arp.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373
  1. /* linux/net/ipv4/arp.c
  2. *
  3. * Copyright (C) 1994 by Florian La Roche
  4. *
  5. * This module implements the Address Resolution Protocol ARP (RFC 826),
  6. * which is used to convert IP addresses (or in the future maybe other
  7. * high-level addresses) into a low-level hardware address (like an Ethernet
  8. * address).
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Fixes:
  16. * Alan Cox : Removed the Ethernet assumptions in
  17. * Florian's code
  18. * Alan Cox : Fixed some small errors in the ARP
  19. * logic
  20. * Alan Cox : Allow >4K in /proc
  21. * Alan Cox : Make ARP add its own protocol entry
  22. * Ross Martin : Rewrote arp_rcv() and arp_get_info()
  23. * Stephen Henson : Add AX25 support to arp_get_info()
  24. * Alan Cox : Drop data when a device is downed.
  25. * Alan Cox : Use init_timer().
  26. * Alan Cox : Double lock fixes.
  27. * Martin Seine : Move the arphdr structure
  28. * to if_arp.h for compatibility.
  29. * with BSD based programs.
  30. * Andrew Tridgell : Added ARP netmask code and
  31. * re-arranged proxy handling.
  32. * Alan Cox : Changed to use notifiers.
  33. * Niibe Yutaka : Reply for this device or proxies only.
  34. * Alan Cox : Don't proxy across hardware types!
  35. * Jonathan Naylor : Added support for NET/ROM.
  36. * Mike Shaver : RFC1122 checks.
  37. * Jonathan Naylor : Only lookup the hardware address for
  38. * the correct hardware type.
  39. * Germano Caronni : Assorted subtle races.
  40. * Craig Schlenter : Don't modify permanent entry
  41. * during arp_rcv.
  42. * Russ Nelson : Tidied up a few bits.
  43. * Alexey Kuznetsov: Major changes to caching and behaviour,
  44. * eg intelligent arp probing and
  45. * generation
  46. * of host down events.
  47. * Alan Cox : Missing unlock in device events.
  48. * Eckes : ARP ioctl control errors.
  49. * Alexey Kuznetsov: Arp free fix.
  50. * Manuel Rodriguez: Gratuitous ARP.
  51. * Jonathan Layes : Added arpd support through kerneld
  52. * message queue (960314)
  53. * Mike Shaver : /proc/sys/net/ipv4/arp_* support
  54. * Mike McLagan : Routing by source
  55. * Stuart Cheshire : Metricom and grat arp fixes
  56. * *** FOR 2.1 clean this up ***
  57. * Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58. * Alan Cox : Took the AP1000 nasty FDDI hack and
  59. * folded into the mainstream FDDI code.
  60. * Ack spit, Linus how did you allow that
  61. * one in...
  62. * Jes Sorensen : Make FDDI work again in 2.1.x and
  63. * clean up the APFDDI & gen. FDDI bits.
  64. * Alexey Kuznetsov: new arp state machine;
  65. * now it is in net/core/neighbour.c.
  66. * Krzysztof Halasa: Added Frame Relay ARP support.
  67. * Arnaldo C. Melo : convert /proc/net/arp to seq_file
  68. * Shmulik Hen: Split arp_send to arp_create and
  69. * arp_xmit so intermediate drivers like
  70. * bonding can change the skb before
  71. * sending (e.g. insert 8021q tag).
  72. * Harald Welte : convert to make use of jenkins hash
  73. * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
  74. */
  75. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  76. #include <linux/module.h>
  77. #include <linux/types.h>
  78. #include <linux/string.h>
  79. #include <linux/kernel.h>
  80. #include <linux/capability.h>
  81. #include <linux/socket.h>
  82. #include <linux/sockios.h>
  83. #include <linux/errno.h>
  84. #include <linux/in.h>
  85. #include <linux/mm.h>
  86. #include <linux/inet.h>
  87. #include <linux/inetdevice.h>
  88. #include <linux/netdevice.h>
  89. #include <linux/etherdevice.h>
  90. #include <linux/fddidevice.h>
  91. #include <linux/if_arp.h>
  92. #include <linux/skbuff.h>
  93. #include <linux/proc_fs.h>
  94. #include <linux/seq_file.h>
  95. #include <linux/stat.h>
  96. #include <linux/init.h>
  97. #include <linux/net.h>
  98. #include <linux/rcupdate.h>
  99. #include <linux/slab.h>
  100. #ifdef CONFIG_SYSCTL
  101. #include <linux/sysctl.h>
  102. #endif
  103. #include <net/net_namespace.h>
  104. #include <net/ip.h>
  105. #include <net/icmp.h>
  106. #include <net/route.h>
  107. #include <net/protocol.h>
  108. #include <net/tcp.h>
  109. #include <net/sock.h>
  110. #include <net/arp.h>
  111. #include <net/ax25.h>
  112. #include <net/netrom.h>
  113. #include <linux/uaccess.h>
  114. #include <linux/netfilter_arp.h>
  115. /*
  116. * Interface to generic neighbour cache.
