1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684 |
- /* SPDX-License-Identifier: GPL-2.0 */
- /*
- * linux/arch/x86_64/entry.S
- *
- * Copyright (C) 1991, 1992 Linus Torvalds
- * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
- * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
- *
- * entry.S contains the system-call and fault low-level handling routines.
- *
- * Some of this is documented in Documentation/x86/entry_64.txt
- *
- * A note on terminology:
- * - iret frame: Architecture defined interrupt frame from SS to RIP
- * at the top of the kernel process stack.
- *
- * Some macro usage:
- * - ENTRY/END: Define functions in the symbol table.
- * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
- * - idtentry: Define exception entry points.
- */
- #include <linux/linkage.h>
- #include <asm/segment.h>
- #include <asm/cache.h>
- #include <asm/errno.h>
- #include <asm/asm-offsets.h>
- #include <asm/msr.h>
- #include <asm/unistd.h>
- #include <asm/thread_info.h>
- #include <asm/hw_irq.h>
- #include <asm/page_types.h>
- #include <asm/irqflags.h>
- #include <asm/paravirt.h>
- #include <asm/percpu.h>
- #include <asm/asm.h>
- #include <asm/smap.h>
- #include <asm/pgtable_types.h>
- #include <asm/export.h>
- #include <asm/frame.h>
- #include <asm/nospec-branch.h>
- #include <linux/err.h>
- #include "calling.h"
- .code64
- .section .entry.text, "ax"
- #ifdef CONFIG_PARAVIRT
- ENTRY(native_usergs_sysret64)
- UNWIND_HINT_EMPTY
- swapgs
- sysretq
- END(native_usergs_sysret64)
- #endif /* CONFIG_PARAVIRT */
- .macro TRACE_IRQS_FLAGS flags:req
- #ifdef CONFIG_TRACE_IRQFLAGS
- btl $9, \flags /* interrupts off? */
- jnc 1f
- TRACE_IRQS_ON
- 1:
- #endif
- .endm
- .macro TRACE_IRQS_IRETQ
- TRACE_IRQS_FLAGS EFLAGS(%rsp)
- .endm
- /*
- * When dynamic function tracer is enabled it will add a breakpoint
- * to all locations that it is about to modify, sync CPUs, update
- * all the code, sync CPUs, then remove the breakpoints. In this time
- * if lockdep is enabled, it might jump back into the debug handler
- * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
- *
- * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
- * make sure the stack pointer does not get reset back to the top
- * of the debug stack, and instead just reuses the current stack.
- */
- #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
- .macro TRACE_IRQS_OFF_DEBUG
- call debug_stack_set_zero
- TRACE_IRQS_OFF
- call debug_stack_reset
- .endm
- .macro TRACE_IRQS_ON_DEBUG
- call debug_stack_set_zero
- TRACE_IRQS_ON
- call debug_stack_reset
- .endm
- .macro TRACE_IRQS_IRETQ_DEBUG
- btl $9, EFLAGS(%rsp) /* interrupts off? */
- jnc 1f
- TRACE_IRQS_ON_DEBUG
- 1:
- .endm
- #else
- # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
- # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
- # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
- #endif
- /*
- * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
- *
- * This is the only entry point used for 64-bit system calls. The
- * hardware interface is reasonably well designed and the register to
- * argument mapping Linux uses fits well with the registers that are
- * available when SYSCALL is used.
- *
- * SYSCALL instructions can be found inlined in libc implementations as
- * well as some other programs and libraries. There are also a handful
- * of SYSCALL instructions in the vDSO used, for example, as a
- * clock_gettimeofday fallback.
- *
- * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
- * then loads new ss, cs, and rip from previously programmed MSRs.
- * rflags gets masked by a value from another MSR (so CLD and CLAC
- * are not needed). SYSCALL does not save anything on the stack
- * and does not change rsp.
- *
- * Registers on entry:
- * rax system call number
- * rcx return address
- * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
- * rdi arg0
- * rsi arg1
- * rdx arg2
- * r10 arg3 (needs to be moved to rcx to conform to C ABI)
- * r8 arg4
- * r9 arg5
- * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
- *
- * Only called from user space.
- *
- * When user can change pt_regs->foo always force IRET. That is because
- * it deals with uncanonical addresses better. SYSRET has trouble
- * with them due to bugs in both AMD and Intel CPUs.
- */
- .pushsection .entry_trampoline, "ax"
- /*
- * The code in here gets remapped into cpu_entry_area's trampoline. This means
- * that the assembler and linker have the wrong idea as to where this code
- * lives (and, in fact, it's mapped more than once, so it's not even at a
- * fixed address). So we can't reference any symbols outside the entry
- * trampoline and expect it to work.
- *
- * Instead, we carefully abuse %rip-relative addressing.
- * _entry_trampoline(%rip) refers to the start of the remapped) entry
- * trampoline. We can thus find cpu_entry_area with this macro:
- */
- #define CPU_ENTRY_AREA \
- _entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
- /* The top word of the SYSENTER stack is hot and is usable as scratch space. */
- #define RSP_SCRATCH CPU_ENTRY_AREA_entry_stack + \
- SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
- ENTRY(entry_SYSCALL_64_trampoline)
- UNWIND_HINT_EMPTY
- swapgs
- /* Stash the user RSP. */
- movq %rsp, RSP_SCRATCH
- /* Note: using %rsp as a scratch reg. */
- SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
- /* Load the top of the task stack into RSP */
- movq CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
- /* Start building the simulated IRET frame. */
- pushq $__USER_DS /* pt_regs->ss */
- pushq RSP_SCRATCH /* pt_regs->sp */
- pushq %r11 /* pt_regs->flags */
- pushq $__USER_CS /* pt_regs->cs */
- pushq %rcx /* pt_regs->ip */
- /*
- * x86 lacks a near absolute jump, and we can't jump to the real
- * entry text with a relative jump. We could push the target
- * address and then use retq, but this destroys the pipeline on
- * many CPUs (wasting over 20 cycles on Sandy Bridge). Instead,
- * spill RDI and restore it in a second-stage trampoline.
