ipmr.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780
  1. /*
  2. * IP multicast routing support for mrouted 3.6/3.8
  3. *
  4. * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
  5. * Linux Consultancy and Custom Driver Development
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Fixes:
  13. * Michael Chastain : Incorrect size of copying.
  14. * Alan Cox : Added the cache manager code
  15. * Alan Cox : Fixed the clone/copy bug and device race.
  16. * Mike McLagan : Routing by source
  17. * Malcolm Beattie : Buffer handling fixes.
  18. * Alexey Kuznetsov : Double buffer free and other fixes.
  19. * SVR Anand : Fixed several multicast bugs and problems.
  20. * Alexey Kuznetsov : Status, optimisations and more.
  21. * Brad Parker : Better behaviour on mrouted upcall
  22. * overflow.
  23. * Carlos Picoto : PIMv1 Support
  24. * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
  25. * Relax this requirement to work with older peers.
  26. *
  27. */
  28. #include <asm/uaccess.h>
  29. #include <linux/types.h>
  30. #include <linux/capability.h>
  31. #include <linux/errno.h>
  32. #include <linux/timer.h>
  33. #include <linux/mm.h>
  34. #include <linux/kernel.h>
  35. #include <linux/fcntl.h>
  36. #include <linux/stat.h>
  37. #include <linux/socket.h>
  38. #include <linux/in.h>
  39. #include <linux/inet.h>
  40. #include <linux/netdevice.h>
  41. #include <linux/inetdevice.h>
  42. #include <linux/igmp.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/mroute.h>
  46. #include <linux/init.h>
  47. #include <linux/if_ether.h>
  48. #include <linux/slab.h>
  49. #include <net/net_namespace.h>
  50. #include <net/ip.h>
  51. #include <net/protocol.h>
  52. #include <linux/skbuff.h>
  53. #include <net/route.h>
  54. #include <net/sock.h>
  55. #include <net/icmp.h>
  56. #include <net/udp.h>
  57. #include <net/raw.h>
  58. #include <linux/notifier.h>
  59. #include <linux/if_arp.h>
  60. #include <linux/netfilter_ipv4.h>
  61. #include <linux/compat.h>
  62. #include <linux/export.h>
  63. #include <net/ip_tunnels.h>
  64. #include <net/checksum.h>
  65. #include <net/netlink.h>
  66. #include <net/fib_rules.h>
  67. #include <linux/netconf.h>
  68. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  69. #define CONFIG_IP_PIMSM 1
  70. #endif
  71. struct mr_table {
  72. struct list_head list;
  73. possible_net_t net;
  74. u32 id;
  75. struct sock __rcu *mroute_sk;
  76. struct timer_list ipmr_expire_timer;
  77. struct list_head mfc_unres_queue;
  78. struct list_head mfc_cache_array[MFC_LINES];
  79. struct vif_device vif_table[MAXVIFS];
  80. int maxvif;
  81. atomic_t cache_resolve_queue_len;
  82. bool mroute_do_assert;
  83. bool mroute_do_pim;
  84. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  85. int mroute_reg_vif_num;
  86. #endif
  87. };
  88. struct ipmr_rule {
  89. struct fib_rule common;
  90. };
  91. struct ipmr_result {
  92. struct mr_table *mrt;
  93. };
  94. /* Big lock, protecting vif table, mrt cache and mroute socket state.
  95. * Note that the changes are semaphored via rtnl_lock.
  96. */
  97. static DEFINE_RWLOCK(mrt_lock);
  98. /*
  99. * Multicast router control variables
  100. */
  101. #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
  102. /* Special spinlock for queue of unresolved entries */
  103. static DEFINE_SPINLOCK(mfc_unres_lock);
  104. /* We return to original Alan's scheme. Hash table of resolved
  105. * entries is changed only in process context and protected
  106. * with weak lock mrt_lock. Queue of unresolved entries is protected
  107. * with strong spinlock mfc_unres_lock.
  108. *
  109. * In this case data path is free of exclusive locks at all.
  110. */
  111. static struct kmem_cache *mrt_cachep __read_mostly;
  112. static struct mr_table *ipmr_new_table(struct net *net, u32 id);
  113. static void ipmr_free_table(struct mr_table *mrt);
  114. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  115. struct sk_buff *skb, struct mfc_cache *cache,
  116. int local);
  117. static int ipmr_cache_report(struct mr_table *mrt,
  118. struct sk_buff *pkt, vifi_t vifi, int assert);
  119. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  120. struct mfc_cache *c, struct rtmsg *rtm);
  121. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  122. int cmd);
  123. static void mroute_clean_tables(struct mr_table *mrt);
  124. static void ipmr_expire_process(unsigned long arg);
  125. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  126. #define ipmr_for_each_table(mrt, net) \
  127. list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
  128. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  129. {
  130. struct mr_table *mrt;
  131. ipmr_for_each_table(mrt, net) {
  132. if (mrt->id == id)
  133. return mrt;
  134. }
  135. return NULL;
  136. }
  137. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  138. struct mr_table **mrt)
  139. {
  140. int err;
  141. struct ipmr_result res;
  142. struct fib_lookup_arg arg = {
  143. .result = &res,
  144. .flags = FIB_LOOKUP_NOREF,
  145. };
  146. err = fib_rules_lookup(net->ipv4.mr_rules_ops,
  147. flowi4_to_flowi(flp4), 0, &arg);
  148. if (err < 0)
  149. return err;
  150. *mrt = res.mrt;
  151. return 0;
  152. }
  153. static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
  154. int flags, struct fib_lookup_arg *arg)
  155. {
  156. struct ipmr_result *res = arg->result;
  157. struct mr_table *mrt;
  158. switch (rule->action) {
  159. case FR_ACT_TO_TBL:
  160. break;
  161. case FR_ACT_UNREACHABLE:
  162. return -ENETUNREACH;
  163. case FR_ACT_PROHIBIT:
  164. return -EACCES;
  165. case FR_ACT_BLACKHOLE:
  166. default:
  167. return -EINVAL;
  168. }
  169. mrt = ipmr_get_table(rule->fr_net, rule->table);
  170. if (mrt == NULL)
  171. return -EAGAIN;
  172. res->mrt = mrt;
  173. return 0;
  174. }
  175. static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
  176. {
  177. return 1;
  178. }
  179. static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
  180. FRA_GENERIC_POLICY,
  181. };
  182. static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
  183. struct fib_rule_hdr *frh, struct nlattr **tb)
  184. {
  185. return 0;
  186. }
  187. static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
  188. struct nlattr **tb)
  189. {
  190. return 1;
  191. }
  192. static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
  193. struct fib_rule_hdr *frh)
  194. {
  195. frh->dst_len = 0;
  196. frh->src_len = 0;
  197. frh->tos = 0;
  198. return 0;
  199. }
  200. static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
  201. .family = RTNL_FAMILY_IPMR,
  202. .rule_size = sizeof(struct ipmr_rule),
  203. .addr_size = sizeof(u32),
  204. .action = ipmr_rule_action,
  205. .match = ipmr_rule_match,
  206. .configure = ipmr_rule_configure,
  207. .compare = ipmr_rule_compare,
  208. .default_pref = fib_default_rule_pref,
  209. .fill = ipmr_rule_fill,
  210. .nlgroup = RTNLGRP_IPV4_RULE,
  211. .policy = ipmr_rule_policy,
  212. .owner = THIS_MODULE,
  213. };
  214. static int __net_init ipmr_rules_init(struct net *net)
  215. {
  216. struct fib_rules_ops *ops;
  217. struct mr_table *mrt;
  218. int err;
  219. ops = fib_rules_register(&ipmr_rules_ops_template, net);
  220. if (IS_ERR(ops))
  221. return PTR_ERR(ops);
  222. INIT_LIST_HEAD(&net->ipv4.mr_tables);
  223. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  224. if (mrt == NULL) {
  225. err = -ENOMEM;
  226. goto err1;
  227. }
  228. err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
  229. if (err < 0)
  230. goto err2;
  231. net->ipv4.mr_rules_ops = ops;
  232. return 0;
  233. err2:
  234. kfree(mrt);
  235. err1:
  236. fib_rules_unregister(ops);
  237. return err;
  238. }
  239. static void __net_exit ipmr_rules_exit(struct net *net)
  240. {
  241. struct mr_table *mrt, *next;
  242. list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
  243. list_del(&mrt->list);
  244. ipmr_free_table(mrt);
  245. }
  246. fib_rules_unregister(net->ipv4.mr_rules_ops);
  247. }
  248. #else
  249. #define ipmr_for_each_table(mrt, net) \
  250. for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
  251. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  252. {
  253. return net->ipv4.mrt;
  254. }
  255. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  256. struct mr_table **mrt)
  257. {
  258. *mrt = net->ipv4.mrt;
  259. return 0;
  260. }
  261. static int __net_init ipmr_rules_init(struct net *net)
  262. {
  263. net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  264. return net->ipv4.mrt ? 0 : -ENOMEM;
  265. }
  266. static void __net_exit ipmr_rules_exit(struct net *net)
  267. {
  268. ipmr_free_table(net->ipv4.mrt);
  269. }
  270. #endif
  271. static struct mr_table *ipmr_new_table(struct net *net, u32 id)
  272. {
  273. struct mr_table *mrt;
  274. unsigned int i;
  275. mrt = ipmr_get_table(net, id);
  276. if (mrt != NULL)
  277. return mrt;
  278. mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
  279. if (mrt == NULL)
  280. return NULL;
  281. write_pnet(&mrt->net, net);
  282. mrt->id = id;
  283. /* Forwarding cache */
  284. for (i = 0; i < MFC_LINES; i++)
  285. INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
  286. INIT_LIST_HEAD(&mrt->mfc_unres_queue);
  287. setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
  288. (unsigned long)mrt);
  289. #ifdef CONFIG_IP_PIMSM
  290. mrt->mroute_reg_vif_num = -1;
  291. #endif
  292. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  293. list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
  294. #endif
  295. return mrt;
  296. }
  297. static void ipmr_free_table(struct mr_table *mrt)
  298. {
  299. del_timer_sync(&mrt->ipmr_expire_timer);
  300. mroute_clean_tables(mrt);
  301. kfree(mrt);
  302. }
  303. /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
  304. static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
  305. {
  306. struct net *net = dev_net(dev);
  307. dev_close(dev);
  308. dev = __dev_get_by_name(net, "tunl0");
  309. if (dev) {
  310. const struct net_device_ops *ops = dev->netdev_ops;
  311. struct ifreq ifr;
  312. struct ip_tunnel_parm p;
  313. memset(&p, 0, sizeof(p));
  314. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  315. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  316. p.iph.version = 4;
  317. p.iph.ihl = 5;
  318. p.iph.protocol = IPPROTO_IPIP;
  319. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  320. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  321. if (ops->ndo_do_ioctl) {
  322. mm_segment_t oldfs = get_fs();
  323. set_fs(KERNEL_DS);
