af_key.c 101 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <linux/slab.h>
  29. #include <net/net_namespace.h>
  30. #include <net/netns/generic.h>
  31. #include <net/xfrm.h>
  32. #include <net/sock.h>
  33. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  34. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  35. static int pfkey_net_id __read_mostly;
  36. struct netns_pfkey {
  37. /* List of all pfkey sockets. */
  38. struct hlist_head table;
  39. atomic_t socks_nr;
  40. };
  41. static DEFINE_MUTEX(pfkey_mutex);
  42. #define DUMMY_MARK 0
  43. static const struct xfrm_mark dummy_mark = {0, 0};
  44. struct pfkey_sock {
  45. /* struct sock must be the first member of struct pfkey_sock */
  46. struct sock sk;
  47. int registered;
  48. int promisc;
  49. struct {
  50. uint8_t msg_version;
  51. uint32_t msg_portid;
  52. int (*dump)(struct pfkey_sock *sk);
  53. void (*done)(struct pfkey_sock *sk);
  54. union {
  55. struct xfrm_policy_walk policy;
  56. struct xfrm_state_walk state;
  57. } u;
  58. struct sk_buff *skb;
  59. } dump;
  60. };
  61. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  62. {
  63. return (struct pfkey_sock *)sk;
  64. }
  65. static int pfkey_can_dump(const struct sock *sk)
  66. {
  67. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  68. return 1;
  69. return 0;
  70. }
  71. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  72. {
  73. if (pfk->dump.dump) {
  74. if (pfk->dump.skb) {
  75. kfree_skb(pfk->dump.skb);
  76. pfk->dump.skb = NULL;
  77. }
  78. pfk->dump.done(pfk);
  79. pfk->dump.dump = NULL;
  80. pfk->dump.done = NULL;
  81. }
  82. }
  83. static void pfkey_sock_destruct(struct sock *sk)
  84. {
  85. struct net *net = sock_net(sk);
  86. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  87. pfkey_terminate_dump(pfkey_sk(sk));
  88. skb_queue_purge(&sk->sk_receive_queue);
  89. if (!sock_flag(sk, SOCK_DEAD)) {
  90. pr_err("Attempt to release alive pfkey socket: %p\n", sk);
  91. return;
  92. }
  93. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  94. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  95. atomic_dec(&net_pfkey->socks_nr);
  96. }
  97. static const struct proto_ops pfkey_ops;
  98. static void pfkey_insert(struct sock *sk)
  99. {
  100. struct net *net = sock_net(sk);
  101. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  102. mutex_lock(&pfkey_mutex);
  103. sk_add_node_rcu(sk, &net_pfkey->table);
  104. mutex_unlock(&pfkey_mutex);
  105. }
  106. static void pfkey_remove(struct sock *sk)
  107. {
  108. mutex_lock(&pfkey_mutex);
  109. sk_del_node_init_rcu(sk);
  110. mutex_unlock(&pfkey_mutex);
  111. }
  112. static struct proto key_proto = {
  113. .name = "KEY",
  114. .owner = THIS_MODULE,
  115. .obj_size = sizeof(struct pfkey_sock),
  116. };
  117. static int pfkey_create(struct net *net, struct socket *sock, int protocol,
  118. int kern)
  119. {
  120. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  121. struct sock *sk;
  122. int err;
  123. if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
  124. return -EPERM;
  125. if (sock->type != SOCK_RAW)
  126. return -ESOCKTNOSUPPORT;
  127. if (protocol != PF_KEY_V2)
  128. return -EPROTONOSUPPORT;
  129. err = -ENOMEM;
  130. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  131. if (sk == NULL)
  132. goto out;
  133. sock->ops = &pfkey_ops;
  134. sock_init_data(sock, sk);
  135. sk->sk_family = PF_KEY;
  136. sk->sk_destruct = pfkey_sock_destruct;
  137. atomic_inc(&net_pfkey->socks_nr);
  138. pfkey_insert(sk);
  139. return 0;
  140. out:
  141. return err;
  142. }
  143. static int pfkey_release(struct socket *sock)
  144. {
  145. struct sock *sk = sock->sk;
  146. if (!sk)
  147. return 0;
  148. pfkey_remove(sk);
  149. sock_orphan(sk);
  150. sock->sk = NULL;
  151. skb_queue_purge(&sk->sk_write_queue);
  152. synchronize_rcu();
  153. sock_put(sk);
  154. return 0;
  155. }
  156. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  157. gfp_t allocation, struct sock *sk)
  158. {
  159. int err = -ENOBUFS;
  160. sock_hold(sk);
  161. if (*skb2 == NULL) {
  162. if (atomic_read(&skb->users) != 1) {
  163. *skb2 = skb_clone(skb, allocation);
  164. } else {
  165. *skb2 = skb;
  166. atomic_inc(&skb->users);
  167. }
  168. }
  169. if (*skb2 != NULL) {
  170. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  171. skb_set_owner_r(*skb2, sk);
  172. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  173. sk->sk_data_ready(sk);
  174. *skb2 = NULL;
  175. err = 0;
  176. }
  177. }
  178. sock_put(sk);
  179. return err;
  180. }
  181. /* Send SKB to all pfkey sockets matching selected criteria. */
  182. #define BROADCAST_ALL 0
  183. #define BROADCAST_ONE 1
  184. #define BROADCAST_REGISTERED 2
  185. #define BROADCAST_PROMISC_ONLY 4
  186. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  187. int broadcast_flags, struct sock *one_sk,
  188. struct net *net)
  189. {
  190. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  191. struct sock *sk;
  192. struct sk_buff *skb2 = NULL;
  193. int err = -ESRCH;
  194. /* XXX Do we need something like netlink_overrun? I think
  195. * XXX PF_KEY socket apps will not mind current behavior.
  196. */
  197. if (!skb)
  198. return -ENOMEM;
  199. rcu_read_lock();
  200. sk_for_each_rcu(sk, &net_pfkey->table) {
  201. struct pfkey_sock *pfk = pfkey_sk(sk);
  202. int err2;
  203. /* Yes, it means that if you are meant to receive this
  204. * pfkey message you receive it twice as promiscuous
  205. * socket.
  206. */
  207. if (pfk->promisc)
  208. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  209. /* the exact target will be processed later */
  210. if (sk == one_sk)
  211. continue;
  212. if (broadcast_flags != BROADCAST_ALL) {
  213. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  214. continue;
  215. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  216. !pfk->registered)
  217. continue;
  218. if (broadcast_flags & BROADCAST_ONE)
  219. continue;
  220. }
  221. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  222. /* Error is cleare after succecful sending to at least one
  223. * registered KM */
  224. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  225. err = err2;
  226. }
  227. rcu_read_unlock();
  228. if (one_sk != NULL)
  229. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  230. kfree_skb(skb2);
  231. kfree_skb(skb);
  232. return err;
  233. }
  234. static int pfkey_do_dump(struct pfkey_sock *pfk)
  235. {
  236. struct sadb_msg *hdr;
  237. int rc;
  238. rc = pfk->dump.dump(pfk);
  239. if (rc == -ENOBUFS)
  240. return 0;
  241. if (pfk->dump.skb) {
  242. if (!pfkey_can_dump(&pfk->sk))
  243. return 0;
  244. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  245. hdr->sadb_msg_seq = 0;
  246. hdr->sadb_msg_errno = rc;
  247. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  248. &pfk->sk, sock_net(&pfk->sk));
  249. pfk->dump.skb = NULL;
  250. }
  251. pfkey_terminate_dump(pfk);
  252. return rc;
  253. }
  254. static inline void pfkey_hdr_dup(struct sadb_msg *new,
  255. const struct sadb_msg *orig)
  256. {
  257. *new = *orig;
  258. }
  259. static int pfkey_error(const struct sadb_msg *orig, int err, struct sock *sk)
  260. {
  261. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  262. struct sadb_msg *hdr;
  263. if (!skb)
  264. return -ENOBUFS;
  265. /* Woe be to the platform trying to support PFKEY yet
  266. * having normal errnos outside the 1-255 range, inclusive.
  267. */
  268. err = -err;
  269. if (err == ERESTARTSYS ||
  270. err == ERESTARTNOHAND ||
  271. err == ERESTARTNOINTR)
  272. err = EINTR;
  273. if (err >= 512)
  274. err = EINVAL;
  275. BUG_ON(err <= 0 || err >= 256);
  276. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  277. pfkey_hdr_dup(hdr, orig);
  278. hdr->sadb_msg_errno = (uint8_t) err;
  279. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  280. sizeof(uint64_t));
  281. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk));
  282. return 0;
  283. }
  284. static const u8 sadb_ext_min_len[] = {
  285. [SADB_EXT_RESERVED] = (u8) 0,
  286. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  287. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  288. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  289. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  290. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  291. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  292. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  293. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  294. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  295. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  296. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  297. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  298. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  299. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  300. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  301. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  302. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  303. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  304. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  305. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  306. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  307. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  308. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  309. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  310. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  311. [SADB_X_EXT_FILTER] = (u8) sizeof(struct sadb_x_filter),
  312. };
  313. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  314. static int verify_address_len(const void *p)
  315. {
  316. const struct sadb_address *sp = p;
  317. const struct sockaddr *addr = (const struct sockaddr *)(sp + 1);
  318. const struct sockaddr_in *sin;
  319. #if IS_ENABLED(CONFIG_IPV6)
  320. const struct sockaddr_in6 *sin6;
  321. #endif
  322. int len;
  323. switch (addr->sa_family) {
  324. case AF_INET:
  325. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  326. if (sp->sadb_address_len != len ||
  327. sp->sadb_address_prefixlen > 32)
  328. return -EINVAL;
  329. break;
  330. #if IS_ENABLED(CONFIG_IPV6)
  331. case AF_INET6:
  332. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  333. if (sp->sadb_address_len != len ||
  334. sp->sadb_address_prefixlen > 128)
  335. return -EINVAL;
  336. break;
  337. #endif
  338. default:
  339. /* It is user using kernel to keep track of security
  340. * associations for another protocol, such as
  341. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  342. * lengths.
  343. *
  344. * XXX Actually, association/policy database is not yet
  345. * XXX able to cope with arbitrary sockaddr families.
  346. * XXX When it can, remove this -EINVAL. -DaveM
  347. */
  348. return -EINVAL;
  349. }
  350. return 0;
  351. }
  352. static inline int pfkey_sec_ctx_len(const struct sadb_x_sec_ctx *sec_ctx)
  353. {
  354. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  355. sec_ctx->sadb_x_ctx_len,
  356. sizeof(uint64_t));
  357. }
  358. static inline int verify_sec_ctx_len(const void *p)
  359. {
  360. const struct sadb_x_sec_ctx *sec_ctx = p;
  361. int len = sec_ctx->sadb_x_ctx_len;
  362. if (len > PAGE_SIZE)
  363. return -EINVAL;
  364. len = pfkey_sec_ctx_len(sec_ctx);
  365. if (sec_ctx->sadb_x_sec_len != len)
  366. return -EINVAL;
  367. return 0;
  368. }
  369. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(const struct sadb_x_sec_ctx *sec_ctx,
  370. gfp_t gfp)
  371. {
  372. struct xfrm_user_sec_ctx *uctx = NULL;
  373. int ctx_size = sec_ctx->sadb_x_ctx_len;
  374. uctx = kmalloc((sizeof(*uctx)+ctx_size), gfp);
  375. if (!uctx)
  376. return NULL;
  377. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  378. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  379. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  380. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  381. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  382. memcpy(uctx + 1, sec_ctx + 1,
  383. uctx->ctx_len);
  384. return uctx;
  385. }
  386. static int present_and_same_family(const struct sadb_address *src,
  387. const struct sadb_address *dst)
  388. {
  389. const struct sockaddr *s_addr, *d_addr;
  390. if (!src || !dst)
  391. return 0;
  392. s_addr = (const struct sockaddr *)(src + 1);
  393. d_addr = (const struct sockaddr *)(dst + 1);
  394. if (s_addr->sa_family != d_addr->sa_family)
  395. return 0;
  396. if (s_addr->sa_family != AF_INET
  397. #if IS_ENABLED(CONFIG_IPV6)
  398. && s_addr->sa_family != AF_INET6
  399. #endif
  400. )
  401. return 0;
  402. return 1;
  403. }
  404. static int parse_exthdrs(struct sk_buff *skb, const struct sadb_msg *hdr, void **ext_hdrs)
  405. {
  406. const char *p = (char *) hdr;
  407. int len = skb->len;
  408. len -= sizeof(*hdr);
  409. p += sizeof(*hdr);
  410. while (len > 0) {
  411. const struct sadb_ext *ehdr = (const struct sadb_ext *) p;
  412. uint16_t ext_type;
  413. int ext_len;
  414. ext_len = ehdr->sadb_ext_len;
  415. ext_len *= sizeof(uint64_t);
  416. ext_type = ehdr->sadb_ext_type;
  417. if (ext_len < sizeof(uint64_t) ||
  418. ext_len > len ||
  419. ext_type == SADB_EXT_RESERVED)
  420. return -EINVAL;
  421. if (ext_type <= SADB_EXT_MAX) {
  422. int min = (int) sadb_ext_min_len[ext_type];
  423. if (ext_len < min)
  424. return -EINVAL;
  425. if (ext_hdrs[ext_type-1] != NULL)
  426. return -EINVAL;
  427. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  428. ext_type == SADB_EXT_ADDRESS_DST ||
  429. ext_type == SADB_EXT_ADDRESS_PROXY ||
  430. ext_type == SADB_X_EXT_NAT_T_OA) {
  431. if (verify_address_len(p))
  432. return -EINVAL;
  433. }
  434. if (ext_type == SADB_X_EXT_SEC_CTX) {
  435. if (verify_sec_ctx_len(p))
  436. return -EINVAL;
  437. }
  438. ext_hdrs[ext_type-1] = (void *) p;
  439. }
  440. p += ext_len;
  441. len -= ext_len;
  442. }
  443. return 0;
  444. }
  445. static uint16_t
  446. pfkey_satype2proto(uint8_t satype)
  447. {
  448. switch (satype) {
  449. case SADB_SATYPE_UNSPEC:
  450. return IPSEC_PROTO_ANY;
  451. case SADB_SATYPE_AH:
  452. return IPPROTO_AH;
  453. case SADB_SATYPE_ESP:
  454. return IPPROTO_ESP;
  455. case SADB_X_SATYPE_IPCOMP:
  456. return IPPROTO_COMP;
  457. default:
  458. return 0;
  459. }
  460. /* NOTREACHED */
  461. }
  462. static uint8_t
  463. pfkey_proto2satype(uint16_t proto)
  464. {
  465. switch (proto) {
  466. case IPPROTO_AH:
  467. return SADB_SATYPE_AH;
  468. case IPPROTO_ESP:
  469. return SADB_SATYPE_ESP;
  470. case IPPROTO_COMP:
  471. return SADB_X_SATYPE_IPCOMP;
  472. default:
  473. return 0;
  474. }
  475. /* NOTREACHED */
  476. }
  477. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  478. * say specifically 'just raw sockets' as we encode them as 255.