- */
- pushq %rdi
- movq $entry_SYSCALL_64_stage2, %rdi
- JMP_NOSPEC %rdi
- END(entry_SYSCALL_64_trampoline)
- .popsection
- ENTRY(entry_SYSCALL_64_stage2)
- UNWIND_HINT_EMPTY
- popq %rdi
- jmp entry_SYSCALL_64_after_hwframe
- END(entry_SYSCALL_64_stage2)
- ENTRY(entry_SYSCALL_64)
- UNWIND_HINT_EMPTY
- /*
- * Interrupts are off on entry.
- * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
- * it is too small to ever cause noticeable irq latency.
- */
- swapgs
- /*
- * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
- * is not required to switch CR3.
- */
- movq %rsp, PER_CPU_VAR(rsp_scratch)
- movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
- /* Construct struct pt_regs on stack */
- pushq $__USER_DS /* pt_regs->ss */
- pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
- pushq %r11 /* pt_regs->flags */
- pushq $__USER_CS /* pt_regs->cs */
- pushq %rcx /* pt_regs->ip */
- GLOBAL(entry_SYSCALL_64_after_hwframe)
- pushq %rax /* pt_regs->orig_ax */
- PUSH_AND_CLEAR_REGS rax=$-ENOSYS
- TRACE_IRQS_OFF
- /* IRQs are off. */
- movq %rax, %rdi
- movq %rsp, %rsi
- call do_syscall_64 /* returns with IRQs disabled */
- TRACE_IRQS_IRETQ /* we're about to change IF */
- /*
- * Try to use SYSRET instead of IRET if we're returning to
- * a completely clean 64-bit userspace context. If we're not,
- * go to the slow exit path.
- */
- movq RCX(%rsp), %rcx
- movq RIP(%rsp), %r11
- cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
- jne swapgs_restore_regs_and_return_to_usermode
- /*
- * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
- * in kernel space. This essentially lets the user take over
- * the kernel, since userspace controls RSP.
- *
- * If width of "canonical tail" ever becomes variable, this will need
- * to be updated to remain correct on both old and new CPUs.
- *
- * Change top bits to match most significant bit (47th or 56th bit
- * depending on paging mode) in the address.
- */
- #ifdef CONFIG_X86_5LEVEL
- ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
- "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
- #else
- shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
- sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
- #endif
- /* If this changed %rcx, it was not canonical */
- cmpq %rcx, %r11
- jne swapgs_restore_regs_and_return_to_usermode
- cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
- jne swapgs_restore_regs_and_return_to_usermode
- movq R11(%rsp), %r11
- cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
- jne swapgs_restore_regs_and_return_to_usermode
- /*
- * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
- * restore RF properly. If the slowpath sets it for whatever reason, we
- * need to restore it correctly.
- *
- * SYSRET can restore TF, but unlike IRET, restoring TF results in a
- * trap from userspace immediately after SYSRET. This would cause an
- * infinite loop whenever #DB happens with register state that satisfies
- * the opportunistic SYSRET conditions. For example, single-stepping
- * this user code:
- *
- * movq $stuck_here, %rcx
- * pushfq
- * popq %r11
- * stuck_here:
- *
- * would never get past 'stuck_here'.
- */
- testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
- jnz swapgs_restore_regs_and_return_to_usermode
- /* nothing to check for RSP */
- cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
- jne swapgs_restore_regs_and_return_to_usermode
- /*
- * We win! This label is here just for ease of understanding
- * perf profiles. Nothing jumps here.
- */
- syscall_return_via_sysret:
- /* rcx and r11 are already restored (see code above) */
- UNWIND_HINT_EMPTY
- POP_REGS pop_rdi=0 skip_r11rcx=1
- /*
- * Now all regs are restored except RSP and RDI.
- * Save old stack pointer and switch to trampoline stack.
- */
- movq %rsp, %rdi
- movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
- pushq RSP-RDI(%rdi) /* RSP */
- pushq (%rdi) /* RDI */
- /*
- * We are on the trampoline stack. All regs except RDI are live.
- * We can do future final exit work right here.
- */
- STACKLEAK_ERASE_NOCLOBBER
- SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
- popq %rdi
- popq %rsp
- USERGS_SYSRET64
- END(entry_SYSCALL_64)
- /*
- * %rdi: prev task
- * %rsi: next task
- */
- ENTRY(__switch_to_asm)
- UNWIND_HINT_FUNC
- /*
- * Save callee-saved registers
- * This must match the order in inactive_task_frame
- */
- pushq %rbp
- pushq %rbx
- pushq %r12
- pushq %r13
- pushq %r14
- pushq %r15
- /* switch stack */
- movq %rsp, TASK_threadsp(%rdi)
- movq TASK_threadsp(%rsi), %rsp
- #ifdef CONFIG_STACKPROTECTOR
- movq TASK_stack_canary(%rsi), %rbx
- movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
- #endif
- #ifdef CONFIG_RETPOLINE
- /*
- * When switching from a shallower to a deeper call stack
- * the RSB may either underflow or use entries populated
- * with userspace addresses. On CPUs where those concerns
- * exist, overwrite the RSB with entries which capture
- * speculative execution to prevent attack.
- */
- FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
- #endif
- /* restore callee-saved registers */
- popq %r15
- popq %r14
- popq %r13
- popq %r12
- popq %rbx
- popq %rbp
- jmp __switch_to
- END(__switch_to_asm)
- /*
- * A newly forked process directly context switches into this address.
- *
- * rax: prev task we switched from
- * rbx: kernel thread func (NULL for user thread)
- * r12: kernel thread arg
- */
- ENTRY(ret_from_fork)
- UNWIND_HINT_EMPTY
- movq %rax, %rdi
- call schedule_tail /* rdi: 'prev' task parameter */
- testq %rbx, %rbx /* from kernel_thread? */
- jnz 1f /* kernel threads are uncommon */
- 2:
- UNWIND_HINT_REGS
- movq %rsp, %rdi
- call syscall_return_slowpath /* returns with IRQs disabled */
- TRACE_IRQS_ON /* user mode is traced as IRQS on */
- jmp swapgs_restore_regs_and_return_to_usermode
- 1:
- /* kernel thread */
- UNWIND_HINT_EMPTY
- movq %r12, %rdi
- CALL_NOSPEC %rbx
- /*
- * A kernel thread is allowed to return here after successfully
- * calling do_execve(). Exit to userspace to complete the execve()
- * syscall.
- */
- movq $0, RAX(%rsp)
- jmp 2b
- END(ret_from_fork)
- /*
- * Build the entry stubs with some assembler magic.
- * We pack 1 stub into every 8-byte block.
