atmel-aes.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for ATMEL AES HW acceleration.
  5. *
  6. * Copyright (c) 2012 Eukréa Electromatique - ATMEL
  7. * Author: Nicolas Royer <nicolas@eukrea.com>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as published
  11. * by the Free Software Foundation.
  12. *
  13. * Some ideas are from omap-aes.c driver.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/slab.h>
  18. #include <linux/err.h>
  19. #include <linux/clk.h>
  20. #include <linux/io.h>
  21. #include <linux/hw_random.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/device.h>
  24. #include <linux/init.h>
  25. #include <linux/errno.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/irq.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/of_device.h>
  31. #include <linux/delay.h>
  32. #include <linux/crypto.h>
  33. #include <crypto/scatterwalk.h>
  34. #include <crypto/algapi.h>
  35. #include <crypto/aes.h>
  36. #include <linux/platform_data/crypto-atmel.h>
  37. #include <dt-bindings/dma/at91.h>
  38. #include "atmel-aes-regs.h"
  39. #define ATMEL_AES_PRIORITY 300
  40. #define ATMEL_AES_BUFFER_ORDER 2
  41. #define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  42. #define CFB8_BLOCK_SIZE 1
  43. #define CFB16_BLOCK_SIZE 2
  44. #define CFB32_BLOCK_SIZE 4
  45. #define CFB64_BLOCK_SIZE 8
  46. #define SIZE_IN_WORDS(x) ((x) >> 2)
  47. /* AES flags */
  48. /* Reserve bits [18:16] [14:12] [0] for mode (same as for AES_MR) */
  49. #define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
  50. #define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  51. #define AES_FLAGS_ECB AES_MR_OPMOD_ECB
  52. #define AES_FLAGS_CBC AES_MR_OPMOD_CBC
  53. #define AES_FLAGS_OFB AES_MR_OPMOD_OFB
  54. #define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
  55. #define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
  56. #define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
  57. #define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
  58. #define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
  59. #define AES_FLAGS_CTR AES_MR_OPMOD_CTR
  60. #define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
  61. AES_FLAGS_ENCRYPT)
  62. #define AES_FLAGS_INIT BIT(2)
  63. #define AES_FLAGS_BUSY BIT(3)
  64. #define AES_FLAGS_PERSISTENT (AES_FLAGS_INIT | AES_FLAGS_BUSY)
  65. #define ATMEL_AES_QUEUE_LENGTH 50
  66. #define ATMEL_AES_DMA_THRESHOLD 16
  67. struct atmel_aes_caps {
  68. bool has_dualbuff;
  69. bool has_cfb64;
  70. u32 max_burst_size;
  71. };
  72. struct atmel_aes_dev;
  73. typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
  74. struct atmel_aes_base_ctx {
  75. struct atmel_aes_dev *dd;
  76. atmel_aes_fn_t start;
  77. int keylen;
  78. u32 key[AES_KEYSIZE_256 / sizeof(u32)];
  79. u16 block_size;
  80. };
  81. struct atmel_aes_ctx {
  82. struct atmel_aes_base_ctx base;
  83. };
  84. struct atmel_aes_reqctx {
  85. unsigned long mode;
  86. };
  87. struct atmel_aes_dma {
  88. struct dma_chan *chan;
  89. struct scatterlist *sg;
  90. int nents;
  91. unsigned int remainder;
  92. unsigned int sg_len;
  93. };
  94. struct atmel_aes_dev {
  95. struct list_head list;
  96. unsigned long phys_base;
  97. void __iomem *io_base;
  98. struct crypto_async_request *areq;
  99. struct atmel_aes_base_ctx *ctx;
  100. bool is_async;
  101. atmel_aes_fn_t resume;
  102. atmel_aes_fn_t cpu_transfer_complete;
  103. struct device *dev;
  104. struct clk *iclk;
  105. int irq;
  106. unsigned long flags;
  107. spinlock_t lock;
  108. struct crypto_queue queue;
  109. struct tasklet_struct done_task;
  110. struct tasklet_struct queue_task;
  111. size_t total;
  112. size_t datalen;
  113. u32 *data;
  114. struct atmel_aes_dma src;
  115. struct atmel_aes_dma dst;
  116. size_t buflen;
  117. void *buf;
  118. struct scatterlist aligned_sg;
  119. struct scatterlist *real_dst;
  120. struct atmel_aes_caps caps;
  121. u32 hw_version;
  122. };
  123. struct atmel_aes_drv {
  124. struct list_head dev_list;
  125. spinlock_t lock;
  126. };
  127. static struct atmel_aes_drv atmel_aes = {
  128. .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
  129. .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
  130. };
  131. static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
  132. {
  133. return readl_relaxed(dd->io_base + offset);
  134. }
  135. static inline void atmel_aes_write(struct atmel_aes_dev *dd,
  136. u32 offset, u32 value)
  137. {
  138. writel_relaxed(value, dd->io_base + offset);
  139. }
  140. static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
  141. u32 *value, int count)
  142. {
  143. for (; count--; value++, offset += 4)
  144. *value = atmel_aes_read(dd, offset);
  145. }
  146. static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
  147. const u32 *value, int count)
  148. {
  149. for (; count--; value++, offset += 4)
  150. atmel_aes_write(dd, offset, *value);
  151. }
  152. static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
  153. u32 *value)
  154. {
