fib_trie.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version
  5. * 2 of the License, or (at your option) any later version.
  6. *
  7. * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
  8. * & Swedish University of Agricultural Sciences.
  9. *
  10. * Jens Laas <jens.laas@data.slu.se> Swedish University of
  11. * Agricultural Sciences.
  12. *
  13. * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
  14. *
  15. * This work is based on the LPC-trie which is originally described in:
  16. *
  17. * An experimental study of compression methods for dynamic tries
  18. * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19. * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20. *
  21. *
  22. * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23. * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24. *
  25. *
  26. * Code from fib_hash has been reused which includes the following header:
  27. *
  28. *
  29. * INET An implementation of the TCP/IP protocol suite for the LINUX
  30. * operating system. INET is implemented using the BSD Socket
  31. * interface as the means of communication with the user level.
  32. *
  33. * IPv4 FIB: lookup engine and maintenance routines.
  34. *
  35. *
  36. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37. *
  38. * This program is free software; you can redistribute it and/or
  39. * modify it under the terms of the GNU General Public License
  40. * as published by the Free Software Foundation; either version
  41. * 2 of the License, or (at your option) any later version.
  42. *
  43. * Substantial contributions to this work comes from:
  44. *
  45. * David S. Miller, <davem@davemloft.net>
  46. * Stephen Hemminger <shemminger@osdl.org>
  47. * Paul E. McKenney <paulmck@us.ibm.com>
  48. * Patrick McHardy <kaber@trash.net>
  49. */
  50. #define VERSION "0.409"
  51. #include <asm/uaccess.h>
  52. #include <linux/bitops.h>
  53. #include <linux/types.h>
  54. #include <linux/kernel.h>
  55. #include <linux/mm.h>
  56. #include <linux/string.h>
  57. #include <linux/socket.h>
  58. #include <linux/sockios.h>
  59. #include <linux/errno.h>
  60. #include <linux/in.h>
  61. #include <linux/inet.h>
  62. #include <linux/inetdevice.h>
  63. #include <linux/netdevice.h>
  64. #include <linux/if_arp.h>
  65. #include <linux/proc_fs.h>
  66. #include <linux/rcupdate.h>
  67. #include <linux/skbuff.h>
  68. #include <linux/netlink.h>
  69. #include <linux/init.h>
  70. #include <linux/list.h>
  71. #include <linux/slab.h>
  72. #include <linux/export.h>
  73. #include <net/net_namespace.h>
  74. #include <net/ip.h>
  75. #include <net/protocol.h>
  76. #include <net/route.h>
  77. #include <net/tcp.h>
  78. #include <net/sock.h>
  79. #include <net/ip_fib.h>
  80. #include <net/switchdev.h>
  81. #include "fib_lookup.h"
  82. #define MAX_STAT_DEPTH 32
  83. #define KEYLENGTH (8*sizeof(t_key))
  84. #define KEY_MAX ((t_key)~0)
  85. typedef unsigned int t_key;
  86. #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
  87. #define IS_TNODE(n) ((n)->bits)
  88. #define IS_LEAF(n) (!(n)->bits)
  89. struct key_vector {
  90. t_key key;
  91. unsigned char pos; /* 2log(KEYLENGTH) bits needed */
  92. unsigned char bits; /* 2log(KEYLENGTH) bits needed */
  93. unsigned char slen;
  94. union {
  95. /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
  96. struct hlist_head leaf;
  97. /* This array is valid if (pos | bits) > 0 (TNODE) */
  98. struct key_vector __rcu *tnode[0];
  99. };
  100. };
  101. struct tnode {
  102. struct rcu_head rcu;
  103. t_key empty_children; /* KEYLENGTH bits needed */
  104. t_key full_children; /* KEYLENGTH bits needed */
  105. struct key_vector __rcu *parent;
  106. struct key_vector kv[1];
  107. #define tn_bits kv[0].bits
  108. };
  109. #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
  110. #define LEAF_SIZE TNODE_SIZE(1)
  111. #ifdef CONFIG_IP_FIB_TRIE_STATS
  112. struct trie_use_stats {
  113. unsigned int gets;
  114. unsigned int backtrack;
  115. unsigned int semantic_match_passed;
  116. unsigned int semantic_match_miss;
  117. unsigned int null_node_hit;
  118. unsigned int resize_node_skipped;
  119. };
  120. #endif
  121. struct trie_stat {
  122. unsigned int totdepth;
  123. unsigned int maxdepth;
  124. unsigned int tnodes;
  125. unsigned int leaves;
  126. unsigned int nullpointers;
  127. unsigned int prefixes;
  128. unsigned int nodesizes[MAX_STAT_DEPTH];
  129. };
  130. struct trie {
  131. struct key_vector kv[1];
  132. #ifdef CONFIG_IP_FIB_TRIE_STATS
  133. struct trie_use_stats __percpu *stats;
  134. #endif
  135. };
  136. static struct key_vector *resize(struct trie *t, struct key_vector *tn);
  137. static size_t tnode_free_size;
  138. /*
  139. * synchronize_rcu after call_rcu for that many pages; it should be especially
  140. * useful before resizing the root node with PREEMPT_NONE configs; the value was
  141. * obtained experimentally, aiming to avoid visible slowdown.
  142. */
  143. static const int sync_pages = 128;
  144. static struct kmem_cache *fn_alias_kmem __read_mostly;
  145. static struct kmem_cache *trie_leaf_kmem __read_mostly;
  146. static inline struct tnode *tn_info(struct key_vector *kv)
  147. {
  148. return container_of(kv, struct tnode, kv[0]);
  149. }
  150. /* caller must hold RTNL */
  151. #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
  152. #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
  153. /* caller must hold RCU read lock or RTNL */
  154. #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
  155. #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
  156. /* wrapper for rcu_assign_pointer */
  157. static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
  158. {
  159. if (n)
  160. rcu_assign_pointer(tn_info(n)->parent, tp);
  161. }
  162. #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
  163. /* This provides us with the number of children in this node, in the case of a
  164. * leaf this will return 0 meaning none of the children are accessible.
  165. */
  166. static inline unsigned long child_length(const struct key_vector *tn)
  167. {
  168. return (1ul << tn->bits) & ~(1ul);
  169. }
  170. #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
  171. static inline unsigned long get_index(t_key key, struct key_vector *kv)
  172. {
  173. unsigned long index = key ^ kv->key;
  174. if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
  175. return 0;
  176. return index >> kv->pos;
  177. }
  178. /* To understand this stuff, an understanding of keys and all their bits is
  179. * necessary. Every node in the trie has a key associated with it, but not
  180. * all of the bits in that key are significant.
  181. *
  182. * Consider a node 'n' and its parent 'tp'.
  183. *
  184. * If n is a leaf, every bit in its key is significant. Its presence is
  185. * necessitated by path compression, since during a tree traversal (when
  186. * searching for a leaf - unless we are doing an insertion) we will completely
  187. * ignore all skipped bits we encounter. Thus we need to verify, at the end of
  188. * a potentially successful search, that we have indeed been walking the
  189. * correct key path.
  190. *
  191. * Note that we can never "miss" the correct key in the tree if present by
  192. * following the wrong path. Path compression ensures that segments of the key
  193. * that are the same for all keys with a given prefix are skipped, but the
  194. * skipped part *is* identical for each node in the subtrie below the skipped
  195. * bit! trie_insert() in this implementation takes care of that.
  196. *
  197. * if n is an internal node - a 'tnode' here, the various parts of its key
  198. * have many different meanings.
  199. *
  200. * Example:
  201. * _________________________________________________________________
  202. * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  203. * -----------------------------------------------------------------
  204. * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
  205. *
  206. * _________________________________________________________________
  207. * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  208. * -----------------------------------------------------------------
  209. * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
  210. *
  211. * tp->pos = 22
  212. * tp->bits = 3
  213. * n->pos = 13
  214. * n->bits = 4
  215. *
  216. * First, let's just ignore the bits that come before the parent tp, that is
  217. * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
  218. * point we do not use them for anything.
  219. *
  220. * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
  221. * index into the parent's child array. That is, they will be used to find
  222. * 'n' among tp's children.
  223. *
  224. * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
  225. * for the node n.
  226. *
  227. * All the bits we have seen so far are significant to the node n. The rest
  228. * of the bits are really not needed or indeed known in n->key.
  229. *
  230. * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
  231. * n's child array, and will of course be different for each child.
  232. *
  233. * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
  234. * at this point.
  235. */
  236. static const int halve_threshold = 25;
  237. static const int inflate_threshold = 50;
  238. static const int halve_threshold_root = 15;
  239. static const int inflate_threshold_root = 30;
  240. static void __alias_free_mem(struct rcu_head *head)
  241. {
  242. struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
  243. kmem_cache_free(fn_alias_kmem, fa);
  244. }
  245. static inline void alias_free_mem_rcu(struct fib_alias *fa)
  246. {
  247. call_rcu(&fa->rcu, __alias_free_mem);
  248. }
  249. #define TNODE_KMALLOC_MAX \
  250. ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  251. #define TNODE_VMALLOC_MAX \
  252. ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  253. static void __node_free_rcu(struct rcu_head *head)
  254. {
  255. struct tnode *n = container_of(head, struct tnode, rcu);
  256. if (!n->tn_bits)
  257. kmem_cache_free(trie_leaf_kmem, n);
  258. else if (n->tn_bits <= TNODE_KMALLOC_MAX)
  259. kfree(n);
  260. else
  261. vfree(n);
  262. }
  263. #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
  264. static struct tnode *tnode_alloc(int bits)
  265. {
  266. size_t size;
  267. /* verify bits is within bounds */
  268. if (bits > TNODE_VMALLOC_MAX)
  269. return NULL;
  270. /* determine size and verify it is non-zero and didn't overflow */
  271. size = TNODE_SIZE(1ul << bits);
  272. if (size <= PAGE_SIZE)
  273. return kzalloc(size, GFP_KERNEL);
  274. else
  275. return vzalloc(size);
  276. }
  277. static inline void empty_child_inc(struct key_vector *n)
  278. {
  279. ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
  280. }
  281. static inline void empty_child_dec(struct key_vector *n)
  282. {
  283. tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
  284. }
  285. static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
  286. {
  287. struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
  288. struct key_vector *l = kv->kv;
  289. if (!kv)
  290. return NULL;
  291. /* initialize key vector */
  292. l->key = key;
  293. l->pos = 0;
  294. l->bits = 0;
  295. l->slen = fa->fa_slen;
  296. /* link leaf to fib alias */
  297. INIT_HLIST_HEAD(&l->leaf);
  298. hlist_add_head(&fa->fa_list, &l->leaf);
  299. return l;
  300. }
  301. static struct key_vector *tnode_new(t_key key, int pos, int bits)
  302. {
  303. struct tnode *tnode = tnode_alloc(bits);
  304. unsigned int shift = pos + bits;
  305. struct key_vector *tn = tnode->kv;
  306. /* verify bits and pos their msb bits clear and values are valid */
  307. BUG_ON(!bits || (shift > KEYLENGTH));
  308. pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
  309. sizeof(struct key_vector *) << bits);
  310. if (!tnode)
  311. return NULL;
  312. if (bits == KEYLENGTH)
  313. tnode->full_children = 1;
  314. else
  315. tnode->empty_children = 1ul << bits;
  316. tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
  317. tn->pos = pos;
  318. tn->bits = bits;
  319. tn->slen = pos;
  320. return tn;
  321. }
  322. /* Check whether a tnode 'n' is "full", i.e. it is an internal node
  323. * and no bits are skipped. See discussion in dyntree paper p. 6
  324. */
  325. static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
  326. {
  327. return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
  328. }
  329. /* Add a child at position i overwriting the old value.