  324. ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
  325. set_fs(oldfs);
  326. }
  327. }
  328. }
  329. static
  330. struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
  331. {
  332. struct net_device *dev;
  333. dev = __dev_get_by_name(net, "tunl0");
  334. if (dev) {
  335. const struct net_device_ops *ops = dev->netdev_ops;
  336. int err;
  337. struct ifreq ifr;
  338. struct ip_tunnel_parm p;
  339. struct in_device *in_dev;
  340. memset(&p, 0, sizeof(p));
  341. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  342. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  343. p.iph.version = 4;
  344. p.iph.ihl = 5;
  345. p.iph.protocol = IPPROTO_IPIP;
  346. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  347. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  348. if (ops->ndo_do_ioctl) {
  349. mm_segment_t oldfs = get_fs();
  350. set_fs(KERNEL_DS);
  351. err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
  352. set_fs(oldfs);
  353. } else {
  354. err = -EOPNOTSUPP;
  355. }
  356. dev = NULL;
  357. if (err == 0 &&
  358. (dev = __dev_get_by_name(net, p.name)) != NULL) {
  359. dev->flags |= IFF_MULTICAST;
  360. in_dev = __in_dev_get_rtnl(dev);
  361. if (in_dev == NULL)
  362. goto failure;
  363. ipv4_devconf_setall(in_dev);
  364. neigh_parms_data_state_setall(in_dev->arp_parms);
  365. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  366. if (dev_open(dev))
  367. goto failure;
  368. dev_hold(dev);
  369. }
  370. }
  371. return dev;
  372. failure:
  373. /* allow the register to be completed before unregistering. */
  374. rtnl_unlock();
  375. rtnl_lock();
  376. unregister_netdevice(dev);
  377. return NULL;
  378. }
  379. #ifdef CONFIG_IP_PIMSM
  380. static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
  381. {
  382. struct net *net = dev_net(dev);
  383. struct mr_table *mrt;
  384. struct flowi4 fl4 = {
  385. .flowi4_oif = dev->ifindex,
  386. .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
  387. .flowi4_mark = skb->mark,
  388. };
  389. int err;
  390. err = ipmr_fib_lookup(net, &fl4, &mrt);
  391. if (err < 0) {
  392. kfree_skb(skb);
  393. return err;
  394. }
  395. read_lock(&mrt_lock);
  396. dev->stats.tx_bytes += skb->len;
  397. dev->stats.tx_packets++;
  398. ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
  399. read_unlock(&mrt_lock);
  400. kfree_skb(skb);
  401. return NETDEV_TX_OK;
  402. }
  403. static const struct net_device_ops reg_vif_netdev_ops = {
  404. .ndo_start_xmit = reg_vif_xmit,
  405. };
  406. static void reg_vif_setup(struct net_device *dev)
  407. {
  408. dev->type = ARPHRD_PIMREG;
  409. dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
  410. dev->flags = IFF_NOARP;
  411. dev->netdev_ops = &reg_vif_netdev_ops;
  412. dev->destructor = free_netdev;
  413. dev->features |= NETIF_F_NETNS_LOCAL;
  414. }
  415. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  416. {
  417. struct net_device *dev;
  418. struct in_device *in_dev;
  419. char name[IFNAMSIZ];
  420. if (mrt->id == RT_TABLE_DEFAULT)
  421. sprintf(name, "pimreg");
  422. else
  423. sprintf(name, "pimreg%u", mrt->id);
  424. dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
  425. if (dev == NULL)
  426. return NULL;
  427. dev_net_set(dev, net);
  428. if (register_netdevice(dev)) {
  429. free_netdev(dev);
  430. return NULL;
  431. }
  432. dev->iflink = 0;
  433. rcu_read_lock();
  434. in_dev = __in_dev_get_rcu(dev);
  435. if (!in_dev) {
  436. rcu_read_unlock();
  437. goto failure;
  438. }
  439. ipv4_devconf_setall(in_dev);
  440. neigh_parms_data_state_setall(in_dev->arp_parms);
  441. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  442. rcu_read_unlock();
  443. if (dev_open(dev))
  444. goto failure;
  445. dev_hold(dev);
  446. return dev;
  447. failure:
  448. /* allow the register to be completed before unregistering. */
  449. rtnl_unlock();
  450. rtnl_lock();
  451. unregister_netdevice(dev);
  452. return NULL;
  453. }
  454. #endif
  455. /**
  456. * vif_delete - Delete a VIF entry
  457. * @notify: Set to 1, if the caller is a notifier_call
  458. */
  459. static int vif_delete(struct mr_table *mrt, int vifi, int notify,
  460. struct list_head *head)
  461. {
  462. struct vif_device *v;
  463. struct net_device *dev;
  464. struct in_device *in_dev;
  465. if (vifi < 0 || vifi >= mrt->maxvif)
  466. return -EADDRNOTAVAIL;
  467. v = &mrt->vif_table[vifi];
  468. write_lock_bh(&mrt_lock);
  469. dev = v->dev;
  470. v->dev = NULL;
  471. if (!dev) {
  472. write_unlock_bh(&mrt_lock);
  473. return -EADDRNOTAVAIL;
  474. }
  475. #ifdef CONFIG_IP_PIMSM
  476. if (vifi == mrt->mroute_reg_vif_num)
  477. mrt->mroute_reg_vif_num = -1;
  478. #endif
  479. if (vifi + 1 == mrt->maxvif) {
  480. int tmp;
  481. for (tmp = vifi - 1; tmp >= 0; tmp--) {
  482. if (VIF_EXISTS(mrt, tmp))
  483. break;
  484. }
  485. mrt->maxvif = tmp+1;
  486. }
  487. write_unlock_bh(&mrt_lock);
  488. dev_set_allmulti(dev, -1);
  489. in_dev = __in_dev_get_rtnl(dev);
  490. if (in_dev) {
  491. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
  492. inet_netconf_notify_devconf(dev_net(dev),
  493. NETCONFA_MC_FORWARDING,
  494. dev->ifindex, &in_dev->cnf);
  495. ip_rt_multicast_event(in_dev);
  496. }
  497. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
  498. unregister_netdevice_queue(dev, head);
  499. dev_put(dev);
  500. return 0;
  501. }
  502. static void ipmr_cache_free_rcu(struct rcu_head *head)
  503. {
  504. struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
  505. kmem_cache_free(mrt_cachep, c);
  506. }
  507. static inline void ipmr_cache_free(struct mfc_cache *c)
  508. {
  509. call_rcu(&c->rcu, ipmr_cache_free_rcu);
  510. }
  511. /* Destroy an unresolved cache entry, killing queued skbs
  512. * and reporting error to netlink readers.
  513. */
  514. static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
  515. {
  516. struct net *net = read_pnet(&mrt->net);
  517. struct sk_buff *skb;
  518. struct nlmsgerr *e;
  519. atomic_dec(&mrt->cache_resolve_queue_len);
  520. while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
  521. if (ip_hdr(skb)->version == 0) {
  522. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  523. nlh->nlmsg_type = NLMSG_ERROR;
  524. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  525. skb_trim(skb, nlh->nlmsg_len);
  526. e = nlmsg_data(nlh);
  527. e->error = -ETIMEDOUT;
  528. memset(&e->msg, 0, sizeof(e->msg));
  529. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  530. } else {
  531. kfree_skb(skb);
  532. }
  533. }
  534. ipmr_cache_free(c);
  535. }
  536. /* Timer process for the unresolved queue. */
  537. static void ipmr_expire_process(unsigned long arg)
  538. {
  539. struct mr_table *mrt = (struct mr_table *)arg;
  540. unsigned long now;
  541. unsigned long expires;
  542. struct mfc_cache *c, *next;
  543. if (!spin_trylock(&mfc_unres_lock)) {
  544. mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
  545. return;
  546. }
  547. if (list_empty(&mrt->mfc_unres_queue))
  548. goto out;
  549. now = jiffies;
  550. expires = 10*HZ;
  551. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  552. if (time_after(c->mfc_un.unres.expires, now)) {
  553. unsigned long interval = c->mfc_un.unres.expires - now;
  554. if (interval < expires)
  555. expires = interval;
  556. continue;
  557. }
  558. list_del(&c->list);
  559. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  560. ipmr_destroy_unres(mrt, c);
  561. }
  562. if (!list_empty(&mrt->mfc_unres_queue))
  563. mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
  564. out:
  565. spin_unlock(&mfc_unres_lock);
  566. }
  567. /* Fill oifs list. It is called under write locked mrt_lock. */
  568. static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
  569. unsigned char *ttls)
  570. {
  571. int vifi;
  572. cache->mfc_un.res.minvif = MAXVIFS;
  573. cache->mfc_un.res.maxvif = 0;
  574. memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
  575. for (vifi = 0; vifi < mrt->maxvif; vifi++) {
  576. if (VIF_EXISTS(mrt, vifi) &&
  577. ttls[vifi] && ttls[vifi] < 255) {
  578. cache->mfc_un.res.ttls[vifi] = ttls[vifi];
  579. if (cache->mfc_un.res.minvif > vifi)
  580. cache->mfc_un.res.minvif = vifi;
  581. if (cache->mfc_un.res.maxvif <= vifi)
  582. cache->mfc_un.res.maxvif = vifi + 1;
  583. }
  584. }
  585. }
  586. static int vif_add(struct net *net, struct mr_table *mrt,
  587. struct vifctl *vifc, int mrtsock)
  588. {
  589. int vifi = vifc->vifc_vifi;
  590. struct vif_device *v = &mrt->vif_table[vifi];
  591. struct net_device *dev;
  592. struct in_device *in_dev;
  593. int err;
  594. /* Is vif busy ? */
  595. if (VIF_EXISTS(mrt, vifi))
  596. return -EADDRINUSE;
  597. switch (vifc->vifc_flags) {
  598. #ifdef CONFIG_IP_PIMSM
  599. case VIFF_REGISTER:
  600. /*
  601. * Special Purpose VIF in PIM
  602. * All the packets will be sent to the daemon
  603. */
  604. if (mrt->mroute_reg_vif_num >= 0)
  605. return -EADDRINUSE;
  606. dev = ipmr_reg_vif(net, mrt);
  607. if (!dev)
  608. return -ENOBUFS;
  609. err = dev_set_allmulti(dev, 1);
  610. if (err) {
  611. unregister_netdevice(dev);
  612. dev_put(dev);
  613. return err;
  614. }
  615. break;
  616. #endif
  617. case VIFF_TUNNEL:
  618. dev = ipmr_new_tunnel(net, vifc);
  619. if (!dev)
  620. return -ENOBUFS;
  621. err = dev_set_allmulti(dev, 1);
  622. if (err) {
  623. ipmr_del_tunnel(dev, vifc);
  624. dev_put(dev);
  625. return err;
  626. }
  627. break;
  628. case VIFF_USE_IFINDEX:
  629. case 0:
  630. if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
  631. dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
  632. if (dev && __in_dev_get_rtnl(dev) == NULL) {
  633. dev_put(dev);
  634. return -EADDRNOTAVAIL;
  635. }
  636. } else {
  637. dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
  638. }
  639. if (!dev)
  640. return -EADDRNOTAVAIL;
  641. err = dev_set_allmulti(dev, 1);
  642. if (err) {
  643. dev_put(dev);
  644. return err;
  645. }
  646. break;
  647. default:
  648. return -EINVAL;
  649. }
  650. in_dev = __in_dev_get_rtnl(dev);
  651. if (!in_dev) {
  652. dev_put(dev);
  653. return -EADDRNOTAVAIL;
  654. }
  655. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
  656. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
  657. &in_dev->cnf);
  658. ip_rt_multicast_event(in_dev);
  659. /* Fill in the VIF structures */
  660. v->rate_limit = vifc->vifc_rate_limit;
  661. v->local = vifc->vifc_lcl_addr.s_addr;
  662. v->remote = vifc->vifc_rmt_addr.s_addr;
  663. v->flags = vifc->vifc_flags;