- */
- .align 8
- ENTRY(irq_entries_start)
- vector=FIRST_EXTERNAL_VECTOR
- .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
- UNWIND_HINT_IRET_REGS
- pushq $(~vector+0x80) /* Note: always in signed byte range */
- jmp common_interrupt
- .align 8
- vector=vector+1
- .endr
- END(irq_entries_start)
- .macro DEBUG_ENTRY_ASSERT_IRQS_OFF
- #ifdef CONFIG_DEBUG_ENTRY
- pushq %rax
- SAVE_FLAGS(CLBR_RAX)
- testl $X86_EFLAGS_IF, %eax
- jz .Lokay_\@
- ud2
- .Lokay_\@:
- popq %rax
- #endif
- .endm
- /*
- * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
- * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
- * Requires kernel GSBASE.
- *
- * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
- */
- .macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
- DEBUG_ENTRY_ASSERT_IRQS_OFF
- .if \save_ret
- /*
- * If save_ret is set, the original stack contains one additional
- * entry -- the return address. Therefore, move the address one
- * entry below %rsp to \old_rsp.
- */
- leaq 8(%rsp), \old_rsp
- .else
- movq %rsp, \old_rsp
- .endif
- .if \regs
- UNWIND_HINT_REGS base=\old_rsp
- .endif
- incl PER_CPU_VAR(irq_count)
- jnz .Lirq_stack_push_old_rsp_\@
- /*
- * Right now, if we just incremented irq_count to zero, we've
- * claimed the IRQ stack but we haven't switched to it yet.
- *
- * If anything is added that can interrupt us here without using IST,
- * it must be *extremely* careful to limit its stack usage. This
- * could include kprobes and a hypothetical future IST-less #DB
- * handler.
- *
- * The OOPS unwinder relies on the word at the top of the IRQ
- * stack linking back to the previous RSP for the entire time we're
- * on the IRQ stack. For this to work reliably, we need to write
- * it before we actually move ourselves to the IRQ stack.
- */
- movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
- movq PER_CPU_VAR(irq_stack_ptr), %rsp
- #ifdef CONFIG_DEBUG_ENTRY
- /*
- * If the first movq above becomes wrong due to IRQ stack layout
- * changes, the only way we'll notice is if we try to unwind right
- * here. Assert that we set up the stack right to catch this type
- * of bug quickly.
- */
- cmpq -8(%rsp), \old_rsp
- je .Lirq_stack_okay\@
- ud2
- .Lirq_stack_okay\@:
- #endif
- .Lirq_stack_push_old_rsp_\@:
- pushq \old_rsp
- .if \regs
- UNWIND_HINT_REGS indirect=1
- .endif
- .if \save_ret
- /*
- * Push the return address to the stack. This return address can
- * be found at the "real" original RSP, which was offset by 8 at
- * the beginning of this macro.
- */
- pushq -8(\old_rsp)
- .endif
- .endm
- /*
- * Undoes ENTER_IRQ_STACK.
- */
- .macro LEAVE_IRQ_STACK regs=1
- DEBUG_ENTRY_ASSERT_IRQS_OFF
- /* We need to be off the IRQ stack before decrementing irq_count. */
- popq %rsp
- .if \regs
- UNWIND_HINT_REGS
- .endif
- /*
- * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
- * the irq stack but we're not on it.
- */
- decl PER_CPU_VAR(irq_count)
- .endm
- /*
- * Interrupt entry helper function.
- *
- * Entry runs with interrupts off. Stack layout at entry:
- * +----------------------------------------------------+
- * | regs->ss |
- * | regs->rsp |
- * | regs->eflags |
- * | regs->cs |
- * | regs->ip |
- * +----------------------------------------------------+
- * | regs->orig_ax = ~(interrupt number) |
- * +----------------------------------------------------+
- * | return address |
- * +----------------------------------------------------+
- */
- ENTRY(interrupt_entry)
- UNWIND_HINT_FUNC
- ASM_CLAC
- cld
- testb $3, CS-ORIG_RAX+8(%rsp)
- jz 1f
- SWAPGS
- /*
- * Switch to the thread stack. The IRET frame and orig_ax are
- * on the stack, as well as the return address. RDI..R12 are
- * not (yet) on the stack and space has not (yet) been
- * allocated for them.
- */
- pushq %rdi
- /* Need to switch before accessing the thread stack. */
- SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
- movq %rsp, %rdi
- movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
- /*
- * We have RDI, return address, and orig_ax on the stack on
- * top of the IRET frame. That means offset=24
- */
- UNWIND_HINT_IRET_REGS base=%rdi offset=24
- pushq 7*8(%rdi) /* regs->ss */
- pushq 6*8(%rdi) /* regs->rsp */
- pushq 5*8(%rdi) /* regs->eflags */
- pushq 4*8(%rdi) /* regs->cs */
- pushq 3*8(%rdi) /* regs->ip */
- pushq 2*8(%rdi) /* regs->orig_ax */
- pushq 8(%rdi) /* return address */
- UNWIND_HINT_FUNC
- movq (%rdi), %rdi
- 1:
- PUSH_AND_CLEAR_REGS save_ret=1
- ENCODE_FRAME_POINTER 8
- testb $3, CS+8(%rsp)
- jz 1f
- /*
- * IRQ from user mode.
- *
- * We need to tell lockdep that IRQs are off. We can't do this until
- * we fix gsbase, and we should do it before enter_from_user_mode
- * (which can take locks). Since TRACE_IRQS_OFF is idempotent,
- * the simplest way to handle it is to just call it twice if
- * we enter from user mode. There's no reason to optimize this since
- * TRACE_IRQS_OFF is a no-op if lockdep is off.
- */
- TRACE_IRQS_OFF
- CALL_enter_from_user_mode
- 1:
- ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
- /* We entered an interrupt context - irqs are off: */
- TRACE_IRQS_OFF
- ret
- END(interrupt_entry)
- /* Interrupt entry/exit. */
- /*
- * The interrupt stubs push (~vector+0x80) onto the stack and
- * then jump to common_interrupt.