  330. * Update the value of full_children and empty_children.
  331. */
  332. static void put_child(struct key_vector *tn, unsigned long i,
  333. struct key_vector *n)
  334. {
  335. struct key_vector *chi = get_child(tn, i);
  336. int isfull, wasfull;
  337. BUG_ON(i >= child_length(tn));
  338. /* update emptyChildren, overflow into fullChildren */
  339. if (n == NULL && chi != NULL)
  340. empty_child_inc(tn);
  341. if (n != NULL && chi == NULL)
  342. empty_child_dec(tn);
  343. /* update fullChildren */
  344. wasfull = tnode_full(tn, chi);
  345. isfull = tnode_full(tn, n);
  346. if (wasfull && !isfull)
  347. tn_info(tn)->full_children--;
  348. else if (!wasfull && isfull)
  349. tn_info(tn)->full_children++;
  350. if (n && (tn->slen < n->slen))
  351. tn->slen = n->slen;
  352. rcu_assign_pointer(tn->tnode[i], n);
  353. }
  354. static void update_children(struct key_vector *tn)
  355. {
  356. unsigned long i;
  357. /* update all of the child parent pointers */
  358. for (i = child_length(tn); i;) {
  359. struct key_vector *inode = get_child(tn, --i);
  360. if (!inode)
  361. continue;
  362. /* Either update the children of a tnode that
  363. * already belongs to us or update the child
  364. * to point to ourselves.
  365. */
  366. if (node_parent(inode) == tn)
  367. update_children(inode);
  368. else
  369. node_set_parent(inode, tn);
  370. }
  371. }
  372. static inline void put_child_root(struct key_vector *tp, t_key key,
  373. struct key_vector *n)
  374. {
  375. if (IS_TRIE(tp))
  376. rcu_assign_pointer(tp->tnode[0], n);
  377. else
  378. put_child(tp, get_index(key, tp), n);
  379. }
  380. static inline void tnode_free_init(struct key_vector *tn)
  381. {
  382. tn_info(tn)->rcu.next = NULL;
  383. }
  384. static inline void tnode_free_append(struct key_vector *tn,
  385. struct key_vector *n)
  386. {
  387. tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
  388. tn_info(tn)->rcu.next = &tn_info(n)->rcu;
  389. }
  390. static void tnode_free(struct key_vector *tn)
  391. {
  392. struct callback_head *head = &tn_info(tn)->rcu;
  393. while (head) {
  394. head = head->next;
  395. tnode_free_size += TNODE_SIZE(1ul << tn->bits);
  396. node_free(tn);
  397. tn = container_of(head, struct tnode, rcu)->kv;
  398. }
  399. if (tnode_free_size >= PAGE_SIZE * sync_pages) {
  400. tnode_free_size = 0;
  401. synchronize_rcu();
  402. }
  403. }
  404. static struct key_vector *replace(struct trie *t,
  405. struct key_vector *oldtnode,
  406. struct key_vector *tn)
  407. {
  408. struct key_vector *tp = node_parent(oldtnode);
  409. unsigned long i;
  410. /* setup the parent pointer out of and back into this node */
  411. NODE_INIT_PARENT(tn, tp);
  412. put_child_root(tp, tn->key, tn);
  413. /* update all of the child parent pointers */
  414. update_children(tn);
  415. /* all pointers should be clean so we are done */
  416. tnode_free(oldtnode);
  417. /* resize children now that oldtnode is freed */
  418. for (i = child_length(tn); i;) {
  419. struct key_vector *inode = get_child(tn, --i);
  420. /* resize child node */
  421. if (tnode_full(tn, inode))
  422. tn = resize(t, inode);
  423. }
  424. return tp;
  425. }
  426. static struct key_vector *inflate(struct trie *t,
  427. struct key_vector *oldtnode)
  428. {
  429. struct key_vector *tn;
  430. unsigned long i;
  431. t_key m;
  432. pr_debug("In inflate\n");
  433. tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
  434. if (!tn)
  435. goto notnode;
  436. /* prepare oldtnode to be freed */
  437. tnode_free_init(oldtnode);
  438. /* Assemble all of the pointers in our cluster, in this case that
  439. * represents all of the pointers out of our allocated nodes that
  440. * point to existing tnodes and the links between our allocated
  441. * nodes.
  442. */
  443. for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
  444. struct key_vector *inode = get_child(oldtnode, --i);
  445. struct key_vector *node0, *node1;
  446. unsigned long j, k;
  447. /* An empty child */
  448. if (inode == NULL)
  449. continue;
  450. /* A leaf or an internal node with skipped bits */
  451. if (!tnode_full(oldtnode, inode)) {
  452. put_child(tn, get_index(inode->key, tn), inode);
  453. continue;
  454. }
  455. /* drop the node in the old tnode free list */
  456. tnode_free_append(oldtnode, inode);
  457. /* An internal node with two children */
  458. if (inode->bits == 1) {
  459. put_child(tn, 2 * i + 1, get_child(inode, 1));
  460. put_child(tn, 2 * i, get_child(inode, 0));
  461. continue;
  462. }
  463. /* We will replace this node 'inode' with two new
  464. * ones, 'node0' and 'node1', each with half of the
  465. * original children. The two new nodes will have
  466. * a position one bit further down the key and this
  467. * means that the "significant" part of their keys
  468. * (see the discussion near the top of this file)
  469. * will differ by one bit, which will be "0" in
  470. * node0's key and "1" in node1's key. Since we are
  471. * moving the key position by one step, the bit that
  472. * we are moving away from - the bit at position
  473. * (tn->pos) - is the one that will differ between
  474. * node0 and node1. So... we synthesize that bit in the
  475. * two new keys.
  476. */
  477. node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
  478. if (!node1)
  479. goto nomem;
  480. node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
  481. tnode_free_append(tn, node1);
  482. if (!node0)
  483. goto nomem;
  484. tnode_free_append(tn, node0);
  485. /* populate child pointers in new nodes */
  486. for (k = child_length(inode), j = k / 2; j;) {
  487. put_child(node1, --j, get_child(inode, --k));
  488. put_child(node0, j, get_child(inode, j));
  489. put_child(node1, --j, get_child(inode, --k));
  490. put_child(node0, j, get_child(inode, j));
  491. }
  492. /* link new nodes to parent */
  493. NODE_INIT_PARENT(node1, tn);
  494. NODE_INIT_PARENT(node0, tn);
  495. /* link parent to nodes */
  496. put_child(tn, 2 * i + 1, node1);
  497. put_child(tn, 2 * i, node0);
  498. }
  499. /* setup the parent pointers into and out of this node */
  500. return replace(t, oldtnode, tn);
  501. nomem:
  502. /* all pointers should be clean so we are done */
  503. tnode_free(tn);
  504. notnode:
  505. return NULL;
  506. }
  507. static struct key_vector *halve(struct trie *t,
  508. struct key_vector *oldtnode)
  509. {
  510. struct key_vector *tn;
  511. unsigned long i;
  512. pr_debug("In halve\n");
  513. tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
  514. if (!tn)
  515. goto notnode;
  516. /* prepare oldtnode to be freed */
  517. tnode_free_init(oldtnode);
  518. /* Assemble all of the pointers in our cluster, in this case that
  519. * represents all of the pointers out of our allocated nodes that
  520. * point to existing tnodes and the links between our allocated
  521. * nodes.