  664. if (!mrtsock)
  665. v->flags |= VIFF_STATIC;
  666. v->threshold = vifc->vifc_threshold;
  667. v->bytes_in = 0;
  668. v->bytes_out = 0;
  669. v->pkt_in = 0;
  670. v->pkt_out = 0;
  671. v->link = dev->ifindex;
  672. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
  673. v->link = dev->iflink;
  674. /* And finish update writing critical data */
  675. write_lock_bh(&mrt_lock);
  676. v->dev = dev;
  677. #ifdef CONFIG_IP_PIMSM
  678. if (v->flags & VIFF_REGISTER)
  679. mrt->mroute_reg_vif_num = vifi;
  680. #endif
  681. if (vifi+1 > mrt->maxvif)
  682. mrt->maxvif = vifi+1;
  683. write_unlock_bh(&mrt_lock);
  684. return 0;
  685. }
  686. /* called with rcu_read_lock() */
  687. static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
  688. __be32 origin,
  689. __be32 mcastgrp)
  690. {
  691. int line = MFC_HASH(mcastgrp, origin);
  692. struct mfc_cache *c;
  693. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
  694. if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
  695. return c;
  696. }
  697. return NULL;
  698. }
  699. /* Look for a (*,*,oif) entry */
  700. static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
  701. int vifi)
  702. {
  703. int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
  704. struct mfc_cache *c;
  705. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
  706. if (c->mfc_origin == htonl(INADDR_ANY) &&
  707. c->mfc_mcastgrp == htonl(INADDR_ANY) &&
  708. c->mfc_un.res.ttls[vifi] < 255)
  709. return c;
  710. return NULL;
  711. }
  712. /* Look for a (*,G) entry */
  713. static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
  714. __be32 mcastgrp, int vifi)
  715. {
  716. int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
  717. struct mfc_cache *c, *proxy;
  718. if (mcastgrp == htonl(INADDR_ANY))
  719. goto skip;
  720. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
  721. if (c->mfc_origin == htonl(INADDR_ANY) &&
  722. c->mfc_mcastgrp == mcastgrp) {
  723. if (c->mfc_un.res.ttls[vifi] < 255)
  724. return c;
  725. /* It's ok if the vifi is part of the static tree */
  726. proxy = ipmr_cache_find_any_parent(mrt,
  727. c->mfc_parent);
  728. if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
  729. return c;
  730. }
  731. skip:
  732. return ipmr_cache_find_any_parent(mrt, vifi);
  733. }
  734. /*
  735. * Allocate a multicast cache entry
  736. */
  737. static struct mfc_cache *ipmr_cache_alloc(void)
  738. {
  739. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
  740. if (c)
  741. c->mfc_un.res.minvif = MAXVIFS;
  742. return c;
  743. }
  744. static struct mfc_cache *ipmr_cache_alloc_unres(void)
  745. {
  746. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
  747. if (c) {
  748. skb_queue_head_init(&c->mfc_un.unres.unresolved);
  749. c->mfc_un.unres.expires = jiffies + 10*HZ;
  750. }
  751. return c;
  752. }
  753. /*
  754. * A cache entry has gone into a resolved state from queued
  755. */
  756. static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
  757. struct mfc_cache *uc, struct mfc_cache *c)
  758. {
  759. struct sk_buff *skb;
  760. struct nlmsgerr *e;
  761. /* Play the pending entries through our router */
  762. while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
  763. if (ip_hdr(skb)->version == 0) {
  764. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  765. if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
  766. nlh->nlmsg_len = skb_tail_pointer(skb) -
  767. (u8 *)nlh;
  768. } else {
  769. nlh->nlmsg_type = NLMSG_ERROR;
  770. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  771. skb_trim(skb, nlh->nlmsg_len);
  772. e = nlmsg_data(nlh);
  773. e->error = -EMSGSIZE;
  774. memset(&e->msg, 0, sizeof(e->msg));
  775. }
  776. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  777. } else {
  778. ip_mr_forward(net, mrt, skb, c, 0);
  779. }
  780. }
  781. }
  782. /*
  783. * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
  784. * expects the following bizarre scheme.
  785. *
  786. * Called under mrt_lock.
  787. */
  788. static int ipmr_cache_report(struct mr_table *mrt,
  789. struct sk_buff *pkt, vifi_t vifi, int assert)
  790. {
  791. struct sk_buff *skb;
  792. const int ihl = ip_hdrlen(pkt);
  793. struct igmphdr *igmp;
  794. struct igmpmsg *msg;
  795. struct sock *mroute_sk;
  796. int ret;
  797. #ifdef CONFIG_IP_PIMSM
  798. if (assert == IGMPMSG_WHOLEPKT)
  799. skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
  800. else
  801. #endif
  802. skb = alloc_skb(128, GFP_ATOMIC);
  803. if (!skb)
  804. return -ENOBUFS;
  805. #ifdef CONFIG_IP_PIMSM
  806. if (assert == IGMPMSG_WHOLEPKT) {
  807. /* Ugly, but we have no choice with this interface.
  808. * Duplicate old header, fix ihl, length etc.
  809. * And all this only to mangle msg->im_msgtype and
  810. * to set msg->im_mbz to "mbz" :-)
  811. */
  812. skb_push(skb, sizeof(struct iphdr));
  813. skb_reset_network_header(skb);
  814. skb_reset_transport_header(skb);
  815. msg = (struct igmpmsg *)skb_network_header(skb);
  816. memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
  817. msg->im_msgtype = IGMPMSG_WHOLEPKT;
  818. msg->im_mbz = 0;
  819. msg->im_vif = mrt->mroute_reg_vif_num;
  820. ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
  821. ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
  822. sizeof(struct iphdr));
  823. } else
  824. #endif
  825. {
  826. /* Copy the IP header */
  827. skb_set_network_header(skb, skb->len);
  828. skb_put(skb, ihl);
  829. skb_copy_to_linear_data(skb, pkt->data, ihl);
  830. ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
  831. msg = (struct igmpmsg *)skb_network_header(skb);
  832. msg->im_vif = vifi;
  833. skb_dst_set(skb, dst_clone(skb_dst(pkt)));
  834. /* Add our header */
  835. igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
  836. igmp->type =
  837. msg->im_msgtype = assert;
  838. igmp->code = 0;
  839. ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
  840. skb->transport_header = skb->network_header;
  841. }
  842. rcu_read_lock();
  843. mroute_sk = rcu_dereference(mrt->mroute_sk);
  844. if (mroute_sk == NULL) {
  845. rcu_read_unlock();
  846. kfree_skb(skb);
  847. return -EINVAL;
  848. }
  849. /* Deliver to mrouted */
  850. ret = sock_queue_rcv_skb(mroute_sk, skb);
  851. rcu_read_unlock();
  852. if (ret < 0) {
  853. net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
  854. kfree_skb(skb);
  855. }
  856. return ret;
  857. }
  858. /*
  859. * Queue a packet for resolution. It gets locked cache entry!
  860. */
  861. static int
  862. ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
  863. {
  864. bool found = false;
  865. int err;
  866. struct mfc_cache *c;
  867. const struct iphdr *iph = ip_hdr(skb);
  868. spin_lock_bh(&mfc_unres_lock);
  869. list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
  870. if (c->mfc_mcastgrp == iph->daddr &&
  871. c->mfc_origin == iph->saddr) {
  872. found = true;
  873. break;
  874. }
  875. }
  876. if (!found) {
  877. /* Create a new entry if allowable */
  878. if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
  879. (c = ipmr_cache_alloc_unres()) == NULL) {
  880. spin_unlock_bh(&mfc_unres_lock);
  881. kfree_skb(skb);
  882. return -ENOBUFS;
  883. }
  884. /* Fill in the new cache entry */
  885. c->mfc_parent = -1;
  886. c->mfc_origin = iph->saddr;
  887. c->mfc_mcastgrp = iph->daddr;
  888. /* Reflect first query at mrouted. */
  889. err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
  890. if (err < 0) {
  891. /* If the report failed throw the cache entry
  892. out - Brad Parker
  893. */
  894. spin_unlock_bh(&mfc_unres_lock);
  895. ipmr_cache_free(c);
  896. kfree_skb(skb);
  897. return err;
  898. }
  899. atomic_inc(&mrt->cache_resolve_queue_len);
  900. list_add(&c->list, &mrt->mfc_unres_queue);
  901. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  902. if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
  903. mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
  904. }
  905. /* See if we can append the packet */
  906. if (c->mfc_un.unres.unresolved.qlen > 3) {
  907. kfree_skb(skb);
  908. err = -ENOBUFS;
  909. } else {
  910. skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
  911. err = 0;
  912. }
  913. spin_unlock_bh(&mfc_unres_lock);
  914. return err;
  915. }
  916. /*
  917. * MFC cache manipulation by user space mroute daemon
  918. */
  919. static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
  920. {
  921. int line;
  922. struct mfc_cache *c, *next;
  923. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  924. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
  925. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  926. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
  927. (parent == -1 || parent == c->mfc_parent)) {
  928. list_del_rcu(&c->list);
  929. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  930. ipmr_cache_free(c);
  931. return 0;
  932. }
  933. }
  934. return -ENOENT;
  935. }
  936. static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
  937. struct mfcctl *mfc, int mrtsock, int parent)
  938. {
  939. bool found = false;
  940. int line;
  941. struct mfc_cache *uc, *c;
  942. if (mfc->mfcc_parent >= MAXVIFS)
  943. return -ENFILE;
  944. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  945. list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
  946. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  947. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
  948. (parent == -1 || parent == c->mfc_parent)) {
  949. found = true;
  950. break;
  951. }
  952. }
  953. if (found) {
  954. write_lock_bh(&mrt_lock);
  955. c->mfc_parent = mfc->mfcc_parent;
  956. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  957. if (!mrtsock)
  958. c->mfc_flags |= MFC_STATIC;
  959. write_unlock_bh(&mrt_lock);
  960. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  961. return 0;
  962. }
  963. if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
  964. !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
  965. return -EINVAL;
  966. c = ipmr_cache_alloc();
  967. if (c == NULL)
  968. return -ENOMEM;
  969. c->mfc_origin = mfc->mfcc_origin.s_addr;
  970. c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
  971. c->mfc_parent = mfc->mfcc_parent;
  972. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  973. if (!mrtsock)
  974. c->mfc_flags |= MFC_STATIC;
  975. list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
  976. /*
  977. * Check to see if we resolved a queued list. If so we
  978. * need to send on the frames and tidy up.
