_remove_rmap - take down pte mapping from a page
  534. * @page: page to remove mapping from
  535. *
  536. * The caller needs to hold the pte lock.
  537. */
  538. void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
  539. {
  540. if (atomic_add_negative(-1, &page->_mapcount)) {
  541. if (unlikely(page_mapcount(page) < 0)) {
  542. printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
  543. printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
  544. printk (KERN_EMERG " page->flags = %lx\n", page->flags);
  545. printk (KERN_EMERG " page->count = %x\n", page_count(page));
  546. printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
  547. print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
  548. if (vma->vm_ops) {
  549. print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
  550. print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
  551. }
  552. if (vma->vm_file && vma->vm_file->f_op)
  553. print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
  554. BUG();
  555. }
  556. /*
  557. * It would be tidy to reset the PageAnon mapping here,
  558. * but that might overwrite a racing page_add_anon_rmap
  559. * which increments mapcount after us but sets mapping
  560. * before us: so leave the reset to free_hot_cold_page,
  561. * and remember that it's only reliable while mapped.
  562. * Leaving it set also helps swapoff to reinstate ptes
  563. * faster for those pages still in swapcache.
  564. */
  565. if (page_test_dirty(page)) {
  566. page_clear_dirty(page);
  567. set_page_dirty(page);
  568. }
  569. __dec_zone_page_state(page,
  570. PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
  571. }
  572. }
  573. /*
  574. * Subfunctions of try_to_unmap: try_to_unmap_one called
  575. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  576. */
  577. static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  578. int migration)
  579. {
  580. struct mm_struct *mm = vma->vm_mm;
  581. unsigned long address;
  582. pte_t *pte;
  583. pte_t pteval;
  584. spinlock_t *ptl;
  585. int ret = SWAP_AGAIN;
  586. address = vma_address(page, vma);
  587. if (address == -EFAULT)
  588. goto out;
  589. pte = page_check_address(page, mm, address, &ptl);
  590. if (!pte)
  591. goto out;
  592. /*
  593. * If the page is mlock()d, we cannot swap it out.
  594. * If it's recently referenced (perhaps page_referenced
  595. * skipped over this mm) then we should reactivate it.
  596. */
  597. if (!migration && ((vma->vm_flags & VM_LOCKED) ||
  598. (ptep_clear_flush_young(vma, address, pte)))) {
  599. ret = SWAP_FAIL;
  600. goto out_unmap;
  601. }
  602. /* Nuke the page table entry. */
  603. flush_cache_page(vma, address, page_to_pfn(page));
  604. pteval = ptep_clear_flush(vma, address, pte);
  605. /* Move the dirty bit to the physical page now the pte is gone. */
  606. if (pte_dirty(pteval))
  607. set_page_dirty(page);
  608. /* Update high watermark before we lower rss */
  609. update_hiwater_rss(mm);
  610. if (PageAnon(page)) {
  611. swp_entry_t entry = { .val = page_private(page) };
  612. if (PageSwapCache(page)) {
  613. /*
  614. * Store the swap location in the pte.
  615. * See handle_pte_fault() ...
  616. */
  617. swap_duplicate(entry);
  618. if (list_empty(&mm->mmlist)) {
  619. spin_lock(&mmlist_lock);
  620. if (list_empty(&mm->mmlist))
  621. list_add(&mm->mmlist, &init_mm.mmlist);
  622. spin_unlock(&mmlist_lock);
  623. }
  624. dec_mm_counter(mm, anon_rss);
  625. #ifdef CONFIG_MIGRATION
  626. } else {
  627. /*
  628. * Store the pfn of the page in a special migration
  629. * pte. do_swap_page() will wait until the migration
  630. * pte is removed and then restart fault handling.