  522. */
  523. for (i = child_length(oldtnode); i;) {
  524. struct key_vector *node1 = get_child(oldtnode, --i);
  525. struct key_vector *node0 = get_child(oldtnode, --i);
  526. struct key_vector *inode;
  527. /* At least one of the children is empty */
  528. if (!node1 || !node0) {
  529. put_child(tn, i / 2, node1 ? : node0);
  530. continue;
  531. }
  532. /* Two nonempty children */
  533. inode = tnode_new(node0->key, oldtnode->pos, 1);
  534. if (!inode)
  535. goto nomem;
  536. tnode_free_append(tn, inode);
  537. /* initialize pointers out of node */
  538. put_child(inode, 1, node1);
  539. put_child(inode, 0, node0);
  540. NODE_INIT_PARENT(inode, tn);
  541. /* link parent to node */
  542. put_child(tn, i / 2, inode);
  543. }
  544. /* setup the parent pointers into and out of this node */
  545. return replace(t, oldtnode, tn);
  546. nomem:
  547. /* all pointers should be clean so we are done */
  548. tnode_free(tn);
  549. notnode:
  550. return NULL;
  551. }
  552. static struct key_vector *collapse(struct trie *t,
  553. struct key_vector *oldtnode)
  554. {
  555. struct key_vector *n, *tp;
  556. unsigned long i;
  557. /* scan the tnode looking for that one child that might still exist */
  558. for (n = NULL, i = child_length(oldtnode); !n && i;)
  559. n = get_child(oldtnode, --i);
  560. /* compress one level */
  561. tp = node_parent(oldtnode);
  562. put_child_root(tp, oldtnode->key, n);
  563. node_set_parent(n, tp);
  564. /* drop dead node */
  565. node_free(oldtnode);
  566. return tp;
  567. }
  568. static unsigned char update_suffix(struct key_vector *tn)
  569. {
  570. unsigned char slen = tn->pos;
  571. unsigned long stride, i;
  572. /* search though the list of children looking for nodes that might
  573. * have a suffix greater than the one we currently have. This is
  574. * why we start with a stride of 2 since a stride of 1 would
  575. * represent the nodes with suffix length equal to tn->pos
  576. */
  577. for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
  578. struct key_vector *n = get_child(tn, i);
  579. if (!n || (n->slen <= slen))
  580. continue;
  581. /* update stride and slen based on new value */
  582. stride <<= (n->slen - slen);
  583. slen = n->slen;
  584. i &= ~(stride - 1);
  585. /* if slen covers all but the last bit we can stop here
  586. * there will be nothing longer than that since only node
  587. * 0 and 1 << (bits - 1) could have that as their suffix
  588. * length.
  589. */
  590. if ((slen + 1) >= (tn->pos + tn->bits))
  591. break;
  592. }
  593. tn->slen = slen;
  594. return slen;
  595. }
  596. /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
  597. * the Helsinki University of Technology and Matti Tikkanen of Nokia
  598. * Telecommunications, page 6:
  599. * "A node is doubled if the ratio of non-empty children to all
  600. * children in the *doubled* node is at least 'high'."
  601. *
  602. * 'high' in this instance is the variable 'inflate_threshold'. It
  603. * is expressed as a percentage, so we multiply it with
  604. * child_length() and instead of multiplying by 2 (since the
  605. * child array will be doubled by inflate()) and multiplying
  606. * the left-hand side by 100 (to handle the percentage thing) we
  607. * multiply the left-hand side by 50.
  608. *
  609. * The left-hand side may look a bit weird: child_length(tn)
  610. * - tn->empty_children is of course the number of non-null children
  611. * in the current node. tn->full_children is the number of "full"
  612. * children, that is non-null tnodes with a skip value of 0.
  613. * All of those will be doubled in the resulting inflated tnode, so
  614. * we just count them one extra time here.
  615. *
  616. * A clearer way to write this would be:
  617. *
  618. * to_be_doubled = tn->full_children;
  619. * not_to_be_doubled = child_length(tn) - tn->empty_children -
  620. * tn->full_children;
  621. *
  622. * new_child_length = child_length(tn) * 2;
  623. *
  624. * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
  625. * new_child_length;
  626. * if (new_fill_factor >= inflate_threshold)
  627. *
  628. * ...and so on, tho it would mess up the while () loop.
  629. *
  630. * anyway,
  631. * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
  632. * inflate_threshold
  633. *
  634. * avoid a division:
  635. * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
  636. * inflate_threshold * new_child_length
  637. *
  638. * expand not_to_be_doubled and to_be_doubled, and shorten:
  639. * 100 * (child_length(tn) - tn->empty_children +
  640. * tn->full_children) >= inflate_threshold * new_child_length
  641. *
  642. * expand new_child_length:
  643. * 100 * (child_length(tn) - tn->empty_children +
  644. * tn->full_children) >=
  645. * inflate_threshold * child_length(tn) * 2
  646. *
  647. * shorten again:
  648. * 50 * (tn->full_children + child_length(tn) -
  649. * tn->empty_children) >= inflate_threshold *
  650. * child_length(tn)
  651. *
  652. */
  653. static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
  654. {
  655. unsigned long used = child_length(tn);
  656. unsigned long threshold = used;
  657. /* Keep root node larger */
  658. threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
  659. used -= tn_info(tn)->empty_children;
  660. used += tn_info(tn)->full_children;
  661. /* if bits == KEYLENGTH then pos = 0, and will fail below */
  662. return (used > 1) && tn->pos && ((50 * used) >= threshold);
  663. }
  664. static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
  665. {
  666. unsigned long used = child_length(tn);
  667. unsigned long threshold = used;
  668. /* Keep root node larger */
  669. threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
  670. used -= tn_info(tn)->empty_children;
  671. /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
  672. return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
  673. }
  674. static inline bool should_collapse(struct key_vector *tn)
  675. {
  676. unsigned long used = child_length(tn);
  677. used -= tn_info(tn)->empty_children;
  678. /* account for bits == KEYLENGTH case */
  679. if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
  680. used -= KEY_MAX;
  681. /* One child or none, time to drop us from the trie */
  682. return used < 2;
  683. }
  684. #define MAX_WORK 10
  685. static struct key_vector *resize(struct trie *t, struct key_vector *tn)
  686. {
  687. #ifdef CONFIG_IP_FIB_TRIE_STATS
  688. struct trie_use_stats __percpu *stats = t->stats;
  689. #endif
  690. struct key_vector *tp = node_parent(tn);
  691. unsigned long cindex = get_index(tn->key, tp);
  692. int max_work = MAX_WORK;
  693. pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
  694. tn, inflate_threshold, halve_threshold);
  695. /* track the tnode via the pointer from the parent instead of
  696. * doing it ourselves. This way we can let RCU fully do its
  697. * thing without us interfering
  698. */
  699. BUG_ON(tn != get_child(tp, cindex));
  700. /* Double as long as the resulting node has a number of
  701. * nonempty nodes that are above the threshold.
  702. */
  703. while (should_inflate(tp, tn) && max_work--) {
  704. tp = inflate(t, tn);
  705. if (!tp) {
  706. #ifdef CONFIG_IP_FIB_TRIE_STATS
  707. this_cpu_inc(stats->resize_node_skipped);
  708. #endif
  709. break;
  710. }
  711. tn = get_child(tp, cindex);
  712. }
  713. /* Return if at least one inflate is run */
  714. if (max_work != MAX_WORK)
  715. return node_parent(tn);
  716. /* Halve as long as the number of empty children in this
  717. * node is above threshold.
  718. */
  719. while (should_halve(tp, tn) && max_work--) {
  720. tp = halve(t, tn);
  721. if (!tp) {
  722. #ifdef CONFIG_IP_FIB_TRIE_STATS
  723. this_cpu_inc(stats->resize_node_skipped);
  724. #endif
  725. break;
  726. }
  727. tn = get_child(tp, cindex);
  728. }
  729. /* Only one child remains */
  730. if (should_collapse(tn))
  731. return collapse(t, tn);
  732. /* update parent in case inflate or halve failed */
  733. tp = node_parent(tn);
  734. /* Return if at least one deflate was run */
  735. if (max_work != MAX_WORK)
  736. return tp;
  737. /* push the suffix length to the parent node */
  738. if (tn->slen > tn->pos) {
  739. unsigned char slen = update_suffix(tn);
  740. if (slen > tp->slen)
  741. tp->slen = slen;
  742. }
  743. return tp;
  744. }
  745. static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
  746. {
  747. while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
  748. if (update_suffix(tp) > l->slen)
  749. break;
  750. tp = node_parent(tp);
  751. }
  752. }
  753. static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
  754. {
  755. /* if this is a new leaf then tn will be NULL and we can sort
  756. * out parent suffix lengths as a part of trie_rebalance
  757. */
  758. while (tn->slen < l->slen) {
  759. tn->slen = l->slen;
  760. tn = node_parent(tn);
  761. }
  762. }
  763. /* rcu_read_lock needs to be hold by caller from readside */
  764. static struct key_vector *fib_find_node(struct trie *t,
  765. struct key_vector **tp, u32 key)
  766. {
  767. struct key_vector *pn, *n = t->kv;
  768. unsigned long index = 0;
  769. do {
  770. pn = n;
  771. n = get_child_rcu(n, index);
  772. if (!n)
  773. break;
  774. index = get_cindex(key, n);
  775. /* This bit of code is a bit tricky but it combines multiple
  776. * checks into a single check. The prefix consists of the
  777. * prefix plus zeros for the bits in the cindex. The index
  778. * is the difference between the key and this value. From
  779. * this we can actually derive several pieces of data.
  780. * if (index >= (1ul << bits))
  781. * we have a mismatch in skip bits and failed
  782. * else
  783. * we know the value is cindex
  784. *
  785. * This check is safe even if bits == KEYLENGTH due to the
  786. * fact that we can only allocate a node with 32 bits if a
  787. * long is greater than 32 bits.
  788. */
  789. if (index >= (1ul << n->bits)) {
  790. n = NULL;
  791. break;
  792. }
  793. /* keep searching until we find a perfect match leaf or NULL */
  794. } while (IS_TNODE(n));
  795. *tp = pn;
  796. return n;
  797. }
  798. /* Return the first fib alias matching TOS with
  799. * priority less than or equal to PRIO.
