ems_usb.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084
  1. /*
  2. * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
  3. *
  4. * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published
  8. * by the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  18. */
  19. #include <linux/signal.h>
  20. #include <linux/slab.h>
  21. #include <linux/module.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/usb.h>
  24. #include <linux/can.h>
  25. #include <linux/can/dev.h>
  26. #include <linux/can/error.h>
  27. MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
  28. MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
  29. MODULE_LICENSE("GPL v2");
  30. /* Control-Values for CPC_Control() Command Subject Selection */
  31. #define CONTR_CAN_MESSAGE 0x04
  32. #define CONTR_CAN_STATE 0x0C
  33. #define CONTR_BUS_ERROR 0x1C
  34. /* Control Command Actions */
  35. #define CONTR_CONT_OFF 0
  36. #define CONTR_CONT_ON 1
  37. #define CONTR_ONCE 2
  38. /* Messages from CPC to PC */
  39. #define CPC_MSG_TYPE_CAN_FRAME 1 /* CAN data frame */
  40. #define CPC_MSG_TYPE_RTR_FRAME 8 /* CAN remote frame */
  41. #define CPC_MSG_TYPE_CAN_PARAMS 12 /* Actual CAN parameters */
  42. #define CPC_MSG_TYPE_CAN_STATE 14 /* CAN state message */
  43. #define CPC_MSG_TYPE_EXT_CAN_FRAME 16 /* Extended CAN data frame */
  44. #define CPC_MSG_TYPE_EXT_RTR_FRAME 17 /* Extended remote frame */
  45. #define CPC_MSG_TYPE_CONTROL 19 /* change interface behavior */
  46. #define CPC_MSG_TYPE_CONFIRM 20 /* command processed confirmation */
  47. #define CPC_MSG_TYPE_OVERRUN 21 /* overrun events */
  48. #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
  49. #define CPC_MSG_TYPE_ERR_COUNTER 25 /* RX/TX error counter */
  50. /* Messages from the PC to the CPC interface */
  51. #define CPC_CMD_TYPE_CAN_FRAME 1 /* CAN data frame */
  52. #define CPC_CMD_TYPE_CONTROL 3 /* control of interface behavior */
  53. #define CPC_CMD_TYPE_CAN_PARAMS 6 /* set CAN parameters */
  54. #define CPC_CMD_TYPE_RTR_FRAME 13 /* CAN remote frame */
  55. #define CPC_CMD_TYPE_CAN_STATE 14 /* CAN state message */
  56. #define CPC_CMD_TYPE_EXT_CAN_FRAME 15 /* Extended CAN data frame */
  57. #define CPC_CMD_TYPE_EXT_RTR_FRAME 16 /* Extended CAN remote frame */
  58. #define CPC_CMD_TYPE_CAN_EXIT 200 /* exit the CAN */
  59. #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
  60. #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8 /* clear CPC_MSG queue */
  61. #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
  62. #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
  63. #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
  64. /* Overrun types */
  65. #define CPC_OVR_EVENT_CAN 0x01
  66. #define CPC_OVR_EVENT_CANSTATE 0x02
  67. #define CPC_OVR_EVENT_BUSERROR 0x04
  68. /*
  69. * If the CAN controller lost a message we indicate it with the highest bit
  70. * set in the count field.
  71. */
  72. #define CPC_OVR_HW 0x80
  73. /* Size of the "struct ems_cpc_msg" without the union */
  74. #define CPC_MSG_HEADER_LEN 11
  75. #define CPC_CAN_MSG_MIN_SIZE 5
  76. /* Define these values to match your devices */
  77. #define USB_CPCUSB_VENDOR_ID 0x12D6
  78. #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
  79. /* Mode register NXP LPC2119/SJA1000 CAN Controller */
  80. #define SJA1000_MOD_NORMAL 0x00
  81. #define SJA1000_MOD_RM 0x01
  82. /* ECC register NXP LPC2119/SJA1000 CAN Controller */
  83. #define SJA1000_ECC_SEG 0x1F
  84. #define SJA1000_ECC_DIR 0x20
  85. #define SJA1000_ECC_ERR 0x06
  86. #define SJA1000_ECC_BIT 0x00
  87. #define SJA1000_ECC_FORM 0x40
  88. #define SJA1000_ECC_STUFF 0x80
  89. #define SJA1000_ECC_MASK 0xc0
  90. /* Status register content */
  91. #define SJA1000_SR_BS 0x80
  92. #define SJA1000_SR_ES 0x40
  93. #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
  94. /*
  95. * The device actually uses a 16MHz clock to generate the CAN clock
  96. * but it expects SJA1000 bit settings based on 8MHz (is internally
  97. * converted).