- */
- .p2align CONFIG_X86_L1_CACHE_SHIFT
- common_interrupt:
- addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
- call interrupt_entry
- UNWIND_HINT_REGS indirect=1
- call do_IRQ /* rdi points to pt_regs */
- /* 0(%rsp): old RSP */
- ret_from_intr:
- DISABLE_INTERRUPTS(CLBR_ANY)
- TRACE_IRQS_OFF
- LEAVE_IRQ_STACK
- testb $3, CS(%rsp)
- jz retint_kernel
- /* Interrupt came from user space */
- GLOBAL(retint_user)
- mov %rsp,%rdi
- call prepare_exit_to_usermode
- TRACE_IRQS_IRETQ
- GLOBAL(swapgs_restore_regs_and_return_to_usermode)
- #ifdef CONFIG_DEBUG_ENTRY
- /* Assert that pt_regs indicates user mode. */
- testb $3, CS(%rsp)
- jnz 1f
- ud2
- 1:
- #endif
- POP_REGS pop_rdi=0
- /*
- * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
- * Save old stack pointer and switch to trampoline stack.
- */
- movq %rsp, %rdi
- movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
- /* Copy the IRET frame to the trampoline stack. */
- pushq 6*8(%rdi) /* SS */
- pushq 5*8(%rdi) /* RSP */
- pushq 4*8(%rdi) /* EFLAGS */
- pushq 3*8(%rdi) /* CS */
- pushq 2*8(%rdi) /* RIP */
- /* Push user RDI on the trampoline stack. */
- pushq (%rdi)
- /*
- * We are on the trampoline stack. All regs except RDI are live.
- * We can do future final exit work right here.
- */
- STACKLEAK_ERASE_NOCLOBBER
- SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
- /* Restore RDI. */
- popq %rdi
- SWAPGS
- INTERRUPT_RETURN
- /* Returning to kernel space */
- retint_kernel:
- #ifdef CONFIG_PREEMPT
- /* Interrupts are off */
- /* Check if we need preemption */
- btl $9, EFLAGS(%rsp) /* were interrupts off? */
- jnc 1f
- 0: cmpl $0, PER_CPU_VAR(__preempt_count)
- jnz 1f
- call preempt_schedule_irq
- jmp 0b
- 1:
- #endif
- /*
- * The iretq could re-enable interrupts:
- */
- TRACE_IRQS_IRETQ
- GLOBAL(restore_regs_and_return_to_kernel)
- #ifdef CONFIG_DEBUG_ENTRY
- /* Assert that pt_regs indicates kernel mode. */
- testb $3, CS(%rsp)
- jz 1f
- ud2
- 1:
- #endif
- POP_REGS
- addq $8, %rsp /* skip regs->orig_ax */
- /*
- * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
- * when returning from IPI handler.
- */
- INTERRUPT_RETURN
- ENTRY(native_iret)
- UNWIND_HINT_IRET_REGS
- /*
- * Are we returning to a stack segment from the LDT? Note: in
- * 64-bit mode SS:RSP on the exception stack is always valid.
- */
- #ifdef CONFIG_X86_ESPFIX64
- testb $4, (SS-RIP)(%rsp)
- jnz native_irq_return_ldt
- #endif
- .global native_irq_return_iret
- native_irq_return_iret:
- /*
- * This may fault. Non-paranoid faults on return to userspace are
- * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
- * Double-faults due to espfix64 are handled in do_double_fault.
- * Other faults here are fatal.
- */
- iretq
- #ifdef CONFIG_X86_ESPFIX64
- native_irq_return_ldt:
- /*
- * We are running with user GSBASE. All GPRs contain their user
- * values. We have a percpu ESPFIX stack that is eight slots
- * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
- * of the ESPFIX stack.
- *
- * We clobber RAX and RDI in this code. We stash RDI on the
- * normal stack and RAX on the ESPFIX stack.
- *
- * The ESPFIX stack layout we set up looks like this:
- *
- * --- top of ESPFIX stack ---
- * SS
- * RSP
- * RFLAGS
- * CS
- * RIP <-- RSP points here when we're done
- * RAX <-- espfix_waddr points here
- * --- bottom of ESPFIX stack ---
- */
- pushq %rdi /* Stash user RDI */
- SWAPGS /* to kernel GS */
- SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
- movq PER_CPU_VAR(espfix_waddr), %rdi
- movq %rax, (0*8)(%rdi) /* user RAX */
- movq (1*8)(%rsp), %rax /* user RIP */
- movq %rax, (1*8)(%rdi)
- movq (2*8)(%rsp), %rax /* user CS */
- movq %rax, (2*8)(%rdi)
- movq (3*8)(%rsp), %rax /* user RFLAGS */
- movq %rax, (3*8)(%rdi)
- movq (5*8)(%rsp), %rax /* user SS */
- movq %rax, (5*8)(%rdi)
- movq (4*8)(%rsp), %rax /* user RSP */
- movq %rax, (4*8)(%rdi)
- /* Now RAX == RSP. */
- andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
- /*
- * espfix_stack[31:16] == 0. The page tables are set up such that
- * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
- * espfix_waddr for any X. That is, there are 65536 RO aliases of
- * the same page. Set up RSP so that RSP[31:16] contains the
- * respective 16 bits of the /userspace/ RSP and RSP nonetheless
- * still points to an RO alias of the ESPFIX stack.
- */
- orq PER_CPU_VAR(espfix_stack), %rax
- SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
- SWAPGS /* to user GS */
- popq %rdi /* Restore user RDI */
- movq %rax, %rsp
- UNWIND_HINT_IRET_REGS offset=8
- /*
- * At this point, we cannot write to the stack any more, but we can
- * still read.
- */
- popq %rax /* Restore user RAX */
- /*
- * RSP now points to an ordinary IRET frame, except that the page
- * is read-only and RSP[31:16] are preloaded with the userspace
- * values. We can now IRET back to userspace.
- */
- jmp native_irq_return_iret
- #endif
- END(common_interrupt)
- /*
- * APIC interrupts.