  800. */
  801. static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
  802. u8 tos, u32 prio, u32 tb_id)
  803. {
  804. struct fib_alias *fa;
  805. if (!fah)
  806. return NULL;
  807. hlist_for_each_entry(fa, fah, fa_list) {
  808. if (fa->fa_slen < slen)
  809. continue;
  810. if (fa->fa_slen != slen)
  811. break;
  812. if (fa->tb_id > tb_id)
  813. continue;
  814. if (fa->tb_id != tb_id)
  815. break;
  816. if (fa->fa_tos > tos)
  817. continue;
  818. if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
  819. return fa;
  820. }
  821. return NULL;
  822. }
  823. static void trie_rebalance(struct trie *t, struct key_vector *tn)
  824. {
  825. while (!IS_TRIE(tn))
  826. tn = resize(t, tn);
  827. }
  828. static int fib_insert_node(struct trie *t, struct key_vector *tp,
  829. struct fib_alias *new, t_key key)
  830. {
  831. struct key_vector *n, *l;
  832. l = leaf_new(key, new);
  833. if (!l)
  834. goto noleaf;
  835. /* retrieve child from parent node */
  836. n = get_child(tp, get_index(key, tp));
  837. /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
  838. *
  839. * Add a new tnode here
  840. * first tnode need some special handling
  841. * leaves us in position for handling as case 3
  842. */
  843. if (n) {
  844. struct key_vector *tn;
  845. tn = tnode_new(key, __fls(key ^ n->key), 1);
  846. if (!tn)
  847. goto notnode;
  848. /* initialize routes out of node */
  849. NODE_INIT_PARENT(tn, tp);
  850. put_child(tn, get_index(key, tn) ^ 1, n);
  851. /* start adding routes into the node */
  852. put_child_root(tp, key, tn);
  853. node_set_parent(n, tn);
  854. /* parent now has a NULL spot where the leaf can go */
  855. tp = tn;
  856. }
  857. /* Case 3: n is NULL, and will just insert a new leaf */
  858. NODE_INIT_PARENT(l, tp);
  859. put_child_root(tp, key, l);
  860. trie_rebalance(t, tp);
  861. return 0;
  862. notnode:
  863. node_free(l);
  864. noleaf:
  865. return -ENOMEM;
  866. }
  867. static int fib_insert_alias(struct trie *t, struct key_vector *tp,
  868. struct key_vector *l, struct fib_alias *new,
  869. struct fib_alias *fa, t_key key)
  870. {
  871. if (!l)
  872. return fib_insert_node(t, tp, new, key);
  873. if (fa) {
  874. hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
  875. } else {
  876. struct fib_alias *last;
  877. hlist_for_each_entry(last, &l->leaf, fa_list) {
  878. if (new->fa_slen < last->fa_slen)
  879. break;
  880. if ((new->fa_slen == last->fa_slen) &&
  881. (new->tb_id > last->tb_id))
  882. break;
  883. fa = last;
  884. }
  885. if (fa)
  886. hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
  887. else
  888. hlist_add_head_rcu(&new->fa_list, &l->leaf);
  889. }
  890. /* if we added to the tail node then we need to update slen */
  891. if (l->slen < new->fa_slen) {
  892. l->slen = new->fa_slen;
  893. leaf_push_suffix(tp, l);
  894. }
  895. return 0;
  896. }
  897. /* Caller must hold RTNL. */
  898. int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
  899. {
  900. struct trie *t = (struct trie *)tb->tb_data;
  901. struct fib_alias *fa, *new_fa;
  902. struct key_vector *l, *tp;
  903. struct fib_info *fi;
  904. u8 plen = cfg->fc_dst_len;
  905. u8 slen = KEYLENGTH - plen;
  906. u8 tos = cfg->fc_tos;
  907. u32 key;
  908. int err;
  909. if (plen > KEYLENGTH)
  910. return -EINVAL;
  911. key = ntohl(cfg->fc_dst);
  912. pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
  913. if ((plen < KEYLENGTH) && (key << plen))
  914. return -EINVAL;
  915. fi = fib_create_info(cfg);
  916. if (IS_ERR(fi)) {
  917. err = PTR_ERR(fi);
  918. goto err;
  919. }
  920. l = fib_find_node(t, &tp, key);
  921. fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
  922. tb->tb_id) : NULL;
  923. /* Now fa, if non-NULL, points to the first fib alias
  924. * with the same keys [prefix,tos,priority], if such key already
  925. * exists or to the node before which we will insert new one.
  926. *
  927. * If fa is NULL, we will need to allocate a new one and
  928. * insert to the tail of the section matching the suffix length
  929. * of the new alias.
  930. */
  931. if (fa && fa->fa_tos == tos &&
  932. fa->fa_info->fib_priority == fi->fib_priority) {
  933. struct fib_alias *fa_first, *fa_match;
  934. err = -EEXIST;
  935. if (cfg->fc_nlflags & NLM_F_EXCL)
  936. goto out;
  937. /* We have 2 goals:
  938. * 1. Find exact match for type, scope, fib_info to avoid
  939. * duplicate routes
  940. * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
  941. */
  942. fa_match = NULL;
  943. fa_first = fa;
  944. hlist_for_each_entry_from(fa, fa_list) {
  945. if ((fa->fa_slen != slen) ||
  946. (fa->tb_id != tb->tb_id) ||
  947. (fa->fa_tos != tos))
  948. break;
  949. if (fa->fa_info->fib_priority != fi->fib_priority)
  950. break;
  951. if (fa->fa_type == cfg->fc_type &&
  952. fa->fa_info == fi) {
  953. fa_match = fa;
  954. break;
  955. }
  956. }
  957. if (cfg->fc_nlflags & NLM_F_REPLACE) {
  958. struct fib_info *fi_drop;
  959. u8 state;
  960. fa = fa_first;
  961. if (fa_match) {
  962. if (fa == fa_match)
  963. err = 0;
  964. goto out;
  965. }
  966. err = -ENOBUFS;
  967. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  968. if (new_fa == NULL)
  969. goto out;
  970. fi_drop = fa->fa_info;
  971. new_fa->fa_tos = fa->fa_tos;
  972. new_fa->fa_info = fi;
  973. new_fa->fa_type = cfg->fc_type;
  974. state = fa->fa_state;
  975. new_fa->fa_state = state & ~FA_S_ACCESSED;
  976. new_fa->fa_slen = fa->fa_slen;
  977. err = netdev_switch_fib_ipv4_add(key, plen, fi,
  978. new_fa->fa_tos,
  979. cfg->fc_type,
  980. cfg->fc_nlflags,
  981. tb->tb_id);
  982. if (err) {
  983. netdev_switch_fib_ipv4_abort(fi);
  984. kmem_cache_free(fn_alias_kmem, new_fa);
  985. goto out;
  986. }
  987. hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
  988. alias_free_mem_rcu(fa);
  989. fib_release_info(fi_drop);
  990. if (state & FA_S_ACCESSED)
  991. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  992. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
  993. tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
  994. goto succeeded;
  995. }
  996. /* Error if we find a perfect match which
  997. * uses the same scope, type, and nexthop
  998. * information.
  999. */
  1000. if (fa_match)
  1001. goto out;
  1002. if (!(cfg->fc_nlflags & NLM_F_APPEND))
  1003. fa = fa_first;
  1004. }
  1005. err = -ENOENT;
  1006. if (!(cfg->fc_nlflags & NLM_F_CREATE))
  1007. goto out;
  1008. err = -ENOBUFS;
  1009. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1010. if (new_fa == NULL)
  1011. goto out;
  1012. new_fa->fa_info = fi;
  1013. new_fa->fa_tos = tos;
  1014. new_fa->fa_type = cfg->fc_type;
  1015. new_fa->fa_state = 0;
  1016. new_fa->fa_slen = slen;
  1017. new_fa->tb_id = tb->tb_id;
  1018. /* (Optionally) offload fib entry to switch hardware. */
  1019. err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
  1020. cfg->fc_type,
  1021. cfg->fc_nlflags,
  1022. tb->tb_id);
  1023. if (err) {
  1024. netdev_switch_fib_ipv4_abort(fi);
  1025. goto out_free_new_fa;
  1026. }
  1027. /* Insert new entry to the list. */
  1028. err = fib_insert_alias(t, tp, l, new_fa, fa, key);
  1029. if (err)
  1030. goto out_sw_fib_del;
  1031. if (!plen)
  1032. tb->tb_num_default++;
  1033. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1034. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
  1035. &cfg->fc_nlinfo, 0);
  1036. succeeded:
  1037. return 0;
  1038. out_sw_fib_del:
  1039. netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
  1040. out_free_new_fa:
  1041. kmem_cache_free(fn_alias_kmem, new_fa);
  1042. out:
  1043. fib_release_info(fi);
  1044. err:
  1045. return err;
  1046. }
  1047. static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
  1048. {
  1049. t_key prefix = n->key;
  1050. return (key ^ prefix) & (prefix | -prefix);
  1051. }
  1052. /* should be called with rcu_read_lock */
  1053. int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
  1054. struct fib_result *res, int fib_flags)
  1055. {
  1056. struct trie *t = (struct trie *) tb->tb_data;
  1057. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1058. struct trie_use_stats __percpu *stats = t->stats;
  1059. #endif
  1060. const t_key key = ntohl(flp->daddr);
  1061. struct key_vector *n, *pn;
  1062. struct fib_alias *fa;
  1063. unsigned long index;
  1064. t_key cindex;
  1065. pn = t->kv;
  1066. cindex = 0;
  1067. n = get_child_rcu(pn, cindex);
  1068. if (!n)
  1069. return -EAGAIN;
  1070. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1071. this_cpu_inc(stats->gets);
  1072. #endif
  1073. /* Step 1: Travel to the longest prefix match in the trie */
  1074. for (;;) {
  1075. index = get_cindex(key, n);
  1076. /* This bit of code is a bit tricky but it combines multiple
  1077. * checks into a single check. The prefix consists of the
  1078. * prefix plus zeros for the "bits" in the prefix. The index
  1079. * is the difference between the key and this value. From
  1080. * this we can actually derive several pieces of data.
  1081. * if (index >= (1ul << bits))
  1082. * we have a mismatch in skip bits and failed
  1083. * else
  1084. * we know the value is cindex
  1085. *
  1086. * This check is safe even if bits == KEYLENGTH due to the
  1087. * fact that we can only allocate a node with 32 bits if a
  1088. * long is greater than 32 bits.
  1089. */
  1090. if (index >= (1ul << n->bits))
  1091. break;
  1092. /* we have found a leaf. Prefixes have already been compared */
  1093. if (IS_LEAF(n))
  1094. goto found;
  1095. /* only record pn and cindex if we are going to be chopping
  1096. * bits later. Otherwise we are just wasting cycles.
  1097. */
  1098. if (n->slen > n->pos) {
  1099. pn = n;
  1100. cindex = index;
  1101. }
  1102. n = get_child_rcu(n, index);
  1103. if (unlikely(!n))
  1104. goto backtrace;
  1105. }
  1106. /* Step 2: Sort out leaves and begin backtracing for longest prefix */
  1107. for (;;) {
  1108. /* record the pointer where our next node pointer is stored */
  1109. struct key_vector __rcu **cptr = n->tnode;
  1110. /* This test verifies that none of the bits that differ
  1111. * between the key and the prefix exist in the region of
  1112. * the lsb and higher in the prefix.