  979. */
  980. found = false;
  981. spin_lock_bh(&mfc_unres_lock);
  982. list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
  983. if (uc->mfc_origin == c->mfc_origin &&
  984. uc->mfc_mcastgrp == c->mfc_mcastgrp) {
  985. list_del(&uc->list);
  986. atomic_dec(&mrt->cache_resolve_queue_len);
  987. found = true;
  988. break;
  989. }
  990. }
  991. if (list_empty(&mrt->mfc_unres_queue))
  992. del_timer(&mrt->ipmr_expire_timer);
  993. spin_unlock_bh(&mfc_unres_lock);
  994. if (found) {
  995. ipmr_cache_resolve(net, mrt, uc, c);
  996. ipmr_cache_free(uc);
  997. }
  998. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  999. return 0;
  1000. }
  1001. /*
  1002. * Close the multicast socket, and clear the vif tables etc
  1003. */
  1004. static void mroute_clean_tables(struct mr_table *mrt)
  1005. {
  1006. int i;
  1007. LIST_HEAD(list);
  1008. struct mfc_cache *c, *next;
  1009. /* Shut down all active vif entries */
  1010. for (i = 0; i < mrt->maxvif; i++) {
  1011. if (!(mrt->vif_table[i].flags & VIFF_STATIC))
  1012. vif_delete(mrt, i, 0, &list);
  1013. }
  1014. unregister_netdevice_many(&list);
  1015. /* Wipe the cache */
  1016. for (i = 0; i < MFC_LINES; i++) {
  1017. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
  1018. if (c->mfc_flags & MFC_STATIC)
  1019. continue;
  1020. list_del_rcu(&c->list);
  1021. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1022. ipmr_cache_free(c);
  1023. }
  1024. }
  1025. if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
  1026. spin_lock_bh(&mfc_unres_lock);
  1027. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  1028. list_del(&c->list);
  1029. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1030. ipmr_destroy_unres(mrt, c);
  1031. }
  1032. spin_unlock_bh(&mfc_unres_lock);
  1033. }
  1034. }
  1035. /* called from ip_ra_control(), before an RCU grace period,
  1036. * we dont need to call synchronize_rcu() here
  1037. */
  1038. static void mrtsock_destruct(struct sock *sk)
  1039. {
  1040. struct net *net = sock_net(sk);
  1041. struct mr_table *mrt;
  1042. rtnl_lock();
  1043. ipmr_for_each_table(mrt, net) {
  1044. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1045. IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
  1046. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
  1047. NETCONFA_IFINDEX_ALL,
  1048. net->ipv4.devconf_all);
  1049. RCU_INIT_POINTER(mrt->mroute_sk, NULL);
  1050. mroute_clean_tables(mrt);
  1051. }
  1052. }
  1053. rtnl_unlock();
  1054. }
  1055. /*
  1056. * Socket options and virtual interface manipulation. The whole
  1057. * virtual interface system is a complete heap, but unfortunately
  1058. * that's how BSD mrouted happens to think. Maybe one day with a proper
  1059. * MOSPF/PIM router set up we can clean this up.
  1060. */
  1061. int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
  1062. {
  1063. int ret, parent = 0;
  1064. struct vifctl vif;
  1065. struct mfcctl mfc;
  1066. struct net *net = sock_net(sk);
  1067. struct mr_table *mrt;
  1068. if (sk->sk_type != SOCK_RAW ||
  1069. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1070. return -EOPNOTSUPP;
  1071. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1072. if (mrt == NULL)
  1073. return -ENOENT;
  1074. if (optname != MRT_INIT) {
  1075. if (sk != rcu_access_pointer(mrt->mroute_sk) &&
  1076. !ns_capable(net->user_ns, CAP_NET_ADMIN))
  1077. return -EACCES;
  1078. }
  1079. switch (optname) {
  1080. case MRT_INIT:
  1081. if (optlen != sizeof(int))
  1082. return -EINVAL;
  1083. rtnl_lock();
  1084. if (rtnl_dereference(mrt->mroute_sk)) {
  1085. rtnl_unlock();
  1086. return -EADDRINUSE;
  1087. }
  1088. ret = ip_ra_control(sk, 1, mrtsock_destruct);
  1089. if (ret == 0) {
  1090. rcu_assign_pointer(mrt->mroute_sk, sk);
  1091. IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
  1092. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
  1093. NETCONFA_IFINDEX_ALL,
  1094. net->ipv4.devconf_all);
  1095. }
  1096. rtnl_unlock();
  1097. return ret;
  1098. case MRT_DONE:
  1099. if (sk != rcu_access_pointer(mrt->mroute_sk))
  1100. return -EACCES;
  1101. return ip_ra_control(sk, 0, NULL);
  1102. case MRT_ADD_VIF:
  1103. case MRT_DEL_VIF:
  1104. if (optlen != sizeof(vif))
  1105. return -EINVAL;
  1106. if (copy_from_user(&vif, optval, sizeof(vif)))
  1107. return -EFAULT;
  1108. if (vif.vifc_vifi >= MAXVIFS)
  1109. return -ENFILE;
  1110. rtnl_lock();
  1111. if (optname == MRT_ADD_VIF) {
  1112. ret = vif_add(net, mrt, &vif,
  1113. sk == rtnl_dereference(mrt->mroute_sk));
  1114. } else {
  1115. ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
  1116. }
  1117. rtnl_unlock();
  1118. return ret;
  1119. /*
  1120. * Manipulate the forwarding caches. These live
  1121. * in a sort of kernel/user symbiosis.
  1122. */
  1123. case MRT_ADD_MFC:
  1124. case MRT_DEL_MFC:
  1125. parent = -1;
  1126. case MRT_ADD_MFC_PROXY:
  1127. case MRT_DEL_MFC_PROXY:
  1128. if (optlen != sizeof(mfc))
  1129. return -EINVAL;
  1130. if (copy_from_user(&mfc, optval, sizeof(mfc)))
  1131. return -EFAULT;
  1132. if (parent == 0)
  1133. parent = mfc.mfcc_parent;
  1134. rtnl_lock();
  1135. if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
  1136. ret = ipmr_mfc_delete(mrt, &mfc, parent);
  1137. else
  1138. ret = ipmr_mfc_add(net, mrt, &mfc,
  1139. sk == rtnl_dereference(mrt->mroute_sk),
  1140. parent);
  1141. rtnl_unlock();
  1142. return ret;
  1143. /*
  1144. * Control PIM assert.
  1145. */
  1146. case MRT_ASSERT:
  1147. {
  1148. int v;
  1149. if (optlen != sizeof(v))
  1150. return -EINVAL;
  1151. if (get_user(v, (int __user *)optval))
  1152. return -EFAULT;
  1153. mrt->mroute_do_assert = v;
  1154. return 0;
  1155. }
  1156. #ifdef CONFIG_IP_PIMSM
  1157. case MRT_PIM:
  1158. {
  1159. int v;
  1160. if (optlen != sizeof(v))
  1161. return -EINVAL;
  1162. if (get_user(v, (int __user *)optval))
  1163. return -EFAULT;
  1164. v = !!v;
  1165. rtnl_lock();
  1166. ret = 0;
  1167. if (v != mrt->mroute_do_pim) {
  1168. mrt->mroute_do_pim = v;
  1169. mrt->mroute_do_assert = v;
  1170. }
  1171. rtnl_unlock();
  1172. return ret;
  1173. }
  1174. #endif
  1175. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  1176. case MRT_TABLE:
  1177. {
  1178. u32 v;
  1179. if (optlen != sizeof(u32))
  1180. return -EINVAL;
  1181. if (get_user(v, (u32 __user *)optval))
  1182. return -EFAULT;
  1183. /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
  1184. if (v != RT_TABLE_DEFAULT && v >= 1000000000)
  1185. return -EINVAL;
  1186. rtnl_lock();
  1187. ret = 0;
  1188. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1189. ret = -EBUSY;
  1190. } else {
  1191. if (!ipmr_new_table(net, v))
  1192. ret = -ENOMEM;
  1193. else
  1194. raw_sk(sk)->ipmr_table = v;
  1195. }
  1196. rtnl_unlock();
  1197. return ret;
  1198. }
  1199. #endif
  1200. /*
  1201. * Spurious command, or MRT_VERSION which you cannot
  1202. * set.
  1203. */
  1204. default:
  1205. return -ENOPROTOOPT;
  1206. }
  1207. }
  1208. /*
  1209. * Getsock opt support for the multicast routing system.
  1210. */
  1211. int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
  1212. {
  1213. int olr;
  1214. int val;
  1215. struct net *net = sock_net(sk);
  1216. struct mr_table *mrt;
  1217. if (sk->sk_type != SOCK_RAW ||
  1218. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1219. return -EOPNOTSUPP;
  1220. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1221. if (mrt == NULL)
  1222. return -ENOENT;
  1223. if (optname != MRT_VERSION &&
  1224. #ifdef CONFIG_IP_PIMSM
  1225. optname != MRT_PIM &&
  1226. #endif
  1227. optname != MRT_ASSERT)
  1228. return -ENOPROTOOPT;
  1229. if (get_user(olr, optlen))
  1230. return -EFAULT;
  1231. olr = min_t(unsigned int, olr, sizeof(int));
  1232. if (olr < 0)
  1233. return -EINVAL;
  1234. if (put_user(olr, optlen))
  1235. return -EFAULT;
  1236. if (optname == MRT_VERSION)
  1237. val = 0x0305;
  1238. #ifdef CONFIG_IP_PIMSM
  1239. else if (optname == MRT_PIM)
  1240. val = mrt->mroute_do_pim;
  1241. #endif
  1242. else
  1243. val = mrt->mroute_do_assert;
  1244. if (copy_to_user(optval, &val, olr))
  1245. return -EFAULT;
  1246. return 0;
  1247. }
  1248. /*
  1249. * The IP multicast ioctl support routines.