  155. atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
  156. }
  157. static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
  158. const u32 *value)
  159. {
  160. atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
  161. }
  162. static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
  163. atmel_aes_fn_t resume)
  164. {
  165. u32 isr = atmel_aes_read(dd, AES_ISR);
  166. if (unlikely(isr & AES_INT_DATARDY))
  167. return resume(dd);
  168. dd->resume = resume;
  169. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  170. return -EINPROGRESS;
  171. }
  172. static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
  173. {
  174. len &= block_size - 1;
  175. return len ? block_size - len : 0;
  176. }
  177. static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
  178. {
  179. struct atmel_aes_dev *aes_dd = NULL;
  180. struct atmel_aes_dev *tmp;
  181. spin_lock_bh(&atmel_aes.lock);
  182. if (!ctx->dd) {
  183. list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
  184. aes_dd = tmp;
  185. break;
  186. }
  187. ctx->dd = aes_dd;
  188. } else {
  189. aes_dd = ctx->dd;
  190. }
  191. spin_unlock_bh(&atmel_aes.lock);
  192. return aes_dd;
  193. }
  194. static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
  195. {
  196. int err;
  197. err = clk_prepare_enable(dd->iclk);
  198. if (err)
  199. return err;
  200. if (!(dd->flags & AES_FLAGS_INIT)) {
  201. atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
  202. atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
  203. dd->flags |= AES_FLAGS_INIT;
  204. }
  205. return 0;
  206. }
  207. static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
  208. {
  209. return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
  210. }
  211. static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
  212. {
  213. int err;
  214. err = atmel_aes_hw_init(dd);
  215. if (err)
  216. return err;
  217. dd->hw_version = atmel_aes_get_version(dd);
  218. dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
  219. clk_disable_unprepare(dd->iclk);
  220. return 0;
  221. }
  222. static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
  223. const struct atmel_aes_reqctx *rctx)
  224. {
  225. /* Clear all but persistent flags and set request flags. */
  226. dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
  227. }
  228. static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
  229. {
  230. clk_disable_unprepare(dd->iclk);
  231. dd->flags &= ~AES_FLAGS_BUSY;
  232. if (dd->is_async)
  233. dd->areq->complete(dd->areq, err);
  234. tasklet_schedule(&dd->queue_task);
  235. return err;
  236. }
  237. /* CPU transfer */
  238. static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
  239. {
  240. int err = 0;
  241. u32 isr;
  242. for (;;) {
  243. atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
  244. dd->data += 4;
  245. dd->datalen -= AES_BLOCK_SIZE;
  246. if (dd->datalen < AES_BLOCK_SIZE)
  247. break;
  248. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  249. isr = atmel_aes_read(dd, AES_ISR);
  250. if (!(isr & AES_INT_DATARDY)) {
  251. dd->resume = atmel_aes_cpu_transfer;
  252. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  253. return -EINPROGRESS;
  254. }
  255. }
  256. if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
  257. dd->buf, dd->total))
  258. err = -EINVAL;
  259. if (err)
  260. return atmel_aes_complete(dd, err);
  261. return dd->cpu_transfer_complete(dd);
  262. }
  263. static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
  264. struct scatterlist *src,
  265. struct scatterlist *dst,
  266. size_t len,
  267. atmel_aes_fn_t resume)
  268. {
  269. size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
  270. if (unlikely(len == 0))
  271. return -EINVAL;
  272. sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
  273. dd->total = len;
  274. dd->real_dst = dst;
  275. dd->cpu_transfer_complete = resume;
  276. dd->datalen = len + padlen;
  277. dd->data = (u32 *)dd->buf;
  278. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  279. return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
  280. }
  281. /* DMA transfer */
  282. static void atmel_aes_dma_callback(void *data);
  283. static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
  284. struct scatterlist *sg,
  285. size_t len,
  286. struct atmel_aes_dma *dma)
  287. {
  288. int nents;
  289. if (!IS_ALIGNED(len, dd->ctx->block_size))
  290. return false;
  291. for (nents = 0; sg; sg = sg_next(sg), ++nents) {
  292. if (!IS_ALIGNED(sg->offset, sizeof(u32)))
  293. return false;
  294. if (len <= sg->length) {
  295. if (!IS_ALIGNED(len, dd->ctx->block_size))
  296. return false;
  297. dma->nents = nents+1;
  298. dma->remainder = sg->length - len;
  299. sg->length = len;
  300. return true;
  301. }
  302. if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
  303. return false;
  304. len -= sg->length;
  305. }
  306. return false;
  307. }
  308. static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
  309. {
  310. struct scatterlist *sg = dma->sg;