  631. */
  632. BUG_ON(!migration);
  633. entry = make_migration_entry(page, pte_write(pteval));
  634. #endif
  635. }
  636. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  637. BUG_ON(pte_file(*pte));
  638. } else
  639. #ifdef CONFIG_MIGRATION
  640. if (migration) {
  641. /* Establish migration entry for a file page */
  642. swp_entry_t entry;
  643. entry = make_migration_entry(page, pte_write(pteval));
  644. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  645. } else
  646. #endif
  647. dec_mm_counter(mm, file_rss);
  648. page_remove_rmap(page, vma);
  649. page_cache_release(page);
  650. out_unmap:
  651. pte_unmap_unlock(pte, ptl);
  652. out:
  653. return ret;
  654. }
  655. /*
  656. * objrmap doesn't work for nonlinear VMAs because the assumption that
  657. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  658. * Consequently, given a particular page and its ->index, we cannot locate the
  659. * ptes which are mapping that page without an exhaustive linear search.
  660. *
  661. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  662. * maps the file to which the target page belongs. The ->vm_private_data field
  663. * holds the current cursor into that scan. Successive searches will circulate
  664. * around the vma's virtual address space.
  665. *
  666. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  667. * more scanning pressure is placed against them as well. Eventually pages
  668. * will become fully unmapped and are eligible for eviction.
  669. *
  670. * For very sparsely populated VMAs this is a little inefficient - chances are
  671. * there there won't be many ptes located within the scan cluster. In this case
  672. * maybe we could scan further - to the end of the pte page, perhaps.
  673. */
  674. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  675. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  676. static void try_to_unmap_cluster(unsigned long cursor,
  677. unsigned int *mapcount, struct vm_area_struct *vma)
  678. {
  679. struct mm_struct *mm = vma->vm_mm;
  680. pgd_t *pgd;
  681. pud_t *pud;
  682. pmd_t *pmd;
  683. pte_t *pte;
  684. pte_t pteval;
  685. spinlock_t *ptl;
  686. struct page *page;
  687. unsigned long address;
  688. unsigned long end;
  689. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  690. end = address + CLUSTER_SIZE;
  691. if (address < vma->vm_start)
  692. address = vma->vm_start;
  693. if (end > vma->vm_end)
  694. end = vma->vm_end;
  695. pgd = pgd_offset(mm, address);
  696. if (!pgd_present(*pgd))
  697. return;
  698. pud = pud_offset(pgd, address);
  699. if (!pud_present(*pud))
  700. return;
  701. pmd = pmd_offset(pud, address);
  702. if (!pmd_present(*pmd))
  703. return;
  704. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  705. /* Update high watermark before we lower rss */
  706. update_hiwater_rss(mm);
  707. for (; address < end; pte++, address += PAGE_SIZE) {
  708. if (!pte_present(*pte))
  709. continue;
  710. page = vm_normal_page(vma, address, *pte);
  711. BUG_ON(!page || PageAnon(page));
  712. if (ptep_clear_flush_young(vma, address, pte))
  713. continue;
  714. /* Nuke the page table entry. */
  715. flush_cache_page(vma, address, pte_pfn(*pte));
  716. pteval = ptep_clear_flush(vma, address, pte);
  717. /* If nonlinear, store the file page offset in the pte. */
  718. if (page->index != linear_page_index(vma, address))
  719. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  720. /* Move the dirty bit to the physical page now the pte is gone. */
  721. if (pte_dirty(pteval))
  722. set_page_dirty(page);
  723. page_remove_rmap(page, vma);
  724. page_cache_release(page);
  725. dec_mm_counter(mm, file_rss);
  726. (*mapcount)--;
  727. }
  728. pte_unmap_unlock(pte - 1, ptl);
  729. }
  730. static int try_to_unmap_anon(struct page *page, int migration)
  731. {
  732. struct anon_vma *anon_vma;
  733. struct vm_area_struct *vma;
  734. int ret = SWAP_AGAIN;
  735. anon_vma = page_lock_anon_vma(page);
  736. if (!anon_vma)
  737. return ret;
  738. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  739. ret = try_to_unmap_one(page, vma, migration);
  740. if (ret == SWAP_FAIL || !page_mapped(page))
  741. break;
  742. }
  743. page_unlock_anon_vma(anon_vma);
  744. return ret;
  745. }
  746. /**
  747. * try_to_unmap_file - unmap file page using the object-based rmap method
  748. * @page: the page to unmap
  749. *
  750. * Find all the mappings of a page using the mapping pointer and the vma chains
  751. * contained in the address_space struct it points to.
  752. *
  753. * This function is only called from try_to_unmap for object-based pages.