  98. */
  99. #define EMS_USB_ARM7_CLOCK 8000000
  100. /*
  101. * CAN-Message representation in a CPC_MSG. Message object type is
  102. * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
  103. * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
  104. */
  105. struct cpc_can_msg {
  106. __le32 id;
  107. u8 length;
  108. u8 msg[8];
  109. };
  110. /* Representation of the CAN parameters for the SJA1000 controller */
  111. struct cpc_sja1000_params {
  112. u8 mode;
  113. u8 acc_code0;
  114. u8 acc_code1;
  115. u8 acc_code2;
  116. u8 acc_code3;
  117. u8 acc_mask0;
  118. u8 acc_mask1;
  119. u8 acc_mask2;
  120. u8 acc_mask3;
  121. u8 btr0;
  122. u8 btr1;
  123. u8 outp_contr;
  124. };
  125. /* CAN params message representation */
  126. struct cpc_can_params {
  127. u8 cc_type;
  128. /* Will support M16C CAN controller in the future */
  129. union {
  130. struct cpc_sja1000_params sja1000;
  131. } cc_params;
  132. };
  133. /* Structure for confirmed message handling */
  134. struct cpc_confirm {
  135. u8 error; /* error code */
  136. };
  137. /* Structure for overrun conditions */
  138. struct cpc_overrun {
  139. u8 event;
  140. u8 count;
  141. };
  142. /* SJA1000 CAN errors (compatible to NXP LPC2119) */
  143. struct cpc_sja1000_can_error {
  144. u8 ecc;
  145. u8 rxerr;
  146. u8 txerr;
  147. };
  148. /* structure for CAN error conditions */
  149. struct cpc_can_error {
  150. u8 ecode;
  151. struct {
  152. u8 cc_type;
  153. /* Other controllers may also provide error code capture regs */
  154. union {
  155. struct cpc_sja1000_can_error sja1000;
  156. } regs;
  157. } cc;
  158. };
  159. /*
  160. * Structure containing RX/TX error counter. This structure is used to request
  161. * the values of the CAN controllers TX and RX error counter.
  162. */
  163. struct cpc_can_err_counter {
  164. u8 rx;
  165. u8 tx;
  166. };
  167. /* Main message type used between library and application */
  168. struct __packed ems_cpc_msg {
  169. u8 type; /* type of message */
  170. u8 length; /* length of data within union 'msg' */
  171. u8 msgid; /* confirmation handle */
  172. __le32 ts_sec; /* timestamp in seconds */
  173. __le32 ts_nsec; /* timestamp in nano seconds */
  174. union {
  175. u8 generic[64];
  176. struct cpc_can_msg can_msg;
  177. struct cpc_can_params can_params;
  178. struct cpc_confirm confirmation;
  179. struct cpc_overrun overrun;
  180. struct cpc_can_error error;
  181. struct cpc_can_err_counter err_counter;
  182. u8 can_state;
  183. } msg;
  184. };
  185. /*
  186. * Table of devices that work with this driver
  187. * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
  188. */
  189. static struct usb_device_id ems_usb_table[] = {
  190. {USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
  191. {} /* Terminating entry */
  192. };
  193. MODULE_DEVICE_TABLE(usb, ems_usb_table);
  194. #define RX_BUFFER_SIZE 64
  195. #define CPC_HEADER_SIZE 4
  196. #define INTR_IN_BUFFER_SIZE 4
  197. #define MAX_RX_URBS 10
  198. #define MAX_TX_URBS 10
  199. struct ems_usb;
  200. struct ems_tx_urb_context {
  201. struct ems_usb *dev;
  202. u32 echo_index;
  203. u8 dlc;
  204. };
  205. struct ems_usb {
  206. struct can_priv can; /* must be the first member */
  207. struct sk_buff *echo_skb[MAX_TX_URBS];
  208. struct usb_device *udev;
  209. struct net_device *netdev;
  210. atomic_t active_tx_urbs;
  211. struct usb_anchor tx_submitted;
  212. struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
  213. struct usb_anchor rx_submitted;
  214. struct urb *intr_urb;
  215. u8 *tx_msg_buffer;
  216. u8 *intr_in_buffer;
  217. unsigned int free_slots; /* remember number of available slots */