  311. int nents = dma->nents;
  312. if (!dma->remainder)
  313. return;
  314. while (--nents > 0 && sg)
  315. sg = sg_next(sg);
  316. if (!sg)
  317. return;
  318. sg->length += dma->remainder;
  319. }
  320. static int atmel_aes_map(struct atmel_aes_dev *dd,
  321. struct scatterlist *src,
  322. struct scatterlist *dst,
  323. size_t len)
  324. {
  325. bool src_aligned, dst_aligned;
  326. size_t padlen;
  327. dd->total = len;
  328. dd->src.sg = src;
  329. dd->dst.sg = dst;
  330. dd->real_dst = dst;
  331. src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
  332. if (src == dst)
  333. dst_aligned = src_aligned;
  334. else
  335. dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
  336. if (!src_aligned || !dst_aligned) {
  337. padlen = atmel_aes_padlen(len, dd->ctx->block_size);
  338. if (dd->buflen < len + padlen)
  339. return -ENOMEM;
  340. if (!src_aligned) {
  341. sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
  342. dd->src.sg = &dd->aligned_sg;
  343. dd->src.nents = 1;
  344. dd->src.remainder = 0;
  345. }
  346. if (!dst_aligned) {
  347. dd->dst.sg = &dd->aligned_sg;
  348. dd->dst.nents = 1;
  349. dd->dst.remainder = 0;
  350. }
  351. sg_init_table(&dd->aligned_sg, 1);
  352. sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
  353. }
  354. if (dd->src.sg == dd->dst.sg) {
  355. dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
  356. DMA_BIDIRECTIONAL);
  357. dd->dst.sg_len = dd->src.sg_len;
  358. if (!dd->src.sg_len)
  359. return -EFAULT;
  360. } else {
  361. dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
  362. DMA_TO_DEVICE);
  363. if (!dd->src.sg_len)
  364. return -EFAULT;
  365. dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
  366. DMA_FROM_DEVICE);
  367. if (!dd->dst.sg_len) {
  368. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  369. DMA_TO_DEVICE);
  370. return -EFAULT;
  371. }
  372. }
  373. return 0;
  374. }
  375. static void atmel_aes_unmap(struct atmel_aes_dev *dd)
  376. {
  377. if (dd->src.sg == dd->dst.sg) {
  378. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  379. DMA_BIDIRECTIONAL);
  380. if (dd->src.sg != &dd->aligned_sg)
  381. atmel_aes_restore_sg(&dd->src);
  382. } else {
  383. dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
  384. DMA_FROM_DEVICE);
  385. if (dd->dst.sg != &dd->aligned_sg)
  386. atmel_aes_restore_sg(&dd->dst);
  387. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  388. DMA_TO_DEVICE);
  389. if (dd->src.sg != &dd->aligned_sg)
  390. atmel_aes_restore_sg(&dd->src);
  391. }
  392. if (dd->dst.sg == &dd->aligned_sg)
  393. sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
  394. dd->buf, dd->total);
  395. }
  396. static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
  397. enum dma_slave_buswidth addr_width,
  398. enum dma_transfer_direction dir,
  399. u32 maxburst)
  400. {
  401. struct dma_async_tx_descriptor *desc;
  402. struct dma_slave_config config;
  403. dma_async_tx_callback callback;
  404. struct atmel_aes_dma *dma;
  405. int err;
  406. memset(&config, 0, sizeof(config));
  407. config.direction = dir;
  408. config.src_addr_width = addr_width;
  409. config.dst_addr_width = addr_width;
  410. config.src_maxburst = maxburst;
  411. config.dst_maxburst = maxburst;
  412. switch (dir) {
  413. case DMA_MEM_TO_DEV:
  414. dma = &dd->src;
  415. callback = NULL;
  416. config.dst_addr = dd->phys_base + AES_IDATAR(0);
  417. break;
  418. case DMA_DEV_TO_MEM:
  419. dma = &dd->dst;
  420. callback = atmel_aes_dma_callback;
  421. config.src_addr = dd->phys_base + AES_ODATAR(0);
  422. break;
  423. default:
  424. return -EINVAL;
  425. }
  426. err = dmaengine_slave_config(dma->chan, &config);
  427. if (err)
  428. return err;
  429. desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
  430. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  431. if (!desc)
  432. return -ENOMEM;
  433. desc->callback = callback;
  434. desc->callback_param = dd;
  435. dmaengine_submit(desc);
  436. dma_async_issue_pending(dma->chan);
  437. return 0;
  438. }
  439. static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
  440. enum dma_transfer_direction dir)
  441. {
  442. struct atmel_aes_dma *dma;
  443. switch (dir) {
  444. case DMA_MEM_TO_DEV:
  445. dma = &dd->src;
  446. break;
  447. case DMA_DEV_TO_MEM:
  448. dma = &dd->dst;
  449. break;
  450. default:
  451. return;
  452. }
  453. dmaengine_terminate_all(dma->chan);
  454. }
  455. static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
  456. struct scatterlist *src,
  457. struct scatterlist *dst,
  458. size_t len,
  459. atmel_aes_fn_t resume)
  460. {
  461. enum dma_slave_buswidth addr_width;
  462. u32 maxburst;
  463. int err;
  464. switch (dd->ctx->block_size) {
  465. case CFB8_BLOCK_SIZE:
  466. addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  467. maxburst = 1;
  468. break;
  469. case CFB16_BLOCK_SIZE:
  470. addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  471. maxburst = 1;
  472. break;
  473. case CFB32_BLOCK_SIZE:
  474. case CFB64_BLOCK_SIZE:
  475. addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  476. maxburst = 1;
  477. break;
  478. case AES_BLOCK_SIZE:
  479. addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  480. maxburst = dd->caps.max_burst_size;
  481. break;
  482. default:
  483. err = -EINVAL;
  484. goto exit;
  485. }
  486. err = atmel_aes_map(dd, src, dst, len);
  487. if (err)
  488. goto exit;
  489. dd->resume = resume;
  490. /* Set output DMA transfer first */
  491. err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
  492. maxburst);
  493. if (err)
  494. goto unmap;
  495. /* Then set input DMA transfer */
  496. err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
  497. maxburst);
  498. if (err)
  499. goto output_transfer_stop;
  500. return -EINPROGRESS;
  501. output_transfer_stop:
  502. atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
  503. unmap:
  504. atmel_aes_unmap(dd);
  505. exit:
  506. return atmel_aes_complete(dd, err);
  507. }
  508. static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
  509. {
  510. atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
  511. atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
  512. atmel_aes_unmap(dd);
  513. }
  514. static void atmel_aes_dma_callback(void *data)
  515. {
  516. struct atmel_aes_dev *dd = data;
  517. atmel_aes_dma_stop(dd);
  518. dd->is_async = true;
  519. (void)dd->resume(dd);
  520. }
  521. static void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
  522. const u32 *iv)
  523. {
  524. u32 valmr = 0;
  525. /* MR register must be set before IV registers */
  526. if (dd->ctx->keylen == AES_KEYSIZE_128)
  527. valmr |= AES_MR_KEYSIZE_128;
  528. else if (dd->ctx->keylen == AES_KEYSIZE_192)
  529. valmr |= AES_MR_KEYSIZE_192;
  530. else
  531. valmr |= AES_MR_KEYSIZE_256;
  532. valmr |= dd->flags & AES_FLAGS_MODE_MASK;
  533. if (use_dma) {
  534. valmr |= AES_MR_SMOD_IDATAR0;
  535. if (dd->caps.has_dualbuff)
  536. valmr |= AES_MR_DUALBUFF;
  537. } else {
  538. valmr |= AES_MR_SMOD_AUTO;
  539. }
  540. atmel_aes_write(dd, AES_MR, valmr);
  541. atmel_aes_write_n(dd, AES_KEYWR(0), dd->ctx->key,
  542. SIZE_IN_WORDS(dd->ctx->keylen));
  543. if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
  544. atmel_aes_write_block(dd, AES_IVR(0), iv);
  545. }
  546. static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
  547. struct crypto_async_request *new_areq)
  548. {
  549. struct crypto_async_request *areq, *backlog;
  550. struct atmel_aes_base_ctx *ctx;
  551. unsigned long flags;
  552. int err, ret = 0;
  553. spin_lock_irqsave(&dd->lock, flags);
  554. if (new_areq)
  555. ret = crypto_enqueue_request(&dd->queue, new_areq);
  556. if (dd->flags & AES_FLAGS_BUSY) {
  557. spin_unlock_irqrestore(&dd->lock, flags);
  558. return ret;
  559. }
  560. backlog = crypto_get_backlog(&dd->queue);
  561. areq = crypto_dequeue_request(&dd->queue);
  562. if (areq)
  563. dd->flags |= AES_FLAGS_BUSY;
  564. spin_unlock_irqrestore(&dd->lock, flags);
  565. if (!areq)
  566. return ret;
  567. if (backlog)
  568. backlog->complete(backlog, -EINPROGRESS);
  569. ctx = crypto_tfm_ctx(areq->tfm);
  570. dd->areq = areq;
  571. dd->ctx = ctx;
  572. dd->is_async = (areq != new_areq);
  573. err = ctx->start(dd);
  574. return (dd->is_async) ? ret : err;
  575. }
  576. static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
  577. {
  578. return atmel_aes_complete(dd, 0);
  579. }
  580. static int atmel_aes_start(struct atmel_aes_dev *dd)
  581. {
  582. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  583. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  584. bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
  585. dd->ctx->block_size != AES_BLOCK_SIZE);
  586. int err;
  587. atmel_aes_set_mode(dd, rctx);
  588. err = atmel_aes_hw_init(dd);
  589. if (err)
  590. return atmel_aes_complete(dd, err);
  591. atmel_aes_write_ctrl(dd, use_dma, req->info);
  592. if (use_dma)
  593. return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
  594. atmel_aes_transfer_complete);
  595. return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
  596. atmel_aes_transfer_complete);
  597. }
  598. static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
  599. {
  600. dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
  601. dd->buflen = ATMEL_AES_BUFFER_SIZE;
  602. dd->buflen &= ~(AES_BLOCK_SIZE - 1);
  603. if (!dd->buf) {
  604. dev_err(dd->dev, "unable to alloc pages.\n");
  605. return -ENOMEM;
  606. }
  607. return 0;
  608. }
  609. static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
  610. {
  611. free_page((unsigned long)dd->buf);
  612. }
  613. static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
  614. {
  615. struct atmel_aes_base_ctx *ctx;
  616. struct atmel_aes_reqctx *rctx;
  617. struct atmel_aes_dev *dd;
  618. ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
  619. switch (mode & AES_FLAGS_OPMODE_MASK) {
  620. case AES_FLAGS_CFB8:
  621. ctx->block_size = CFB8_BLOCK_SIZE;
  622. break;