- */
- .macro apicinterrupt3 num sym do_sym
- ENTRY(\sym)
- UNWIND_HINT_IRET_REGS
- pushq $~(\num)
- .Lcommon_\sym:
- call interrupt_entry
- UNWIND_HINT_REGS indirect=1
- call \do_sym /* rdi points to pt_regs */
- jmp ret_from_intr
- END(\sym)
- .endm
- /* Make sure APIC interrupt handlers end up in the irqentry section: */
- #define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
- #define POP_SECTION_IRQENTRY .popsection
- .macro apicinterrupt num sym do_sym
- PUSH_SECTION_IRQENTRY
- apicinterrupt3 \num \sym \do_sym
- POP_SECTION_IRQENTRY
- .endm
- #ifdef CONFIG_SMP
- apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
- apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
- #endif
- #ifdef CONFIG_X86_UV
- apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
- #endif
- apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
- apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
- #ifdef CONFIG_HAVE_KVM
- apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
- apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
- apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
- #endif
- #ifdef CONFIG_X86_MCE_THRESHOLD
- apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
- #endif
- #ifdef CONFIG_X86_MCE_AMD
- apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
- #endif
- #ifdef CONFIG_X86_THERMAL_VECTOR
- apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
- #endif
- #ifdef CONFIG_SMP
- apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
- apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
- apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
- #endif
- apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
- apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
- #ifdef CONFIG_IRQ_WORK
- apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
- #endif
- /*
- * Exception entry points.
- */
- #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
- .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
- ENTRY(\sym)
- UNWIND_HINT_IRET_REGS offset=\has_error_code*8
- /* Sanity check */
- .if \shift_ist != -1 && \paranoid == 0
- .error "using shift_ist requires paranoid=1"
- .endif
- ASM_CLAC
- .if \has_error_code == 0
- pushq $-1 /* ORIG_RAX: no syscall to restart */
- .endif
- .if \paranoid == 1
- testb $3, CS-ORIG_RAX(%rsp) /* If coming from userspace, switch stacks */
- jnz .Lfrom_usermode_switch_stack_\@
- .endif
- .if \paranoid
- call paranoid_entry
- .else
- call error_entry
- .endif
- UNWIND_HINT_REGS
- /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
- .if \paranoid
- .if \shift_ist != -1
- TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
- .else
- TRACE_IRQS_OFF
- .endif
- .endif
- movq %rsp, %rdi /* pt_regs pointer */
- .if \has_error_code
- movq ORIG_RAX(%rsp), %rsi /* get error code */
- movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
- .else
- xorl %esi, %esi /* no error code */
- .endif
- .if \shift_ist != -1
- subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
- .endif
- call \do_sym
- .if \shift_ist != -1
- addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
- .endif
- /* these procedures expect "no swapgs" flag in ebx */
- .if \paranoid
- jmp paranoid_exit
- .else
- jmp error_exit
- .endif
- .if \paranoid == 1
- /*
- * Entry from userspace. Switch stacks and treat it
- * as a normal entry. This means that paranoid handlers
- * run in real process context if user_mode(regs).
- */
- .Lfrom_usermode_switch_stack_\@:
- call error_entry
- movq %rsp, %rdi /* pt_regs pointer */
- .if \has_error_code
- movq ORIG_RAX(%rsp), %rsi /* get error code */
- movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
- .else
- xorl %esi, %esi /* no error code */
- .endif
- call \do_sym
- jmp error_exit
- .endif
- END(\sym)
- .endm
- idtentry divide_error do_divide_error has_error_code=0
- idtentry overflow do_overflow has_error_code=0
- idtentry bounds do_bounds has_error_code=0
- idtentry invalid_op do_invalid_op has_error_code=0
- idtentry device_not_available do_device_not_available has_error_code=0
- idtentry double_fault do_double_fault has_error_code=1 paranoid=2
- idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
- idtentry invalid_TSS do_invalid_TSS has_error_code=1
- idtentry segment_not_present do_segment_not_present has_error_code=1
- idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
- idtentry coprocessor_error do_coprocessor_error has_error_code=0
- idtentry alignment_check do_alignment_check has_error_code=1
- idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
- /*
- * Reload gs selector with exception handling
- * edi: new selector
- */
- ENTRY(native_load_gs_index)
- FRAME_BEGIN
- pushfq
- DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
- TRACE_IRQS_OFF
- SWAPGS
- .Lgs_change:
- movl %edi, %gs
- 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
- SWAPGS
- TRACE_IRQS_FLAGS (%rsp)
- popfq
- FRAME_END
- ret
- ENDPROC(native_load_gs_index)
- EXPORT_SYMBOL(native_load_gs_index)
- _ASM_EXTABLE(.Lgs_change, bad_gs)
- .section .fixup, "ax"
- /* running with kernelgs */
- bad_gs:
- SWAPGS /* switch back to user gs */
- .macro ZAP_GS
- /* This can't be a string because the preprocessor needs to see it. */
- movl $__USER_DS, %eax
- movl %eax, %gs
- .endm
- ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
- xorl %eax, %eax
- movl %eax, %gs
- jmp 2b
- .previous
- /* Call softirq on interrupt stack. Interrupts are off. */
- ENTRY(do_softirq_own_stack)
- pushq %rbp
- mov %rsp, %rbp
- ENTER_IRQ_STACK regs=0 old_rsp=%r11
- call __do_softirq
- LEAVE_IRQ_STACK regs=0
- leaveq
- ret
- ENDPROC(do_softirq_own_stack)
- #ifdef CONFIG_XEN
- idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
- /*
- * A note on the "critical region" in our callback handler.
- * We want to avoid stacking callback handlers due to events occurring
- * during handling of the last event. To do this, we keep events disabled
- * until we've done all processing. HOWEVER, we must enable events before
- * popping the stack frame (can't be done atomically) and so it would still
- * be possible to get enough handler activations to overflow the stack.
- * Although unlikely, bugs of that kind are hard to track down, so we'd
- * like to avoid the possibility.
- * So, on entry to the handler we detect whether we interrupted an
- * existing activation in its critical region -- if so, we pop the current
- * activation and restart the handler using the previous one.
- */
- ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
- /*
- * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
- * see the correct pointer to the pt_regs
- */
- UNWIND_HINT_FUNC
- movq %rdi, %rsp /* we don't return, adjust the stack frame */
- UNWIND_HINT_REGS
- ENTER_IRQ_STACK old_rsp=%r10
- call xen_evtchn_do_upcall
- LEAVE_IRQ_STACK
- #ifndef CONFIG_PREEMPT
- call xen_maybe_preempt_hcall
- #endif
- jmp error_exit
- END(xen_do_hypervisor_callback)
- /*
- * Hypervisor uses this for application faults while it executes.
- * We get here for two reasons:
- * 1. Fault while reloading DS, ES, FS or GS
- * 2. Fault while executing IRET
- * Category 1 we do not need to fix up as Xen has already reloaded all segment
- * registers that could be reloaded and zeroed the others.