  479. */
  480. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  481. {
  482. return proto == IPSEC_PROTO_ANY ? 0 : proto;
  483. }
  484. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  485. {
  486. return proto ? proto : IPSEC_PROTO_ANY;
  487. }
  488. static inline int pfkey_sockaddr_len(sa_family_t family)
  489. {
  490. switch (family) {
  491. case AF_INET:
  492. return sizeof(struct sockaddr_in);
  493. #if IS_ENABLED(CONFIG_IPV6)
  494. case AF_INET6:
  495. return sizeof(struct sockaddr_in6);
  496. #endif
  497. }
  498. return 0;
  499. }
  500. static
  501. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  502. {
  503. switch (sa->sa_family) {
  504. case AF_INET:
  505. xaddr->a4 =
  506. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  507. return AF_INET;
  508. #if IS_ENABLED(CONFIG_IPV6)
  509. case AF_INET6:
  510. memcpy(xaddr->a6,
  511. &((struct sockaddr_in6 *)sa)->sin6_addr,
  512. sizeof(struct in6_addr));
  513. return AF_INET6;
  514. #endif
  515. }
  516. return 0;
  517. }
  518. static
  519. int pfkey_sadb_addr2xfrm_addr(const struct sadb_address *addr, xfrm_address_t *xaddr)
  520. {
  521. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  522. xaddr);
  523. }
  524. static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, const struct sadb_msg *hdr, void * const *ext_hdrs)
  525. {
  526. const struct sadb_sa *sa;
  527. const struct sadb_address *addr;
  528. uint16_t proto;
  529. unsigned short family;
  530. xfrm_address_t *xaddr;
  531. sa = ext_hdrs[SADB_EXT_SA - 1];
  532. if (sa == NULL)
  533. return NULL;
  534. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  535. if (proto == 0)
  536. return NULL;
  537. /* sadb_address_len should be checked by caller */
  538. addr = ext_hdrs[SADB_EXT_ADDRESS_DST - 1];
  539. if (addr == NULL)
  540. return NULL;
  541. family = ((const struct sockaddr *)(addr + 1))->sa_family;
  542. switch (family) {
  543. case AF_INET:
  544. xaddr = (xfrm_address_t *)&((const struct sockaddr_in *)(addr + 1))->sin_addr;
  545. break;
  546. #if IS_ENABLED(CONFIG_IPV6)
  547. case AF_INET6:
  548. xaddr = (xfrm_address_t *)&((const struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  549. break;
  550. #endif
  551. default:
  552. xaddr = NULL;
  553. }
  554. if (!xaddr)
  555. return NULL;
  556. return xfrm_state_lookup(net, DUMMY_MARK, xaddr, sa->sadb_sa_spi, proto, family);
  557. }
  558. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  559. static int
  560. pfkey_sockaddr_size(sa_family_t family)
  561. {
  562. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  563. }
  564. static inline int pfkey_mode_from_xfrm(int mode)
  565. {
  566. switch(mode) {
  567. case XFRM_MODE_TRANSPORT:
  568. return IPSEC_MODE_TRANSPORT;
  569. case XFRM_MODE_TUNNEL:
  570. return IPSEC_MODE_TUNNEL;
  571. case XFRM_MODE_BEET:
  572. return IPSEC_MODE_BEET;
  573. default:
  574. return -1;
  575. }
  576. }
  577. static inline int pfkey_mode_to_xfrm(int mode)
  578. {
  579. switch(mode) {
  580. case IPSEC_MODE_ANY: /*XXX*/
  581. case IPSEC_MODE_TRANSPORT:
  582. return XFRM_MODE_TRANSPORT;
  583. case IPSEC_MODE_TUNNEL:
  584. return XFRM_MODE_TUNNEL;
  585. case IPSEC_MODE_BEET:
  586. return XFRM_MODE_BEET;
  587. default:
  588. return -1;
  589. }
  590. }
  591. static unsigned int pfkey_sockaddr_fill(const xfrm_address_t *xaddr, __be16 port,
  592. struct sockaddr *sa,
  593. unsigned short family)
  594. {
  595. switch (family) {
  596. case AF_INET:
  597. {
  598. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  599. sin->sin_family = AF_INET;
  600. sin->sin_port = port;
  601. sin->sin_addr.s_addr = xaddr->a4;
  602. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  603. return 32;
  604. }
  605. #if IS_ENABLED(CONFIG_IPV6)
  606. case AF_INET6:
  607. {
  608. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  609. sin6->sin6_family = AF_INET6;
  610. sin6->sin6_port = port;
  611. sin6->sin6_flowinfo = 0;
  612. sin6->sin6_addr = *(struct in6_addr *)xaddr->a6;
  613. sin6->sin6_scope_id = 0;
  614. return 128;
  615. }
  616. #endif
  617. }
  618. return 0;
  619. }
  620. static struct sk_buff *__pfkey_xfrm_state2msg(const struct xfrm_state *x,
  621. int add_keys, int hsc)
  622. {
  623. struct sk_buff *skb;
  624. struct sadb_msg *hdr;
  625. struct sadb_sa *sa;
  626. struct sadb_lifetime *lifetime;
  627. struct sadb_address *addr;
  628. struct sadb_key *key;
  629. struct sadb_x_sa2 *sa2;
  630. struct sadb_x_sec_ctx *sec_ctx;
  631. struct xfrm_sec_ctx *xfrm_ctx;
  632. int ctx_size = 0;
  633. int size;
  634. int auth_key_size = 0;
  635. int encrypt_key_size = 0;
  636. int sockaddr_size;
  637. struct xfrm_encap_tmpl *natt = NULL;
  638. int mode;
  639. /* address family check */
  640. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  641. if (!sockaddr_size)
  642. return ERR_PTR(-EINVAL);
  643. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  644. key(AE), (identity(SD),) (sensitivity)> */
  645. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  646. sizeof(struct sadb_lifetime) +
  647. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  648. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  649. sizeof(struct sadb_address)*2 +
  650. sockaddr_size*2 +
  651. sizeof(struct sadb_x_sa2);
  652. if ((xfrm_ctx = x->security)) {
  653. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  654. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  655. }
  656. /* identity & sensitivity */
  657. if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr, x->props.family))
  658. size += sizeof(struct sadb_address) + sockaddr_size;
  659. if (add_keys) {
  660. if (x->aalg && x->aalg->alg_key_len) {
  661. auth_key_size =
  662. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  663. size += sizeof(struct sadb_key) + auth_key_size;
  664. }
  665. if (x->ealg && x->ealg->alg_key_len) {
  666. encrypt_key_size =
  667. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  668. size += sizeof(struct sadb_key) + encrypt_key_size;
  669. }
  670. }
  671. if (x->encap)
  672. natt = x->encap;
  673. if (natt && natt->encap_type) {
  674. size += sizeof(struct sadb_x_nat_t_type);
  675. size += sizeof(struct sadb_x_nat_t_port);
  676. size += sizeof(struct sadb_x_nat_t_port);
  677. }
  678. skb = alloc_skb(size + 16, GFP_ATOMIC);
  679. if (skb == NULL)
  680. return ERR_PTR(-ENOBUFS);
  681. /* call should fill header later */
  682. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  683. memset(hdr, 0, size); /* XXX do we need this ? */
  684. hdr->sadb_msg_len = size / sizeof(uint64_t);
  685. /* sa */
  686. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  687. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  688. sa->sadb_sa_exttype = SADB_EXT_SA;
  689. sa->sadb_sa_spi = x->id.spi;
  690. sa->sadb_sa_replay = x->props.replay_window;
  691. switch (x->km.state) {
  692. case XFRM_STATE_VALID:
  693. sa->sadb_sa_state = x->km.dying ?
  694. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  695. break;
  696. case XFRM_STATE_ACQ:
  697. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  698. break;
  699. default:
  700. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  701. break;
  702. }
  703. sa->sadb_sa_auth = 0;
  704. if (x->aalg) {
  705. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  706. sa->sadb_sa_auth = (a && a->pfkey_supported) ?
  707. a->desc.sadb_alg_id : 0;
  708. }
  709. sa->sadb_sa_encrypt = 0;
  710. BUG_ON(x->ealg && x->calg);
  711. if (x->ealg) {
  712. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  713. sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
  714. a->desc.sadb_alg_id : 0;
  715. }
  716. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  717. if (x->calg) {
  718. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  719. sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
  720. a->desc.sadb_alg_id : 0;
  721. }
  722. sa->sadb_sa_flags = 0;
  723. if (x->props.flags & XFRM_STATE_NOECN)
  724. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  725. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  726. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  727. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  728. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  729. /* hard time */
  730. if (hsc & 2) {
  731. lifetime = (struct sadb_lifetime *) skb_put(skb,
  732. sizeof(struct sadb_lifetime));
  733. lifetime->sadb_lifetime_len =
  734. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  735. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  736. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  737. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  738. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  739. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  740. }
  741. /* soft time */
  742. if (hsc & 1) {
  743. lifetime = (struct sadb_lifetime *) skb_put(skb,
  744. sizeof(struct sadb_lifetime));
  745. lifetime->sadb_lifetime_len =
  746. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  747. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  748. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  749. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  750. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  751. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  752. }
  753. /* current time */
  754. lifetime = (struct sadb_lifetime *) skb_put(skb,
  755. sizeof(struct sadb_lifetime));
  756. lifetime->sadb_lifetime_len =
  757. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  758. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  759. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  760. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  761. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  762. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  763. /* src address */
  764. addr = (struct sadb_address*) skb_put(skb,
  765. sizeof(struct sadb_address)+sockaddr_size);
  766. addr->sadb_address_len =
  767. (sizeof(struct sadb_address)+sockaddr_size)/
  768. sizeof(uint64_t);
  769. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  770. /* "if the ports are non-zero, then the sadb_address_proto field,
  771. normally zero, MUST be filled in with the transport
  772. protocol's number." - RFC2367 */
  773. addr->sadb_address_proto = 0;
  774. addr->sadb_address_reserved = 0;
  775. addr->sadb_address_prefixlen =
  776. pfkey_sockaddr_fill(&x->props.saddr, 0,
  777. (struct sockaddr *) (addr + 1),
  778. x->props.family);
  779. if (!addr->sadb_address_prefixlen)
  780. BUG();
  781. /* dst address */
  782. addr = (struct sadb_address*) skb_put(skb,
  783. sizeof(struct sadb_address)+sockaddr_size);
  784. addr->sadb_address_len =
  785. (sizeof(struct sadb_address)+sockaddr_size)/
  786. sizeof(uint64_t);
  787. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  788. addr->sadb_address_proto = 0;
  789. addr->sadb_address_reserved = 0;
  790. addr->sadb_address_prefixlen =
  791. pfkey_sockaddr_fill(&x->id.daddr, 0,
  792. (struct sockaddr *) (addr + 1),
  793. x->props.family);
  794. if (!addr->sadb_address_prefixlen)
  795. BUG();
  796. if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr,
  797. x->props.family)) {
  798. addr = (struct sadb_address*) skb_put(skb,
  799. sizeof(struct sadb_address)+sockaddr_size);
  800. addr->sadb_address_len =
  801. (sizeof(struct sadb_address)+sockaddr_size)/
  802. sizeof(uint64_t);
  803. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  804. addr->sadb_address_proto =
  805. pfkey_proto_from_xfrm(x->sel.proto);
  806. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  807. addr->sadb_address_reserved = 0;
  808. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  809. (struct sockaddr *) (addr + 1),
  810. x->props.family);
  811. }
  812. /* auth key */
  813. if (add_keys && auth_key_size) {
  814. key = (struct sadb_key *) skb_put(skb,
  815. sizeof(struct sadb_key)+auth_key_size);
  816. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  817. sizeof(uint64_t);
  818. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  819. key->sadb_key_bits = x->aalg->alg_key_len;
  820. key->sadb_key_reserved = 0;
  821. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  822. }
  823. /* encrypt key */
  824. if (add_keys && encrypt_key_size) {
  825. key = (struct sadb_key *) skb_put(skb,
  826. sizeof(struct sadb_key)+encrypt_key_size);
  827. key->sadb_key_len = (sizeof(struct sadb_key) +
  828. encrypt_key_size) / sizeof(uint64_t);
  829. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  830. key->sadb_key_bits = x->ealg->alg_key_len;
  831. key->sadb_key_reserved = 0;
  832. memcpy(key + 1, x->ealg->alg_key,
  833. (x->ealg->alg_key_len+7)/8);
  834. }
  835. /* sa */
  836. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  837. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  838. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  839. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  840. kfree_skb(skb);
  841. return ERR_PTR(-EINVAL);
  842. }
  843. sa2->sadb_x_sa2_mode = mode;
  844. sa2->sadb_x_sa2_reserved1 = 0;
  845. sa2->sadb_x_sa2_reserved2 = 0;
  846. sa2->sadb_x_sa2_sequence = 0;
  847. sa2->sadb_x_sa2_reqid = x->props.reqid;
  848. if (natt && natt->encap_type) {
  849. struct sadb_x_nat_t_type *n_type;
  850. struct sadb_x_nat_t_port *n_port;
  851. /* type */
  852. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  853. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  854. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  855. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  856. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  857. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  858. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  859. /* source port */
  860. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  861. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  862. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  863. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  864. n_port->sadb_x_nat_t_port_reserved = 0;
  865. /* dest port */
  866. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  867. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  868. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  869. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  870. n_port->sadb_x_nat_t_port_reserved = 0;
  871. }
  872. /* security context */
  873. if (xfrm_ctx) {
  874. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  875. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  876. sec_ctx->sadb_x_sec_len =
  877. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  878. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  879. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  880. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  881. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  882. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  883. xfrm_ctx->ctx_len);
  884. }
  885. return skb;
  886. }
  887. static inline struct sk_buff *pfkey_xfrm_state2msg(const struct xfrm_state *x)
  888. {
  889. struct sk_buff *skb;
  890. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  891. return skb;
  892. }
  893. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(const struct xfrm_state *x,
  894. int hsc)
  895. {
  896. return __pfkey_xfrm_state2msg(x, 0, hsc);
  897. }
  898. static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net,
  899. const struct sadb_msg *hdr,
  900. void * const *ext_hdrs)
  901. {
  902. struct xfrm_state *x;
  903. const struct sadb_lifetime *lifetime;
  904. const struct sadb_sa *sa;
  905. const struct sadb_key *key;
  906. const struct sadb_x_sec_ctx *sec_ctx;
  907. uint16_t proto;
  908. int err;
  909. sa = ext_hdrs[SADB_EXT_SA - 1];
  910. if (!sa ||
  911. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  912. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  913. return ERR_PTR(-EINVAL);
  914. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  915. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  916. return ERR_PTR(-EINVAL);
  917. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  918. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  919. return ERR_PTR(-EINVAL);
  920. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  921. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  922. return ERR_PTR(-EINVAL);
  923. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  924. if (proto == 0)
  925. return ERR_PTR(-EINVAL);
  926. /* default error is no buffer space */
  927. err = -ENOBUFS;
  928. /* RFC2367:
  929. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  930. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  931. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  932. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  933. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  934. not true.