  623. case AES_FLAGS_CFB16:
  624. ctx->block_size = CFB16_BLOCK_SIZE;
  625. break;
  626. case AES_FLAGS_CFB32:
  627. ctx->block_size = CFB32_BLOCK_SIZE;
  628. break;
  629. case AES_FLAGS_CFB64:
  630. ctx->block_size = CFB64_BLOCK_SIZE;
  631. break;
  632. default:
  633. ctx->block_size = AES_BLOCK_SIZE;
  634. break;
  635. }
  636. dd = atmel_aes_find_dev(ctx);
  637. if (!dd)
  638. return -ENODEV;
  639. rctx = ablkcipher_request_ctx(req);
  640. rctx->mode = mode;
  641. return atmel_aes_handle_queue(dd, &req->base);
  642. }
  643. static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
  644. {
  645. struct at_dma_slave *sl = slave;
  646. if (sl && sl->dma_dev == chan->device->dev) {
  647. chan->private = sl;
  648. return true;
  649. } else {
  650. return false;
  651. }
  652. }
  653. static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
  654. struct crypto_platform_data *pdata)
  655. {
  656. struct at_dma_slave *slave;
  657. int err = -ENOMEM;
  658. dma_cap_mask_t mask;
  659. dma_cap_zero(mask);
  660. dma_cap_set(DMA_SLAVE, mask);
  661. /* Try to grab 2 DMA channels */
  662. slave = &pdata->dma_slave->rxdata;
  663. dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
  664. slave, dd->dev, "tx");
  665. if (!dd->src.chan)
  666. goto err_dma_in;
  667. slave = &pdata->dma_slave->txdata;
  668. dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
  669. slave, dd->dev, "rx");
  670. if (!dd->dst.chan)
  671. goto err_dma_out;
  672. return 0;
  673. err_dma_out:
  674. dma_release_channel(dd->src.chan);
  675. err_dma_in:
  676. dev_warn(dd->dev, "no DMA channel available\n");
  677. return err;
  678. }
  679. static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
  680. {
  681. dma_release_channel(dd->dst.chan);
  682. dma_release_channel(dd->src.chan);
  683. }
  684. static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  685. unsigned int keylen)
  686. {
  687. struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  688. if (keylen != AES_KEYSIZE_128 &&
  689. keylen != AES_KEYSIZE_192 &&
  690. keylen != AES_KEYSIZE_256) {
  691. crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  692. return -EINVAL;
  693. }
  694. memcpy(ctx->key, key, keylen);
  695. ctx->keylen = keylen;
  696. return 0;
  697. }
  698. static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
  699. {
  700. return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
  701. }
  702. static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
  703. {
  704. return atmel_aes_crypt(req, AES_FLAGS_ECB);
  705. }
  706. static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
  707. {
  708. return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
  709. }
  710. static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
  711. {
  712. return atmel_aes_crypt(req, AES_FLAGS_CBC);
  713. }
  714. static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
  715. {
  716. return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
  717. }
  718. static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
  719. {
  720. return atmel_aes_crypt(req, AES_FLAGS_OFB);
  721. }
  722. static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
  723. {
  724. return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
  725. }
  726. static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
  727. {
  728. return atmel_aes_crypt(req, AES_FLAGS_CFB128);
  729. }
  730. static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
  731. {
  732. return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
  733. }
  734. static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
  735. {
  736. return atmel_aes_crypt(req, AES_FLAGS_CFB64);
  737. }
  738. static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
  739. {
  740. return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
  741. }
  742. static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
  743. {
  744. return atmel_aes_crypt(req, AES_FLAGS_CFB32);
  745. }
  746. static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
  747. {
  748. return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
  749. }
  750. static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
  751. {
  752. return atmel_aes_crypt(req, AES_FLAGS_CFB16);
  753. }
  754. static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
  755. {
  756. return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
  757. }
  758. static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
  759. {
  760. return atmel_aes_crypt(req, AES_FLAGS_CFB8);
  761. }
  762. static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
  763. {
  764. return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
  765. }
  766. static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
  767. {
  768. return atmel_aes_crypt(req, AES_FLAGS_CTR);
  769. }
  770. static int atmel_aes_cra_init(struct crypto_tfm *tfm)
  771. {
  772. struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  773. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  774. ctx->base.start = atmel_aes_start;