  218. struct ems_cpc_msg active_params; /* active controller parameters */
  219. };
  220. static void ems_usb_read_interrupt_callback(struct urb *urb)
  221. {
  222. struct ems_usb *dev = urb->context;
  223. struct net_device *netdev = dev->netdev;
  224. int err;
  225. if (!netif_device_present(netdev))
  226. return;
  227. switch (urb->status) {
  228. case 0:
  229. dev->free_slots = dev->intr_in_buffer[1];
  230. break;
  231. case -ECONNRESET: /* unlink */
  232. case -ENOENT:
  233. case -ESHUTDOWN:
  234. return;
  235. default:
  236. netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
  237. break;
  238. }
  239. err = usb_submit_urb(urb, GFP_ATOMIC);
  240. if (err == -ENODEV)
  241. netif_device_detach(netdev);
  242. else if (err)
  243. netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
  244. }
  245. static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
  246. {
  247. struct can_frame *cf;
  248. struct sk_buff *skb;
  249. int i;
  250. struct net_device_stats *stats = &dev->netdev->stats;
  251. skb = alloc_can_skb(dev->netdev, &cf);
  252. if (skb == NULL)
  253. return;
  254. cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
  255. cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
  256. if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
  257. msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
  258. cf->can_id |= CAN_EFF_FLAG;
  259. if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
  260. msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
  261. cf->can_id |= CAN_RTR_FLAG;
  262. } else {
  263. for (i = 0; i < cf->can_dlc; i++)
  264. cf->data[i] = msg->msg.can_msg.msg[i];
  265. }
  266. stats->rx_packets++;
  267. stats->rx_bytes += cf->can_dlc;
  268. netif_rx(skb);
  269. }
  270. static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
  271. {
  272. struct can_frame *cf;
  273. struct sk_buff *skb;
  274. struct net_device_stats *stats = &dev->netdev->stats;
  275. skb = alloc_can_err_skb(dev->netdev, &cf);
  276. if (skb == NULL)
  277. return;
  278. if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
  279. u8 state = msg->msg.can_state;
  280. if (state & SJA1000_SR_BS) {
  281. dev->can.state = CAN_STATE_BUS_OFF;
  282. cf->can_id |= CAN_ERR_BUSOFF;
  283. dev->can.can_stats.bus_off++;
  284. can_bus_off(dev->netdev);
  285. } else if (state & SJA1000_SR_ES) {
  286. dev->can.state = CAN_STATE_ERROR_WARNING;
  287. dev->can.can_stats.error_warning++;
  288. } else {
  289. dev->can.state = CAN_STATE_ERROR_ACTIVE;
  290. dev->can.can_stats.error_passive++;
  291. }
  292. } else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
  293. u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
  294. u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
  295. u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
  296. /* bus error interrupt */
  297. dev->can.can_stats.bus_error++;
  298. stats->rx_errors++;
  299. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  300. switch (ecc & SJA1000_ECC_MASK) {
  301. case SJA1000_ECC_BIT:
  302. cf->data[2] |= CAN_ERR_PROT_BIT;
  303. break;
  304. case SJA1000_ECC_FORM:
  305. cf->data[2] |= CAN_ERR_PROT_FORM;
  306. break;
  307. case SJA1000_ECC_STUFF:
  308. cf->data[2] |= CAN_ERR_PROT_STUFF;
  309. break;
  310. default:
  311. cf->data[3] = ecc & SJA1000_ECC_SEG;
  312. break;
  313. }
  314. /* Error occurred during transmission? */
  315. if ((ecc & SJA1000_ECC_DIR) == 0)
  316. cf->data[2] |= CAN_ERR_PROT_TX;
  317. if (dev->can.state == CAN_STATE_ERROR_WARNING ||
  318. dev->can.state == CAN_STATE_ERROR_PASSIVE) {
  319. cf->data[1] = (txerr > rxerr) ?