  935. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  936. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  937. */
  938. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  939. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  940. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  941. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  942. return ERR_PTR(-EINVAL);
  943. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  944. if (key != NULL &&
  945. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  946. ((key->sadb_key_bits+7) / 8 == 0 ||
  947. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  948. return ERR_PTR(-EINVAL);
  949. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  950. if (key != NULL &&
  951. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  952. ((key->sadb_key_bits+7) / 8 == 0 ||
  953. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  954. return ERR_PTR(-EINVAL);
  955. x = xfrm_state_alloc(net);
  956. if (x == NULL)
  957. return ERR_PTR(-ENOBUFS);
  958. x->id.proto = proto;
  959. x->id.spi = sa->sadb_sa_spi;
  960. x->props.replay_window = min_t(unsigned int, sa->sadb_sa_replay,
  961. (sizeof(x->replay.bitmap) * 8));
  962. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  963. x->props.flags |= XFRM_STATE_NOECN;
  964. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  965. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  966. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  967. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  968. lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD - 1];
  969. if (lifetime != NULL) {
  970. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  971. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  972. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  973. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  974. }
  975. lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT - 1];
  976. if (lifetime != NULL) {
  977. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  978. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  979. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  980. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  981. }
  982. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  983. if (sec_ctx != NULL) {
  984. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  985. if (!uctx)
  986. goto out;
  987. err = security_xfrm_state_alloc(x, uctx);
  988. kfree(uctx);
  989. if (err)
  990. goto out;
  991. }
  992. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  993. if (sa->sadb_sa_auth) {
  994. int keysize = 0;
  995. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  996. if (!a || !a->pfkey_supported) {
  997. err = -ENOSYS;
  998. goto out;
  999. }
  1000. if (key)
  1001. keysize = (key->sadb_key_bits + 7) / 8;
  1002. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1003. if (!x->aalg)
  1004. goto out;
  1005. strcpy(x->aalg->alg_name, a->name);
  1006. x->aalg->alg_key_len = 0;
  1007. if (key) {
  1008. x->aalg->alg_key_len = key->sadb_key_bits;
  1009. memcpy(x->aalg->alg_key, key+1, keysize);
  1010. }
  1011. x->aalg->alg_trunc_len = a->uinfo.auth.icv_truncbits;
  1012. x->props.aalgo = sa->sadb_sa_auth;
  1013. /* x->algo.flags = sa->sadb_sa_flags; */
  1014. }
  1015. if (sa->sadb_sa_encrypt) {
  1016. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1017. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1018. if (!a || !a->pfkey_supported) {
  1019. err = -ENOSYS;
  1020. goto out;
  1021. }
  1022. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1023. if (!x->calg)
  1024. goto out;
  1025. strcpy(x->calg->alg_name, a->name);
  1026. x->props.calgo = sa->sadb_sa_encrypt;
  1027. } else {
  1028. int keysize = 0;
  1029. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1030. if (!a || !a->pfkey_supported) {
  1031. err = -ENOSYS;
  1032. goto out;
  1033. }
  1034. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1035. if (key)
  1036. keysize = (key->sadb_key_bits + 7) / 8;
  1037. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1038. if (!x->ealg)
  1039. goto out;
  1040. strcpy(x->ealg->alg_name, a->name);
  1041. x->ealg->alg_key_len = 0;
  1042. if (key) {
  1043. x->ealg->alg_key_len = key->sadb_key_bits;
  1044. memcpy(x->ealg->alg_key, key+1, keysize);
  1045. }
  1046. x->props.ealgo = sa->sadb_sa_encrypt;
  1047. }
  1048. }
  1049. /* x->algo.flags = sa->sadb_sa_flags; */
  1050. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1051. &x->props.saddr);
  1052. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1053. &x->id.daddr);
  1054. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1055. const struct sadb_x_sa2 *sa2 = ext_hdrs[SADB_X_EXT_SA2-1];
  1056. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1057. if (mode < 0) {
  1058. err = -EINVAL;
  1059. goto out;
  1060. }
  1061. x->props.mode = mode;
  1062. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1063. }
  1064. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1065. const struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1066. /* Nobody uses this, but we try. */
  1067. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1068. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1069. }
  1070. if (!x->sel.family)
  1071. x->sel.family = x->props.family;
  1072. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1073. const struct sadb_x_nat_t_type* n_type;
  1074. struct xfrm_encap_tmpl *natt;
  1075. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1076. if (!x->encap)
  1077. goto out;
  1078. natt = x->encap;
  1079. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1080. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1081. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1082. const struct sadb_x_nat_t_port *n_port =
  1083. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1084. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1085. }
  1086. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1087. const struct sadb_x_nat_t_port *n_port =
  1088. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1089. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1090. }
  1091. memset(&natt->encap_oa, 0, sizeof(natt->encap_oa));
  1092. }
  1093. err = xfrm_init_state(x);
  1094. if (err)
  1095. goto out;
  1096. x->km.seq = hdr->sadb_msg_seq;
  1097. return x;
  1098. out:
  1099. x->km.state = XFRM_STATE_DEAD;
  1100. xfrm_state_put(x);
  1101. return ERR_PTR(err);
  1102. }
  1103. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1104. {
  1105. return -EOPNOTSUPP;
  1106. }
  1107. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1108. {
  1109. struct net *net = sock_net(sk);
  1110. struct sk_buff *resp_skb;
  1111. struct sadb_x_sa2 *sa2;
  1112. struct sadb_address *saddr, *daddr;
  1113. struct sadb_msg *out_hdr;
  1114. struct sadb_spirange *range;
  1115. struct xfrm_state *x = NULL;
  1116. int mode;
  1117. int err;
  1118. u32 min_spi, max_spi;
  1119. u32 reqid;
  1120. u8 proto;
  1121. unsigned short family;
  1122. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1123. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1124. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1125. return -EINVAL;
  1126. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1127. if (proto == 0)
  1128. return -EINVAL;
  1129. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1130. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1131. if (mode < 0)
  1132. return -EINVAL;
  1133. reqid = sa2->sadb_x_sa2_reqid;
  1134. } else {
  1135. mode = 0;
  1136. reqid = 0;
  1137. }
  1138. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1139. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1140. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1141. switch (family) {
  1142. case AF_INET:
  1143. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1144. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1145. break;
  1146. #if IS_ENABLED(CONFIG_IPV6)
  1147. case AF_INET6:
  1148. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1149. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1150. break;
  1151. #endif
  1152. }
  1153. if (hdr->sadb_msg_seq) {
  1154. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1155. if (x && !xfrm_addr_equal(&x->id.daddr, xdaddr, family)) {
  1156. xfrm_state_put(x);
  1157. x = NULL;
  1158. }
  1159. }
  1160. if (!x)
  1161. x = xfrm_find_acq(net, &dummy_mark, mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1162. if (x == NULL)
  1163. return -ENOENT;
  1164. min_spi = 0x100;
  1165. max_spi = 0x0fffffff;
  1166. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1167. if (range) {
  1168. min_spi = range->sadb_spirange_min;
  1169. max_spi = range->sadb_spirange_max;
  1170. }
  1171. err = verify_spi_info(x->id.proto, min_spi, max_spi);
  1172. if (err) {
  1173. xfrm_state_put(x);
  1174. return err;
  1175. }
  1176. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1177. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1178. if (IS_ERR(resp_skb)) {
  1179. xfrm_state_put(x);
  1180. return PTR_ERR(resp_skb);
  1181. }
  1182. out_hdr = (struct sadb_msg *) resp_skb->data;
  1183. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1184. out_hdr->sadb_msg_type = SADB_GETSPI;
  1185. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1186. out_hdr->sadb_msg_errno = 0;
  1187. out_hdr->sadb_msg_reserved = 0;
  1188. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1189. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1190. xfrm_state_put(x);
  1191. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net);
  1192. return 0;
  1193. }
  1194. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1195. {
  1196. struct net *net = sock_net(sk);
  1197. struct xfrm_state *x;
  1198. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1199. return -EOPNOTSUPP;
  1200. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1201. return 0;
  1202. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1203. if (x == NULL)
  1204. return 0;
  1205. spin_lock_bh(&x->lock);
  1206. if (x->km.state == XFRM_STATE_ACQ)
  1207. x->km.state = XFRM_STATE_ERROR;
  1208. spin_unlock_bh(&x->lock);
  1209. xfrm_state_put(x);
  1210. return 0;
  1211. }
  1212. static inline int event2poltype(int event)
  1213. {
  1214. switch (event) {
  1215. case XFRM_MSG_DELPOLICY:
  1216. return SADB_X_SPDDELETE;
  1217. case XFRM_MSG_NEWPOLICY:
  1218. return SADB_X_SPDADD;
  1219. case XFRM_MSG_UPDPOLICY:
  1220. return SADB_X_SPDUPDATE;
  1221. case XFRM_MSG_POLEXPIRE:
  1222. // return SADB_X_SPDEXPIRE;
  1223. default:
  1224. pr_err("pfkey: Unknown policy event %d\n", event);
  1225. break;
  1226. }
  1227. return 0;
  1228. }
  1229. static inline int event2keytype(int event)
  1230. {
  1231. switch (event) {
  1232. case XFRM_MSG_DELSA:
  1233. return SADB_DELETE;
  1234. case XFRM_MSG_NEWSA:
  1235. return SADB_ADD;
  1236. case XFRM_MSG_UPDSA:
  1237. return SADB_UPDATE;
  1238. case XFRM_MSG_EXPIRE:
  1239. return SADB_EXPIRE;
  1240. default:
  1241. pr_err("pfkey: Unknown SA event %d\n", event);
  1242. break;
  1243. }
  1244. return 0;
  1245. }
  1246. /* ADD/UPD/DEL */
  1247. static int key_notify_sa(struct xfrm_state *x, const struct km_event *c)
  1248. {
  1249. struct sk_buff *skb;
  1250. struct sadb_msg *hdr;
  1251. skb = pfkey_xfrm_state2msg(x);
  1252. if (IS_ERR(skb))
  1253. return PTR_ERR(skb);
  1254. hdr = (struct sadb_msg *) skb->data;
  1255. hdr->sadb_msg_version = PF_KEY_V2;
  1256. hdr->sadb_msg_type = event2keytype(c->event);
  1257. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1258. hdr->sadb_msg_errno = 0;
  1259. hdr->sadb_msg_reserved = 0;
  1260. hdr->sadb_msg_seq = c->seq;
  1261. hdr->sadb_msg_pid = c->portid;
  1262. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x));
  1263. return 0;
  1264. }
  1265. static int pfkey_add(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1266. {
  1267. struct net *net = sock_net(sk);
  1268. struct xfrm_state *x;
  1269. int err;
  1270. struct km_event c;
  1271. x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs);
  1272. if (IS_ERR(x))
  1273. return PTR_ERR(x);
  1274. xfrm_state_hold(x);
  1275. if (hdr->sadb_msg_type == SADB_ADD)
  1276. err = xfrm_state_add(x);
  1277. else
  1278. err = xfrm_state_update(x);
  1279. xfrm_audit_state_add(x, err ? 0 : 1, true);
  1280. if (err < 0) {
  1281. x->km.state = XFRM_STATE_DEAD;
  1282. __xfrm_state_put(x);
  1283. goto out;
  1284. }
  1285. if (hdr->sadb_msg_type == SADB_ADD)
  1286. c.event = XFRM_MSG_NEWSA;
  1287. else
  1288. c.event = XFRM_MSG_UPDSA;
  1289. c.seq = hdr->sadb_msg_seq;
  1290. c.portid = hdr->sadb_msg_pid;
  1291. km_state_notify(x, &c);
  1292. out:
  1293. xfrm_state_put(x);
  1294. return err;
  1295. }
  1296. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1297. {
  1298. struct net *net = sock_net(sk);
  1299. struct xfrm_state *x;
  1300. struct km_event c;
  1301. int err;
  1302. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1303. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1304. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1305. return -EINVAL;
  1306. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1307. if (x == NULL)
  1308. return -ESRCH;
  1309. if ((err = security_xfrm_state_delete(x)))
  1310. goto out;
  1311. if (xfrm_state_kern(x)) {
  1312. err = -EPERM;
  1313. goto out;
  1314. }
  1315. err = xfrm_state_delete(x);
  1316. if (err < 0)
  1317. goto out;
  1318. c.seq = hdr->sadb_msg_seq;
  1319. c.portid = hdr->sadb_msg_pid;
  1320. c.event = XFRM_MSG_DELSA;
  1321. km_state_notify(x, &c);
  1322. out:
  1323. xfrm_audit_state_delete(x, err ? 0 : 1, true);
  1324. xfrm_state_put(x);
  1325. return err;
  1326. }
  1327. static int pfkey_get(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1328. {
  1329. struct net *net = sock_net(sk);
  1330. __u8 proto;
  1331. struct sk_buff *out_skb;
  1332. struct sadb_msg *out_hdr;
  1333. struct xfrm_state *x;
  1334. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1335. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1336. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1337. return -EINVAL;