  775. return 0;
  776. }
  777. static void atmel_aes_cra_exit(struct crypto_tfm *tfm)
  778. {
  779. }
  780. static struct crypto_alg aes_algs[] = {
  781. {
  782. .cra_name = "ecb(aes)",
  783. .cra_driver_name = "atmel-ecb-aes",
  784. .cra_priority = ATMEL_AES_PRIORITY,
  785. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  786. .cra_blocksize = AES_BLOCK_SIZE,
  787. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  788. .cra_alignmask = 0xf,
  789. .cra_type = &crypto_ablkcipher_type,
  790. .cra_module = THIS_MODULE,
  791. .cra_init = atmel_aes_cra_init,
  792. .cra_exit = atmel_aes_cra_exit,
  793. .cra_u.ablkcipher = {
  794. .min_keysize = AES_MIN_KEY_SIZE,
  795. .max_keysize = AES_MAX_KEY_SIZE,
  796. .setkey = atmel_aes_setkey,
  797. .encrypt = atmel_aes_ecb_encrypt,
  798. .decrypt = atmel_aes_ecb_decrypt,
  799. }
  800. },
  801. {
  802. .cra_name = "cbc(aes)",
  803. .cra_driver_name = "atmel-cbc-aes",
  804. .cra_priority = ATMEL_AES_PRIORITY,
  805. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  806. .cra_blocksize = AES_BLOCK_SIZE,
  807. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  808. .cra_alignmask = 0xf,
  809. .cra_type = &crypto_ablkcipher_type,
  810. .cra_module = THIS_MODULE,
  811. .cra_init = atmel_aes_cra_init,
  812. .cra_exit = atmel_aes_cra_exit,
  813. .cra_u.ablkcipher = {
  814. .min_keysize = AES_MIN_KEY_SIZE,
  815. .max_keysize = AES_MAX_KEY_SIZE,
  816. .ivsize = AES_BLOCK_SIZE,
  817. .setkey = atmel_aes_setkey,
  818. .encrypt = atmel_aes_cbc_encrypt,
  819. .decrypt = atmel_aes_cbc_decrypt,
  820. }
  821. },
  822. {
  823. .cra_name = "ofb(aes)",
  824. .cra_driver_name = "atmel-ofb-aes",
  825. .cra_priority = ATMEL_AES_PRIORITY,
  826. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  827. .cra_blocksize = AES_BLOCK_SIZE,
  828. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  829. .cra_alignmask = 0xf,
  830. .cra_type = &crypto_ablkcipher_type,
  831. .cra_module = THIS_MODULE,
  832. .cra_init = atmel_aes_cra_init,
  833. .cra_exit = atmel_aes_cra_exit,
  834. .cra_u.ablkcipher = {
  835. .min_keysize = AES_MIN_KEY_SIZE,
  836. .max_keysize = AES_MAX_KEY_SIZE,
  837. .ivsize = AES_BLOCK_SIZE,
  838. .setkey = atmel_aes_setkey,
  839. .encrypt = atmel_aes_ofb_encrypt,
  840. .decrypt = atmel_aes_ofb_decrypt,
  841. }
  842. },
  843. {
  844. .cra_name = "cfb(aes)",
  845. .cra_driver_name = "atmel-cfb-aes",
  846. .cra_priority = ATMEL_AES_PRIORITY,
  847. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  848. .cra_blocksize = AES_BLOCK_SIZE,
  849. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  850. .cra_alignmask = 0xf,
  851. .cra_type = &crypto_ablkcipher_type,
  852. .cra_module = THIS_MODULE,
  853. .cra_init = atmel_aes_cra_init,
  854. .cra_exit = atmel_aes_cra_exit,
  855. .cra_u.ablkcipher = {
  856. .min_keysize = AES_MIN_KEY_SIZE,
  857. .max_keysize = AES_MAX_KEY_SIZE,
  858. .ivsize = AES_BLOCK_SIZE,
  859. .setkey = atmel_aes_setkey,
  860. .encrypt = atmel_aes_cfb_encrypt,
  861. .decrypt = atmel_aes_cfb_decrypt,
  862. }
  863. },
  864. {
  865. .cra_name = "cfb32(aes)",
  866. .cra_driver_name = "atmel-cfb32-aes",
  867. .cra_priority = ATMEL_AES_PRIORITY,
  868. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  869. .cra_blocksize = CFB32_BLOCK_SIZE,
  870. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  871. .cra_alignmask = 0x3,
  872. .cra_type = &crypto_ablkcipher_type,
  873. .cra_module = THIS_MODULE,
  874. .cra_init = atmel_aes_cra_init,
  875. .cra_exit = atmel_aes_cra_exit,
  876. .cra_u.ablkcipher = {
  877. .min_keysize = AES_MIN_KEY_SIZE,
  878. .max_keysize = AES_MAX_KEY_SIZE,
  879. .ivsize = AES_BLOCK_SIZE,
  880. .setkey = atmel_aes_setkey,
  881. .encrypt = atmel_aes_cfb32_encrypt,
  882. .decrypt = atmel_aes_cfb32_decrypt,
  883. }
  884. },
  885. {
  886. .cra_name = "cfb16(aes)",
  887. .cra_driver_name = "atmel-cfb16-aes",
  888. .cra_priority = ATMEL_AES_PRIORITY,
  889. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  890. .cra_blocksize = CFB16_BLOCK_SIZE,
  891. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  892. .cra_alignmask = 0x1,
  893. .cra_type = &crypto_ablkcipher_type,
  894. .cra_module = THIS_MODULE,
  895. .cra_init = atmel_aes_cra_init,
  896. .cra_exit = atmel_aes_cra_exit,
  897. .cra_u.ablkcipher = {
  898. .min_keysize = AES_MIN_KEY_SIZE,
  899. .max_keysize = AES_MAX_KEY_SIZE,
  900. .ivsize = AES_BLOCK_SIZE,
  901. .setkey = atmel_aes_setkey,
  902. .encrypt = atmel_aes_cfb16_encrypt,
  903. .decrypt = atmel_aes_cfb16_decrypt,
  904. }
  905. },
  906. {
  907. .cra_name = "cfb8(aes)",
  908. .cra_driver_name = "atmel-cfb8-aes",
  909. .cra_priority = ATMEL_AES_PRIORITY,
  910. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  911. .cra_blocksize = CFB8_BLOCK_SIZE,
  912. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  913. .cra_alignmask = 0x0,
  914. .cra_type = &crypto_ablkcipher_type,
  915. .cra_module = THIS_MODULE,
  916. .cra_init = atmel_aes_cra_init,
  917. .cra_exit = atmel_aes_cra_exit,