  1250. */
  1251. int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
  1252. {
  1253. struct sioc_sg_req sr;
  1254. struct sioc_vif_req vr;
  1255. struct vif_device *vif;
  1256. struct mfc_cache *c;
  1257. struct net *net = sock_net(sk);
  1258. struct mr_table *mrt;
  1259. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1260. if (mrt == NULL)
  1261. return -ENOENT;
  1262. switch (cmd) {
  1263. case SIOCGETVIFCNT:
  1264. if (copy_from_user(&vr, arg, sizeof(vr)))
  1265. return -EFAULT;
  1266. if (vr.vifi >= mrt->maxvif)
  1267. return -EINVAL;
  1268. read_lock(&mrt_lock);
  1269. vif = &mrt->vif_table[vr.vifi];
  1270. if (VIF_EXISTS(mrt, vr.vifi)) {
  1271. vr.icount = vif->pkt_in;
  1272. vr.ocount = vif->pkt_out;
  1273. vr.ibytes = vif->bytes_in;
  1274. vr.obytes = vif->bytes_out;
  1275. read_unlock(&mrt_lock);
  1276. if (copy_to_user(arg, &vr, sizeof(vr)))
  1277. return -EFAULT;
  1278. return 0;
  1279. }
  1280. read_unlock(&mrt_lock);
  1281. return -EADDRNOTAVAIL;
  1282. case SIOCGETSGCNT:
  1283. if (copy_from_user(&sr, arg, sizeof(sr)))
  1284. return -EFAULT;
  1285. rcu_read_lock();
  1286. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1287. if (c) {
  1288. sr.pktcnt = c->mfc_un.res.pkt;
  1289. sr.bytecnt = c->mfc_un.res.bytes;
  1290. sr.wrong_if = c->mfc_un.res.wrong_if;
  1291. rcu_read_unlock();
  1292. if (copy_to_user(arg, &sr, sizeof(sr)))
  1293. return -EFAULT;
  1294. return 0;
  1295. }
  1296. rcu_read_unlock();
  1297. return -EADDRNOTAVAIL;
  1298. default:
  1299. return -ENOIOCTLCMD;
  1300. }
  1301. }
  1302. #ifdef CONFIG_COMPAT
  1303. struct compat_sioc_sg_req {
  1304. struct in_addr src;
  1305. struct in_addr grp;
  1306. compat_ulong_t pktcnt;
  1307. compat_ulong_t bytecnt;
  1308. compat_ulong_t wrong_if;
  1309. };
  1310. struct compat_sioc_vif_req {
  1311. vifi_t vifi; /* Which iface */
  1312. compat_ulong_t icount;
  1313. compat_ulong_t ocount;
  1314. compat_ulong_t ibytes;
  1315. compat_ulong_t obytes;
  1316. };
  1317. int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
  1318. {
  1319. struct compat_sioc_sg_req sr;
  1320. struct compat_sioc_vif_req vr;
  1321. struct vif_device *vif;
  1322. struct mfc_cache *c;
  1323. struct net *net = sock_net(sk);
  1324. struct mr_table *mrt;
  1325. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1326. if (mrt == NULL)
  1327. return -ENOENT;
  1328. switch (cmd) {
  1329. case SIOCGETVIFCNT:
  1330. if (copy_from_user(&vr, arg, sizeof(vr)))
  1331. return -EFAULT;
  1332. if (vr.vifi >= mrt->maxvif)
  1333. return -EINVAL;
  1334. read_lock(&mrt_lock);
  1335. vif = &mrt->vif_table[vr.vifi];
  1336. if (VIF_EXISTS(mrt, vr.vifi)) {
  1337. vr.icount = vif->pkt_in;
  1338. vr.ocount = vif->pkt_out;
  1339. vr.ibytes = vif->bytes_in;
  1340. vr.obytes = vif->bytes_out;
  1341. read_unlock(&mrt_lock);
  1342. if (copy_to_user(arg, &vr, sizeof(vr)))
  1343. return -EFAULT;
  1344. return 0;
  1345. }
  1346. read_unlock(&mrt_lock);
  1347. return -EADDRNOTAVAIL;
  1348. case SIOCGETSGCNT:
  1349. if (copy_from_user(&sr, arg, sizeof(sr)))
  1350. return -EFAULT;
  1351. rcu_read_lock();
  1352. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1353. if (c) {
  1354. sr.pktcnt = c->mfc_un.res.pkt;
  1355. sr.bytecnt = c->mfc_un.res.bytes;
  1356. sr.wrong_if = c->mfc_un.res.wrong_if;
  1357. rcu_read_unlock();
  1358. if (copy_to_user(arg, &sr, sizeof(sr)))
  1359. return -EFAULT;
  1360. return 0;
  1361. }
  1362. rcu_read_unlock();
  1363. return -EADDRNOTAVAIL;
  1364. default:
  1365. return -ENOIOCTLCMD;
  1366. }
  1367. }
  1368. #endif
  1369. static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
  1370. {
  1371. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1372. struct net *net = dev_net(dev);
  1373. struct mr_table *mrt;
  1374. struct vif_device *v;
  1375. int ct;
  1376. if (event != NETDEV_UNREGISTER)
  1377. return NOTIFY_DONE;
  1378. ipmr_for_each_table(mrt, net) {
  1379. v = &mrt->vif_table[0];
  1380. for (ct = 0; ct < mrt->maxvif; ct++, v++) {
  1381. if (v->dev == dev)
  1382. vif_delete(mrt, ct, 1, NULL);
  1383. }
  1384. }
  1385. return NOTIFY_DONE;
  1386. }
  1387. static struct notifier_block ip_mr_notifier = {
  1388. .notifier_call = ipmr_device_event,
  1389. };
  1390. /*
  1391. * Encapsulate a packet by attaching a valid IPIP header to it.
  1392. * This avoids tunnel drivers and other mess and gives us the speed so
  1393. * important for multicast video.
  1394. */
  1395. static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
  1396. {
  1397. struct iphdr *iph;
  1398. const struct iphdr *old_iph = ip_hdr(skb);
  1399. skb_push(skb, sizeof(struct iphdr));
  1400. skb->transport_header = skb->network_header;
  1401. skb_reset_network_header(skb);
  1402. iph = ip_hdr(skb);
  1403. iph->version = 4;
  1404. iph->tos = old_iph->tos;
  1405. iph->ttl = old_iph->ttl;
  1406. iph->frag_off = 0;
  1407. iph->daddr = daddr;
  1408. iph->saddr = saddr;
  1409. iph->protocol = IPPROTO_IPIP;
  1410. iph->ihl = 5;
  1411. iph->tot_len = htons(skb->len);
  1412. ip_select_ident(skb, NULL);
  1413. ip_send_check(iph);
  1414. memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
  1415. nf_reset(skb);
  1416. }
  1417. static inline int ipmr_forward_finish(struct sk_buff *skb)
  1418. {
  1419. struct ip_options *opt = &(IPCB(skb)->opt);
  1420. IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
  1421. IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
  1422. if (unlikely(opt->optlen))
  1423. ip_forward_options(skb);
  1424. return dst_output(skb);
  1425. }
  1426. /*
  1427. * Processing handlers for ipmr_forward
  1428. */
  1429. static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
  1430. struct sk_buff *skb, struct mfc_cache *c, int vifi)
  1431. {
  1432. const struct iphdr *iph = ip_hdr(skb);
  1433. struct vif_device *vif = &mrt->vif_table[vifi];
  1434. struct net_device *dev;
  1435. struct rtable *rt;
  1436. struct flowi4 fl4;
  1437. int encap = 0;
  1438. if (vif->dev == NULL)
  1439. goto out_free;
  1440. #ifdef CONFIG_IP_PIMSM
  1441. if (vif->flags & VIFF_REGISTER) {
  1442. vif->pkt_out++;
  1443. vif->bytes_out += skb->len;
  1444. vif->dev->stats.tx_bytes += skb->len;
  1445. vif->dev->stats.tx_packets++;
  1446. ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
  1447. goto out_free;
  1448. }
  1449. #endif
  1450. if (vif->flags & VIFF_TUNNEL) {
  1451. rt = ip_route_output_ports(net, &fl4, NULL,
  1452. vif->remote, vif->local,
  1453. 0, 0,
  1454. IPPROTO_IPIP,
  1455. RT_TOS(iph->tos), vif->link);
  1456. if (IS_ERR(rt))
  1457. goto out_free;
  1458. encap = sizeof(struct iphdr);
  1459. } else {
  1460. rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
  1461. 0, 0,
  1462. IPPROTO_IPIP,
  1463. RT_TOS(iph->tos), vif->link);
  1464. if (IS_ERR(rt))
  1465. goto out_free;
  1466. }
  1467. dev = rt->dst.dev;
  1468. if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
  1469. /* Do not fragment multicasts. Alas, IPv4 does not
  1470. * allow to send ICMP, so that packets will disappear
  1471. * to blackhole.
  1472. */
  1473. IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
  1474. ip_rt_put(rt);
  1475. goto out_free;
  1476. }
  1477. encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
  1478. if (skb_cow(skb, encap)) {
  1479. ip_rt_put(rt);
  1480. goto out_free;
  1481. }
  1482. vif->pkt_out++;
  1483. vif->bytes_out += skb->len;
  1484. skb_dst_drop(skb);
  1485. skb_dst_set(skb, &rt->dst);
  1486. ip_decrease_ttl(ip_hdr(skb));
  1487. /* FIXME: forward and output firewalls used to be called here.
  1488. * What do we do with netfilter? -- RR
  1489. */
  1490. if (vif->flags & VIFF_TUNNEL) {
  1491. ip_encap(skb, vif->local, vif->remote);
  1492. /* FIXME: extra output firewall step used to be here. --RR */
  1493. vif->dev->stats.tx_packets++;
  1494. vif->dev->stats.tx_bytes += skb->len;
  1495. }
  1496. IPCB(skb)->flags |= IPSKB_FORWARDED;
  1497. /*
  1498. * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
  1499. * not only before forwarding, but after forwarding on all output
  1500. * interfaces. It is clear, if mrouter runs a multicasting
  1501. * program, it should receive packets not depending to what interface
  1502. * program is joined.
  1503. * If we will not make it, the program will have to join on all
  1504. * interfaces. On the other hand, multihoming host (or router, but
  1505. * not mrouter) cannot join to more than one interface - it will
  1506. * result in receiving multiple packets.