  117. */
  118. static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
  119. static bool arp_key_eq(const struct neighbour *n, const void *pkey);
  120. static int arp_constructor(struct neighbour *neigh);
  121. static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
  122. static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
  123. static void parp_redo(struct sk_buff *skb);
  124. static const struct neigh_ops arp_generic_ops = {
  125. .family = AF_INET,
  126. .solicit = arp_solicit,
  127. .error_report = arp_error_report,
  128. .output = neigh_resolve_output,
  129. .connected_output = neigh_connected_output,
  130. };
  131. static const struct neigh_ops arp_hh_ops = {
  132. .family = AF_INET,
  133. .solicit = arp_solicit,
  134. .error_report = arp_error_report,
  135. .output = neigh_resolve_output,
  136. .connected_output = neigh_resolve_output,
  137. };
  138. static const struct neigh_ops arp_direct_ops = {
  139. .family = AF_INET,
  140. .output = neigh_direct_output,
  141. .connected_output = neigh_direct_output,
  142. };
  143. struct neigh_table arp_tbl = {
  144. .family = AF_INET,
  145. .key_len = 4,
  146. .protocol = cpu_to_be16(ETH_P_IP),
  147. .hash = arp_hash,
  148. .key_eq = arp_key_eq,
  149. .constructor = arp_constructor,
  150. .proxy_redo = parp_redo,
  151. .id = "arp_cache",
  152. .parms = {
  153. .tbl = &arp_tbl,
  154. .reachable_time = 30 * HZ,
  155. .data = {
  156. [NEIGH_VAR_MCAST_PROBES] = 3,
  157. [NEIGH_VAR_UCAST_PROBES] = 3,
  158. [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
  159. [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
  160. [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
  161. [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
  162. [NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
  163. [NEIGH_VAR_PROXY_QLEN] = 64,
  164. [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
  165. [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
  166. [NEIGH_VAR_LOCKTIME] = 1 * HZ,
  167. },
  168. },
  169. .gc_interval = 30 * HZ,
  170. .gc_thresh1 = 128,
  171. .gc_thresh2 = 512,
  172. .gc_thresh3 = 1024,
  173. };
  174. EXPORT_SYMBOL(arp_tbl);
  175. int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
  176. {
  177. switch (dev->type) {
  178. case ARPHRD_ETHER:
  179. case ARPHRD_FDDI:
  180. case ARPHRD_IEEE802:
  181. ip_eth_mc_map(addr, haddr);
  182. return 0;
  183. case ARPHRD_INFINIBAND:
  184. ip_ib_mc_map(addr, dev->broadcast, haddr);
  185. return 0;
  186. case ARPHRD_IPGRE:
  187. ip_ipgre_mc_map(addr, dev->broadcast, haddr);
  188. return 0;
  189. default:
  190. if (dir) {
  191. memcpy(haddr, dev->broadcast, dev->addr_len);
  192. return 0;
  193. }
  194. }
  195. return -EINVAL;
  196. }
  197. static u32 arp_hash(const void *pkey,
  198. const struct net_device *dev,
  199. __u32 *hash_rnd)
  200. {
  201. return arp_hashfn(pkey, dev, hash_rnd);
  202. }
  203. static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
  204. {
  205. return neigh_key_eq32(neigh, pkey);
  206. }
  207. static int arp_constructor(struct neighbour *neigh)
  208. {
  209. __be32 addr = *(__be32 *)neigh->primary_key;
  210. struct net_device *dev = neigh->dev;
  211. struct in_device *in_dev;
  212. struct neigh_parms *parms;
  213. rcu_read_lock();
  214. in_dev = __in_dev_get_rcu(dev);
  215. if (in_dev == NULL) {
  216. rcu_read_unlock();
  217. return -EINVAL;
  218. }
  219. neigh->type = inet_addr_type(dev_net(dev), addr);
  220. parms = in_dev->arp_parms;
  221. __neigh_parms_put(neigh->parms);
  222. neigh->parms = neigh_parms_clone(parms);
  223. rcu_read_unlock();
  224. if (!dev->header_ops) {
  225. neigh->nud_state = NUD_NOARP;
  226. neigh->ops = &arp_direct_ops;
  227. neigh->output = neigh_direct_output;
  228. } else {
  229. /* Good devices (checked by reading texts, but only Ethernet is
  230. tested)
  231. ARPHRD_ETHER: (ethernet, apfddi)
  232. ARPHRD_FDDI: (fddi)
  233. ARPHRD_IEEE802: (tr)
  234. ARPHRD_METRICOM: (strip)
  235. ARPHRD_ARCNET:
  236. etc. etc. etc.