  918. .cra_u.ablkcipher = {
  919. .min_keysize = AES_MIN_KEY_SIZE,
  920. .max_keysize = AES_MAX_KEY_SIZE,
  921. .ivsize = AES_BLOCK_SIZE,
  922. .setkey = atmel_aes_setkey,
  923. .encrypt = atmel_aes_cfb8_encrypt,
  924. .decrypt = atmel_aes_cfb8_decrypt,
  925. }
  926. },
  927. {
  928. .cra_name = "ctr(aes)",
  929. .cra_driver_name = "atmel-ctr-aes",
  930. .cra_priority = ATMEL_AES_PRIORITY,
  931. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  932. .cra_blocksize = AES_BLOCK_SIZE,
  933. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  934. .cra_alignmask = 0xf,
  935. .cra_type = &crypto_ablkcipher_type,
  936. .cra_module = THIS_MODULE,
  937. .cra_init = atmel_aes_cra_init,
  938. .cra_exit = atmel_aes_cra_exit,
  939. .cra_u.ablkcipher = {
  940. .min_keysize = AES_MIN_KEY_SIZE,
  941. .max_keysize = AES_MAX_KEY_SIZE,
  942. .ivsize = AES_BLOCK_SIZE,
  943. .setkey = atmel_aes_setkey,
  944. .encrypt = atmel_aes_ctr_encrypt,
  945. .decrypt = atmel_aes_ctr_decrypt,
  946. }
  947. },
  948. };
  949. static struct crypto_alg aes_cfb64_alg = {
  950. .cra_name = "cfb64(aes)",
  951. .cra_driver_name = "atmel-cfb64-aes",
  952. .cra_priority = ATMEL_AES_PRIORITY,
  953. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  954. .cra_blocksize = CFB64_BLOCK_SIZE,
  955. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  956. .cra_alignmask = 0x7,
  957. .cra_type = &crypto_ablkcipher_type,
  958. .cra_module = THIS_MODULE,
  959. .cra_init = atmel_aes_cra_init,
  960. .cra_exit = atmel_aes_cra_exit,
  961. .cra_u.ablkcipher = {
  962. .min_keysize = AES_MIN_KEY_SIZE,
  963. .max_keysize = AES_MAX_KEY_SIZE,
  964. .ivsize = AES_BLOCK_SIZE,
  965. .setkey = atmel_aes_setkey,
  966. .encrypt = atmel_aes_cfb64_encrypt,
  967. .decrypt = atmel_aes_cfb64_decrypt,
  968. }
  969. };
  970. static void atmel_aes_queue_task(unsigned long data)
  971. {
  972. struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
  973. atmel_aes_handle_queue(dd, NULL);
  974. }
  975. static void atmel_aes_done_task(unsigned long data)
  976. {
  977. struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
  978. dd->is_async = true;
  979. (void)dd->resume(dd);
  980. }
  981. static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
  982. {
  983. struct atmel_aes_dev *aes_dd = dev_id;
  984. u32 reg;
  985. reg = atmel_aes_read(aes_dd, AES_ISR);
  986. if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
  987. atmel_aes_write(aes_dd, AES_IDR, reg);
  988. if (AES_FLAGS_BUSY & aes_dd->flags)
  989. tasklet_schedule(&aes_dd->done_task);
  990. else
  991. dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
  992. return IRQ_HANDLED;
  993. }
  994. return IRQ_NONE;
  995. }
  996. static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
  997. {
  998. int i;
  999. if (dd->caps.has_cfb64)
  1000. crypto_unregister_alg(&aes_cfb64_alg);
  1001. for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
  1002. crypto_unregister_alg(&aes_algs[i]);
  1003. }
  1004. static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
  1005. {
  1006. int err, i, j;
  1007. for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
  1008. err = crypto_register_alg(&aes_algs[i]);
  1009. if (err)
  1010. goto err_aes_algs;
  1011. }
  1012. if (dd->caps.has_cfb64) {
  1013. err = crypto_register_alg(&aes_cfb64_alg);
  1014. if (err)
  1015. goto err_aes_cfb64_alg;
  1016. }
  1017. return 0;
  1018. err_aes_cfb64_alg:
  1019. i = ARRAY_SIZE(aes_algs);
  1020. err_aes_algs:
  1021. for (j = 0; j < i; j++)
  1022. crypto_unregister_alg(&aes_algs[j]);
  1023. return err;
  1024. }
  1025. static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
  1026. {
  1027. dd->caps.has_dualbuff = 0;
  1028. dd->caps.has_cfb64 = 0;
  1029. dd->caps.max_burst_size = 1;
  1030. /* keep only major version number */
  1031. switch (dd->hw_version & 0xff0) {
  1032. case 0x500:
  1033. dd->caps.has_dualbuff = 1;
  1034. dd->caps.has_cfb64 = 1;
  1035. dd->caps.max_burst_size = 4;
  1036. break;
  1037. case 0x200:
  1038. dd->caps.has_dualbuff = 1;
  1039. dd->caps.has_cfb64 = 1;
  1040. dd->caps.max_burst_size = 4;
  1041. break;
  1042. case 0x130:
  1043. dd->caps.has_dualbuff = 1;
  1044. dd->caps.has_cfb64 = 1;
  1045. dd->caps.max_burst_size = 4;
  1046. break;
  1047. case 0x120:
  1048. break;
  1049. default:
  1050. dev_warn(dd->dev,
  1051. "Unmanaged aes version, set minimum capabilities\n");
  1052. break;
  1053. }
  1054. }
  1055. #if defined(CONFIG_OF)
  1056. static const struct of_device_id atmel_aes_dt_ids[] = {
  1057. { .compatible = "atmel,at91sam9g46-aes" },
  1058. { /* sentinel */ }
  1059. };
  1060. MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
  1061. static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
  1062. {
  1063. struct device_node *np = pdev->dev.of_node;
  1064. struct crypto_platform_data *pdata;
  1065. if (!np) {
  1066. dev_err(&pdev->dev, "device node not found\n");
  1067. return ERR_PTR(-EINVAL);
  1068. }
  1069. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  1070. if (!pdata) {