  1338. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1339. if (x == NULL)
  1340. return -ESRCH;
  1341. out_skb = pfkey_xfrm_state2msg(x);
  1342. proto = x->id.proto;
  1343. xfrm_state_put(x);
  1344. if (IS_ERR(out_skb))
  1345. return PTR_ERR(out_skb);
  1346. out_hdr = (struct sadb_msg *) out_skb->data;
  1347. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1348. out_hdr->sadb_msg_type = SADB_GET;
  1349. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1350. out_hdr->sadb_msg_errno = 0;
  1351. out_hdr->sadb_msg_reserved = 0;
  1352. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1353. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1354. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1355. return 0;
  1356. }
  1357. static struct sk_buff *compose_sadb_supported(const struct sadb_msg *orig,
  1358. gfp_t allocation)
  1359. {
  1360. struct sk_buff *skb;
  1361. struct sadb_msg *hdr;
  1362. int len, auth_len, enc_len, i;
  1363. auth_len = xfrm_count_pfkey_auth_supported();
  1364. if (auth_len) {
  1365. auth_len *= sizeof(struct sadb_alg);
  1366. auth_len += sizeof(struct sadb_supported);
  1367. }
  1368. enc_len = xfrm_count_pfkey_enc_supported();
  1369. if (enc_len) {
  1370. enc_len *= sizeof(struct sadb_alg);
  1371. enc_len += sizeof(struct sadb_supported);
  1372. }
  1373. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1374. skb = alloc_skb(len + 16, allocation);
  1375. if (!skb)
  1376. goto out_put_algs;
  1377. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1378. pfkey_hdr_dup(hdr, orig);
  1379. hdr->sadb_msg_errno = 0;
  1380. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1381. if (auth_len) {
  1382. struct sadb_supported *sp;
  1383. struct sadb_alg *ap;
  1384. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1385. ap = (struct sadb_alg *) (sp + 1);
  1386. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1387. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1388. for (i = 0; ; i++) {
  1389. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1390. if (!aalg)
  1391. break;
  1392. if (!aalg->pfkey_supported)
  1393. continue;
  1394. if (aalg->available)
  1395. *ap++ = aalg->desc;
  1396. }
  1397. }
  1398. if (enc_len) {
  1399. struct sadb_supported *sp;
  1400. struct sadb_alg *ap;
  1401. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1402. ap = (struct sadb_alg *) (sp + 1);
  1403. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1404. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1405. for (i = 0; ; i++) {
  1406. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1407. if (!ealg)
  1408. break;
  1409. if (!ealg->pfkey_supported)
  1410. continue;
  1411. if (ealg->available)
  1412. *ap++ = ealg->desc;
  1413. }
  1414. }
  1415. out_put_algs:
  1416. return skb;
  1417. }
  1418. static int pfkey_register(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1419. {
  1420. struct pfkey_sock *pfk = pfkey_sk(sk);
  1421. struct sk_buff *supp_skb;
  1422. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1423. return -EINVAL;
  1424. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1425. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1426. return -EEXIST;
  1427. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1428. }
  1429. xfrm_probe_algs();
  1430. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1431. if (!supp_skb) {
  1432. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1433. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1434. return -ENOBUFS;
  1435. }
  1436. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk, sock_net(sk));
  1437. return 0;
  1438. }
  1439. static int unicast_flush_resp(struct sock *sk, const struct sadb_msg *ihdr)
  1440. {
  1441. struct sk_buff *skb;
  1442. struct sadb_msg *hdr;
  1443. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1444. if (!skb)
  1445. return -ENOBUFS;
  1446. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1447. memcpy(hdr, ihdr, sizeof(struct sadb_msg));
  1448. hdr->sadb_msg_errno = (uint8_t) 0;
  1449. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1450. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1451. }
  1452. static int key_notify_sa_flush(const struct km_event *c)
  1453. {
  1454. struct sk_buff *skb;
  1455. struct sadb_msg *hdr;
  1456. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1457. if (!skb)
  1458. return -ENOBUFS;
  1459. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1460. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1461. hdr->sadb_msg_type = SADB_FLUSH;
  1462. hdr->sadb_msg_seq = c->seq;
  1463. hdr->sadb_msg_pid = c->portid;
  1464. hdr->sadb_msg_version = PF_KEY_V2;
  1465. hdr->sadb_msg_errno = (uint8_t) 0;
  1466. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1467. hdr->sadb_msg_reserved = 0;
  1468. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  1469. return 0;
  1470. }
  1471. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1472. {
  1473. struct net *net = sock_net(sk);
  1474. unsigned int proto;
  1475. struct km_event c;
  1476. int err, err2;
  1477. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1478. if (proto == 0)
  1479. return -EINVAL;
  1480. err = xfrm_state_flush(net, proto, true);
  1481. err2 = unicast_flush_resp(sk, hdr);
  1482. if (err || err2) {
  1483. if (err == -ESRCH) /* empty table - go quietly */
  1484. err = 0;
  1485. return err ? err : err2;
  1486. }
  1487. c.data.proto = proto;
  1488. c.seq = hdr->sadb_msg_seq;
  1489. c.portid = hdr->sadb_msg_pid;
  1490. c.event = XFRM_MSG_FLUSHSA;
  1491. c.net = net;
  1492. km_state_notify(NULL, &c);
  1493. return 0;
  1494. }
  1495. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1496. {
  1497. struct pfkey_sock *pfk = ptr;
  1498. struct sk_buff *out_skb;
  1499. struct sadb_msg *out_hdr;
  1500. if (!pfkey_can_dump(&pfk->sk))
  1501. return -ENOBUFS;
  1502. out_skb = pfkey_xfrm_state2msg(x);
  1503. if (IS_ERR(out_skb))
  1504. return PTR_ERR(out_skb);
  1505. out_hdr = (struct sadb_msg *) out_skb->data;
  1506. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1507. out_hdr->sadb_msg_type = SADB_DUMP;
  1508. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1509. out_hdr->sadb_msg_errno = 0;
  1510. out_hdr->sadb_msg_reserved = 0;
  1511. out_hdr->sadb_msg_seq = count + 1;
  1512. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  1513. if (pfk->dump.skb)
  1514. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1515. &pfk->sk, sock_net(&pfk->sk));
  1516. pfk->dump.skb = out_skb;
  1517. return 0;
  1518. }
  1519. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1520. {
  1521. struct net *net = sock_net(&pfk->sk);
  1522. return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk);
  1523. }
  1524. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1525. {
  1526. struct net *net = sock_net(&pfk->sk);
  1527. xfrm_state_walk_done(&pfk->dump.u.state, net);
  1528. }
  1529. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1530. {
  1531. u8 proto;
  1532. struct xfrm_address_filter *filter = NULL;
  1533. struct pfkey_sock *pfk = pfkey_sk(sk);
  1534. if (pfk->dump.dump != NULL)
  1535. return -EBUSY;
  1536. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1537. if (proto == 0)
  1538. return -EINVAL;
  1539. if (ext_hdrs[SADB_X_EXT_FILTER - 1]) {
  1540. struct sadb_x_filter *xfilter = ext_hdrs[SADB_X_EXT_FILTER - 1];
  1541. filter = kmalloc(sizeof(*filter), GFP_KERNEL);
  1542. if (filter == NULL)
  1543. return -ENOMEM;
  1544. memcpy(&filter->saddr, &xfilter->sadb_x_filter_saddr,
  1545. sizeof(xfrm_address_t));
  1546. memcpy(&filter->daddr, &xfilter->sadb_x_filter_daddr,
  1547. sizeof(xfrm_address_t));
  1548. filter->family = xfilter->sadb_x_filter_family;
  1549. filter->splen = xfilter->sadb_x_filter_splen;
  1550. filter->dplen = xfilter->sadb_x_filter_dplen;
  1551. }
  1552. pfk->dump.msg_version = hdr->sadb_msg_version;
  1553. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  1554. pfk->dump.dump = pfkey_dump_sa;
  1555. pfk->dump.done = pfkey_dump_sa_done;
  1556. xfrm_state_walk_init(&pfk->dump.u.state, proto, filter);
  1557. return pfkey_do_dump(pfk);
  1558. }
  1559. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1560. {
  1561. struct pfkey_sock *pfk = pfkey_sk(sk);
  1562. int satype = hdr->sadb_msg_satype;
  1563. bool reset_errno = false;
  1564. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1565. reset_errno = true;
  1566. if (satype != 0 && satype != 1)
  1567. return -EINVAL;
  1568. pfk->promisc = satype;
  1569. }
  1570. if (reset_errno && skb_cloned(skb))
  1571. skb = skb_copy(skb, GFP_KERNEL);
  1572. else
  1573. skb = skb_clone(skb, GFP_KERNEL);
  1574. if (reset_errno && skb) {
  1575. struct sadb_msg *new_hdr = (struct sadb_msg *) skb->data;
  1576. new_hdr->sadb_msg_errno = 0;
  1577. }
  1578. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk));
  1579. return 0;
  1580. }
  1581. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1582. {
  1583. int i;
  1584. u32 reqid = *(u32*)ptr;
  1585. for (i=0; i<xp->xfrm_nr; i++) {
  1586. if (xp->xfrm_vec[i].reqid == reqid)
  1587. return -EEXIST;
  1588. }
  1589. return 0;
  1590. }
  1591. static u32 gen_reqid(struct net *net)
  1592. {
  1593. struct xfrm_policy_walk walk;
  1594. u32 start;
  1595. int rc;
  1596. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1597. start = reqid;
  1598. do {
  1599. ++reqid;
  1600. if (reqid == 0)
  1601. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1602. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1603. rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid);
  1604. xfrm_policy_walk_done(&walk, net);
  1605. if (rc != -EEXIST)
  1606. return reqid;
  1607. } while (reqid != start);
  1608. return 0;
  1609. }
  1610. static int
  1611. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1612. {
  1613. struct net *net = xp_net(xp);
  1614. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1615. int mode;
  1616. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1617. return -ELOOP;
  1618. if (rq->sadb_x_ipsecrequest_mode == 0)
  1619. return -EINVAL;
  1620. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1621. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1622. return -EINVAL;
  1623. t->mode = mode;
  1624. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1625. t->optional = 1;
  1626. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1627. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1628. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1629. t->reqid = 0;
  1630. if (!t->reqid && !(t->reqid = gen_reqid(net)))
  1631. return -ENOBUFS;
  1632. }
  1633. /* addresses present only in tunnel mode */
  1634. if (t->mode == XFRM_MODE_TUNNEL) {
  1635. u8 *sa = (u8 *) (rq + 1);
  1636. int family, socklen;
  1637. family = pfkey_sockaddr_extract((struct sockaddr *)sa,
  1638. &t->saddr);
  1639. if (!family)
  1640. return -EINVAL;
  1641. socklen = pfkey_sockaddr_len(family);
  1642. if (pfkey_sockaddr_extract((struct sockaddr *)(sa + socklen),
  1643. &t->id.daddr) != family)
  1644. return -EINVAL;
  1645. t->encap_family = family;
  1646. } else
  1647. t->encap_family = xp->family;
  1648. /* No way to set this via kame pfkey */
  1649. t->allalgs = 1;
  1650. xp->xfrm_nr++;
  1651. return 0;
  1652. }
  1653. static int
  1654. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1655. {
  1656. int err;
  1657. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1658. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1659. if (pol->sadb_x_policy_len * 8 < sizeof(struct sadb_x_policy))
  1660. return -EINVAL;
  1661. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1662. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1663. return err;
  1664. len -= rq->sadb_x_ipsecrequest_len;
  1665. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1666. }
  1667. return 0;
  1668. }
  1669. static inline int pfkey_xfrm_policy2sec_ctx_size(const struct xfrm_policy *xp)
  1670. {
  1671. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1672. if (xfrm_ctx) {
  1673. int len = sizeof(struct sadb_x_sec_ctx);
  1674. len += xfrm_ctx->ctx_len;
  1675. return PFKEY_ALIGN8(len);
  1676. }
  1677. return 0;
  1678. }
  1679. static int pfkey_xfrm_policy2msg_size(const struct xfrm_policy *xp)
  1680. {
  1681. const struct xfrm_tmpl *t;
  1682. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1683. int socklen = 0;
  1684. int i;
  1685. for (i=0; i<xp->xfrm_nr; i++) {
  1686. t = xp->xfrm_vec + i;
  1687. socklen += pfkey_sockaddr_len(t->encap_family);
  1688. }
  1689. return sizeof(struct sadb_msg) +
  1690. (sizeof(struct sadb_lifetime) * 3) +
  1691. (sizeof(struct sadb_address) * 2) +
  1692. (sockaddr_size * 2) +
  1693. sizeof(struct sadb_x_policy) +
  1694. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1695. (socklen * 2) +
  1696. pfkey_xfrm_policy2sec_ctx_size(xp);
  1697. }
  1698. static struct sk_buff * pfkey_xfrm_policy2msg_prep(const struct xfrm_policy *xp)
  1699. {
  1700. struct sk_buff *skb;
  1701. int size;
  1702. size = pfkey_xfrm_policy2msg_size(xp);
  1703. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1704. if (skb == NULL)
  1705. return ERR_PTR(-ENOBUFS);
  1706. return skb;
  1707. }
  1708. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, const struct xfrm_policy *xp, int dir)
  1709. {
  1710. struct sadb_msg *hdr;
  1711. struct sadb_address *addr;
  1712. struct sadb_lifetime *lifetime;
  1713. struct sadb_x_policy *pol;
  1714. struct sadb_x_sec_ctx *sec_ctx;
  1715. struct xfrm_sec_ctx *xfrm_ctx;
  1716. int i;
  1717. int size;
  1718. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1719. int socklen = pfkey_sockaddr_len(xp->family);
  1720. size = pfkey_xfrm_policy2msg_size(xp);
  1721. /* call should fill header later */
  1722. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1723. memset(hdr, 0, size); /* XXX do we need this ? */
  1724. /* src address */
  1725. addr = (struct sadb_address*) skb_put(skb,
  1726. sizeof(struct sadb_address)+sockaddr_size);
  1727. addr->sadb_address_len =
  1728. (sizeof(struct sadb_address)+sockaddr_size)/
  1729. sizeof(uint64_t);
  1730. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1731. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1732. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1733. addr->sadb_address_reserved = 0;