  1507. */
  1508. NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
  1509. ipmr_forward_finish);
  1510. return;
  1511. out_free:
  1512. kfree_skb(skb);
  1513. }
  1514. static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
  1515. {
  1516. int ct;
  1517. for (ct = mrt->maxvif-1; ct >= 0; ct--) {
  1518. if (mrt->vif_table[ct].dev == dev)
  1519. break;
  1520. }
  1521. return ct;
  1522. }
  1523. /* "local" means that we should preserve one skb (for local delivery) */
  1524. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  1525. struct sk_buff *skb, struct mfc_cache *cache,
  1526. int local)
  1527. {
  1528. int psend = -1;
  1529. int vif, ct;
  1530. int true_vifi = ipmr_find_vif(mrt, skb->dev);
  1531. vif = cache->mfc_parent;
  1532. cache->mfc_un.res.pkt++;
  1533. cache->mfc_un.res.bytes += skb->len;
  1534. if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
  1535. struct mfc_cache *cache_proxy;
  1536. /* For an (*,G) entry, we only check that the incomming
  1537. * interface is part of the static tree.
  1538. */
  1539. cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
  1540. if (cache_proxy &&
  1541. cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
  1542. goto forward;
  1543. }
  1544. /*
  1545. * Wrong interface: drop packet and (maybe) send PIM assert.
  1546. */
  1547. if (mrt->vif_table[vif].dev != skb->dev) {
  1548. if (rt_is_output_route(skb_rtable(skb))) {
  1549. /* It is our own packet, looped back.
  1550. * Very complicated situation...
  1551. *
  1552. * The best workaround until routing daemons will be
  1553. * fixed is not to redistribute packet, if it was
  1554. * send through wrong interface. It means, that
  1555. * multicast applications WILL NOT work for
  1556. * (S,G), which have default multicast route pointing
  1557. * to wrong oif. In any case, it is not a good
  1558. * idea to use multicasting applications on router.
  1559. */
  1560. goto dont_forward;
  1561. }
  1562. cache->mfc_un.res.wrong_if++;
  1563. if (true_vifi >= 0 && mrt->mroute_do_assert &&
  1564. /* pimsm uses asserts, when switching from RPT to SPT,
  1565. * so that we cannot check that packet arrived on an oif.
  1566. * It is bad, but otherwise we would need to move pretty
  1567. * large chunk of pimd to kernel. Ough... --ANK
  1568. */
  1569. (mrt->mroute_do_pim ||
  1570. cache->mfc_un.res.ttls[true_vifi] < 255) &&
  1571. time_after(jiffies,
  1572. cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
  1573. cache->mfc_un.res.last_assert = jiffies;
  1574. ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
  1575. }
  1576. goto dont_forward;
  1577. }
  1578. forward:
  1579. mrt->vif_table[vif].pkt_in++;
  1580. mrt->vif_table[vif].bytes_in += skb->len;
  1581. /*
  1582. * Forward the frame
  1583. */
  1584. if (cache->mfc_origin == htonl(INADDR_ANY) &&
  1585. cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
  1586. if (true_vifi >= 0 &&
  1587. true_vifi != cache->mfc_parent &&
  1588. ip_hdr(skb)->ttl >
  1589. cache->mfc_un.res.ttls[cache->mfc_parent]) {
  1590. /* It's an (*,*) entry and the packet is not coming from
  1591. * the upstream: forward the packet to the upstream
  1592. * only.
  1593. */
  1594. psend = cache->mfc_parent;
  1595. goto last_forward;
  1596. }
  1597. goto dont_forward;
  1598. }
  1599. for (ct = cache->mfc_un.res.maxvif - 1;
  1600. ct >= cache->mfc_un.res.minvif; ct--) {
  1601. /* For (*,G) entry, don't forward to the incoming interface */
  1602. if ((cache->mfc_origin != htonl(INADDR_ANY) ||
  1603. ct != true_vifi) &&
  1604. ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
  1605. if (psend != -1) {
  1606. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1607. if (skb2)
  1608. ipmr_queue_xmit(net, mrt, skb2, cache,
  1609. psend);
  1610. }
  1611. psend = ct;
  1612. }
  1613. }
  1614. last_forward:
  1615. if (psend != -1) {
  1616. if (local) {
  1617. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1618. if (skb2)
  1619. ipmr_queue_xmit(net, mrt, skb2, cache, psend);
  1620. } else {
  1621. ipmr_queue_xmit(net, mrt, skb, cache, psend);
  1622. return;
  1623. }
  1624. }
  1625. dont_forward:
  1626. if (!local)
  1627. kfree_skb(skb);
  1628. }
  1629. static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
  1630. {
  1631. struct rtable *rt = skb_rtable(skb);
  1632. struct iphdr *iph = ip_hdr(skb);
  1633. struct flowi4 fl4 = {
  1634. .daddr = iph->daddr,
  1635. .saddr = iph->saddr,
  1636. .flowi4_tos = RT_TOS(iph->tos),
  1637. .flowi4_oif = (rt_is_output_route(rt) ?
  1638. skb->dev->ifindex : 0),
  1639. .flowi4_iif = (rt_is_output_route(rt) ?
  1640. LOOPBACK_IFINDEX :
  1641. skb->dev->ifindex),
  1642. .flowi4_mark = skb->mark,
  1643. };
  1644. struct mr_table *mrt;
  1645. int err;
  1646. err = ipmr_fib_lookup(net, &fl4, &mrt);
  1647. if (err)
  1648. return ERR_PTR(err);
  1649. return mrt;
  1650. }
  1651. /*
  1652. * Multicast packets for forwarding arrive here
  1653. * Called with rcu_read_lock();
  1654. */
  1655. int ip_mr_input(struct sk_buff *skb)
  1656. {
  1657. struct mfc_cache *cache;
  1658. struct net *net = dev_net(skb->dev);
  1659. int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
  1660. struct mr_table *mrt;
  1661. /* Packet is looped back after forward, it should not be
  1662. * forwarded second time, but still can be delivered locally.
  1663. */
  1664. if (IPCB(skb)->flags & IPSKB_FORWARDED)
  1665. goto dont_forward;
  1666. mrt = ipmr_rt_fib_lookup(net, skb);
  1667. if (IS_ERR(mrt)) {
  1668. kfree_skb(skb);
  1669. return PTR_ERR(mrt);
  1670. }
  1671. if (!local) {
  1672. if (IPCB(skb)->opt.router_alert) {
  1673. if (ip_call_ra_chain(skb))
  1674. return 0;
  1675. } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
  1676. /* IGMPv1 (and broken IGMPv2 implementations sort of
  1677. * Cisco IOS <= 11.2(8)) do not put router alert
  1678. * option to IGMP packets destined to routable
  1679. * groups. It is very bad, because it means
  1680. * that we can forward NO IGMP messages.
  1681. */
  1682. struct sock *mroute_sk;
  1683. mroute_sk = rcu_dereference(mrt->mroute_sk);
  1684. if (mroute_sk) {
  1685. nf_reset(skb);
  1686. raw_rcv(mroute_sk, skb);
  1687. return 0;
  1688. }
  1689. }
  1690. }
  1691. /* already under rcu_read_lock() */
  1692. cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
  1693. if (cache == NULL) {
  1694. int vif = ipmr_find_vif(mrt, skb->dev);
  1695. if (vif >= 0)
  1696. cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
  1697. vif);
  1698. }
  1699. /*
  1700. * No usable cache entry
  1701. */
  1702. if (cache == NULL) {
  1703. int vif;
  1704. if (local) {
  1705. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1706. ip_local_deliver(skb);
  1707. if (skb2 == NULL)
  1708. return -ENOBUFS;
  1709. skb = skb2;
  1710. }
  1711. read_lock(&mrt_lock);
  1712. vif = ipmr_find_vif(mrt, skb->dev);
  1713. if (vif >= 0) {
  1714. int err2 = ipmr_cache_unresolved(mrt, vif, skb);
  1715. read_unlock(&mrt_lock);
  1716. return err2;
  1717. }
  1718. read_unlock(&mrt_lock);
  1719. kfree_skb(skb);
  1720. return -ENODEV;
  1721. }
  1722. read_lock(&mrt_lock);
  1723. ip_mr_forward(net, mrt, skb, cache, local);
  1724. read_unlock(&mrt_lock);
  1725. if (local)
  1726. return ip_local_deliver(skb);
  1727. return 0;
  1728. dont_forward:
  1729. if (local)
  1730. return ip_local_deliver(skb);
  1731. kfree_skb(skb);
  1732. return 0;
  1733. }
  1734. #ifdef CONFIG_IP_PIMSM
  1735. /* called with rcu_read_lock() */
  1736. static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
  1737. unsigned int pimlen)
  1738. {
  1739. struct net_device *reg_dev = NULL;
  1740. struct iphdr *encap;
  1741. encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
  1742. /*
  1743. * Check that:
  1744. * a. packet is really sent to a multicast group
  1745. * b. packet is not a NULL-REGISTER
  1746. * c. packet is not truncated
  1747. */
  1748. if (!ipv4_is_multicast(encap->daddr) ||
  1749. encap->tot_len == 0 ||
  1750. ntohs(encap->tot_len) + pimlen > skb->len)
  1751. return 1;
  1752. read_lock(&mrt_lock);
  1753. if (mrt->mroute_reg_vif_num >= 0)
  1754. reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
  1755. read_unlock(&mrt_lock);
  1756. if (reg_dev == NULL)
  1757. return 1;
  1758. skb->mac_header = skb->network_header;
  1759. skb_pull(skb, (u8 *)encap - skb->data);
  1760. skb_reset_network_header(skb);
  1761. skb->protocol = htons(ETH_P_IP);
  1762. skb->ip_summed = CHECKSUM_NONE;
  1763. skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
  1764. netif_rx(skb);
  1765. return NET_RX_SUCCESS;
  1766. }
  1767. #endif
  1768. #ifdef CONFIG_IP_PIMSM_V1
  1769. /*
  1770. * Handle IGMP messages of PIMv1
  1771. */
  1772. int pim_rcv_v1(struct sk_buff *skb)
  1773. {
  1774. struct igmphdr *pim;
  1775. struct net *net = dev_net(skb->dev);
  1776. struct mr_table *mrt;
  1777. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1778. goto drop;
  1779. pim = igmp_hdr(skb);
  1780. mrt = ipmr_rt_fib_lookup(net, skb);
  1781. if (IS_ERR(mrt))
  1782. goto drop;
  1783. if (!mrt->mroute_do_pim ||
  1784. pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
  1785. goto drop;
  1786. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1787. drop:
  1788. kfree_skb(skb);
  1789. }
  1790. return 0;
  1791. }
  1792. #endif
  1793. #ifdef CONFIG_IP_PIMSM_V2
  1794. static int pim_rcv(struct sk_buff *skb)
  1795. {
  1796. struct pimreghdr *pim;
  1797. struct net *net = dev_net(skb->dev);
  1798. struct mr_table *mrt;
  1799. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1800. goto drop;
  1801. pim = (struct pimreghdr *)skb_transport_header(skb);
  1802. if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
  1803. (pim->flags & PIM_NULL_REGISTER) ||
  1804. (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
  1805. csum_fold(skb_checksum(skb, 0, skb->len, 0))))
  1806. goto drop;
  1807. mrt = ipmr_rt_fib_lookup(net, skb);
  1808. if (IS_ERR(mrt))
  1809. goto drop;
  1810. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1811. drop:
  1812. kfree_skb(skb);
  1813. }
  1814. return 0;
  1815. }
  1816. #endif
  1817. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1818. struct mfc_cache *c, struct rtmsg *rtm)
  1819. {
  1820. int ct;
  1821. struct rtnexthop *nhp;
  1822. struct nlattr *mp_attr;
  1823. struct rta_mfc_stats mfcs;
  1824. /* If cache is unresolved, don't try to parse IIF and OIF */
  1825. if (c->mfc_parent >= MAXVIFS)
  1826. return -ENOENT;
  1827. if (VIF_EXISTS(mrt, c->mfc_parent) &&
  1828. nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
  1829. return -EMSGSIZE;
  1830. if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
  1831. return -EMSGSIZE;
  1832. for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
  1833. if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
  1834. if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
  1835. nla_nest_cancel(skb, mp_attr);
  1836. return -EMSGSIZE;
  1837. }
  1838. nhp->rtnh_flags = 0;
  1839. nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
  1840. nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
  1841. nhp->rtnh_len = sizeof(*nhp);
  1842. }
  1843. }
  1844. nla_nest_end(skb, mp_attr);
  1845. mfcs.mfcs_packets = c->mfc_un.res.pkt;
  1846. mfcs.mfcs_bytes = c->mfc_un.res.bytes;
  1847. mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
  1848. if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
  1849. return -EMSGSIZE;
  1850. rtm->rtm_type = RTN_MULTICAST;
  1851. return 1;
  1852. }
  1853. int ipmr_get_route(struct net *net, struct sk_buff *skb,
  1854. __be32 saddr, __be32 daddr,
  1855. struct rtmsg *rtm, int nowait)
  1856. {
  1857. struct mfc_cache *cache;
  1858. struct mr_table *mrt;
  1859. int err;
  1860. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1861. if (mrt == NULL)
  1862. return -ENOENT;
  1863. rcu_read_lock();
  1864. cache = ipmr_cache_find(mrt, saddr, daddr);
  1865. if (cache == NULL && skb->dev) {
  1866. int vif = ipmr_find_vif(mrt, skb->dev);
  1867. if (vif >= 0)
  1868. cache = ipmr_cache_find_any(mrt, daddr, vif);
  1869. }
  1870. if (cache == NULL) {
  1871. struct sk_buff *skb2;
  1872. struct iphdr *iph;
  1873. struct net_device *dev;
  1874. int vif = -1;
  1875. if (nowait) {
  1876. rcu_read_unlock();
  1877. return -EAGAIN;
  1878. }
  1879. dev = skb->dev;
  1880. read_lock(&mrt_lock);
  1881. if (dev)
  1882. vif = ipmr_find_vif(mrt, dev);
  1883. if (vif < 0) {
  1884. read_unlock(&mrt_lock);
  1885. rcu_read_unlock();
  1886. return -ENODEV;
  1887. }
  1888. skb2 = skb_clone(skb, GFP_ATOMIC);
  1889. if (!skb2) {
  1890. read_unlock(&mrt_lock);
  1891. rcu_read_unlock();
  1892. return -ENOMEM;
  1893. }
  1894. skb_push(skb2, sizeof(struct iphdr));
  1895. skb_reset_network_header(skb2);
  1896. iph = ip_hdr(skb2);
  1897. iph->ihl = sizeof(struct iphdr) >> 2;
  1898. iph->saddr = saddr;
  1899. iph->daddr = daddr;
  1900. iph->version = 0;
  1901. err = ipmr_cache_unresolved(mrt, vif, skb2);
  1902. read_unlock(&mrt_lock);
  1903. rcu_read_unlock();
  1904. return err;
  1905. }
  1906. read_lock(&mrt_lock);
  1907. if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
  1908. cache->mfc_flags |= MFC_NOTIFY;
  1909. err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
  1910. read_unlock(&mrt_lock);
  1911. rcu_read_unlock();
  1912. return err;
  1913. }
  1914. static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1915. u32 portid, u32 seq, struct mfc_cache *c, int cmd,
  1916. int flags)
  1917. {
  1918. struct nlmsghdr *nlh;
  1919. struct rtmsg *rtm;
  1920. int err;
  1921. nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
  1922. if (nlh == NULL)
  1923. return -EMSGSIZE;
  1924. rtm = nlmsg_data(nlh);
  1925. rtm->rtm_family = RTNL_FAMILY_IPMR;
  1926. rtm->rtm_dst_len = 32;
  1927. rtm->rtm_src_len = 32;
  1928. rtm->rtm_tos = 0;
  1929. rtm->rtm_table = mrt->id;
  1930. if (nla_put_u32(skb, RTA_TABLE, mrt->id))
  1931. goto nla_put_failure;
  1932. rtm->rtm_type = RTN_MULTICAST;
  1933. rtm->rtm_scope = RT_SCOPE_UNIVERSE;
  1934. if (c->mfc_flags & MFC_STATIC)
  1935. rtm->rtm_protocol = RTPROT_STATIC;
  1936. else
  1937. rtm->rtm_protocol = RTPROT_MROUTED;
  1938. rtm->rtm_flags = 0;
  1939. if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
  1940. nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
  1941. goto nla_put_failure;
  1942. err = __ipmr_fill_mroute(mrt, skb, c, rtm);
  1943. /* do not break the dump if cache is unresolved */
  1944. if (err < 0 && err != -ENOENT)
  1945. goto nla_put_failure;
  1946. nlmsg_end(skb, nlh);
  1947. return 0;
  1948. nla_put_failure:
  1949. nlmsg_cancel(skb, nlh);
  1950. return -EMSGSIZE;
  1951. }
  1952. static size_t mroute_msgsize(bool unresolved, int maxvif)
  1953. {
  1954. size_t len =
  1955. NLMSG_ALIGN(sizeof(struct rtmsg))
  1956. + nla_total_size(4) /* RTA_TABLE */
  1957. + nla_total_size(4) /* RTA_SRC */
  1958. + nla_total_size(4) /* RTA_DST */
  1959. ;
  1960. if (!unresolved)
  1961. len = len
  1962. + nla_total_size(4) /* RTA_IIF */
  1963. + nla_total_size(0) /* RTA_MULTIPATH */
  1964. + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
  1965. /* RTA_MFC_STATS */
  1966. + nla_total_size(sizeof(struct rta_mfc_stats))
  1967. ;
  1968. return len;
  1969. }
  1970. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  1971. int cmd)
  1972. {
  1973. struct net *net = read_pnet(&mrt->net);
  1974. struct sk_buff *skb;
  1975. int err = -ENOBUFS;
  1976. skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
  1977. GFP_ATOMIC);
  1978. if (skb == NULL)
  1979. goto errout;
  1980. err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
  1981. if (err < 0)
  1982. goto errout;
  1983. rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
  1984. return;
  1985. errout:
  1986. kfree_skb(skb);
  1987. if (err < 0)
  1988. rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
  1989. }
  1990. static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
  1991. {
  1992. struct net *net = sock_net(skb->sk);
  1993. struct mr_table *mrt;
  1994. struct mfc_cache *mfc;
  1995. unsigned int t = 0, s_t;
  1996. unsigned int h = 0, s_h;
  1997. unsigned int e = 0, s_e;
  1998. s_t = cb->args[0];
  1999. s_h = cb->args[1];
  2000. s_e = cb->args[2];
  2001. rcu_read_lock();
  2002. ipmr_for_each_table(mrt, net) {
  2003. if (t < s_t)
  2004. goto next_table;
  2005. if (t > s_t)
  2006. s_h = 0;
  2007. for (h = s_h; h < MFC_LINES; h++) {
  2008. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
  2009. if (e < s_e)
  2010. goto next_entry;
  2011. if (ipmr_fill_mroute(mrt, skb,
  2012. NETLINK_CB(cb->skb).portid,
  2013. cb->nlh->nlmsg_seq,
  2014. mfc, RTM_NEWROUTE,
  2015. NLM_F_MULTI) < 0)
  2016. goto done;
  2017. next_entry:
  2018. e++;
  2019. }
  2020. e = s_e = 0;
  2021. }
  2022. spin_lock_bh(&mfc_unres_lock);
  2023. list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
  2024. if (e < s_e)
  2025. goto next_entry2;
  2026. if (ipmr_fill_mroute(mrt, skb,
  2027. NETLINK_CB(cb->skb).portid,
  2028. cb->nlh->nlmsg_seq,
  2029. mfc, RTM_NEWROUTE,
  2030. NLM_F_MULTI) < 0) {
  2031. spin_unlock_bh(&mfc_unres_lock);
  2032. goto done;
  2033. }
  2034. next_entry2:
  2035. e++;
  2036. }
  2037. spin_unlock_bh(&mfc_unres_lock);
  2038. e = s_e = 0;
  2039. s_h = 0;
  2040. next_table:
  2041. t++;
  2042. }
  2043. done:
  2044. rcu_read_unlock();
  2045. cb->args[2] = e;
  2046. cb->args[1] = h;
  2047. cb->args[0] = t;
  2048. return skb->len;
  2049. }
  2050. #ifdef CONFIG_PROC_FS
  2051. /*
  2052. * The /proc interfaces to multicast routing :
  2053. * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
  2054. */
  2055. struct ipmr_vif_iter {
  2056. struct seq_net_private p;
  2057. struct mr_table *mrt;
  2058. int ct;
  2059. };
  2060. static struct vif_device *ipmr_vif_seq_idx(struct net *net,
  2061. struct ipmr_vif_iter *iter,
  2062. loff_t pos)
  2063. {
  2064. struct mr_table *mrt = iter->mrt;
  2065. for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
  2066. if (!VIF_EXISTS(mrt, iter->ct))
  2067. continue;
  2068. if (pos-- == 0)
  2069. return &mrt->vif_table[iter->ct];
  2070. }
  2071. return NULL;
  2072. }
  2073. static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
  2074. __acquires(mrt_lock)
  2075. {
  2076. struct ipmr_vif_iter *iter = seq->private;
  2077. struct net *net = seq_file_net(seq);
  2078. struct mr_table *mrt;
  2079. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2080. if (mrt == NULL)