  1113. */
  1114. if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
  1115. goto backtrace;
  1116. /* exit out and process leaf */
  1117. if (unlikely(IS_LEAF(n)))
  1118. break;
  1119. /* Don't bother recording parent info. Since we are in
  1120. * prefix match mode we will have to come back to wherever
  1121. * we started this traversal anyway
  1122. */
  1123. while ((n = rcu_dereference(*cptr)) == NULL) {
  1124. backtrace:
  1125. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1126. if (!n)
  1127. this_cpu_inc(stats->null_node_hit);
  1128. #endif
  1129. /* If we are at cindex 0 there are no more bits for
  1130. * us to strip at this level so we must ascend back
  1131. * up one level to see if there are any more bits to
  1132. * be stripped there.
  1133. */
  1134. while (!cindex) {
  1135. t_key pkey = pn->key;
  1136. /* If we don't have a parent then there is
  1137. * nothing for us to do as we do not have any
  1138. * further nodes to parse.
  1139. */
  1140. if (IS_TRIE(pn))
  1141. return -EAGAIN;
  1142. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1143. this_cpu_inc(stats->backtrack);
  1144. #endif
  1145. /* Get Child's index */
  1146. pn = node_parent_rcu(pn);
  1147. cindex = get_index(pkey, pn);
  1148. }
  1149. /* strip the least significant bit from the cindex */
  1150. cindex &= cindex - 1;
  1151. /* grab pointer for next child node */
  1152. cptr = &pn->tnode[cindex];
  1153. }
  1154. }
  1155. found:
  1156. /* this line carries forward the xor from earlier in the function */
  1157. index = key ^ n->key;
  1158. /* Step 3: Process the leaf, if that fails fall back to backtracing */
  1159. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1160. struct fib_info *fi = fa->fa_info;
  1161. int nhsel, err;
  1162. if ((index >= (1ul << fa->fa_slen)) &&
  1163. ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
  1164. continue;
  1165. if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
  1166. continue;
  1167. if (fi->fib_dead)
  1168. continue;
  1169. if (fa->fa_info->fib_scope < flp->flowi4_scope)
  1170. continue;
  1171. fib_alias_accessed(fa);
  1172. err = fib_props[fa->fa_type].error;
  1173. if (unlikely(err < 0)) {
  1174. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1175. this_cpu_inc(stats->semantic_match_passed);
  1176. #endif
  1177. return err;
  1178. }
  1179. if (fi->fib_flags & RTNH_F_DEAD)
  1180. continue;
  1181. for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
  1182. const struct fib_nh *nh = &fi->fib_nh[nhsel];
  1183. if (nh->nh_flags & RTNH_F_DEAD)
  1184. continue;
  1185. if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
  1186. continue;
  1187. if (!(fib_flags & FIB_LOOKUP_NOREF))
  1188. atomic_inc(&fi->fib_clntref);
  1189. res->prefixlen = KEYLENGTH - fa->fa_slen;
  1190. res->nh_sel = nhsel;
  1191. res->type = fa->fa_type;
  1192. res->scope = fi->fib_scope;
  1193. res->fi = fi;
  1194. res->table = tb;
  1195. res->fa_head = &n->leaf;
  1196. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1197. this_cpu_inc(stats->semantic_match_passed);
  1198. #endif
  1199. return err;
  1200. }
  1201. }
  1202. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1203. this_cpu_inc(stats->semantic_match_miss);
  1204. #endif
  1205. goto backtrace;
  1206. }
  1207. EXPORT_SYMBOL_GPL(fib_table_lookup);
  1208. static void fib_remove_alias(struct trie *t, struct key_vector *tp,
  1209. struct key_vector *l, struct fib_alias *old)
  1210. {
  1211. /* record the location of the previous list_info entry */
  1212. struct hlist_node **pprev = old->fa_list.pprev;
  1213. struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
  1214. /* remove the fib_alias from the list */
  1215. hlist_del_rcu(&old->fa_list);
  1216. /* if we emptied the list this leaf will be freed and we can sort
  1217. * out parent suffix lengths as a part of trie_rebalance
  1218. */
  1219. if (hlist_empty(&l->leaf)) {
  1220. put_child_root(tp, l->key, NULL);
  1221. node_free(l);
  1222. trie_rebalance(t, tp);
  1223. return;
  1224. }
  1225. /* only access fa if it is pointing at the last valid hlist_node */
  1226. if (*pprev)
  1227. return;
  1228. /* update the trie with the latest suffix length */
  1229. l->slen = fa->fa_slen;
  1230. leaf_pull_suffix(tp, l);
  1231. }
  1232. /* Caller must hold RTNL. */
  1233. int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
  1234. {
  1235. struct trie *t = (struct trie *) tb->tb_data;
  1236. struct fib_alias *fa, *fa_to_delete;
  1237. struct key_vector *l, *tp;
  1238. u8 plen = cfg->fc_dst_len;
  1239. u8 slen = KEYLENGTH - plen;
  1240. u8 tos = cfg->fc_tos;
  1241. u32 key;
  1242. if (plen > KEYLENGTH)
  1243. return -EINVAL;
  1244. key = ntohl(cfg->fc_dst);
  1245. if ((plen < KEYLENGTH) && (key << plen))
  1246. return -EINVAL;
  1247. l = fib_find_node(t, &tp, key);
  1248. if (!l)
  1249. return -ESRCH;
  1250. fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
  1251. if (!fa)
  1252. return -ESRCH;
  1253. pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
  1254. fa_to_delete = NULL;
  1255. hlist_for_each_entry_from(fa, fa_list) {
  1256. struct fib_info *fi = fa->fa_info;
  1257. if ((fa->fa_slen != slen) ||
  1258. (fa->tb_id != tb->tb_id) ||
  1259. (fa->fa_tos != tos))
  1260. break;
  1261. if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
  1262. (cfg->fc_scope == RT_SCOPE_NOWHERE ||
  1263. fa->fa_info->fib_scope == cfg->fc_scope) &&
  1264. (!cfg->fc_prefsrc ||
  1265. fi->fib_prefsrc == cfg->fc_prefsrc) &&
  1266. (!cfg->fc_protocol ||
  1267. fi->fib_protocol == cfg->fc_protocol) &&
  1268. fib_nh_match(cfg, fi) == 0) {
  1269. fa_to_delete = fa;
  1270. break;
  1271. }
  1272. }
  1273. if (!fa_to_delete)
  1274. return -ESRCH;
  1275. netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
  1276. cfg->fc_type, tb->tb_id);
  1277. rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
  1278. &cfg->fc_nlinfo, 0);
  1279. if (!plen)
  1280. tb->tb_num_default--;
  1281. fib_remove_alias(t, tp, l, fa_to_delete);
  1282. if (fa_to_delete->fa_state & FA_S_ACCESSED)
  1283. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1284. fib_release_info(fa_to_delete->fa_info);
  1285. alias_free_mem_rcu(fa_to_delete);
  1286. return 0;
  1287. }
  1288. /* Scan for the next leaf starting at the provided key value */
  1289. static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
  1290. {
  1291. struct key_vector *pn, *n = *tn;
  1292. unsigned long cindex;
  1293. /* this loop is meant to try and find the key in the trie */
  1294. do {
  1295. /* record parent and next child index */
  1296. pn = n;
  1297. cindex = key ? get_index(key, pn) : 0;
  1298. if (cindex >> pn->bits)
  1299. break;
  1300. /* descend into the next child */
  1301. n = get_child_rcu(pn, cindex++);
  1302. if (!n)
  1303. break;
  1304. /* guarantee forward progress on the keys */
  1305. if (IS_LEAF(n) && (n->key >= key))
  1306. goto found;
  1307. } while (IS_TNODE(n));
  1308. /* this loop will search for the next leaf with a greater key */
  1309. while (!IS_TRIE(pn)) {
  1310. /* if we exhausted the parent node we will need to climb */
  1311. if (cindex >= (1ul << pn->bits)) {
  1312. t_key pkey = pn->key;
  1313. pn = node_parent_rcu(pn);
  1314. cindex = get_index(pkey, pn) + 1;
  1315. continue;
  1316. }
  1317. /* grab the next available node */
  1318. n = get_child_rcu(pn, cindex++);
  1319. if (!n)
  1320. continue;
  1321. /* no need to compare keys since we bumped the index */
  1322. if (IS_LEAF(n))
  1323. goto found;
  1324. /* Rescan start scanning in new node */
  1325. pn = n;
  1326. cindex = 0;
  1327. }
  1328. *tn = pn;
  1329. return NULL; /* Root of trie */
  1330. found:
  1331. /* if we are at the limit for keys just return NULL for the tnode */
  1332. *tn = pn;
  1333. return n;
  1334. }
  1335. static void fib_trie_free(struct fib_table *tb)
  1336. {