  320. CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
  321. }
  322. } else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
  323. cf->can_id |= CAN_ERR_CRTL;
  324. cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  325. stats->rx_over_errors++;
  326. stats->rx_errors++;
  327. }
  328. stats->rx_packets++;
  329. stats->rx_bytes += cf->can_dlc;
  330. netif_rx(skb);
  331. }
  332. /*
  333. * callback for bulk IN urb
  334. */
  335. static void ems_usb_read_bulk_callback(struct urb *urb)
  336. {
  337. struct ems_usb *dev = urb->context;
  338. struct net_device *netdev;
  339. int retval;
  340. netdev = dev->netdev;
  341. if (!netif_device_present(netdev))
  342. return;
  343. switch (urb->status) {
  344. case 0: /* success */
  345. break;
  346. case -ENOENT:
  347. return;
  348. default:
  349. netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
  350. goto resubmit_urb;
  351. }
  352. if (urb->actual_length > CPC_HEADER_SIZE) {
  353. struct ems_cpc_msg *msg;
  354. u8 *ibuf = urb->transfer_buffer;
  355. u8 msg_count, start;
  356. msg_count = ibuf[0] & ~0x80;
  357. start = CPC_HEADER_SIZE;
  358. while (msg_count) {
  359. msg = (struct ems_cpc_msg *)&ibuf[start];
  360. switch (msg->type) {
  361. case CPC_MSG_TYPE_CAN_STATE:
  362. /* Process CAN state changes */
  363. ems_usb_rx_err(dev, msg);
  364. break;
  365. case CPC_MSG_TYPE_CAN_FRAME:
  366. case CPC_MSG_TYPE_EXT_CAN_FRAME:
  367. case CPC_MSG_TYPE_RTR_FRAME:
  368. case CPC_MSG_TYPE_EXT_RTR_FRAME:
  369. ems_usb_rx_can_msg(dev, msg);
  370. break;
  371. case CPC_MSG_TYPE_CAN_FRAME_ERROR:
  372. /* Process errorframe */
  373. ems_usb_rx_err(dev, msg);
  374. break;
  375. case CPC_MSG_TYPE_OVERRUN:
  376. /* Message lost while receiving */
  377. ems_usb_rx_err(dev, msg);
  378. break;
  379. }
  380. start += CPC_MSG_HEADER_LEN + msg->length;
  381. msg_count--;
  382. if (start > urb->transfer_buffer_length) {
  383. netdev_err(netdev, "format error\n");
  384. break;
  385. }
  386. }
  387. }
  388. resubmit_urb:
  389. usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
  390. urb->transfer_buffer, RX_BUFFER_SIZE,
  391. ems_usb_read_bulk_callback, dev);
  392. retval = usb_submit_urb(urb, GFP_ATOMIC);
  393. if (retval == -ENODEV)
  394. netif_device_detach(netdev);
  395. else if (retval)
  396. netdev_err(netdev,
  397. "failed resubmitting read bulk urb: %d\n", retval);
  398. }
  399. /*
  400. * callback for bulk IN urb
  401. */
  402. static void ems_usb_write_bulk_callback(struct urb *urb)
  403. {
  404. struct ems_tx_urb_context *context = urb->context;
  405. struct ems_usb *dev;
  406. struct net_device *netdev;
  407. BUG_ON(!context);
  408. dev = context->dev;
  409. netdev = dev->netdev;
  410. /* free up our allocated buffer */
  411. usb_free_coherent(urb->dev, urb->transfer_buffer_length,
  412. urb->transfer_buffer, urb->transfer_dma);
  413. atomic_dec(&dev->active_tx_urbs);
  414. if (!netif_device_present(netdev))
  415. return;
  416. if (urb->status)
  417. netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
  418. netdev->trans_start = jiffies;
  419. /* transmission complete interrupt */
  420. netdev->stats.tx_packets++;
  421. netdev->stats.tx_bytes += context->dlc;
  422. can_get_echo_skb(netdev, context->echo_index);
  423. /* Release context */
  424. context->echo_index = MAX_TX_URBS;
  425. if (netif_queue_stopped(netdev))
  426. netif_wake_queue(netdev);
  427. }
  428. /*
  429. * Send the given CPC command synchronously
  430. */
  431. static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
  432. {
  433. int actual_length;
  434. /* Copy payload */
  435. memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
  436. msg->length + CPC_MSG_HEADER_LEN);
  437. /* Clear header */
  438. memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
  439. return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
  440. &dev->tx_msg_buffer[0],
  441. msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
  442. &actual_length, 1000);
  443. }
  444. /*
  445. * Change CAN controllers' mode register
  446. */
  447. static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
  448. {
  449. dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
  450. return ems_usb_command_msg(dev, &dev->active_params);
  451. }
  452. /*
  453. * Send a CPC_Control command to change behaviour when interface receives a CAN
  454. * message, bus error or CAN state changed notifications.