- * Category 2 we fix up by killing the current process. We cannot use the
- * normal Linux return path in this case because if we use the IRET hypercall
- * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
- * We distinguish between categories by comparing each saved segment register
- * with its current contents: any discrepancy means we in category 1.
- */
- ENTRY(xen_failsafe_callback)
- UNWIND_HINT_EMPTY
- movl %ds, %ecx
- cmpw %cx, 0x10(%rsp)
- jne 1f
- movl %es, %ecx
- cmpw %cx, 0x18(%rsp)
- jne 1f
- movl %fs, %ecx
- cmpw %cx, 0x20(%rsp)
- jne 1f
- movl %gs, %ecx
- cmpw %cx, 0x28(%rsp)
- jne 1f
- /* All segments match their saved values => Category 2 (Bad IRET). */
- movq (%rsp), %rcx
- movq 8(%rsp), %r11
- addq $0x30, %rsp
- pushq $0 /* RIP */
- UNWIND_HINT_IRET_REGS offset=8
- jmp general_protection
- 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
- movq (%rsp), %rcx
- movq 8(%rsp), %r11
- addq $0x30, %rsp
- UNWIND_HINT_IRET_REGS
- pushq $-1 /* orig_ax = -1 => not a system call */
- PUSH_AND_CLEAR_REGS
- ENCODE_FRAME_POINTER
- jmp error_exit
- END(xen_failsafe_callback)
- apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
- xen_hvm_callback_vector xen_evtchn_do_upcall
- #endif /* CONFIG_XEN */
- #if IS_ENABLED(CONFIG_HYPERV)
- apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
- hyperv_callback_vector hyperv_vector_handler
- apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
- hyperv_reenlightenment_vector hyperv_reenlightenment_intr
- apicinterrupt3 HYPERV_STIMER0_VECTOR \
- hv_stimer0_callback_vector hv_stimer0_vector_handler
- #endif /* CONFIG_HYPERV */
- idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
- idtentry int3 do_int3 has_error_code=0
- idtentry stack_segment do_stack_segment has_error_code=1
- #ifdef CONFIG_XEN
- idtentry xennmi do_nmi has_error_code=0
- idtentry xendebug do_debug has_error_code=0
- idtentry xenint3 do_int3 has_error_code=0
- #endif
- idtentry general_protection do_general_protection has_error_code=1
- idtentry page_fault do_page_fault has_error_code=1
- #ifdef CONFIG_KVM_GUEST
- idtentry async_page_fault do_async_page_fault has_error_code=1
- #endif
- #ifdef CONFIG_X86_MCE
- idtentry machine_check do_mce has_error_code=0 paranoid=1
- #endif
- /*
- * Save all registers in pt_regs, and switch gs if needed.
- * Use slow, but surefire "are we in kernel?" check.
- * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
- */
- ENTRY(paranoid_entry)
- UNWIND_HINT_FUNC
- cld
- PUSH_AND_CLEAR_REGS save_ret=1
- ENCODE_FRAME_POINTER 8
- movl $1, %ebx
- movl $MSR_GS_BASE, %ecx
- rdmsr
- testl %edx, %edx
- js 1f /* negative -> in kernel */
- SWAPGS
- xorl %ebx, %ebx
- 1:
- SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
- ret
- END(paranoid_entry)
- /*
- * "Paranoid" exit path from exception stack. This is invoked
- * only on return from non-NMI IST interrupts that came
- * from kernel space.
- *
- * We may be returning to very strange contexts (e.g. very early
- * in syscall entry), so checking for preemption here would
- * be complicated. Fortunately, we there's no good reason
- * to try to handle preemption here.
- *
- * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
- */
- ENTRY(paranoid_exit)
- UNWIND_HINT_REGS
- DISABLE_INTERRUPTS(CLBR_ANY)
- TRACE_IRQS_OFF_DEBUG
- testl %ebx, %ebx /* swapgs needed? */
- jnz .Lparanoid_exit_no_swapgs
- TRACE_IRQS_IRETQ
- RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
- SWAPGS_UNSAFE_STACK
- jmp .Lparanoid_exit_restore
- .Lparanoid_exit_no_swapgs:
- TRACE_IRQS_IRETQ_DEBUG
- RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
- .Lparanoid_exit_restore:
- jmp restore_regs_and_return_to_kernel
- END(paranoid_exit)
- /*
- * Save all registers in pt_regs, and switch GS if needed.
- */
- ENTRY(error_entry)
- UNWIND_HINT_FUNC
- cld
- PUSH_AND_CLEAR_REGS save_ret=1
- ENCODE_FRAME_POINTER 8
- testb $3, CS+8(%rsp)
- jz .Lerror_kernelspace
- /*
- * We entered from user mode or we're pretending to have entered
- * from user mode due to an IRET fault.
- */
- SWAPGS
- /* We have user CR3. Change to kernel CR3. */
- SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
- .Lerror_entry_from_usermode_after_swapgs:
- /* Put us onto the real thread stack. */
- popq %r12 /* save return addr in %12 */
- movq %rsp, %rdi /* arg0 = pt_regs pointer */
- call sync_regs
- movq %rax, %rsp /* switch stack */
- ENCODE_FRAME_POINTER
- pushq %r12
- /*
- * We need to tell lockdep that IRQs are off. We can't do this until
- * we fix gsbase, and we should do it before enter_from_user_mode
- * (which can take locks).
- */
- TRACE_IRQS_OFF
- CALL_enter_from_user_mode
- ret
- .Lerror_entry_done:
- TRACE_IRQS_OFF
- ret
- /*
- * There are two places in the kernel that can potentially fault with
- * usergs. Handle them here. B stepping K8s sometimes report a
- * truncated RIP for IRET exceptions returning to compat mode. Check
- * for these here too.
- */
- .Lerror_kernelspace:
- leaq native_irq_return_iret(%rip), %rcx
- cmpq %rcx, RIP+8(%rsp)
- je .Lerror_bad_iret
- movl %ecx, %eax /* zero extend */
- cmpq %rax, RIP+8(%rsp)
- je .Lbstep_iret
- cmpq $.Lgs_change, RIP+8(%rsp)
- jne .Lerror_entry_done
- /*
- * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
- * gsbase and proceed. We'll fix up the exception and land in
- * .Lgs_change's error handler with kernel gsbase.