  1337. struct trie *t = (struct trie *)tb->tb_data;
  1338. struct key_vector *pn = t->kv;
  1339. unsigned long cindex = 1;
  1340. struct hlist_node *tmp;
  1341. struct fib_alias *fa;
  1342. /* walk trie in reverse order and free everything */
  1343. for (;;) {
  1344. struct key_vector *n;
  1345. if (!(cindex--)) {
  1346. t_key pkey = pn->key;
  1347. if (IS_TRIE(pn))
  1348. break;
  1349. n = pn;
  1350. pn = node_parent(pn);
  1351. /* drop emptied tnode */
  1352. put_child_root(pn, n->key, NULL);
  1353. node_free(n);
  1354. cindex = get_index(pkey, pn);
  1355. continue;
  1356. }
  1357. /* grab the next available node */
  1358. n = get_child(pn, cindex);
  1359. if (!n)
  1360. continue;
  1361. if (IS_TNODE(n)) {
  1362. /* record pn and cindex for leaf walking */
  1363. pn = n;
  1364. cindex = 1ul << n->bits;
  1365. continue;
  1366. }
  1367. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1368. hlist_del_rcu(&fa->fa_list);
  1369. alias_free_mem_rcu(fa);
  1370. }
  1371. put_child_root(pn, n->key, NULL);
  1372. node_free(n);
  1373. }
  1374. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1375. free_percpu(t->stats);
  1376. #endif
  1377. kfree(tb);
  1378. }
  1379. struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
  1380. {
  1381. struct trie *ot = (struct trie *)oldtb->tb_data;
  1382. struct key_vector *l, *tp = ot->kv;
  1383. struct fib_table *local_tb;
  1384. struct fib_alias *fa;
  1385. struct trie *lt;
  1386. t_key key = 0;
  1387. if (oldtb->tb_data == oldtb->__data)
  1388. return oldtb;
  1389. local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
  1390. if (!local_tb)
  1391. return NULL;
  1392. lt = (struct trie *)local_tb->tb_data;
  1393. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1394. struct key_vector *local_l = NULL, *local_tp;
  1395. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1396. struct fib_alias *new_fa;
  1397. if (local_tb->tb_id != fa->tb_id)
  1398. continue;
  1399. /* clone fa for new local table */
  1400. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1401. if (!new_fa)
  1402. goto out;
  1403. memcpy(new_fa, fa, sizeof(*fa));
  1404. /* insert clone into table */
  1405. if (!local_l)
  1406. local_l = fib_find_node(lt, &local_tp, l->key);
  1407. if (fib_insert_alias(lt, local_tp, local_l, new_fa,
  1408. NULL, l->key))
  1409. goto out;
  1410. }
  1411. /* stop loop if key wrapped back to 0 */
  1412. key = l->key + 1;
  1413. if (key < l->key)
  1414. break;
  1415. }
  1416. return local_tb;
  1417. out:
  1418. fib_trie_free(local_tb);
  1419. return NULL;
  1420. }
  1421. /* Caller must hold RTNL */
  1422. void fib_table_flush_external(struct fib_table *tb)
  1423. {
  1424. struct trie *t = (struct trie *)tb->tb_data;
  1425. struct key_vector *pn = t->kv;
  1426. unsigned long cindex = 1;
  1427. struct hlist_node *tmp;
  1428. struct fib_alias *fa;
  1429. /* walk trie in reverse order */
  1430. for (;;) {
  1431. unsigned char slen = 0;
  1432. struct key_vector *n;
  1433. if (!(cindex--)) {
  1434. t_key pkey = pn->key;
  1435. /* cannot resize the trie vector */
  1436. if (IS_TRIE(pn))
  1437. break;
  1438. /* resize completed node */
  1439. pn = resize(t, pn);
  1440. cindex = get_index(pkey, pn);
  1441. continue;
  1442. }
  1443. /* grab the next available node */
  1444. n = get_child(pn, cindex);
  1445. if (!n)
  1446. continue;
  1447. if (IS_TNODE(n)) {
  1448. /* record pn and cindex for leaf walking */
  1449. pn = n;
  1450. cindex = 1ul << n->bits;
  1451. continue;
  1452. }
  1453. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1454. struct fib_info *fi = fa->fa_info;
  1455. /* if alias was cloned to local then we just
  1456. * need to remove the local copy from main
  1457. */
  1458. if (tb->tb_id != fa->tb_id) {
  1459. hlist_del_rcu(&fa->fa_list);
  1460. alias_free_mem_rcu(fa);
  1461. continue;
  1462. }
  1463. /* record local slen */
  1464. slen = fa->fa_slen;
  1465. if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
  1466. continue;
  1467. netdev_switch_fib_ipv4_del(n->key,
  1468. KEYLENGTH - fa->fa_slen,
  1469. fi, fa->fa_tos,
  1470. fa->fa_type, tb->tb_id);
  1471. }
  1472. /* update leaf slen */
  1473. n->slen = slen;
  1474. if (hlist_empty(&n->leaf)) {
  1475. put_child_root(pn, n->key, NULL);
  1476. node_free(n);
  1477. } else {
  1478. leaf_pull_suffix(pn, n);
  1479. }
  1480. }
  1481. }
  1482. /* Caller must hold RTNL. */
  1483. int fib_table_flush(struct fib_table *tb)
  1484. {
  1485. struct trie *t = (struct trie *)tb->tb_data;
  1486. struct key_vector *pn = t->kv;
  1487. unsigned long cindex = 1;
  1488. struct hlist_node *tmp;
  1489. struct fib_alias *fa;
  1490. int found = 0;
  1491. /* walk trie in reverse order */
  1492. for (;;) {
  1493. unsigned char slen = 0;
  1494. struct key_vector *n;
  1495. if (!(cindex--)) {
  1496. t_key pkey = pn->key;
  1497. /* cannot resize the trie vector */
  1498. if (IS_TRIE(pn))
  1499. break;
  1500. /* resize completed node */
  1501. pn = resize(t, pn);
  1502. cindex = get_index(pkey, pn);
  1503. continue;
  1504. }
  1505. /* grab the next available node */
  1506. n = get_child(pn, cindex);
  1507. if (!n)
  1508. continue;
  1509. if (IS_TNODE(n)) {
  1510. /* record pn and cindex for leaf walking */
  1511. pn = n;
  1512. cindex = 1ul << n->bits;
  1513. continue;
  1514. }
  1515. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1516. struct fib_info *fi = fa->fa_info;
  1517. if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
  1518. slen = fa->fa_slen;
  1519. continue;
  1520. }
  1521. netdev_switch_fib_ipv4_del(n->key,
  1522. KEYLENGTH - fa->fa_slen,
  1523. fi, fa->fa_tos,
  1524. fa->fa_type, tb->tb_id);
  1525. hlist_del_rcu(&fa->fa_list);
  1526. fib_release_info(fa->fa_info);
  1527. alias_free_mem_rcu(fa);
  1528. found++;
  1529. }
  1530. /* update leaf slen */
  1531. n->slen = slen;
  1532. if (hlist_empty(&n->leaf)) {
  1533. put_child_root(pn, n->key, NULL);
  1534. node_free(n);
  1535. } else {
  1536. leaf_pull_suffix(pn, n);
  1537. }
  1538. }
  1539. pr_debug("trie_flush found=%d\n", found);
  1540. return found;
  1541. }
  1542. static void __trie_free_rcu(struct rcu_head *head)
  1543. {
  1544. struct fib_table *tb = container_of(head, struct fib_table, rcu);
  1545. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1546. struct trie *t = (struct trie *)tb->tb_data;
  1547. if (tb->tb_data == tb->__data)
  1548. free_percpu(t->stats);
  1549. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1550. kfree(tb);
  1551. }
  1552. void fib_free_table(struct fib_table *tb)
  1553. {
  1554. call_rcu(&tb->rcu, __trie_free_rcu);
  1555. }
  1556. static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
  1557. struct sk_buff *skb, struct netlink_callback *cb)
  1558. {
  1559. __be32 xkey = htonl(l->key);
  1560. struct fib_alias *fa;
  1561. int i, s_i;
  1562. s_i = cb->args[4];
  1563. i = 0;
  1564. /* rcu_read_lock is hold by caller */
  1565. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1566. if (i < s_i) {
  1567. i++;
  1568. continue;
  1569. }
  1570. if (tb->tb_id != fa->tb_id) {
  1571. i++;
  1572. continue;
  1573. }
  1574. if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
  1575. cb->nlh->nlmsg_seq,
  1576. RTM_NEWROUTE,
  1577. tb->tb_id,
  1578. fa->fa_type,
  1579. xkey,
  1580. KEYLENGTH - fa->fa_slen,
  1581. fa->fa_tos,
  1582. fa->fa_info, NLM_F_MULTI) < 0) {
  1583. cb->args[4] = i;
  1584. return -1;
  1585. }
  1586. i++;
  1587. }
  1588. cb->args[4] = i;
  1589. return skb->len;
  1590. }
  1591. /* rcu_read_lock needs to be hold by caller from readside */
  1592. int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
  1593. struct netlink_callback *cb)
  1594. {
  1595. struct trie *t = (struct trie *)tb->tb_data;
  1596. struct key_vector *l, *tp = t->kv;
  1597. /* Dump starting at last key.
  1598. * Note: 0.0.0.0/0 (ie default) is first key.