  754. */
  755. static int try_to_unmap_file(struct page *page, int migration)
  756. {
  757. struct address_space *mapping = page->mapping;
  758. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  759. struct vm_area_struct *vma;
  760. struct prio_tree_iter iter;
  761. int ret = SWAP_AGAIN;
  762. unsigned long cursor;
  763. unsigned long max_nl_cursor = 0;
  764. unsigned long max_nl_size = 0;
  765. unsigned int mapcount;
  766. spin_lock(&mapping->i_mmap_lock);
  767. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  768. ret = try_to_unmap_one(page, vma, migration);
  769. if (ret == SWAP_FAIL || !page_mapped(page))
  770. goto out;
  771. }
  772. if (list_empty(&mapping->i_mmap_nonlinear))
  773. goto out;
  774. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  775. shared.vm_set.list) {
  776. if ((vma->vm_flags & VM_LOCKED) && !migration)
  777. continue;
  778. cursor = (unsigned long) vma->vm_private_data;
  779. if (cursor > max_nl_cursor)
  780. max_nl_cursor = cursor;
  781. cursor = vma->vm_end - vma->vm_start;
  782. if (cursor > max_nl_size)
  783. max_nl_size = cursor;
  784. }
  785. if (max_nl_size == 0) { /* any nonlinears locked or reserved */
  786. ret = SWAP_FAIL;
  787. goto out;
  788. }
  789. /*
  790. * We don't try to search for this page in the nonlinear vmas,
  791. * and page_referenced wouldn't have found it anyway. Instead
  792. * just walk the nonlinear vmas trying to age and unmap some.
  793. * The mapcount of the page we came in with is irrelevant,
  794. * but even so use it as a guide to how hard we should try?
  795. */
  796. mapcount = page_mapcount(page);
  797. if (!mapcount)
  798. goto out;
  799. cond_resched_lock(&mapping->i_mmap_lock);
  800. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  801. if (max_nl_cursor == 0)
  802. max_nl_cursor = CLUSTER_SIZE;
  803. do {
  804. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  805. shared.vm_set.list) {
  806. if ((vma->vm_flags & VM_LOCKED) && !migration)
  807. continue;
  808. cursor = (unsigned long) vma->vm_private_data;
  809. while ( cursor < max_nl_cursor &&
  810. cursor < vma->vm_end - vma->vm_start) {
  811. try_to_unmap_cluster(cursor, &mapcount, vma);
  812. cursor += CLUSTER_SIZE;
  813. vma->vm_private_data = (void *) cursor;
  814. if ((int)mapcount <= 0)
  815. goto out;
  816. }
  817. vma->vm_private_data = (void *) max_nl_cursor;
  818. }
  819. cond_resched_lock(&mapping->i_mmap_lock);
  820. max_nl_cursor += CLUSTER_SIZE;
  821. } while (max_nl_cursor <= max_nl_size);
  822. /*
  823. * Don't loop forever (perhaps all the remaining pages are
  824. * in locked vmas). Reset cursor on all unreserved nonlinear
  825. * vmas, now forgetting on which ones it had fallen behind.
  826. */
  827. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  828. vma->vm_private_data = NULL;
  829. out:
  830. spin_unlock(&mapping->i_mmap_lock);
  831. return ret;
  832. }
  833. /**
  834. * try_to_unmap - try to remove all page table mappings to a page
  835. * @page: the page to get unmapped
  836. *
  837. * Tries to remove all the page table entries which are mapping this
  838. * page, used in the pageout path. Caller must hold the page lock.
  839. * Return values are:
  840. *
  841. * SWAP_SUCCESS - we succeeded in removing all mappings
  842. * SWAP_AGAIN - we missed a mapping, try again later
  843. * SWAP_FAIL - the page is unswappable
  844. */
  845. int try_to_unmap(struct page *page, int migration)
  846. {
  847. int ret;
  848. BUG_ON(!PageLocked(page));
  849. if (PageAnon(page))
  850. ret = try_to_unmap_anon(page, migration);
  851. else
  852. ret = try_to_unmap_file(page, migration);
  853. if (!page_mapped(page))
  854. ret = SWAP_SUCCESS;
  855. return ret;
  856. }