  237. ARPHRD_IPDDP will also work, if author repairs it.
  238. I did not it, because this driver does not work even
  239. in old paradigm.
  240. */
  241. if (neigh->type == RTN_MULTICAST) {
  242. neigh->nud_state = NUD_NOARP;
  243. arp_mc_map(addr, neigh->ha, dev, 1);
  244. } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
  245. neigh->nud_state = NUD_NOARP;
  246. memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
  247. } else if (neigh->type == RTN_BROADCAST ||
  248. (dev->flags & IFF_POINTOPOINT)) {
  249. neigh->nud_state = NUD_NOARP;
  250. memcpy(neigh->ha, dev->broadcast, dev->addr_len);
  251. }
  252. if (dev->header_ops->cache)
  253. neigh->ops = &arp_hh_ops;
  254. else
  255. neigh->ops = &arp_generic_ops;
  256. if (neigh->nud_state & NUD_VALID)
  257. neigh->output = neigh->ops->connected_output;
  258. else
  259. neigh->output = neigh->ops->output;
  260. }
  261. return 0;
  262. }
  263. static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
  264. {
  265. dst_link_failure(skb);
  266. kfree_skb(skb);
  267. }
  268. static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
  269. {
  270. __be32 saddr = 0;
  271. u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
  272. struct net_device *dev = neigh->dev;
  273. __be32 target = *(__be32 *)neigh->primary_key;
  274. int probes = atomic_read(&neigh->probes);
  275. struct in_device *in_dev;
  276. rcu_read_lock();
  277. in_dev = __in_dev_get_rcu(dev);
  278. if (!in_dev) {
  279. rcu_read_unlock();
  280. return;
  281. }
  282. switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
  283. default:
  284. case 0: /* By default announce any local IP */
  285. if (skb && inet_addr_type(dev_net(dev),
  286. ip_hdr(skb)->saddr) == RTN_LOCAL)
  287. saddr = ip_hdr(skb)->saddr;
  288. break;
  289. case 1: /* Restrict announcements of saddr in same subnet */
  290. if (!skb)
  291. break;
  292. saddr = ip_hdr(skb)->saddr;
  293. if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
  294. /* saddr should be known to target */
  295. if (inet_addr_onlink(in_dev, target, saddr))
  296. break;
  297. }
  298. saddr = 0;
  299. break;
  300. case 2: /* Avoid secondary IPs, get a primary/preferred one */
  301. break;
  302. }
  303. rcu_read_unlock();
  304. if (!saddr)
  305. saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
  306. probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
  307. if (probes < 0) {
  308. if (!(neigh->nud_state & NUD_VALID))
  309. pr_debug("trying to ucast probe in NUD_INVALID\n");
  310. neigh_ha_snapshot(dst_ha, neigh, dev);
  311. dst_hw = dst_ha;
  312. } else {
  313. probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
  314. if (probes < 0) {
  315. neigh_app_ns(neigh);
  316. return;
  317. }
  318. }
  319. arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
  320. dst_hw, dev->dev_addr, NULL);
  321. }
  322. static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
  323. {
  324. struct net *net = dev_net(in_dev->dev);
  325. int scope;
  326. switch (IN_DEV_ARP_IGNORE(in_dev)) {
  327. case 0: /* Reply, the tip is already validated */
  328. return 0;
  329. case 1: /* Reply only if tip is configured on the incoming interface */
  330. sip = 0;
  331. scope = RT_SCOPE_HOST;
  332. break;
  333. case 2: /*
  334. * Reply only if tip is configured on the incoming interface