  1599. */
  1600. int count = cb->args[2];
  1601. t_key key = cb->args[3];
  1602. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1603. if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
  1604. cb->args[3] = key;
  1605. cb->args[2] = count;
  1606. return -1;
  1607. }
  1608. ++count;
  1609. key = l->key + 1;
  1610. memset(&cb->args[4], 0,
  1611. sizeof(cb->args) - 4*sizeof(cb->args[0]));
  1612. /* stop loop if key wrapped back to 0 */
  1613. if (key < l->key)
  1614. break;
  1615. }
  1616. cb->args[3] = key;
  1617. cb->args[2] = count;
  1618. return skb->len;
  1619. }
  1620. void __init fib_trie_init(void)
  1621. {
  1622. fn_alias_kmem = kmem_cache_create("ip_fib_alias",
  1623. sizeof(struct fib_alias),
  1624. 0, SLAB_PANIC, NULL);
  1625. trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
  1626. LEAF_SIZE,
  1627. 0, SLAB_PANIC, NULL);
  1628. }
  1629. struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
  1630. {
  1631. struct fib_table *tb;
  1632. struct trie *t;
  1633. size_t sz = sizeof(*tb);
  1634. if (!alias)
  1635. sz += sizeof(struct trie);
  1636. tb = kzalloc(sz, GFP_KERNEL);
  1637. if (tb == NULL)
  1638. return NULL;
  1639. tb->tb_id = id;
  1640. tb->tb_default = -1;
  1641. tb->tb_num_default = 0;
  1642. tb->tb_data = (alias ? alias->__data : tb->__data);
  1643. if (alias)
  1644. return tb;
  1645. t = (struct trie *) tb->tb_data;
  1646. t->kv[0].pos = KEYLENGTH;
  1647. t->kv[0].slen = KEYLENGTH;
  1648. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1649. t->stats = alloc_percpu(struct trie_use_stats);
  1650. if (!t->stats) {
  1651. kfree(tb);
  1652. tb = NULL;
  1653. }
  1654. #endif
  1655. return tb;
  1656. }
  1657. #ifdef CONFIG_PROC_FS
  1658. /* Depth first Trie walk iterator */
  1659. struct fib_trie_iter {
  1660. struct seq_net_private p;
  1661. struct fib_table *tb;
  1662. struct key_vector *tnode;
  1663. unsigned int index;
  1664. unsigned int depth;
  1665. };
  1666. static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
  1667. {
  1668. unsigned long cindex = iter->index;
  1669. struct key_vector *pn = iter->tnode;
  1670. t_key pkey;
  1671. pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
  1672. iter->tnode, iter->index, iter->depth);
  1673. while (!IS_TRIE(pn)) {
  1674. while (cindex < child_length(pn)) {
  1675. struct key_vector *n = get_child_rcu(pn, cindex++);
  1676. if (!n)
  1677. continue;
  1678. if (IS_LEAF(n)) {
  1679. iter->tnode = pn;
  1680. iter->index = cindex;
  1681. } else {
  1682. /* push down one level */
  1683. iter->tnode = n;
  1684. iter->index = 0;
  1685. ++iter->depth;
  1686. }
  1687. return n;
  1688. }
  1689. /* Current node exhausted, pop back up */
  1690. pkey = pn->key;
  1691. pn = node_parent_rcu(pn);
  1692. cindex = get_index(pkey, pn) + 1;
  1693. --iter->depth;
  1694. }
  1695. /* record root node so further searches know we are done */
  1696. iter->tnode = pn;
  1697. iter->index = 0;
  1698. return NULL;
  1699. }
  1700. static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
  1701. struct trie *t)
  1702. {
  1703. struct key_vector *n, *pn = t->kv;
  1704. if (!t)
  1705. return NULL;
  1706. n = rcu_dereference(pn->tnode[0]);
  1707. if (!n)
  1708. return NULL;
  1709. if (IS_TNODE(n)) {
  1710. iter->tnode = n;
  1711. iter->index = 0;
  1712. iter->depth = 1;
  1713. } else {
  1714. iter->tnode = pn;
  1715. iter->index = 0;
  1716. iter->depth = 0;
  1717. }
  1718. return n;
  1719. }
  1720. static void trie_collect_stats(struct trie *t, struct trie_stat *s)
  1721. {
  1722. struct key_vector *n;
  1723. struct fib_trie_iter iter;
  1724. memset(s, 0, sizeof(*s));
  1725. rcu_read_lock();
  1726. for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
  1727. if (IS_LEAF(n)) {
  1728. struct fib_alias *fa;
  1729. s->leaves++;
  1730. s->totdepth += iter.depth;
  1731. if (iter.depth > s->maxdepth)
  1732. s->maxdepth = iter.depth;
  1733. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
  1734. ++s->prefixes;
  1735. } else {
  1736. s->tnodes++;
  1737. if (n->bits < MAX_STAT_DEPTH)
  1738. s->nodesizes[n->bits]++;
  1739. s->nullpointers += tn_info(n)->empty_children;
  1740. }
  1741. }
  1742. rcu_read_unlock();
  1743. }
  1744. /*
  1745. * This outputs /proc/net/fib_triestats
  1746. */
  1747. static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
  1748. {
  1749. unsigned int i, max, pointers, bytes, avdepth;
  1750. if (stat->leaves)
  1751. avdepth = stat->totdepth*100 / stat->leaves;
  1752. else
  1753. avdepth = 0;
  1754. seq_printf(seq, "\tAver depth: %u.%02d\n",
  1755. avdepth / 100, avdepth % 100);
  1756. seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
  1757. seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
  1758. bytes = LEAF_SIZE * stat->leaves;
  1759. seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
  1760. bytes += sizeof(struct fib_alias) * stat->prefixes;
  1761. seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
  1762. bytes += TNODE_SIZE(0) * stat->tnodes;
  1763. max = MAX_STAT_DEPTH;
  1764. while (max > 0 && stat->nodesizes[max-1] == 0)
  1765. max--;
  1766. pointers = 0;
  1767. for (i = 1; i < max; i++)
  1768. if (stat->nodesizes[i] != 0) {
  1769. seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
  1770. pointers += (1<<i) * stat->nodesizes[i];
  1771. }
  1772. seq_putc(seq, '\n');
  1773. seq_printf(seq, "\tPointers: %u\n", pointers);
  1774. bytes += sizeof(struct key_vector *) * pointers;
  1775. seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
  1776. seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
  1777. }
  1778. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1779. static void trie_show_usage(struct seq_file *seq,
  1780. const struct trie_use_stats __percpu *stats)
  1781. {
  1782. struct trie_use_stats s = { 0 };
  1783. int cpu;
  1784. /* loop through all of the CPUs and gather up the stats */
  1785. for_each_possible_cpu(cpu) {
  1786. const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
  1787. s.gets += pcpu->gets;
  1788. s.backtrack += pcpu->backtrack;
  1789. s.semantic_match_passed += pcpu->semantic_match_passed;
  1790. s.semantic_match_miss += pcpu->semantic_match_miss;
  1791. s.null_node_hit += pcpu->null_node_hit;
  1792. s.resize_node_skipped += pcpu->resize_node_skipped;
  1793. }
  1794. seq_printf(seq, "\nCounters:\n---------\n");
  1795. seq_printf(seq, "gets = %u\n", s.gets);
  1796. seq_printf(seq, "backtracks = %u\n", s.backtrack);
  1797. seq_printf(seq, "semantic match passed = %u\n",
  1798. s.semantic_match_passed);
  1799. seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
  1800. seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
  1801. seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
  1802. }
  1803. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1804. static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
  1805. {
  1806. if (tb->tb_id == RT_TABLE_LOCAL)
  1807. seq_puts(seq, "Local:\n");
  1808. else if (tb->tb_id == RT_TABLE_MAIN)
  1809. seq_puts(seq, "Main:\n");
  1810. else
  1811. seq_printf(seq, "Id %d:\n", tb->tb_id);
  1812. }
  1813. static int fib_triestat_seq_show(struct seq_file *seq, void *v)
  1814. {
  1815. struct net *net = (struct net *)seq->private;
  1816. unsigned int h;
  1817. seq_printf(seq,
  1818. "Basic info: size of leaf:"
  1819. " %Zd bytes, size of tnode: %Zd bytes.\n",
  1820. LEAF_SIZE, TNODE_SIZE(0));
  1821. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1822. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1823. struct fib_table *tb;
  1824. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1825. struct trie *t = (struct trie *) tb->tb_data;
  1826. struct trie_stat stat;
  1827. if (!t)
  1828. continue;
  1829. fib_table_print(seq, tb);
  1830. trie_collect_stats(t, &stat);
  1831. trie_show_stats(seq, &stat);
  1832. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1833. trie_show_usage(seq, t->stats);
  1834. #endif
  1835. }
  1836. }
  1837. return 0;
  1838. }
  1839. static int fib_triestat_seq_open(struct inode *inode, struct file *file)
  1840. {
  1841. return single_open_net(inode, file, fib_triestat_seq_show);
  1842. }
  1843. static const struct file_operations fib_triestat_fops = {
  1844. .owner = THIS_MODULE,
  1845. .open = fib_triestat_seq_open,
  1846. .read = seq_read,
  1847. .llseek = seq_lseek,
  1848. .release = single_release_net,
  1849. };
  1850. static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
  1851. {
  1852. struct fib_trie_iter *iter = seq->private;
  1853. struct net *net = seq_file_net(seq);
  1854. loff_t idx = 0;
  1855. unsigned int h;
  1856. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1857. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1858. struct fib_table *tb;
  1859. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1860. struct key_vector *n;
  1861. for (n = fib_trie_get_first(iter,
  1862. (struct trie *) tb->tb_data);
  1863. n; n = fib_trie_get_next(iter))
  1864. if (pos == idx++) {
  1865. iter->tb = tb;
  1866. return n;
  1867. }
  1868. }
  1869. }
  1870. return NULL;
  1871. }
  1872. static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
  1873. __acquires(RCU)
  1874. {
  1875. rcu_read_lock();
  1876. return fib_trie_get_idx(seq, *pos);
  1877. }
  1878. static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1879. {
  1880. struct fib_trie_iter *iter = seq->private;
  1881. struct net *net = seq_file_net(seq);
  1882. struct fib_table *tb = iter->tb;
  1883. struct hlist_node *tb_node;
  1884. unsigned int h;
  1885. struct key_vector *n;
  1886. ++*pos;
  1887. /* next node in same table */
  1888. n = fib_trie_get_next(iter);
  1889. if (n)
  1890. return n;
  1891. /* walk rest of this hash chain */
  1892. h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