  455. */
  456. static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
  457. {
  458. struct ems_cpc_msg cmd;
  459. cmd.type = CPC_CMD_TYPE_CONTROL;
  460. cmd.length = CPC_MSG_HEADER_LEN + 1;
  461. cmd.msgid = 0;
  462. cmd.msg.generic[0] = val;
  463. return ems_usb_command_msg(dev, &cmd);
  464. }
  465. /*
  466. * Start interface
  467. */
  468. static int ems_usb_start(struct ems_usb *dev)
  469. {
  470. struct net_device *netdev = dev->netdev;
  471. int err, i;
  472. dev->intr_in_buffer[0] = 0;
  473. dev->free_slots = 15; /* initial size */
  474. for (i = 0; i < MAX_RX_URBS; i++) {
  475. struct urb *urb = NULL;
  476. u8 *buf = NULL;
  477. /* create a URB, and a buffer for it */
  478. urb = usb_alloc_urb(0, GFP_KERNEL);
  479. if (!urb) {
  480. netdev_err(netdev, "No memory left for URBs\n");
  481. err = -ENOMEM;
  482. break;
  483. }
  484. buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
  485. &urb->transfer_dma);
  486. if (!buf) {
  487. netdev_err(netdev, "No memory left for USB buffer\n");
  488. usb_free_urb(urb);
  489. err = -ENOMEM;
  490. break;
  491. }
  492. usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
  493. buf, RX_BUFFER_SIZE,
  494. ems_usb_read_bulk_callback, dev);
  495. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  496. usb_anchor_urb(urb, &dev->rx_submitted);
  497. err = usb_submit_urb(urb, GFP_KERNEL);
  498. if (err) {
  499. usb_unanchor_urb(urb);
  500. usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
  501. urb->transfer_dma);
  502. usb_free_urb(urb);
  503. break;
  504. }
  505. /* Drop reference, USB core will take care of freeing it */
  506. usb_free_urb(urb);
  507. }
  508. /* Did we submit any URBs */
  509. if (i == 0) {
  510. netdev_warn(netdev, "couldn't setup read URBs\n");
  511. return err;
  512. }
  513. /* Warn if we've couldn't transmit all the URBs */
  514. if (i < MAX_RX_URBS)
  515. netdev_warn(netdev, "rx performance may be slow\n");
  516. /* Setup and start interrupt URB */
  517. usb_fill_int_urb(dev->intr_urb, dev->udev,
  518. usb_rcvintpipe(dev->udev, 1),
  519. dev->intr_in_buffer,
  520. INTR_IN_BUFFER_SIZE,
  521. ems_usb_read_interrupt_callback, dev, 1);
  522. err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
  523. if (err) {
  524. netdev_warn(netdev, "intr URB submit failed: %d\n", err);
  525. return err;
  526. }
  527. /* CPC-USB will transfer received message to host */
  528. err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
  529. if (err)
  530. goto failed;
  531. /* CPC-USB will transfer CAN state changes to host */
  532. err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
  533. if (err)
  534. goto failed;
  535. /* CPC-USB will transfer bus errors to host */
  536. err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
  537. if (err)
  538. goto failed;
  539. err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
  540. if (err)
  541. goto failed;
  542. dev->can.state = CAN_STATE_ERROR_ACTIVE;
  543. return 0;
  544. failed:
  545. netdev_warn(netdev, "couldn't submit control: %d\n", err);
  546. return err;
  547. }
  548. static void unlink_all_urbs(struct ems_usb *dev)
  549. {
  550. int i;
  551. usb_unlink_urb(dev->intr_urb);
  552. usb_kill_anchored_urbs(&dev->rx_submitted);
  553. usb_kill_anchored_urbs(&dev->tx_submitted);
  554. atomic_set(&dev->active_tx_urbs, 0);
  555. for (i = 0; i < MAX_TX_URBS; i++)
  556. dev->tx_contexts[i].echo_index = MAX_TX_URBS;
  557. }
  558. static int ems_usb_open(struct net_device *netdev)
  559. {
  560. struct ems_usb *dev = netdev_priv(netdev);
  561. int err;
  562. err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
  563. if (err)
  564. return err;
  565. /* common open */
  566. err = open_candev(netdev);
  567. if (err)
  568. return err;
  569. /* finally start device */
  570. err = ems_usb_start(dev);
  571. if (err) {
  572. if (err == -ENODEV)
  573. netif_device_detach(dev->netdev);
  574. netdev_warn(netdev, "couldn't start device: %d\n", err);
  575. close_candev(netdev);
  576. return err;
  577. }
  578. netif_start_queue(netdev);
  579. return 0;
  580. }
  581. static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
  582. {
  583. struct ems_usb *dev = netdev_priv(netdev);
  584. struct ems_tx_urb_context *context = NULL;
  585. struct net_device_stats *stats = &netdev->stats;
  586. struct can_frame *cf = (struct can_frame *)skb->data;
  587. struct ems_cpc_msg *msg;
  588. struct urb *urb;
  589. u8 *buf;
  590. int i, err;
  591. size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
  592. + sizeof(struct cpc_can_msg);
  593. if (can_dropped_invalid_skb(netdev, skb))
  594. return NETDEV_TX_OK;
  595. /* create a URB, and a buffer for it, and copy the data to the URB */
  596. urb = usb_alloc_urb(0, GFP_ATOMIC);
  597. if (!urb) {
  598. netdev_err(netdev, "No memory left for URBs\n");
  599. goto nomem;
  600. }
  601. buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
  602. if (!buf) {
  603. netdev_err(netdev, "No memory left for USB buffer\n");
  604. usb_free_urb(urb);
  605. goto nomem;
  606. }
  607. msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
  608. msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
  609. msg->msg.can_msg.length = cf->can_dlc;
  610. if (cf->can_id & CAN_RTR_FLAG) {
  611. msg->type = cf->can_id & CAN_EFF_FLAG ?
  612. CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
  613. msg->length = CPC_CAN_MSG_MIN_SIZE;
  614. } else {
  615. msg->type = cf->can_id & CAN_EFF_FLAG ?
  616. CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
  617. for (i = 0; i < cf->can_dlc; i++)
  618. msg->msg.can_msg.msg[i] = cf->data[i];
  619. msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
  620. }
  621. for (i = 0; i < MAX_TX_URBS; i++) {
  622. if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
  623. context = &dev->tx_contexts[i];
  624. break;
  625. }
  626. }
  627. /*
  628. * May never happen! When this happens we'd more URBs in flight as
  629. * allowed (MAX_TX_URBS).