  1734. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1735. xp->selector.sport,
  1736. (struct sockaddr *) (addr + 1),
  1737. xp->family))
  1738. BUG();
  1739. /* dst address */
  1740. addr = (struct sadb_address*) skb_put(skb,
  1741. sizeof(struct sadb_address)+sockaddr_size);
  1742. addr->sadb_address_len =
  1743. (sizeof(struct sadb_address)+sockaddr_size)/
  1744. sizeof(uint64_t);
  1745. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1746. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1747. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1748. addr->sadb_address_reserved = 0;
  1749. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1750. (struct sockaddr *) (addr + 1),
  1751. xp->family);
  1752. /* hard time */
  1753. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1754. sizeof(struct sadb_lifetime));
  1755. lifetime->sadb_lifetime_len =
  1756. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1757. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1758. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1759. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1760. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1761. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1762. /* soft time */
  1763. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1764. sizeof(struct sadb_lifetime));
  1765. lifetime->sadb_lifetime_len =
  1766. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1767. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1768. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1769. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1770. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1771. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1772. /* current time */
  1773. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1774. sizeof(struct sadb_lifetime));
  1775. lifetime->sadb_lifetime_len =
  1776. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1777. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1778. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1779. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1780. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1781. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1782. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1783. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1784. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1785. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1786. if (xp->action == XFRM_POLICY_ALLOW) {
  1787. if (xp->xfrm_nr)
  1788. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1789. else
  1790. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1791. }
  1792. pol->sadb_x_policy_dir = dir+1;
  1793. pol->sadb_x_policy_reserved = 0;
  1794. pol->sadb_x_policy_id = xp->index;
  1795. pol->sadb_x_policy_priority = xp->priority;
  1796. for (i=0; i<xp->xfrm_nr; i++) {
  1797. const struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1798. struct sadb_x_ipsecrequest *rq;
  1799. int req_size;
  1800. int mode;
  1801. req_size = sizeof(struct sadb_x_ipsecrequest);
  1802. if (t->mode == XFRM_MODE_TUNNEL) {
  1803. socklen = pfkey_sockaddr_len(t->encap_family);
  1804. req_size += socklen * 2;
  1805. } else {
  1806. size -= 2*socklen;
  1807. }
  1808. rq = (void*)skb_put(skb, req_size);
  1809. pol->sadb_x_policy_len += req_size/8;
  1810. memset(rq, 0, sizeof(*rq));
  1811. rq->sadb_x_ipsecrequest_len = req_size;
  1812. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1813. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1814. return -EINVAL;
  1815. rq->sadb_x_ipsecrequest_mode = mode;
  1816. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1817. if (t->reqid)
  1818. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1819. if (t->optional)
  1820. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1821. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1822. if (t->mode == XFRM_MODE_TUNNEL) {
  1823. u8 *sa = (void *)(rq + 1);
  1824. pfkey_sockaddr_fill(&t->saddr, 0,
  1825. (struct sockaddr *)sa,
  1826. t->encap_family);
  1827. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1828. (struct sockaddr *) (sa + socklen),
  1829. t->encap_family);
  1830. }
  1831. }
  1832. /* security context */
  1833. if ((xfrm_ctx = xp->security)) {
  1834. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1835. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1836. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1837. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1838. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1839. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1840. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1841. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1842. xfrm_ctx->ctx_len);
  1843. }
  1844. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1845. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1846. return 0;
  1847. }
  1848. static int key_notify_policy(struct xfrm_policy *xp, int dir, const struct km_event *c)
  1849. {
  1850. struct sk_buff *out_skb;
  1851. struct sadb_msg *out_hdr;
  1852. int err;
  1853. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1854. if (IS_ERR(out_skb))
  1855. return PTR_ERR(out_skb);
  1856. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1857. if (err < 0)
  1858. return err;
  1859. out_hdr = (struct sadb_msg *) out_skb->data;
  1860. out_hdr->sadb_msg_version = PF_KEY_V2;
  1861. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1862. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1863. else
  1864. out_hdr->sadb_msg_type = event2poltype(c->event);
  1865. out_hdr->sadb_msg_errno = 0;
  1866. out_hdr->sadb_msg_seq = c->seq;
  1867. out_hdr->sadb_msg_pid = c->portid;
  1868. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp));
  1869. return 0;
  1870. }
  1871. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1872. {
  1873. struct net *net = sock_net(sk);
  1874. int err = 0;
  1875. struct sadb_lifetime *lifetime;
  1876. struct sadb_address *sa;
  1877. struct sadb_x_policy *pol;
  1878. struct xfrm_policy *xp;
  1879. struct km_event c;
  1880. struct sadb_x_sec_ctx *sec_ctx;
  1881. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1882. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1883. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1884. return -EINVAL;
  1885. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1886. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1887. return -EINVAL;
  1888. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1889. return -EINVAL;
  1890. xp = xfrm_policy_alloc(net, GFP_KERNEL);
  1891. if (xp == NULL)
  1892. return -ENOBUFS;
  1893. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1894. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1895. xp->priority = pol->sadb_x_policy_priority;
  1896. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1897. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1898. xp->selector.family = xp->family;
  1899. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1900. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1901. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1902. if (xp->selector.sport)
  1903. xp->selector.sport_mask = htons(0xffff);
  1904. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1905. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1906. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1907. /* Amusing, we set this twice. KAME apps appear to set same value
  1908. * in both addresses.
  1909. */
  1910. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1911. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1912. if (xp->selector.dport)
  1913. xp->selector.dport_mask = htons(0xffff);
  1914. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1915. if (sec_ctx != NULL) {
  1916. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  1917. if (!uctx) {
  1918. err = -ENOBUFS;
  1919. goto out;
  1920. }
  1921. err = security_xfrm_policy_alloc(&xp->security, uctx, GFP_KERNEL);
  1922. kfree(uctx);
  1923. if (err)
  1924. goto out;
  1925. }
  1926. xp->lft.soft_byte_limit = XFRM_INF;
  1927. xp->lft.hard_byte_limit = XFRM_INF;
  1928. xp->lft.soft_packet_limit = XFRM_INF;
  1929. xp->lft.hard_packet_limit = XFRM_INF;
  1930. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1931. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1932. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1933. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1934. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1935. }
  1936. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1937. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1938. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1939. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1940. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1941. }
  1942. xp->xfrm_nr = 0;
  1943. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1944. (err = parse_ipsecrequests(xp, pol)) < 0)
  1945. goto out;
  1946. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1947. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1948. xfrm_audit_policy_add(xp, err ? 0 : 1, true);
  1949. if (err)
  1950. goto out;
  1951. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1952. c.event = XFRM_MSG_UPDPOLICY;
  1953. else
  1954. c.event = XFRM_MSG_NEWPOLICY;
  1955. c.seq = hdr->sadb_msg_seq;
  1956. c.portid = hdr->sadb_msg_pid;
  1957. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1958. xfrm_pol_put(xp);
  1959. return 0;
  1960. out:
  1961. xp->walk.dead = 1;
  1962. xfrm_policy_destroy(xp);
  1963. return err;
  1964. }
  1965. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1966. {
  1967. struct net *net = sock_net(sk);
  1968. int err;
  1969. struct sadb_address *sa;
  1970. struct sadb_x_policy *pol;
  1971. struct xfrm_policy *xp;
  1972. struct xfrm_selector sel;
  1973. struct km_event c;
  1974. struct sadb_x_sec_ctx *sec_ctx;
  1975. struct xfrm_sec_ctx *pol_ctx = NULL;
  1976. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1977. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1978. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1979. return -EINVAL;
  1980. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1981. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1982. return -EINVAL;
  1983. memset(&sel, 0, sizeof(sel));
  1984. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1985. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1986. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1987. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1988. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1989. if (sel.sport)
  1990. sel.sport_mask = htons(0xffff);
  1991. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1992. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1993. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1994. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1995. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1996. if (sel.dport)
  1997. sel.dport_mask = htons(0xffff);
  1998. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1999. if (sec_ctx != NULL) {
  2000. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  2001. if (!uctx)
  2002. return -ENOMEM;
  2003. err = security_xfrm_policy_alloc(&pol_ctx, uctx, GFP_KERNEL);
  2004. kfree(uctx);
  2005. if (err)
  2006. return err;
  2007. }
  2008. xp = xfrm_policy_bysel_ctx(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2009. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  2010. 1, &err);
  2011. security_xfrm_policy_free(pol_ctx);
  2012. if (xp == NULL)
  2013. return -ENOENT;
  2014. xfrm_audit_policy_delete(xp, err ? 0 : 1, true);
  2015. if (err)
  2016. goto out;
  2017. c.seq = hdr->sadb_msg_seq;
  2018. c.portid = hdr->sadb_msg_pid;
  2019. c.data.byid = 0;
  2020. c.event = XFRM_MSG_DELPOLICY;
  2021. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2022. out:
  2023. xfrm_pol_put(xp);
  2024. if (err == 0)
  2025. xfrm_garbage_collect(net);
  2026. return err;
  2027. }
  2028. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, const struct sadb_msg *hdr, int dir)
  2029. {
  2030. int err;
  2031. struct sk_buff *out_skb;
  2032. struct sadb_msg *out_hdr;
  2033. err = 0;
  2034. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2035. if (IS_ERR(out_skb)) {
  2036. err = PTR_ERR(out_skb);
  2037. goto out;
  2038. }
  2039. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2040. if (err < 0)
  2041. goto out;
  2042. out_hdr = (struct sadb_msg *) out_skb->data;
  2043. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2044. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2045. out_hdr->sadb_msg_satype = 0;
  2046. out_hdr->sadb_msg_errno = 0;
  2047. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2048. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2049. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, xp_net(xp));
  2050. err = 0;
  2051. out:
  2052. return err;
  2053. }
  2054. #ifdef CONFIG_NET_KEY_MIGRATE
  2055. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2056. {
  2057. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2058. }
  2059. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  2060. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2061. u16 *family)
  2062. {
  2063. int af, socklen;
  2064. if (ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
  2065. return -EINVAL;
  2066. af = pfkey_sockaddr_extract(sa, saddr);
  2067. if (!af)
  2068. return -EINVAL;
  2069. socklen = pfkey_sockaddr_len(af);
  2070. if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
  2071. daddr) != af)
  2072. return -EINVAL;
  2073. *family = af;
  2074. return 0;
  2075. }
  2076. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2077. struct xfrm_migrate *m)
  2078. {
  2079. int err;
  2080. struct sadb_x_ipsecrequest *rq2;
  2081. int mode;
  2082. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2083. len < rq1->sadb_x_ipsecrequest_len)
  2084. return -EINVAL;
  2085. /* old endoints */
  2086. err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
  2087. rq1->sadb_x_ipsecrequest_len,