  2081. return ERR_PTR(-ENOENT);
  2082. iter->mrt = mrt;
  2083. read_lock(&mrt_lock);
  2084. return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
  2085. : SEQ_START_TOKEN;
  2086. }
  2087. static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2088. {
  2089. struct ipmr_vif_iter *iter = seq->private;
  2090. struct net *net = seq_file_net(seq);
  2091. struct mr_table *mrt = iter->mrt;
  2092. ++*pos;
  2093. if (v == SEQ_START_TOKEN)
  2094. return ipmr_vif_seq_idx(net, iter, 0);
  2095. while (++iter->ct < mrt->maxvif) {
  2096. if (!VIF_EXISTS(mrt, iter->ct))
  2097. continue;
  2098. return &mrt->vif_table[iter->ct];
  2099. }
  2100. return NULL;
  2101. }
  2102. static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
  2103. __releases(mrt_lock)
  2104. {
  2105. read_unlock(&mrt_lock);
  2106. }
  2107. static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
  2108. {
  2109. struct ipmr_vif_iter *iter = seq->private;
  2110. struct mr_table *mrt = iter->mrt;
  2111. if (v == SEQ_START_TOKEN) {
  2112. seq_puts(seq,
  2113. "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
  2114. } else {
  2115. const struct vif_device *vif = v;
  2116. const char *name = vif->dev ? vif->dev->name : "none";
  2117. seq_printf(seq,
  2118. "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
  2119. vif - mrt->vif_table,
  2120. name, vif->bytes_in, vif->pkt_in,
  2121. vif->bytes_out, vif->pkt_out,
  2122. vif->flags, vif->local, vif->remote);
  2123. }
  2124. return 0;
  2125. }
  2126. static const struct seq_operations ipmr_vif_seq_ops = {
  2127. .start = ipmr_vif_seq_start,
  2128. .next = ipmr_vif_seq_next,
  2129. .stop = ipmr_vif_seq_stop,
  2130. .show = ipmr_vif_seq_show,
  2131. };
  2132. static int ipmr_vif_open(struct inode *inode, struct file *file)
  2133. {
  2134. return seq_open_net(inode, file, &ipmr_vif_seq_ops,
  2135. sizeof(struct ipmr_vif_iter));
  2136. }
  2137. static const struct file_operations ipmr_vif_fops = {
  2138. .owner = THIS_MODULE,
  2139. .open = ipmr_vif_open,
  2140. .read = seq_read,
  2141. .llseek = seq_lseek,
  2142. .release = seq_release_net,
  2143. };
  2144. struct ipmr_mfc_iter {
  2145. struct seq_net_private p;
  2146. struct mr_table *mrt;
  2147. struct list_head *cache;
  2148. int ct;
  2149. };
  2150. static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
  2151. struct ipmr_mfc_iter *it, loff_t pos)
  2152. {
  2153. struct mr_table *mrt = it->mrt;
  2154. struct mfc_cache *mfc;
  2155. rcu_read_lock();
  2156. for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
  2157. it->cache = &mrt->mfc_cache_array[it->ct];
  2158. list_for_each_entry_rcu(mfc, it->cache, list)
  2159. if (pos-- == 0)
  2160. return mfc;
  2161. }
  2162. rcu_read_unlock();
  2163. spin_lock_bh(&mfc_unres_lock);
  2164. it->cache = &mrt->mfc_unres_queue;
  2165. list_for_each_entry(mfc, it->cache, list)
  2166. if (pos-- == 0)
  2167. return mfc;
  2168. spin_unlock_bh(&mfc_unres_lock);
  2169. it->cache = NULL;
  2170. return NULL;
  2171. }
  2172. static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
  2173. {
  2174. struct ipmr_mfc_iter *it = seq->private;
  2175. struct net *net = seq_file_net(seq);
  2176. struct mr_table *mrt;
  2177. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2178. if (mrt == NULL)
  2179. return ERR_PTR(-ENOENT);
  2180. it->mrt = mrt;
  2181. it->cache = NULL;
  2182. it->ct = 0;
  2183. return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
  2184. : SEQ_START_TOKEN;
  2185. }
  2186. static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2187. {
  2188. struct mfc_cache *mfc = v;
  2189. struct ipmr_mfc_iter *it = seq->private;
  2190. struct net *net = seq_file_net(seq);
  2191. struct mr_table *mrt = it->mrt;
  2192. ++*pos;
  2193. if (v == SEQ_START_TOKEN)
  2194. return ipmr_mfc_seq_idx(net, seq->private, 0);
  2195. if (mfc->list.next != it->cache)
  2196. return list_entry(mfc->list.next, struct mfc_cache, list);
  2197. if (it->cache == &mrt->mfc_unres_queue)
  2198. goto end_of_list;
  2199. BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
  2200. while (++it->ct < MFC_LINES) {
  2201. it->cache = &mrt->mfc_cache_array[it->ct];
  2202. if (list_empty(it->cache))
  2203. continue;
  2204. return list_first_entry(it->cache, struct mfc_cache, list);
  2205. }
  2206. /* exhausted cache_array, show unresolved */
  2207. rcu_read_unlock();
  2208. it->cache = &mrt->mfc_unres_queue;
  2209. it->ct = 0;
  2210. spin_lock_bh(&mfc_unres_lock);
  2211. if (!list_empty(it->cache))
  2212. return list_first_entry(it->cache, struct mfc_cache, list);
  2213. end_of_list:
  2214. spin_unlock_bh(&mfc_unres_lock);
  2215. it->cache = NULL;
  2216. return NULL;
  2217. }
  2218. static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
  2219. {
  2220. struct ipmr_mfc_iter *it = seq->private;
  2221. struct mr_table *mrt = it->mrt;
  2222. if (it->cache == &mrt->mfc_unres_queue)
  2223. spin_unlock_bh(&mfc_unres_lock);
  2224. else if (it->cache == &mrt->mfc_cache_array[it->ct])
  2225. rcu_read_unlock();
  2226. }
  2227. static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
  2228. {
  2229. int n;
  2230. if (v == SEQ_START_TOKEN) {
  2231. seq_puts(seq,
  2232. "Group Origin Iif Pkts Bytes Wrong Oifs\n");
  2233. } else {
  2234. const struct mfc_cache *mfc = v;
  2235. const struct ipmr_mfc_iter *it = seq->private;
  2236. const struct mr_table *mrt = it->mrt;
  2237. seq_printf(seq, "%08X %08X %-3hd",
  2238. (__force u32) mfc->mfc_mcastgrp,
  2239. (__force u32) mfc->mfc_origin,
  2240. mfc->mfc_parent);
  2241. if (it->cache != &mrt->mfc_unres_queue) {
  2242. seq_printf(seq, " %8lu %8lu %8lu",
  2243. mfc->mfc_un.res.pkt,
  2244. mfc->mfc_un.res.bytes,
  2245. mfc->mfc_un.res.wrong_if);
  2246. for (n = mfc->mfc_un.res.minvif;
  2247. n < mfc->mfc_un.res.maxvif; n++) {
  2248. if (VIF_EXISTS(mrt, n) &&
  2249. mfc->mfc_un.res.ttls[n] < 255)
  2250. seq_printf(seq,
  2251. " %2d:%-3d",
  2252. n, mfc->mfc_un.res.ttls[n]);
  2253. }
  2254. } else {
  2255. /* unresolved mfc_caches don't contain
  2256. * pkt, bytes and wrong_if values
  2257. */
  2258. seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
  2259. }
  2260. seq_putc(seq, '\n');
  2261. }
  2262. return 0;
  2263. }
  2264. static const struct seq_operations ipmr_mfc_seq_ops = {
  2265. .start = ipmr_mfc_seq_start,
  2266. .next = ipmr_mfc_seq_next,
  2267. .stop = ipmr_mfc_seq_stop,
  2268. .show = ipmr_mfc_seq_show,
  2269. };
  2270. static int ipmr_mfc_open(struct inode *inode, struct file *file)
  2271. {
  2272. return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
  2273. sizeof(struct ipmr_mfc_iter));
  2274. }
  2275. static const struct file_operations ipmr_mfc_fops = {
  2276. .owner = THIS_MODULE,
  2277. .open = ipmr_mfc_open,
  2278. .read = seq_read,
  2279. .llseek = seq_lseek,
  2280. .release = seq_release_net,
  2281. };
  2282. #endif
  2283. #ifdef CONFIG_IP_PIMSM_V2
  2284. static const struct net_protocol pim_protocol = {
  2285. .handler = pim_rcv,
  2286. .netns_ok = 1,
  2287. };
  2288. #endif
  2289. /*
  2290. * Setup for IP multicast routing
  2291. */
  2292. static int __net_init ipmr_net_init(struct net *net)
  2293. {
  2294. int err;
  2295. err = ipmr_rules_init(net);
  2296. if (err < 0)
  2297. goto fail;
  2298. #ifdef CONFIG_PROC_FS
  2299. err = -ENOMEM;
  2300. if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
  2301. goto proc_vif_fail;
  2302. if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
  2303. goto proc_cache_fail;
  2304. #endif
  2305. return 0;
  2306. #ifdef CONFIG_PROC_FS
  2307. proc_cache_fail:
  2308. remove_proc_entry("ip_mr_vif", net->proc_net);
  2309. proc_vif_fail:
  2310. ipmr_rules_exit(net);
  2311. #endif
  2312. fail:
  2313. return err;
  2314. }
  2315. static void __net_exit ipmr_net_exit(struct net *net)
  2316. {
  2317. #ifdef CONFIG_PROC_FS
  2318. remove_proc_entry("ip_mr_cache", net->proc_net);
  2319. remove_proc_entry("ip_mr_vif", net->proc_net);
  2320. #endif
  2321. ipmr_rules_exit(net);
  2322. }
  2323. static struct pernet_operations ipmr_net_ops = {
  2324. .init = ipmr_net_init,
  2325. .exit = ipmr_net_exit,
  2326. };
  2327. int __init ip_mr_init(void)
  2328. {
  2329. int err;
  2330. mrt_cachep = kmem_cache_create("ip_mrt_cache",
  2331. sizeof(struct mfc_cache),
  2332. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
  2333. NULL);
  2334. if (!mrt_cachep)
  2335. return -ENOMEM;
  2336. err = register_pernet_subsys(&ipmr_net_ops);
  2337. if (err)
  2338. goto reg_pernet_fail;
  2339. err = register_netdevice_notifier(&ip_mr_notifier);
  2340. if (err)
  2341. goto reg_notif_fail;
  2342. #ifdef CONFIG_IP_PIMSM_V2
  2343. if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
  2344. pr_err("%s: can't add PIM protocol\n", __func__);
  2345. err = -EAGAIN;
  2346. goto add_proto_fail;
  2347. }
  2348. #endif
  2349. rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
  2350. NULL, ipmr_rtm_dumproute, NULL);
  2351. return 0;
  2352. #ifdef CONFIG_IP_PIMSM_V2
  2353. add_proto_fail:
  2354. unregister_netdevice_notifier(&ip_mr_notifier);
  2355. #endif
  2356. reg_notif_fail:
  2357. unregister_pernet_subsys(&ipmr_net_ops);
  2358. reg_pernet_fail:
  2359. kmem_cache_destroy(mrt_cachep);
  2360. return err;
  2361. }