  1893. while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
  1894. tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
  1895. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1896. if (n)
  1897. goto found;
  1898. }
  1899. /* new hash chain */
  1900. while (++h < FIB_TABLE_HASHSZ) {
  1901. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1902. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1903. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1904. if (n)
  1905. goto found;
  1906. }
  1907. }
  1908. return NULL;
  1909. found:
  1910. iter->tb = tb;
  1911. return n;
  1912. }
  1913. static void fib_trie_seq_stop(struct seq_file *seq, void *v)
  1914. __releases(RCU)
  1915. {
  1916. rcu_read_unlock();
  1917. }
  1918. static void seq_indent(struct seq_file *seq, int n)
  1919. {
  1920. while (n-- > 0)
  1921. seq_puts(seq, " ");
  1922. }
  1923. static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
  1924. {
  1925. switch (s) {
  1926. case RT_SCOPE_UNIVERSE: return "universe";
  1927. case RT_SCOPE_SITE: return "site";
  1928. case RT_SCOPE_LINK: return "link";
  1929. case RT_SCOPE_HOST: return "host";
  1930. case RT_SCOPE_NOWHERE: return "nowhere";
  1931. default:
  1932. snprintf(buf, len, "scope=%d", s);
  1933. return buf;
  1934. }
  1935. }
  1936. static const char *const rtn_type_names[__RTN_MAX] = {
  1937. [RTN_UNSPEC] = "UNSPEC",
  1938. [RTN_UNICAST] = "UNICAST",
  1939. [RTN_LOCAL] = "LOCAL",
  1940. [RTN_BROADCAST] = "BROADCAST",
  1941. [RTN_ANYCAST] = "ANYCAST",
  1942. [RTN_MULTICAST] = "MULTICAST",
  1943. [RTN_BLACKHOLE] = "BLACKHOLE",
  1944. [RTN_UNREACHABLE] = "UNREACHABLE",
  1945. [RTN_PROHIBIT] = "PROHIBIT",
  1946. [RTN_THROW] = "THROW",
  1947. [RTN_NAT] = "NAT",
  1948. [RTN_XRESOLVE] = "XRESOLVE",
  1949. };
  1950. static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
  1951. {
  1952. if (t < __RTN_MAX && rtn_type_names[t])
  1953. return rtn_type_names[t];
  1954. snprintf(buf, len, "type %u", t);
  1955. return buf;
  1956. }
  1957. /* Pretty print the trie */
  1958. static int fib_trie_seq_show(struct seq_file *seq, void *v)
  1959. {
  1960. const struct fib_trie_iter *iter = seq->private;
  1961. struct key_vector *n = v;
  1962. if (IS_TRIE(node_parent_rcu(n)))
  1963. fib_table_print(seq, iter->tb);
  1964. if (IS_TNODE(n)) {
  1965. __be32 prf = htonl(n->key);
  1966. seq_indent(seq, iter->depth-1);
  1967. seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
  1968. &prf, KEYLENGTH - n->pos - n->bits, n->bits,
  1969. tn_info(n)->full_children,
  1970. tn_info(n)->empty_children);
  1971. } else {
  1972. __be32 val = htonl(n->key);
  1973. struct fib_alias *fa;
  1974. seq_indent(seq, iter->depth);
  1975. seq_printf(seq, " |-- %pI4\n", &val);
  1976. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1977. char buf1[32], buf2[32];
  1978. seq_indent(seq, iter->depth + 1);
  1979. seq_printf(seq, " /%zu %s %s",
  1980. KEYLENGTH - fa->fa_slen,
  1981. rtn_scope(buf1, sizeof(buf1),
  1982. fa->fa_info->fib_scope),
  1983. rtn_type(buf2, sizeof(buf2),
  1984. fa->fa_type));
  1985. if (fa->fa_tos)
  1986. seq_printf(seq, " tos=%d", fa->fa_tos);
  1987. seq_putc(seq, '\n');
  1988. }
  1989. }
  1990. return 0;
  1991. }
  1992. static const struct seq_operations fib_trie_seq_ops = {
  1993. .start = fib_trie_seq_start,
  1994. .next = fib_trie_seq_next,
  1995. .stop = fib_trie_seq_stop,
  1996. .show = fib_trie_seq_show,
  1997. };
  1998. static int fib_trie_seq_open(struct inode *inode, struct file *file)
  1999. {
  2000. return seq_open_net(inode, file, &fib_trie_seq_ops,
  2001. sizeof(struct fib_trie_iter));
  2002. }
  2003. static const struct file_operations fib_trie_fops = {
  2004. .owner = THIS_MODULE,
  2005. .open = fib_trie_seq_open,
  2006. .read = seq_read,
  2007. .llseek = seq_lseek,
  2008. .release = seq_release_net,
  2009. };
  2010. struct fib_route_iter {
  2011. struct seq_net_private p;
  2012. struct fib_table *main_tb;
  2013. struct key_vector *tnode;
  2014. loff_t pos;
  2015. t_key key;
  2016. };
  2017. static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
  2018. loff_t pos)
  2019. {
  2020. struct fib_table *tb = iter->main_tb;
  2021. struct key_vector *l, **tp = &iter->tnode;
  2022. struct trie *t;
  2023. t_key key;
  2024. /* use cache location of next-to-find key */
  2025. if (iter->pos > 0 && pos >= iter->pos) {
  2026. pos -= iter->pos;
  2027. key = iter->key;
  2028. } else {
  2029. t = (struct trie *)tb->tb_data;
  2030. iter->tnode = t->kv;
  2031. iter->pos = 0;
  2032. key = 0;
  2033. }
  2034. while ((l = leaf_walk_rcu(tp, key)) != NULL) {
  2035. key = l->key + 1;
  2036. iter->pos++;
  2037. if (pos-- <= 0)
  2038. break;
  2039. l = NULL;
  2040. /* handle unlikely case of a key wrap */
  2041. if (!key)
  2042. break;
  2043. }
  2044. if (l)
  2045. iter->key = key; /* remember it */
  2046. else
  2047. iter->pos = 0; /* forget it */
  2048. return l;
  2049. }
  2050. static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
  2051. __acquires(RCU)
  2052. {
  2053. struct fib_route_iter *iter = seq->private;
  2054. struct fib_table *tb;
  2055. struct trie *t;
  2056. rcu_read_lock();
  2057. tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
  2058. if (!tb)
  2059. return NULL;
  2060. iter->main_tb = tb;
  2061. if (*pos != 0)
  2062. return fib_route_get_idx(iter, *pos);
  2063. t = (struct trie *)tb->tb_data;
  2064. iter->tnode = t->kv;
  2065. iter->pos = 0;
  2066. iter->key = 0;
  2067. return SEQ_START_TOKEN;
  2068. }
  2069. static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2070. {
  2071. struct fib_route_iter *iter = seq->private;
  2072. struct key_vector *l = NULL;
  2073. t_key key = iter->key;
  2074. ++*pos;
  2075. /* only allow key of 0 for start of sequence */
  2076. if ((v == SEQ_START_TOKEN) || key)
  2077. l = leaf_walk_rcu(&iter->tnode, key);
  2078. if (l) {
  2079. iter->key = l->key + 1;
  2080. iter->pos++;
  2081. } else {
  2082. iter->pos = 0;
  2083. }
  2084. return l;
  2085. }
  2086. static void fib_route_seq_stop(struct seq_file *seq, void *v)
  2087. __releases(RCU)
  2088. {
  2089. rcu_read_unlock();
  2090. }
  2091. static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
  2092. {
  2093. unsigned int flags = 0;
  2094. if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
  2095. flags = RTF_REJECT;
  2096. if (fi && fi->fib_nh->nh_gw)
  2097. flags |= RTF_GATEWAY;
  2098. if (mask == htonl(0xFFFFFFFF))
  2099. flags |= RTF_HOST;
  2100. flags |= RTF_UP;
  2101. return flags;
  2102. }
  2103. /*
  2104. * This outputs /proc/net/route.
  2105. * The format of the file is not supposed to be changed
  2106. * and needs to be same as fib_hash output to avoid breaking
  2107. * legacy utilities
  2108. */
  2109. static int fib_route_seq_show(struct seq_file *seq, void *v)
  2110. {
  2111. struct fib_route_iter *iter = seq->private;
  2112. struct fib_table *tb = iter->main_tb;
  2113. struct fib_alias *fa;
  2114. struct key_vector *l = v;
  2115. __be32 prefix;
  2116. if (v == SEQ_START_TOKEN) {
  2117. seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
  2118. "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
  2119. "\tWindow\tIRTT");
  2120. return 0;
  2121. }
  2122. prefix = htonl(l->key);
  2123. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  2124. const struct fib_info *fi = fa->fa_info;
  2125. __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
  2126. unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
  2127. if ((fa->fa_type == RTN_BROADCAST) ||
  2128. (fa->fa_type == RTN_MULTICAST))
  2129. continue;
  2130. if (fa->tb_id != tb->tb_id)
  2131. continue;
  2132. seq_setwidth(seq, 127);
  2133. if (fi)
  2134. seq_printf(seq,
  2135. "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
  2136. "%d\t%08X\t%d\t%u\t%u",
  2137. fi->fib_dev ? fi->fib_dev->name : "*",
  2138. prefix,
  2139. fi->fib_nh->nh_gw, flags, 0, 0,
  2140. fi->fib_priority,
  2141. mask,
  2142. (fi->fib_advmss ?
  2143. fi->fib_advmss + 40 : 0),
  2144. fi->fib_window,
  2145. fi->fib_rtt >> 3);
  2146. else
  2147. seq_printf(seq,
  2148. "*\t%08X\t%08X\t%04X\t%d\t%u\t"
  2149. "%d\t%08X\t%d\t%u\t%u",
  2150. prefix, 0, flags, 0, 0, 0,
  2151. mask, 0, 0, 0);
  2152. seq_pad(seq, '\n');
  2153. }
  2154. return 0;
  2155. }
  2156. static const struct seq_operations fib_route_seq_ops = {
  2157. .start = fib_route_seq_start,
  2158. .next = fib_route_seq_next,
  2159. .stop = fib_route_seq_stop,
  2160. .show = fib_route_seq_show,
  2161. };
  2162. static int fib_route_seq_open(struct inode *inode, struct file *file)
  2163. {
  2164. return seq_open_net(inode, file, &fib_route_seq_ops,
  2165. sizeof(struct fib_route_iter));
  2166. }
  2167. static const struct file_operations fib_route_fops = {
  2168. .owner = THIS_MODULE,
  2169. .open = fib_route_seq_open,
  2170. .read = seq_read,
  2171. .llseek = seq_lseek,
  2172. .release = seq_release_net,
  2173. };
  2174. int __net_init fib_proc_init(struct net *net)
  2175. {
  2176. if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
  2177. goto out1;
  2178. if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
  2179. &fib_triestat_fops))
  2180. goto out2;
  2181. if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
  2182. goto out3;
  2183. return 0;
  2184. out3:
  2185. remove_proc_entry("fib_triestat", net->proc_net);
  2186. out2:
  2187. remove_proc_entry("fib_trie", net->proc_net);
  2188. out1:
  2189. return -ENOMEM;
  2190. }
  2191. void __net_exit fib_proc_exit(struct net *net)
  2192. {
  2193. remove_proc_entry("fib_trie", net->proc_net);
  2194. remove_proc_entry("fib_triestat", net->proc_net);
  2195. remove_proc_entry("route", net->proc_net);
  2196. }
  2197. #endif /* CONFIG_PROC_FS */