  2088. &m->old_saddr, &m->old_daddr,
  2089. &m->old_family);
  2090. if (err)
  2091. return err;
  2092. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2093. len -= rq1->sadb_x_ipsecrequest_len;
  2094. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2095. len < rq2->sadb_x_ipsecrequest_len)
  2096. return -EINVAL;
  2097. /* new endpoints */
  2098. err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
  2099. rq2->sadb_x_ipsecrequest_len,
  2100. &m->new_saddr, &m->new_daddr,
  2101. &m->new_family);
  2102. if (err)
  2103. return err;
  2104. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2105. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2106. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2107. return -EINVAL;
  2108. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2109. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2110. return -EINVAL;
  2111. m->mode = mode;
  2112. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2113. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2114. rq2->sadb_x_ipsecrequest_len));
  2115. }
  2116. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2117. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2118. {
  2119. int i, len, ret, err = -EINVAL;
  2120. u8 dir;
  2121. struct sadb_address *sa;
  2122. struct sadb_x_kmaddress *kma;
  2123. struct sadb_x_policy *pol;
  2124. struct sadb_x_ipsecrequest *rq;
  2125. struct xfrm_selector sel;
  2126. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2127. struct xfrm_kmaddress k;
  2128. struct net *net = sock_net(sk);
  2129. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2130. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2131. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2132. err = -EINVAL;
  2133. goto out;
  2134. }
  2135. kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1];
  2136. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2137. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2138. err = -EINVAL;
  2139. goto out;
  2140. }
  2141. if (kma) {
  2142. /* convert sadb_x_kmaddress to xfrm_kmaddress */
  2143. k.reserved = kma->sadb_x_kmaddress_reserved;
  2144. ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1),
  2145. 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma),
  2146. &k.local, &k.remote, &k.family);
  2147. if (ret < 0) {
  2148. err = ret;
  2149. goto out;
  2150. }
  2151. }
  2152. dir = pol->sadb_x_policy_dir - 1;
  2153. memset(&sel, 0, sizeof(sel));
  2154. /* set source address info of selector */
  2155. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2156. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2157. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2158. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2159. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2160. if (sel.sport)
  2161. sel.sport_mask = htons(0xffff);
  2162. /* set destination address info of selector */
  2163. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1];
  2164. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2165. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2166. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2167. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2168. if (sel.dport)
  2169. sel.dport_mask = htons(0xffff);
  2170. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2171. /* extract ipsecrequests */
  2172. i = 0;
  2173. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2174. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2175. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2176. if (ret < 0) {
  2177. err = ret;
  2178. goto out;
  2179. } else {
  2180. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2181. len -= ret;
  2182. i++;
  2183. }
  2184. }
  2185. if (!i || len > 0) {
  2186. err = -EINVAL;
  2187. goto out;
  2188. }
  2189. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i,
  2190. kma ? &k : NULL, net);
  2191. out:
  2192. return err;
  2193. }
  2194. #else
  2195. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2196. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2197. {
  2198. return -ENOPROTOOPT;
  2199. }
  2200. #endif
  2201. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2202. {
  2203. struct net *net = sock_net(sk);
  2204. unsigned int dir;
  2205. int err = 0, delete;
  2206. struct sadb_x_policy *pol;
  2207. struct xfrm_policy *xp;
  2208. struct km_event c;
  2209. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2210. return -EINVAL;
  2211. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2212. if (dir >= XFRM_POLICY_MAX)
  2213. return -EINVAL;
  2214. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2215. xp = xfrm_policy_byid(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2216. dir, pol->sadb_x_policy_id, delete, &err);
  2217. if (xp == NULL)
  2218. return -ENOENT;
  2219. if (delete) {
  2220. xfrm_audit_policy_delete(xp, err ? 0 : 1, true);
  2221. if (err)
  2222. goto out;
  2223. c.seq = hdr->sadb_msg_seq;
  2224. c.portid = hdr->sadb_msg_pid;
  2225. c.data.byid = 1;
  2226. c.event = XFRM_MSG_DELPOLICY;
  2227. km_policy_notify(xp, dir, &c);
  2228. } else {
  2229. err = key_pol_get_resp(sk, xp, hdr, dir);
  2230. }
  2231. out:
  2232. xfrm_pol_put(xp);
  2233. if (delete && err == 0)
  2234. xfrm_garbage_collect(net);
  2235. return err;
  2236. }
  2237. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2238. {
  2239. struct pfkey_sock *pfk = ptr;
  2240. struct sk_buff *out_skb;
  2241. struct sadb_msg *out_hdr;
  2242. int err;
  2243. if (!pfkey_can_dump(&pfk->sk))
  2244. return -ENOBUFS;
  2245. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2246. if (IS_ERR(out_skb))
  2247. return PTR_ERR(out_skb);
  2248. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2249. if (err < 0)
  2250. return err;
  2251. out_hdr = (struct sadb_msg *) out_skb->data;
  2252. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2253. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2254. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2255. out_hdr->sadb_msg_errno = 0;
  2256. out_hdr->sadb_msg_seq = count + 1;
  2257. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  2258. if (pfk->dump.skb)
  2259. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2260. &pfk->sk, sock_net(&pfk->sk));
  2261. pfk->dump.skb = out_skb;
  2262. return 0;
  2263. }
  2264. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2265. {
  2266. struct net *net = sock_net(&pfk->sk);
  2267. return xfrm_policy_walk(net, &pfk->dump.u.policy, dump_sp, (void *) pfk);
  2268. }
  2269. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2270. {
  2271. struct net *net = sock_net((struct sock *)pfk);
  2272. xfrm_policy_walk_done(&pfk->dump.u.policy, net);
  2273. }
  2274. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2275. {
  2276. struct pfkey_sock *pfk = pfkey_sk(sk);
  2277. if (pfk->dump.dump != NULL)
  2278. return -EBUSY;
  2279. pfk->dump.msg_version = hdr->sadb_msg_version;
  2280. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  2281. pfk->dump.dump = pfkey_dump_sp;
  2282. pfk->dump.done = pfkey_dump_sp_done;
  2283. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2284. return pfkey_do_dump(pfk);
  2285. }
  2286. static int key_notify_policy_flush(const struct km_event *c)
  2287. {
  2288. struct sk_buff *skb_out;
  2289. struct sadb_msg *hdr;
  2290. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2291. if (!skb_out)
  2292. return -ENOBUFS;
  2293. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2294. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2295. hdr->sadb_msg_seq = c->seq;
  2296. hdr->sadb_msg_pid = c->portid;
  2297. hdr->sadb_msg_version = PF_KEY_V2;
  2298. hdr->sadb_msg_errno = (uint8_t) 0;
  2299. hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2300. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2301. hdr->sadb_msg_reserved = 0;
  2302. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  2303. return 0;
  2304. }
  2305. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2306. {
  2307. struct net *net = sock_net(sk);
  2308. struct km_event c;
  2309. int err, err2;
  2310. err = xfrm_policy_flush(net, XFRM_POLICY_TYPE_MAIN, true);
  2311. err2 = unicast_flush_resp(sk, hdr);
  2312. if (err || err2) {
  2313. if (err == -ESRCH) /* empty table - old silent behavior */
  2314. return 0;
  2315. return err;
  2316. }
  2317. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2318. c.event = XFRM_MSG_FLUSHPOLICY;
  2319. c.portid = hdr->sadb_msg_pid;
  2320. c.seq = hdr->sadb_msg_seq;
  2321. c.net = net;
  2322. km_policy_notify(NULL, 0, &c);
  2323. return 0;
  2324. }
  2325. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2326. const struct sadb_msg *hdr, void * const *ext_hdrs);
  2327. static const pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2328. [SADB_RESERVED] = pfkey_reserved,
  2329. [SADB_GETSPI] = pfkey_getspi,
  2330. [SADB_UPDATE] = pfkey_add,
  2331. [SADB_ADD] = pfkey_add,
  2332. [SADB_DELETE] = pfkey_delete,
  2333. [SADB_GET] = pfkey_get,
  2334. [SADB_ACQUIRE] = pfkey_acquire,
  2335. [SADB_REGISTER] = pfkey_register,
  2336. [SADB_EXPIRE] = NULL,
  2337. [SADB_FLUSH] = pfkey_flush,
  2338. [SADB_DUMP] = pfkey_dump,
  2339. [SADB_X_PROMISC] = pfkey_promisc,
  2340. [SADB_X_PCHANGE] = NULL,
  2341. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2342. [SADB_X_SPDADD] = pfkey_spdadd,
  2343. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2344. [SADB_X_SPDGET] = pfkey_spdget,
  2345. [SADB_X_SPDACQUIRE] = NULL,
  2346. [SADB_X_SPDDUMP] = pfkey_spddump,
  2347. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2348. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2349. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2350. [SADB_X_MIGRATE] = pfkey_migrate,
  2351. };
  2352. static int pfkey_process(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr)
  2353. {
  2354. void *ext_hdrs[SADB_EXT_MAX];
  2355. int err;
  2356. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2357. BROADCAST_PROMISC_ONLY, NULL, sock_net(sk));
  2358. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2359. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2360. if (!err) {
  2361. err = -EOPNOTSUPP;
  2362. if (pfkey_funcs[hdr->sadb_msg_type])
  2363. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2364. }
  2365. return err;
  2366. }
  2367. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2368. {
  2369. struct sadb_msg *hdr = NULL;
  2370. if (skb->len < sizeof(*hdr)) {
  2371. *errp = -EMSGSIZE;
  2372. } else {
  2373. hdr = (struct sadb_msg *) skb->data;
  2374. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2375. hdr->sadb_msg_reserved != 0 ||
  2376. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2377. hdr->sadb_msg_type > SADB_MAX)) {
  2378. hdr = NULL;
  2379. *errp = -EINVAL;
  2380. } else if (hdr->sadb_msg_len != (skb->len /
  2381. sizeof(uint64_t)) ||
  2382. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2383. sizeof(uint64_t))) {
  2384. hdr = NULL;
  2385. *errp = -EMSGSIZE;
  2386. } else {
  2387. *errp = 0;
  2388. }
  2389. }
  2390. return hdr;
  2391. }
  2392. static inline int aalg_tmpl_set(const struct xfrm_tmpl *t,
  2393. const struct xfrm_algo_desc *d)
  2394. {
  2395. unsigned int id = d->desc.sadb_alg_id;
  2396. if (id >= sizeof(t->aalgos) * 8)
  2397. return 0;
  2398. return (t->aalgos >> id) & 1;
  2399. }
  2400. static inline int ealg_tmpl_set(const struct xfrm_tmpl *t,
  2401. const struct xfrm_algo_desc *d)
  2402. {
  2403. unsigned int id = d->desc.sadb_alg_id;
  2404. if (id >= sizeof(t->ealgos) * 8)
  2405. return 0;
  2406. return (t->ealgos >> id) & 1;
  2407. }
  2408. static int count_ah_combs(const struct xfrm_tmpl *t)
  2409. {
  2410. int i, sz = 0;
  2411. for (i = 0; ; i++) {
  2412. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2413. if (!aalg)
  2414. break;
  2415. if (!aalg->pfkey_supported)
  2416. continue;
  2417. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2418. sz += sizeof(struct sadb_comb);
  2419. }
  2420. return sz + sizeof(struct sadb_prop);
  2421. }
  2422. static int count_esp_combs(const struct xfrm_tmpl *t)
  2423. {
  2424. int i, k, sz = 0;
  2425. for (i = 0; ; i++) {
  2426. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2427. if (!ealg)
  2428. break;
  2429. if (!ealg->pfkey_supported)
  2430. continue;
  2431. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2432. continue;
  2433. for (k = 1; ; k++) {
  2434. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2435. if (!aalg)
  2436. break;
  2437. if (!aalg->pfkey_supported)
  2438. continue;
  2439. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2440. sz += sizeof(struct sadb_comb);
  2441. }
  2442. }
  2443. return sz + sizeof(struct sadb_prop);
  2444. }
  2445. static void dump_ah_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2446. {
  2447. struct sadb_prop *p;
  2448. int i;
  2449. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2450. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2451. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2452. p->sadb_prop_replay = 32;
  2453. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2454. for (i = 0; ; i++) {
  2455. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2456. if (!aalg)
  2457. break;
  2458. if (!aalg->pfkey_supported)
  2459. continue;
  2460. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2461. struct sadb_comb *c;
  2462. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2463. memset(c, 0, sizeof(*c));
  2464. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2465. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2466. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2467. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2468. c->sadb_comb_hard_addtime = 24*60*60;
  2469. c->sadb_comb_soft_addtime = 20*60*60;
  2470. c->sadb_comb_hard_usetime = 8*60*60;
  2471. c->sadb_comb_soft_usetime = 7*60*60;
  2472. }
  2473. }
  2474. }
  2475. static void dump_esp_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2476. {
  2477. struct sadb_prop *p;
  2478. int i, k;
  2479. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2480. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2481. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2482. p->sadb_prop_replay = 32;