  630. */
  631. if (!context) {
  632. usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
  633. usb_free_urb(urb);
  634. netdev_warn(netdev, "couldn't find free context\n");
  635. return NETDEV_TX_BUSY;
  636. }
  637. context->dev = dev;
  638. context->echo_index = i;
  639. context->dlc = cf->can_dlc;
  640. usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
  641. size, ems_usb_write_bulk_callback, context);
  642. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  643. usb_anchor_urb(urb, &dev->tx_submitted);
  644. can_put_echo_skb(skb, netdev, context->echo_index);
  645. atomic_inc(&dev->active_tx_urbs);
  646. err = usb_submit_urb(urb, GFP_ATOMIC);
  647. if (unlikely(err)) {
  648. can_free_echo_skb(netdev, context->echo_index);
  649. usb_unanchor_urb(urb);
  650. usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
  651. dev_kfree_skb(skb);
  652. atomic_dec(&dev->active_tx_urbs);
  653. if (err == -ENODEV) {
  654. netif_device_detach(netdev);
  655. } else {
  656. netdev_warn(netdev, "failed tx_urb %d\n", err);
  657. stats->tx_dropped++;
  658. }
  659. } else {
  660. netdev->trans_start = jiffies;
  661. /* Slow down tx path */
  662. if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
  663. dev->free_slots < 5) {
  664. netif_stop_queue(netdev);
  665. }
  666. }
  667. /*
  668. * Release our reference to this URB, the USB core will eventually free
  669. * it entirely.
  670. */
  671. usb_free_urb(urb);
  672. return NETDEV_TX_OK;
  673. nomem:
  674. dev_kfree_skb(skb);
  675. stats->tx_dropped++;
  676. return NETDEV_TX_OK;
  677. }
  678. static int ems_usb_close(struct net_device *netdev)
  679. {
  680. struct ems_usb *dev = netdev_priv(netdev);
  681. /* Stop polling */
  682. unlink_all_urbs(dev);
  683. netif_stop_queue(netdev);
  684. /* Set CAN controller to reset mode */
  685. if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
  686. netdev_warn(netdev, "couldn't stop device");
  687. close_candev(netdev);
  688. return 0;
  689. }
  690. static const struct net_device_ops ems_usb_netdev_ops = {
  691. .ndo_open = ems_usb_open,
  692. .ndo_stop = ems_usb_close,
  693. .ndo_start_xmit = ems_usb_start_xmit,
  694. .ndo_change_mtu = can_change_mtu,
  695. };
  696. static const struct can_bittiming_const ems_usb_bittiming_const = {
  697. .name = "ems_usb",
  698. .tseg1_min = 1,
  699. .tseg1_max = 16,
  700. .tseg2_min = 1,
  701. .tseg2_max = 8,
  702. .sjw_max = 4,
  703. .brp_min = 1,
  704. .brp_max = 64,
  705. .brp_inc = 1,
  706. };
  707. static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
  708. {
  709. struct ems_usb *dev = netdev_priv(netdev);
  710. switch (mode) {
  711. case CAN_MODE_START:
  712. if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
  713. netdev_warn(netdev, "couldn't start device");
  714. if (netif_queue_stopped(netdev))
  715. netif_wake_queue(netdev);
  716. break;
  717. default:
  718. return -EOPNOTSUPP;
  719. }
  720. return 0;
  721. }
  722. static int ems_usb_set_bittiming(struct net_device *netdev)
  723. {
  724. struct ems_usb *dev = netdev_priv(netdev);
  725. struct can_bittiming *bt = &dev->can.bittiming;
  726. u8 btr0, btr1;
  727. btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
  728. btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
  729. (((bt->phase_seg2 - 1) & 0x7) << 4);
  730. if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
  731. btr1 |= 0x80;
  732. netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
  733. dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
  734. dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
  735. return ems_usb_command_msg(dev, &dev->active_params);
  736. }
  737. static void init_params_sja1000(struct ems_cpc_msg *msg)
  738. {
  739. struct cpc_sja1000_params *sja1000 =
  740. &msg->msg.can_params.cc_params.sja1000;
  741. msg->type = CPC_CMD_TYPE_CAN_PARAMS;