- */
- SWAPGS
- SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
- jmp .Lerror_entry_done
- .Lbstep_iret:
- /* Fix truncated RIP */
- movq %rcx, RIP+8(%rsp)
- /* fall through */
- .Lerror_bad_iret:
- /*
- * We came from an IRET to user mode, so we have user
- * gsbase and CR3. Switch to kernel gsbase and CR3:
- */
- SWAPGS
- SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
- /*
- * Pretend that the exception came from user mode: set up pt_regs
- * as if we faulted immediately after IRET.
- */
- mov %rsp, %rdi
- call fixup_bad_iret
- mov %rax, %rsp
- jmp .Lerror_entry_from_usermode_after_swapgs
- END(error_entry)
- ENTRY(error_exit)
- UNWIND_HINT_REGS
- DISABLE_INTERRUPTS(CLBR_ANY)
- TRACE_IRQS_OFF
- testb $3, CS(%rsp)
- jz retint_kernel
- jmp retint_user
- END(error_exit)
- /*
- * Runs on exception stack. Xen PV does not go through this path at all,
- * so we can use real assembly here.
- *
- * Registers:
- * %r14: Used to save/restore the CR3 of the interrupted context
- * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
- */
- ENTRY(nmi)
- UNWIND_HINT_IRET_REGS
- /*
- * We allow breakpoints in NMIs. If a breakpoint occurs, then
- * the iretq it performs will take us out of NMI context.
- * This means that we can have nested NMIs where the next
- * NMI is using the top of the stack of the previous NMI. We
- * can't let it execute because the nested NMI will corrupt the
- * stack of the previous NMI. NMI handlers are not re-entrant
- * anyway.
- *
- * To handle this case we do the following:
- * Check the a special location on the stack that contains
- * a variable that is set when NMIs are executing.
- * The interrupted task's stack is also checked to see if it
- * is an NMI stack.
- * If the variable is not set and the stack is not the NMI
- * stack then:
- * o Set the special variable on the stack
- * o Copy the interrupt frame into an "outermost" location on the
- * stack
- * o Copy the interrupt frame into an "iret" location on the stack
- * o Continue processing the NMI
- * If the variable is set or the previous stack is the NMI stack:
- * o Modify the "iret" location to jump to the repeat_nmi
- * o return back to the first NMI
- *
- * Now on exit of the first NMI, we first clear the stack variable
- * The NMI stack will tell any nested NMIs at that point that it is
- * nested. Then we pop the stack normally with iret, and if there was
- * a nested NMI that updated the copy interrupt stack frame, a
- * jump will be made to the repeat_nmi code that will handle the second
- * NMI.
- *
- * However, espfix prevents us from directly returning to userspace
- * with a single IRET instruction. Similarly, IRET to user mode
- * can fault. We therefore handle NMIs from user space like
- * other IST entries.
- */
- ASM_CLAC
- /* Use %rdx as our temp variable throughout */
- pushq %rdx
- testb $3, CS-RIP+8(%rsp)
- jz .Lnmi_from_kernel
- /*
- * NMI from user mode. We need to run on the thread stack, but we
- * can't go through the normal entry paths: NMIs are masked, and
- * we don't want to enable interrupts, because then we'll end
- * up in an awkward situation in which IRQs are on but NMIs
- * are off.
- *
- * We also must not push anything to the stack before switching
- * stacks lest we corrupt the "NMI executing" variable.
- */
- swapgs
- cld
- SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
- movq %rsp, %rdx
- movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
- UNWIND_HINT_IRET_REGS base=%rdx offset=8
- pushq 5*8(%rdx) /* pt_regs->ss */
- pushq 4*8(%rdx) /* pt_regs->rsp */
- pushq 3*8(%rdx) /* pt_regs->flags */
- pushq 2*8(%rdx) /* pt_regs->cs */
- pushq 1*8(%rdx) /* pt_regs->rip */
- UNWIND_HINT_IRET_REGS
- pushq $-1 /* pt_regs->orig_ax */
- PUSH_AND_CLEAR_REGS rdx=(%rdx)
- ENCODE_FRAME_POINTER
- /*
- * At this point we no longer need to worry about stack damage
- * due to nesting -- we're on the normal thread stack and we're
- * done with the NMI stack.
- */
- movq %rsp, %rdi
- movq $-1, %rsi
- call do_nmi
- /*
- * Return back to user mode. We must *not* do the normal exit
- * work, because we don't want to enable interrupts.
- */
- jmp swapgs_restore_regs_and_return_to_usermode
- .Lnmi_from_kernel:
- /*
- * Here's what our stack frame will look like:
- * +---------------------------------------------------------+
- * | original SS |
- * | original Return RSP |
- * | original RFLAGS |
- * | original CS |
- * | original RIP |
- * +---------------------------------------------------------+
- * | temp storage for rdx |
- * +---------------------------------------------------------+
- * | "NMI executing" variable |
- * +---------------------------------------------------------+
- * | iret SS } Copied from "outermost" frame |
- * | iret Return RSP } on each loop iteration; overwritten |
- * | iret RFLAGS } by a nested NMI to force another |
- * | iret CS } iteration if needed. |
- * | iret RIP } |
- * +---------------------------------------------------------+
- * | outermost SS } initialized in first_nmi; |
- * | outermost Return RSP } will not be changed before |
- * | outermost RFLAGS } NMI processing is done. |
- * | outermost CS } Copied to "iret" frame on each |
- * | outermost RIP } iteration. |
- * +---------------------------------------------------------+
- * | pt_regs |
- * +---------------------------------------------------------+
- *
- * The "original" frame is used by hardware. Before re-enabling
- * NMIs, we need to be done with it, and we need to leave enough
- * space for the asm code here.
- *
- * We return by executing IRET while RSP points to the "iret" frame.
- * That will either return for real or it will loop back into NMI
- * processing.
- *
- * The "outermost" frame is copied to the "iret" frame on each
- * iteration of the loop, so each iteration starts with the "iret"
- * frame pointing to the final return target.
- */
- /*
- * Determine whether we're a nested NMI.
- *
- * If we interrupted kernel code between repeat_nmi and
- * end_repeat_nmi, then we are a nested NMI. We must not
- * modify the "iret" frame because it's being written by
- * the outer NMI. That's okay; the outer NMI handler is
- * about to about to call do_nmi anyway, so we can just
- * resume the outer NMI.