  2483. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2484. for (i=0; ; i++) {
  2485. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2486. if (!ealg)
  2487. break;
  2488. if (!ealg->pfkey_supported)
  2489. continue;
  2490. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2491. continue;
  2492. for (k = 1; ; k++) {
  2493. struct sadb_comb *c;
  2494. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2495. if (!aalg)
  2496. break;
  2497. if (!aalg->pfkey_supported)
  2498. continue;
  2499. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2500. continue;
  2501. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2502. memset(c, 0, sizeof(*c));
  2503. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2504. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2505. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2506. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2507. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2508. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2509. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2510. c->sadb_comb_hard_addtime = 24*60*60;
  2511. c->sadb_comb_soft_addtime = 20*60*60;
  2512. c->sadb_comb_hard_usetime = 8*60*60;
  2513. c->sadb_comb_soft_usetime = 7*60*60;
  2514. }
  2515. }
  2516. }
  2517. static int key_notify_policy_expire(struct xfrm_policy *xp, const struct km_event *c)
  2518. {
  2519. return 0;
  2520. }
  2521. static int key_notify_sa_expire(struct xfrm_state *x, const struct km_event *c)
  2522. {
  2523. struct sk_buff *out_skb;
  2524. struct sadb_msg *out_hdr;
  2525. int hard;
  2526. int hsc;
  2527. hard = c->data.hard;
  2528. if (hard)
  2529. hsc = 2;
  2530. else
  2531. hsc = 1;
  2532. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2533. if (IS_ERR(out_skb))
  2534. return PTR_ERR(out_skb);
  2535. out_hdr = (struct sadb_msg *) out_skb->data;
  2536. out_hdr->sadb_msg_version = PF_KEY_V2;
  2537. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2538. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2539. out_hdr->sadb_msg_errno = 0;
  2540. out_hdr->sadb_msg_reserved = 0;
  2541. out_hdr->sadb_msg_seq = 0;
  2542. out_hdr->sadb_msg_pid = 0;
  2543. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2544. return 0;
  2545. }
  2546. static int pfkey_send_notify(struct xfrm_state *x, const struct km_event *c)
  2547. {
  2548. struct net *net = x ? xs_net(x) : c->net;
  2549. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  2550. if (atomic_read(&net_pfkey->socks_nr) == 0)
  2551. return 0;
  2552. switch (c->event) {
  2553. case XFRM_MSG_EXPIRE:
  2554. return key_notify_sa_expire(x, c);
  2555. case XFRM_MSG_DELSA:
  2556. case XFRM_MSG_NEWSA:
  2557. case XFRM_MSG_UPDSA:
  2558. return key_notify_sa(x, c);
  2559. case XFRM_MSG_FLUSHSA:
  2560. return key_notify_sa_flush(c);
  2561. case XFRM_MSG_NEWAE: /* not yet supported */
  2562. break;
  2563. default:
  2564. pr_err("pfkey: Unknown SA event %d\n", c->event);
  2565. break;
  2566. }
  2567. return 0;
  2568. }
  2569. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
  2570. {
  2571. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2572. return 0;
  2573. switch (c->event) {
  2574. case XFRM_MSG_POLEXPIRE:
  2575. return key_notify_policy_expire(xp, c);
  2576. case XFRM_MSG_DELPOLICY:
  2577. case XFRM_MSG_NEWPOLICY:
  2578. case XFRM_MSG_UPDPOLICY:
  2579. return key_notify_policy(xp, dir, c);
  2580. case XFRM_MSG_FLUSHPOLICY:
  2581. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2582. break;
  2583. return key_notify_policy_flush(c);
  2584. default:
  2585. pr_err("pfkey: Unknown policy event %d\n", c->event);
  2586. break;
  2587. }
  2588. return 0;
  2589. }
  2590. static u32 get_acqseq(void)
  2591. {
  2592. u32 res;
  2593. static atomic_t acqseq;
  2594. do {
  2595. res = atomic_inc_return(&acqseq);
  2596. } while (!res);
  2597. return res;
  2598. }
  2599. static bool pfkey_is_alive(const struct km_event *c)
  2600. {
  2601. struct netns_pfkey *net_pfkey = net_generic(c->net, pfkey_net_id);
  2602. struct sock *sk;
  2603. bool is_alive = false;
  2604. rcu_read_lock();
  2605. sk_for_each_rcu(sk, &net_pfkey->table) {
  2606. if (pfkey_sk(sk)->registered) {
  2607. is_alive = true;
  2608. break;
  2609. }
  2610. }
  2611. rcu_read_unlock();
  2612. return is_alive;
  2613. }
  2614. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp)
  2615. {
  2616. struct sk_buff *skb;
  2617. struct sadb_msg *hdr;
  2618. struct sadb_address *addr;
  2619. struct sadb_x_policy *pol;
  2620. int sockaddr_size;
  2621. int size;
  2622. struct sadb_x_sec_ctx *sec_ctx;
  2623. struct xfrm_sec_ctx *xfrm_ctx;
  2624. int ctx_size = 0;
  2625. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2626. if (!sockaddr_size)
  2627. return -EINVAL;
  2628. size = sizeof(struct sadb_msg) +
  2629. (sizeof(struct sadb_address) * 2) +
  2630. (sockaddr_size * 2) +
  2631. sizeof(struct sadb_x_policy);
  2632. if (x->id.proto == IPPROTO_AH)
  2633. size += count_ah_combs(t);
  2634. else if (x->id.proto == IPPROTO_ESP)
  2635. size += count_esp_combs(t);
  2636. if ((xfrm_ctx = x->security)) {
  2637. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2638. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2639. }
  2640. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2641. if (skb == NULL)
  2642. return -ENOMEM;
  2643. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2644. hdr->sadb_msg_version = PF_KEY_V2;
  2645. hdr->sadb_msg_type = SADB_ACQUIRE;
  2646. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2647. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2648. hdr->sadb_msg_errno = 0;
  2649. hdr->sadb_msg_reserved = 0;
  2650. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2651. hdr->sadb_msg_pid = 0;
  2652. /* src address */
  2653. addr = (struct sadb_address*) skb_put(skb,
  2654. sizeof(struct sadb_address)+sockaddr_size);
  2655. addr->sadb_address_len =
  2656. (sizeof(struct sadb_address)+sockaddr_size)/
  2657. sizeof(uint64_t);
  2658. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2659. addr->sadb_address_proto = 0;
  2660. addr->sadb_address_reserved = 0;
  2661. addr->sadb_address_prefixlen =
  2662. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2663. (struct sockaddr *) (addr + 1),
  2664. x->props.family);
  2665. if (!addr->sadb_address_prefixlen)
  2666. BUG();
  2667. /* dst address */
  2668. addr = (struct sadb_address*) skb_put(skb,
  2669. sizeof(struct sadb_address)+sockaddr_size);
  2670. addr->sadb_address_len =
  2671. (sizeof(struct sadb_address)+sockaddr_size)/
  2672. sizeof(uint64_t);
  2673. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2674. addr->sadb_address_proto = 0;
  2675. addr->sadb_address_reserved = 0;
  2676. addr->sadb_address_prefixlen =
  2677. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2678. (struct sockaddr *) (addr + 1),
  2679. x->props.family);
  2680. if (!addr->sadb_address_prefixlen)
  2681. BUG();
  2682. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2683. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2684. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2685. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2686. pol->sadb_x_policy_dir = XFRM_POLICY_OUT + 1;
  2687. pol->sadb_x_policy_reserved = 0;
  2688. pol->sadb_x_policy_id = xp->index;
  2689. pol->sadb_x_policy_priority = xp->priority;
  2690. /* Set sadb_comb's. */
  2691. if (x->id.proto == IPPROTO_AH)
  2692. dump_ah_combs(skb, t);
  2693. else if (x->id.proto == IPPROTO_ESP)
  2694. dump_esp_combs(skb, t);
  2695. /* security context */
  2696. if (xfrm_ctx) {
  2697. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2698. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2699. sec_ctx->sadb_x_sec_len =
  2700. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2701. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2702. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2703. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2704. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2705. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2706. xfrm_ctx->ctx_len);
  2707. }
  2708. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2709. }
  2710. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2711. u8 *data, int len, int *dir)
  2712. {
  2713. struct net *net = sock_net(sk);
  2714. struct xfrm_policy *xp;
  2715. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2716. struct sadb_x_sec_ctx *sec_ctx;
  2717. switch (sk->sk_family) {
  2718. case AF_INET:
  2719. if (opt != IP_IPSEC_POLICY) {
  2720. *dir = -EOPNOTSUPP;
  2721. return NULL;
  2722. }
  2723. break;
  2724. #if IS_ENABLED(CONFIG_IPV6)
  2725. case AF_INET6:
  2726. if (opt != IPV6_IPSEC_POLICY) {
  2727. *dir = -EOPNOTSUPP;
  2728. return NULL;
  2729. }
  2730. break;
  2731. #endif
  2732. default:
  2733. *dir = -EINVAL;
  2734. return NULL;
  2735. }
  2736. *dir = -EINVAL;
  2737. if (len < sizeof(struct sadb_x_policy) ||
  2738. pol->sadb_x_policy_len*8 > len ||
  2739. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2740. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2741. return NULL;
  2742. xp = xfrm_policy_alloc(net, GFP_ATOMIC);
  2743. if (xp == NULL) {
  2744. *dir = -ENOBUFS;
  2745. return NULL;
  2746. }
  2747. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2748. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2749. xp->lft.soft_byte_limit = XFRM_INF;
  2750. xp->lft.hard_byte_limit = XFRM_INF;
  2751. xp->lft.soft_packet_limit = XFRM_INF;
  2752. xp->lft.hard_packet_limit = XFRM_INF;
  2753. xp->family = sk->sk_family;
  2754. xp->xfrm_nr = 0;
  2755. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2756. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2757. goto out;
  2758. /* security context too */
  2759. if (len >= (pol->sadb_x_policy_len*8 +
  2760. sizeof(struct sadb_x_sec_ctx))) {
  2761. char *p = (char *)pol;
  2762. struct xfrm_user_sec_ctx *uctx;
  2763. p += pol->sadb_x_policy_len*8;
  2764. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2765. if (len < pol->sadb_x_policy_len*8 +
  2766. sec_ctx->sadb_x_sec_len) {
  2767. *dir = -EINVAL;
  2768. goto out;
  2769. }
  2770. if ((*dir = verify_sec_ctx_len(p)))
  2771. goto out;
  2772. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_ATOMIC);
  2773. *dir = security_xfrm_policy_alloc(&xp->security, uctx, GFP_ATOMIC);
  2774. kfree(uctx);
  2775. if (*dir)
  2776. goto out;
  2777. }
  2778. *dir = pol->sadb_x_policy_dir-1;
  2779. return xp;
  2780. out:
  2781. xp->walk.dead = 1;
  2782. xfrm_policy_destroy(xp);
  2783. return NULL;
  2784. }
  2785. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2786. {
  2787. struct sk_buff *skb;
  2788. struct sadb_msg *hdr;
  2789. struct sadb_sa *sa;
  2790. struct sadb_address *addr;
  2791. struct sadb_x_nat_t_port *n_port;
  2792. int sockaddr_size;
  2793. int size;
  2794. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2795. struct xfrm_encap_tmpl *natt = NULL;
  2796. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2797. if (!sockaddr_size)
  2798. return -EINVAL;
  2799. if (!satype)
  2800. return -EINVAL;
  2801. if (!x->encap)
  2802. return -EINVAL;
  2803. natt = x->encap;
  2804. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2805. *
  2806. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2807. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2808. */
  2809. size = sizeof(struct sadb_msg) +
  2810. sizeof(struct sadb_sa) +
  2811. (sizeof(struct sadb_address) * 2) +
  2812. (sockaddr_size * 2) +
  2813. (sizeof(struct sadb_x_nat_t_port) * 2);
  2814. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2815. if (skb == NULL)
  2816. return -ENOMEM;
  2817. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2818. hdr->sadb_msg_version = PF_KEY_V2;
  2819. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2820. hdr->sadb_msg_satype = satype;
  2821. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2822. hdr->sadb_msg_errno = 0;
  2823. hdr->sadb_msg_reserved = 0;
  2824. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2825. hdr->sadb_msg_pid = 0;
  2826. /* SA */
  2827. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2828. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2829. sa->sadb_sa_exttype = SADB_EXT_SA;
  2830. sa->sadb_sa_spi = x->id.spi;
  2831. sa->sadb_sa_replay = 0;
  2832. sa->sadb_sa_state = 0;
  2833. sa->sadb_sa_auth = 0;
  2834. sa->sadb_sa_encrypt = 0;
  2835. sa->sadb_sa_flags = 0;
  2836. /* ADDRESS_SRC (old addr) */
  2837. addr = (struct sadb_address*)
  2838. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2839. addr->sadb_address_len =
  2840. (sizeof(struct sadb_address)+sockaddr_size)/
  2841. sizeof(uint64_t);
  2842. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2843. addr->sadb_address_proto = 0;
  2844. addr->sadb_address_reserved = 0;
  2845. addr->sadb_address_prefixlen =
  2846. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2847. (struct sockaddr *) (addr + 1),
  2848. x->props.family);
  2849. if (!addr->sadb_address_prefixlen)
  2850. BUG();
  2851. /* NAT_T_SPORT (old port) */
  2852. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2853. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2854. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2855. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2856. n_port->sadb_x_nat_t_port_reserved = 0;
  2857. /* ADDRESS_DST (new addr) */
  2858. addr = (struct sadb_address*)
  2859. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2860. addr->sadb_address_len =
  2861. (sizeof(struct sadb_address)+sockaddr_size)/
  2862. sizeof(uint64_t);
  2863. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2864. addr->sadb_address_proto = 0;
  2865. addr->sadb_address_reserved = 0;
  2866. addr->sadb_address_prefixlen =
  2867. pfkey_sockaddr_fill(ipaddr, 0,
  2868. (struct sockaddr *) (addr + 1),
  2869. x->props.family);
  2870. if (!addr->sadb_address_prefixlen)
  2871. BUG();
  2872. /* NAT_T_DPORT (new port) */
  2873. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2874. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2875. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2876. n_port->sadb_x_nat_t_port_port = sport;