  742. msg->length = sizeof(struct cpc_can_params);
  743. msg->msgid = 0;
  744. msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
  745. /* Acceptance filter open */
  746. sja1000->acc_code0 = 0x00;
  747. sja1000->acc_code1 = 0x00;
  748. sja1000->acc_code2 = 0x00;
  749. sja1000->acc_code3 = 0x00;
  750. /* Acceptance filter open */
  751. sja1000->acc_mask0 = 0xFF;
  752. sja1000->acc_mask1 = 0xFF;
  753. sja1000->acc_mask2 = 0xFF;
  754. sja1000->acc_mask3 = 0xFF;
  755. sja1000->btr0 = 0;
  756. sja1000->btr1 = 0;
  757. sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
  758. sja1000->mode = SJA1000_MOD_RM;
  759. }
  760. /*
  761. * probe function for new CPC-USB devices
  762. */
  763. static int ems_usb_probe(struct usb_interface *intf,
  764. const struct usb_device_id *id)
  765. {
  766. struct net_device *netdev;
  767. struct ems_usb *dev;
  768. int i, err = -ENOMEM;
  769. netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
  770. if (!netdev) {
  771. dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
  772. return -ENOMEM;
  773. }
  774. dev = netdev_priv(netdev);
  775. dev->udev = interface_to_usbdev(intf);
  776. dev->netdev = netdev;
  777. dev->can.state = CAN_STATE_STOPPED;
  778. dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
  779. dev->can.bittiming_const = &ems_usb_bittiming_const;
  780. dev->can.do_set_bittiming = ems_usb_set_bittiming;
  781. dev->can.do_set_mode = ems_usb_set_mode;
  782. dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
  783. netdev->netdev_ops = &ems_usb_netdev_ops;
  784. netdev->flags |= IFF_ECHO; /* we support local echo */
  785. init_usb_anchor(&dev->rx_submitted);
  786. init_usb_anchor(&dev->tx_submitted);
  787. atomic_set(&dev->active_tx_urbs, 0);
  788. for (i = 0; i < MAX_TX_URBS; i++)
  789. dev->tx_contexts[i].echo_index = MAX_TX_URBS;
  790. dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
  791. if (!dev->intr_urb) {
  792. dev_err(&intf->dev, "Couldn't alloc intr URB\n");
  793. goto cleanup_candev;
  794. }
  795. dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
  796. if (!dev->intr_in_buffer)
  797. goto cleanup_intr_urb;
  798. dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
  799. sizeof(struct ems_cpc_msg), GFP_KERNEL);
  800. if (!dev->tx_msg_buffer)
  801. goto cleanup_intr_in_buffer;
  802. usb_set_intfdata(intf, dev);
  803. SET_NETDEV_DEV(netdev, &intf->dev);
  804. init_params_sja1000(&dev->active_params);
  805. err = ems_usb_command_msg(dev, &dev->active_params);
  806. if (err) {
  807. netdev_err(netdev, "couldn't initialize controller: %d\n", err);
  808. goto cleanup_tx_msg_buffer;
  809. }
  810. err = register_candev(netdev);
  811. if (err) {
  812. netdev_err(netdev, "couldn't register CAN device: %d\n", err);
  813. goto cleanup_tx_msg_buffer;
  814. }
  815. return 0;
  816. cleanup_tx_msg_buffer:
  817. kfree(dev->tx_msg_buffer);
  818. cleanup_intr_in_buffer:
  819. kfree(dev->intr_in_buffer);
  820. cleanup_intr_urb:
  821. usb_free_urb(dev->intr_urb);
  822. cleanup_candev:
  823. free_candev(netdev);
  824. return err;
  825. }
  826. /*
  827. * called by the usb core when the device is removed from the system
  828. */
  829. static void ems_usb_disconnect(struct usb_interface *intf)
  830. {
  831. struct ems_usb *dev = usb_get_intfdata(intf);
  832. usb_set_intfdata(intf, NULL);
  833. if (dev) {
  834. unregister_netdev(dev->netdev);
  835. free_candev(dev->netdev);
  836. unlink_all_urbs(dev);
  837. usb_free_urb(dev->intr_urb);
  838. kfree(dev->intr_in_buffer);
  839. }
  840. }
  841. /* usb specific object needed to register this driver with the usb subsystem */
  842. static struct usb_driver ems_usb_driver = {
  843. .name = "ems_usb",
  844. .probe = ems_usb_probe,
  845. .disconnect = ems_usb_disconnect,
  846. .id_table = ems_usb_table,
  847. };
  848. module_usb_driver(ems_usb_driver);