  1071. dev_err(&pdev->dev, "could not allocate memory for pdata\n");
  1072. return ERR_PTR(-ENOMEM);
  1073. }
  1074. pdata->dma_slave = devm_kzalloc(&pdev->dev,
  1075. sizeof(*(pdata->dma_slave)),
  1076. GFP_KERNEL);
  1077. if (!pdata->dma_slave) {
  1078. dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
  1079. devm_kfree(&pdev->dev, pdata);
  1080. return ERR_PTR(-ENOMEM);
  1081. }
  1082. return pdata;
  1083. }
  1084. #else
  1085. static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
  1086. {
  1087. return ERR_PTR(-EINVAL);
  1088. }
  1089. #endif
  1090. static int atmel_aes_probe(struct platform_device *pdev)
  1091. {
  1092. struct atmel_aes_dev *aes_dd;
  1093. struct crypto_platform_data *pdata;
  1094. struct device *dev = &pdev->dev;
  1095. struct resource *aes_res;
  1096. int err;
  1097. pdata = pdev->dev.platform_data;
  1098. if (!pdata) {
  1099. pdata = atmel_aes_of_init(pdev);
  1100. if (IS_ERR(pdata)) {
  1101. err = PTR_ERR(pdata);
  1102. goto aes_dd_err;
  1103. }
  1104. }
  1105. if (!pdata->dma_slave) {
  1106. err = -ENXIO;
  1107. goto aes_dd_err;
  1108. }
  1109. aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
  1110. if (aes_dd == NULL) {
  1111. dev_err(dev, "unable to alloc data struct.\n");
  1112. err = -ENOMEM;
  1113. goto aes_dd_err;
  1114. }
  1115. aes_dd->dev = dev;
  1116. platform_set_drvdata(pdev, aes_dd);
  1117. INIT_LIST_HEAD(&aes_dd->list);
  1118. spin_lock_init(&aes_dd->lock);
  1119. tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
  1120. (unsigned long)aes_dd);
  1121. tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
  1122. (unsigned long)aes_dd);
  1123. crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
  1124. aes_dd->irq = -1;
  1125. /* Get the base address */
  1126. aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1127. if (!aes_res) {
  1128. dev_err(dev, "no MEM resource info\n");
  1129. err = -ENODEV;
  1130. goto res_err;
  1131. }
  1132. aes_dd->phys_base = aes_res->start;
  1133. /* Get the IRQ */
  1134. aes_dd->irq = platform_get_irq(pdev, 0);
  1135. if (aes_dd->irq < 0) {
  1136. dev_err(dev, "no IRQ resource info\n");
  1137. err = aes_dd->irq;
  1138. goto res_err;
  1139. }
  1140. err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
  1141. IRQF_SHARED, "atmel-aes", aes_dd);
  1142. if (err) {
  1143. dev_err(dev, "unable to request aes irq.\n");
  1144. goto res_err;
  1145. }
  1146. /* Initializing the clock */
  1147. aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
  1148. if (IS_ERR(aes_dd->iclk)) {
  1149. dev_err(dev, "clock initialization failed.\n");
  1150. err = PTR_ERR(aes_dd->iclk);
  1151. goto res_err;
  1152. }
  1153. aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
  1154. if (!aes_dd->io_base) {
  1155. dev_err(dev, "can't ioremap\n");
  1156. err = -ENOMEM;
  1157. goto res_err;
  1158. }
  1159. err = atmel_aes_hw_version_init(aes_dd);
  1160. if (err)
  1161. goto res_err;
  1162. atmel_aes_get_cap(aes_dd);
  1163. err = atmel_aes_buff_init(aes_dd);
  1164. if (err)
  1165. goto err_aes_buff;
  1166. err = atmel_aes_dma_init(aes_dd, pdata);
  1167. if (err)
  1168. goto err_aes_dma;
  1169. spin_lock(&atmel_aes.lock);
  1170. list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
  1171. spin_unlock(&atmel_aes.lock);
  1172. err = atmel_aes_register_algs(aes_dd);
  1173. if (err)
  1174. goto err_algs;
  1175. dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
  1176. dma_chan_name(aes_dd->src.chan),
  1177. dma_chan_name(aes_dd->dst.chan));
  1178. return 0;
  1179. err_algs:
  1180. spin_lock(&atmel_aes.lock);
  1181. list_del(&aes_dd->list);
  1182. spin_unlock(&atmel_aes.lock);
  1183. atmel_aes_dma_cleanup(aes_dd);
  1184. err_aes_dma:
  1185. atmel_aes_buff_cleanup(aes_dd);
  1186. err_aes_buff:
  1187. res_err:
  1188. tasklet_kill(&aes_dd->done_task);
  1189. tasklet_kill(&aes_dd->queue_task);
  1190. aes_dd_err:
  1191. dev_err(dev, "initialization failed.\n");
  1192. return err;
  1193. }
  1194. static int atmel_aes_remove(struct platform_device *pdev)
  1195. {
  1196. static struct atmel_aes_dev *aes_dd;
  1197. aes_dd = platform_get_drvdata(pdev);
  1198. if (!aes_dd)
  1199. return -ENODEV;
  1200. spin_lock(&atmel_aes.lock);
  1201. list_del(&aes_dd->list);
  1202. spin_unlock(&atmel_aes.lock);
  1203. atmel_aes_unregister_algs(aes_dd);
  1204. tasklet_kill(&aes_dd->done_task);
  1205. tasklet_kill(&aes_dd->queue_task);
  1206. atmel_aes_dma_cleanup(aes_dd);
  1207. atmel_aes_buff_cleanup(aes_dd);
  1208. return 0;
  1209. }
  1210. static struct platform_driver atmel_aes_driver = {
  1211. .probe = atmel_aes_probe,
  1212. .remove = atmel_aes_remove,
  1213. .driver = {
  1214. .name = "atmel_aes",
  1215. .of_match_table = of_match_ptr(atmel_aes_dt_ids),
  1216. },
  1217. };
  1218. module_platform_driver(atmel_aes_driver);
  1219. MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
  1220. MODULE_LICENSE("GPL v2");
  1221. MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");