  2877. n_port->sadb_x_nat_t_port_reserved = 0;
  2878. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2879. }
  2880. #ifdef CONFIG_NET_KEY_MIGRATE
  2881. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2882. const struct xfrm_selector *sel)
  2883. {
  2884. struct sadb_address *addr;
  2885. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2886. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2887. addr->sadb_address_exttype = type;
  2888. addr->sadb_address_proto = sel->proto;
  2889. addr->sadb_address_reserved = 0;
  2890. switch (type) {
  2891. case SADB_EXT_ADDRESS_SRC:
  2892. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2893. pfkey_sockaddr_fill(&sel->saddr, 0,
  2894. (struct sockaddr *)(addr + 1),
  2895. sel->family);
  2896. break;
  2897. case SADB_EXT_ADDRESS_DST:
  2898. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2899. pfkey_sockaddr_fill(&sel->daddr, 0,
  2900. (struct sockaddr *)(addr + 1),
  2901. sel->family);
  2902. break;
  2903. default:
  2904. return -EINVAL;
  2905. }
  2906. return 0;
  2907. }
  2908. static int set_sadb_kmaddress(struct sk_buff *skb, const struct xfrm_kmaddress *k)
  2909. {
  2910. struct sadb_x_kmaddress *kma;
  2911. u8 *sa;
  2912. int family = k->family;
  2913. int socklen = pfkey_sockaddr_len(family);
  2914. int size_req;
  2915. size_req = (sizeof(struct sadb_x_kmaddress) +
  2916. pfkey_sockaddr_pair_size(family));
  2917. kma = (struct sadb_x_kmaddress *)skb_put(skb, size_req);
  2918. memset(kma, 0, size_req);
  2919. kma->sadb_x_kmaddress_len = size_req / 8;
  2920. kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS;
  2921. kma->sadb_x_kmaddress_reserved = k->reserved;
  2922. sa = (u8 *)(kma + 1);
  2923. if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) ||
  2924. !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family))
  2925. return -EINVAL;
  2926. return 0;
  2927. }
  2928. static int set_ipsecrequest(struct sk_buff *skb,
  2929. uint8_t proto, uint8_t mode, int level,
  2930. uint32_t reqid, uint8_t family,
  2931. const xfrm_address_t *src, const xfrm_address_t *dst)
  2932. {
  2933. struct sadb_x_ipsecrequest *rq;
  2934. u8 *sa;
  2935. int socklen = pfkey_sockaddr_len(family);
  2936. int size_req;
  2937. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2938. pfkey_sockaddr_pair_size(family);
  2939. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2940. memset(rq, 0, size_req);
  2941. rq->sadb_x_ipsecrequest_len = size_req;
  2942. rq->sadb_x_ipsecrequest_proto = proto;
  2943. rq->sadb_x_ipsecrequest_mode = mode;
  2944. rq->sadb_x_ipsecrequest_level = level;
  2945. rq->sadb_x_ipsecrequest_reqid = reqid;
  2946. sa = (u8 *) (rq + 1);
  2947. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2948. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2949. return -EINVAL;
  2950. return 0;
  2951. }
  2952. #endif
  2953. #ifdef CONFIG_NET_KEY_MIGRATE
  2954. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  2955. const struct xfrm_migrate *m, int num_bundles,
  2956. const struct xfrm_kmaddress *k)
  2957. {
  2958. int i;
  2959. int sasize_sel;
  2960. int size = 0;
  2961. int size_pol = 0;
  2962. struct sk_buff *skb;
  2963. struct sadb_msg *hdr;
  2964. struct sadb_x_policy *pol;
  2965. const struct xfrm_migrate *mp;
  2966. if (type != XFRM_POLICY_TYPE_MAIN)
  2967. return 0;
  2968. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  2969. return -EINVAL;
  2970. if (k != NULL) {
  2971. /* addresses for KM */
  2972. size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) +
  2973. pfkey_sockaddr_pair_size(k->family));
  2974. }
  2975. /* selector */
  2976. sasize_sel = pfkey_sockaddr_size(sel->family);
  2977. if (!sasize_sel)
  2978. return -EINVAL;
  2979. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  2980. /* policy info */
  2981. size_pol += sizeof(struct sadb_x_policy);
  2982. /* ipsecrequests */
  2983. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2984. /* old locator pair */
  2985. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2986. pfkey_sockaddr_pair_size(mp->old_family);
  2987. /* new locator pair */
  2988. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2989. pfkey_sockaddr_pair_size(mp->new_family);
  2990. }
  2991. size += sizeof(struct sadb_msg) + size_pol;
  2992. /* alloc buffer */
  2993. skb = alloc_skb(size, GFP_ATOMIC);
  2994. if (skb == NULL)
  2995. return -ENOMEM;
  2996. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  2997. hdr->sadb_msg_version = PF_KEY_V2;
  2998. hdr->sadb_msg_type = SADB_X_MIGRATE;
  2999. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  3000. hdr->sadb_msg_len = size / 8;
  3001. hdr->sadb_msg_errno = 0;
  3002. hdr->sadb_msg_reserved = 0;
  3003. hdr->sadb_msg_seq = 0;
  3004. hdr->sadb_msg_pid = 0;
  3005. /* Addresses to be used by KM for negotiation, if ext is available */
  3006. if (k != NULL && (set_sadb_kmaddress(skb, k) < 0))
  3007. goto err;
  3008. /* selector src */
  3009. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  3010. /* selector dst */
  3011. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  3012. /* policy information */
  3013. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  3014. pol->sadb_x_policy_len = size_pol / 8;
  3015. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  3016. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3017. pol->sadb_x_policy_dir = dir + 1;
  3018. pol->sadb_x_policy_reserved = 0;
  3019. pol->sadb_x_policy_id = 0;
  3020. pol->sadb_x_policy_priority = 0;
  3021. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3022. /* old ipsecrequest */
  3023. int mode = pfkey_mode_from_xfrm(mp->mode);
  3024. if (mode < 0)
  3025. goto err;
  3026. if (set_ipsecrequest(skb, mp->proto, mode,
  3027. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3028. mp->reqid, mp->old_family,
  3029. &mp->old_saddr, &mp->old_daddr) < 0)
  3030. goto err;
  3031. /* new ipsecrequest */
  3032. if (set_ipsecrequest(skb, mp->proto, mode,
  3033. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3034. mp->reqid, mp->new_family,
  3035. &mp->new_saddr, &mp->new_daddr) < 0)
  3036. goto err;
  3037. }
  3038. /* broadcast migrate message to sockets */
  3039. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, &init_net);
  3040. return 0;
  3041. err:
  3042. kfree_skb(skb);
  3043. return -EINVAL;
  3044. }
  3045. #else
  3046. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  3047. const struct xfrm_migrate *m, int num_bundles,
  3048. const struct xfrm_kmaddress *k)
  3049. {
  3050. return -ENOPROTOOPT;
  3051. }
  3052. #endif
  3053. static int pfkey_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
  3054. {
  3055. struct sock *sk = sock->sk;
  3056. struct sk_buff *skb = NULL;
  3057. struct sadb_msg *hdr = NULL;
  3058. int err;
  3059. struct net *net = sock_net(sk);
  3060. err = -EOPNOTSUPP;
  3061. if (msg->msg_flags & MSG_OOB)
  3062. goto out;
  3063. err = -EMSGSIZE;
  3064. if ((unsigned int)len > sk->sk_sndbuf - 32)
  3065. goto out;
  3066. err = -ENOBUFS;
  3067. skb = alloc_skb(len, GFP_KERNEL);
  3068. if (skb == NULL)
  3069. goto out;
  3070. err = -EFAULT;
  3071. if (memcpy_from_msg(skb_put(skb,len), msg, len))
  3072. goto out;
  3073. hdr = pfkey_get_base_msg(skb, &err);
  3074. if (!hdr)
  3075. goto out;
  3076. mutex_lock(&net->xfrm.xfrm_cfg_mutex);
  3077. err = pfkey_process(sk, skb, hdr);
  3078. mutex_unlock(&net->xfrm.xfrm_cfg_mutex);
  3079. out:
  3080. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3081. err = 0;
  3082. kfree_skb(skb);
  3083. return err ? : len;
  3084. }
  3085. static int pfkey_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
  3086. int flags)
  3087. {
  3088. struct sock *sk = sock->sk;
  3089. struct pfkey_sock *pfk = pfkey_sk(sk);
  3090. struct sk_buff *skb;
  3091. int copied, err;
  3092. err = -EINVAL;
  3093. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3094. goto out;
  3095. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3096. if (skb == NULL)
  3097. goto out;
  3098. copied = skb->len;
  3099. if (copied > len) {
  3100. msg->msg_flags |= MSG_TRUNC;
  3101. copied = len;
  3102. }
  3103. skb_reset_transport_header(skb);
  3104. err = skb_copy_datagram_msg(skb, 0, msg, copied);
  3105. if (err)
  3106. goto out_free;
  3107. sock_recv_ts_and_drops(msg, sk, skb);
  3108. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3109. if (pfk->dump.dump != NULL &&
  3110. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3111. pfkey_do_dump(pfk);
  3112. out_free:
  3113. skb_free_datagram(sk, skb);
  3114. out:
  3115. return err;
  3116. }
  3117. static const struct proto_ops pfkey_ops = {
  3118. .family = PF_KEY,
  3119. .owner = THIS_MODULE,
  3120. /* Operations that make no sense on pfkey sockets. */
  3121. .bind = sock_no_bind,
  3122. .connect = sock_no_connect,
  3123. .socketpair = sock_no_socketpair,
  3124. .accept = sock_no_accept,
  3125. .getname = sock_no_getname,
  3126. .ioctl = sock_no_ioctl,
  3127. .listen = sock_no_listen,
  3128. .shutdown = sock_no_shutdown,
  3129. .setsockopt = sock_no_setsockopt,
  3130. .getsockopt = sock_no_getsockopt,
  3131. .mmap = sock_no_mmap,
  3132. .sendpage = sock_no_sendpage,
  3133. /* Now the operations that really occur. */
  3134. .release = pfkey_release,
  3135. .poll = datagram_poll,
  3136. .sendmsg = pfkey_sendmsg,
  3137. .recvmsg = pfkey_recvmsg,
  3138. };
  3139. static const struct net_proto_family pfkey_family_ops = {
  3140. .family = PF_KEY,
  3141. .create = pfkey_create,
  3142. .owner = THIS_MODULE,
  3143. };
  3144. #ifdef CONFIG_PROC_FS
  3145. static int pfkey_seq_show(struct seq_file *f, void *v)
  3146. {
  3147. struct sock *s = sk_entry(v);
  3148. if (v == SEQ_START_TOKEN)
  3149. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3150. else
  3151. seq_printf(f, "%pK %-6d %-6u %-6u %-6u %-6lu\n",
  3152. s,
  3153. atomic_read(&s->sk_refcnt),
  3154. sk_rmem_alloc_get(s),
  3155. sk_wmem_alloc_get(s),
  3156. from_kuid_munged(seq_user_ns(f), sock_i_uid(s)),
  3157. sock_i_ino(s)
  3158. );
  3159. return 0;
  3160. }
  3161. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3162. __acquires(rcu)
  3163. {
  3164. struct net *net = seq_file_net(f);
  3165. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3166. rcu_read_lock();
  3167. return seq_hlist_start_head_rcu(&net_pfkey->table, *ppos);
  3168. }
  3169. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3170. {
  3171. struct net *net = seq_file_net(f);
  3172. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3173. return seq_hlist_next_rcu(v, &net_pfkey->table, ppos);
  3174. }
  3175. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3176. __releases(rcu)
  3177. {
  3178. rcu_read_unlock();
  3179. }
  3180. static const struct seq_operations pfkey_seq_ops = {
  3181. .start = pfkey_seq_start,
  3182. .next = pfkey_seq_next,
  3183. .stop = pfkey_seq_stop,
  3184. .show = pfkey_seq_show,
  3185. };
  3186. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3187. {
  3188. return seq_open_net(inode, file, &pfkey_seq_ops,
  3189. sizeof(struct seq_net_private));
  3190. }
  3191. static const struct file_operations pfkey_proc_ops = {
  3192. .open = pfkey_seq_open,
  3193. .read = seq_read,
  3194. .llseek = seq_lseek,
  3195. .release = seq_release_net,
  3196. };
  3197. static int __net_init pfkey_init_proc(struct net *net)
  3198. {
  3199. struct proc_dir_entry *e;
  3200. e = proc_create("pfkey", 0, net->proc_net, &pfkey_proc_ops);
  3201. if (e == NULL)
  3202. return -ENOMEM;
  3203. return 0;
  3204. }
  3205. static void __net_exit pfkey_exit_proc(struct net *net)
  3206. {
  3207. remove_proc_entry("pfkey", net->proc_net);
  3208. }
  3209. #else
  3210. static inline int pfkey_init_proc(struct net *net)
  3211. {
  3212. return 0;
  3213. }
  3214. static inline void pfkey_exit_proc(struct net *net)
  3215. {
  3216. }
  3217. #endif
  3218. static struct xfrm_mgr pfkeyv2_mgr =
  3219. {
  3220. .id = "pfkeyv2",
  3221. .notify = pfkey_send_notify,
  3222. .acquire = pfkey_send_acquire,
  3223. .compile_policy = pfkey_compile_policy,
  3224. .new_mapping = pfkey_send_new_mapping,
  3225. .notify_policy = pfkey_send_policy_notify,
  3226. .migrate = pfkey_send_migrate,
  3227. .is_alive = pfkey_is_alive,
  3228. };
  3229. static int __net_init pfkey_net_init(struct net *net)
  3230. {
  3231. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3232. int rv;
  3233. INIT_HLIST_HEAD(&net_pfkey->table);
  3234. atomic_set(&net_pfkey->socks_nr, 0);
  3235. rv = pfkey_init_proc(net);
  3236. return rv;
  3237. }
  3238. static void __net_exit pfkey_net_exit(struct net *net)
  3239. {
  3240. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3241. pfkey_exit_proc(net);
  3242. BUG_ON(!hlist_empty(&net_pfkey->table));
  3243. }
  3244. static struct pernet_operations pfkey_net_ops = {
  3245. .init = pfkey_net_init,
  3246. .exit = pfkey_net_exit,
  3247. .id = &pfkey_net_id,
  3248. .size = sizeof(struct netns_pfkey),
  3249. };
  3250. static void __exit ipsec_pfkey_exit(void)
  3251. {
  3252. xfrm_unregister_km(&pfkeyv2_mgr);
  3253. sock_unregister(PF_KEY);
  3254. unregister_pernet_subsys(&pfkey_net_ops);
  3255. proto_unregister(&key_proto);
  3256. }
  3257. static int __init ipsec_pfkey_init(void)
  3258. {
  3259. int err = proto_register(&key_proto, 0);
  3260. if (err != 0)
  3261. goto out;
  3262. err = register_pernet_subsys(&pfkey_net_ops);
  3263. if (err != 0)
  3264. goto out_unregister_key_proto;
  3265. err = sock_register(&pfkey_family_ops);
  3266. if (err != 0)
  3267. goto out_unregister_pernet;
  3268. err = xfrm_register_km(&pfkeyv2_mgr);
  3269. if (err != 0)
  3270. goto out_sock_unregister;
  3271. out:
  3272. return err;
  3273. out_sock_unregister:
  3274. sock_unregister(PF_KEY);
  3275. out_unregister_pernet:
  3276. unregister_pernet_subsys(&pfkey_net_ops);
  3277. out_unregister_key_proto:
  3278. proto_unregister(&key_proto);
  3279. goto out;
  3280. }
  3281. module_init(ipsec_pfkey_init);
  3282. module_exit(ipsec_pfkey_exit);
  3283. MODULE_LICENSE("GPL");
  3284. MODULE_ALIAS_NETPROTO(PF_KEY);