- */
- movq $repeat_nmi, %rdx
- cmpq 8(%rsp), %rdx
- ja 1f
- movq $end_repeat_nmi, %rdx
- cmpq 8(%rsp), %rdx
- ja nested_nmi_out
- 1:
- /*
- * Now check "NMI executing". If it's set, then we're nested.
- * This will not detect if we interrupted an outer NMI just
- * before IRET.
- */
- cmpl $1, -8(%rsp)
- je nested_nmi
- /*
- * Now test if the previous stack was an NMI stack. This covers
- * the case where we interrupt an outer NMI after it clears
- * "NMI executing" but before IRET. We need to be careful, though:
- * there is one case in which RSP could point to the NMI stack
- * despite there being no NMI active: naughty userspace controls
- * RSP at the very beginning of the SYSCALL targets. We can
- * pull a fast one on naughty userspace, though: we program
- * SYSCALL to mask DF, so userspace cannot cause DF to be set
- * if it controls the kernel's RSP. We set DF before we clear
- * "NMI executing".
- */
- lea 6*8(%rsp), %rdx
- /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
- cmpq %rdx, 4*8(%rsp)
- /* If the stack pointer is above the NMI stack, this is a normal NMI */
- ja first_nmi
- subq $EXCEPTION_STKSZ, %rdx
- cmpq %rdx, 4*8(%rsp)
- /* If it is below the NMI stack, it is a normal NMI */
- jb first_nmi
- /* Ah, it is within the NMI stack. */
- testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
- jz first_nmi /* RSP was user controlled. */
- /* This is a nested NMI. */
- nested_nmi:
- /*
- * Modify the "iret" frame to point to repeat_nmi, forcing another
- * iteration of NMI handling.
- */
- subq $8, %rsp
- leaq -10*8(%rsp), %rdx
- pushq $__KERNEL_DS
- pushq %rdx
- pushfq
- pushq $__KERNEL_CS
- pushq $repeat_nmi
- /* Put stack back */
- addq $(6*8), %rsp
- nested_nmi_out:
- popq %rdx
- /* We are returning to kernel mode, so this cannot result in a fault. */
- iretq
- first_nmi:
- /* Restore rdx. */
- movq (%rsp), %rdx
- /* Make room for "NMI executing". */
- pushq $0
- /* Leave room for the "iret" frame */
- subq $(5*8), %rsp
- /* Copy the "original" frame to the "outermost" frame */
- .rept 5
- pushq 11*8(%rsp)
- .endr
- UNWIND_HINT_IRET_REGS
- /* Everything up to here is safe from nested NMIs */
- #ifdef CONFIG_DEBUG_ENTRY
- /*
- * For ease of testing, unmask NMIs right away. Disabled by
- * default because IRET is very expensive.
- */
- pushq $0 /* SS */
- pushq %rsp /* RSP (minus 8 because of the previous push) */
- addq $8, (%rsp) /* Fix up RSP */
- pushfq /* RFLAGS */
- pushq $__KERNEL_CS /* CS */
- pushq $1f /* RIP */
- iretq /* continues at repeat_nmi below */
- UNWIND_HINT_IRET_REGS
- 1:
- #endif
- repeat_nmi:
- /*
- * If there was a nested NMI, the first NMI's iret will return
- * here. But NMIs are still enabled and we can take another
- * nested NMI. The nested NMI checks the interrupted RIP to see
- * if it is between repeat_nmi and end_repeat_nmi, and if so
- * it will just return, as we are about to repeat an NMI anyway.
- * This makes it safe to copy to the stack frame that a nested
- * NMI will update.
- *
- * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
- * we're repeating an NMI, gsbase has the same value that it had on
- * the first iteration. paranoid_entry will load the kernel
- * gsbase if needed before we call do_nmi. "NMI executing"
- * is zero.
- */
- movq $1, 10*8(%rsp) /* Set "NMI executing". */
- /*
- * Copy the "outermost" frame to the "iret" frame. NMIs that nest
- * here must not modify the "iret" frame while we're writing to
- * it or it will end up containing garbage.
- */
- addq $(10*8), %rsp
- .rept 5
- pushq -6*8(%rsp)
- .endr
- subq $(5*8), %rsp
- end_repeat_nmi:
- /*
- * Everything below this point can be preempted by a nested NMI.
- * If this happens, then the inner NMI will change the "iret"
- * frame to point back to repeat_nmi.
- */
- pushq $-1 /* ORIG_RAX: no syscall to restart */
- /*
- * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
- * as we should not be calling schedule in NMI context.
- * Even with normal interrupts enabled. An NMI should not be
- * setting NEED_RESCHED or anything that normal interrupts and
- * exceptions might do.
- */
- call paranoid_entry
- UNWIND_HINT_REGS
- /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
- movq %rsp, %rdi
- movq $-1, %rsi
- call do_nmi
- RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
- testl %ebx, %ebx /* swapgs needed? */
- jnz nmi_restore
- nmi_swapgs:
- SWAPGS_UNSAFE_STACK
- nmi_restore:
- POP_REGS
- /*
- * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
- * at the "iret" frame.
- */
- addq $6*8, %rsp
- /*
- * Clear "NMI executing". Set DF first so that we can easily
- * distinguish the remaining code between here and IRET from
- * the SYSCALL entry and exit paths.
- *
- * We arguably should just inspect RIP instead, but I (Andy) wrote
- * this code when I had the misapprehension that Xen PV supported
- * NMIs, and Xen PV would break that approach.
- */
- std
- movq $0, 5*8(%rsp) /* clear "NMI executing" */
- /*
- * iretq reads the "iret" frame and exits the NMI stack in a
- * single instruction. We are returning to kernel mode, so this
- * cannot result in a fault. Similarly, we don't need to worry
- * about espfix64 on the way back to kernel mode.
- */
- iretq
- END(nmi)
- ENTRY(ignore_sysret)
- UNWIND_HINT_EMPTY
- mov $-ENOSYS, %eax
- sysret
- END(ignore_sysret)
- ENTRY(rewind_stack_do_exit)
- UNWIND_HINT_FUNC
- /* Prevent any naive code from trying to unwind to our caller. */
- xorl %ebp, %ebp
- movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
- leaq -PTREGS_SIZE(%rax), %rsp
- UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
- call do_exit
- END(rewind_stack_do_exit)
|