  335. * and is in same subnet as sip
  336. */
  337. scope = RT_SCOPE_HOST;
  338. break;
  339. case 3: /* Do not reply for scope host addresses */
  340. sip = 0;
  341. scope = RT_SCOPE_LINK;
  342. in_dev = NULL;
  343. break;
  344. case 4: /* Reserved */
  345. case 5:
  346. case 6:
  347. case 7:
  348. return 0;
  349. case 8: /* Do not reply */
  350. return 1;
  351. default:
  352. return 0;
  353. }
  354. return !inet_confirm_addr(net, in_dev, sip, tip, scope);
  355. }
  356. static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
  357. {
  358. struct rtable *rt;
  359. int flag = 0;
  360. /*unsigned long now; */
  361. struct net *net = dev_net(dev);
  362. rt = ip_route_output(net, sip, tip, 0, 0);
  363. if (IS_ERR(rt))
  364. return 1;
  365. if (rt->dst.dev != dev) {
  366. NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
  367. flag = 1;
  368. }
  369. ip_rt_put(rt);
  370. return flag;
  371. }
  372. /*
  373. * Check if we can use proxy ARP for this path
  374. */
  375. static inline int arp_fwd_proxy(struct in_device *in_dev,
  376. struct net_device *dev, struct rtable *rt)
  377. {
  378. struct in_device *out_dev;
  379. int imi, omi = -1;
  380. if (rt->dst.dev == dev)
  381. return 0;
  382. if (!IN_DEV_PROXY_ARP(in_dev))
  383. return 0;
  384. imi = IN_DEV_MEDIUM_ID(in_dev);
  385. if (imi == 0)
  386. return 1;
  387. if (imi == -1)
  388. return 0;
  389. /* place to check for proxy_arp for routes */
  390. out_dev = __in_dev_get_rcu(rt->dst.dev);
  391. if (out_dev)
  392. omi = IN_DEV_MEDIUM_ID(out_dev);
  393. return omi != imi && omi != -1;
  394. }
  395. /*
  396. * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
  397. *
  398. * RFC3069 supports proxy arp replies back to the same interface. This
  399. * is done to support (ethernet) switch features, like RFC 3069, where
  400. * the individual ports are not allowed to communicate with each
  401. * other, BUT they are allowed to talk to the upstream router. As
  402. * described in RFC 3069, it is possible to allow these hosts to
  403. * communicate through the upstream router, by proxy_arp'ing.
  404. *
  405. * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
  406. *
  407. * This technology is known by different names:
  408. * In RFC 3069 it is called VLAN Aggregation.
  409. * Cisco and Allied Telesyn call it Private VLAN.
  410. * Hewlett-Packard call it Source-Port filtering or port-isolation.
  411. * Ericsson call it MAC-Forced Forwarding (RFC Draft).
  412. *
  413. */
  414. static inline int arp_fwd_pvlan(struct in_device *in_dev,
  415. struct net_device *dev, struct rtable *rt,
  416. __be32 sip, __be32 tip)
  417. {
  418. /* Private VLAN is only concerned about the same ethernet segment */
  419. if (rt->dst.dev != dev)
  420. return 0;
  421. /* Don't reply on self probes (often done by windowz boxes)*/
  422. if (sip == tip)
  423. return 0;
  424. if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
  425. return 1;
  426. else
  427. return 0;
  428. }
  429. /*
  430. * Interface to link layer: send routine and receive handler.
  431. */
  432. /*
  433. * Create an arp packet. If (dest_hw == NULL), we create a broadcast
  434. * message.
  435. */
  436. struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
  437. struct net_device *dev, __be32 src_ip,
  438. const unsigned char *dest_hw,
  439. const unsigned char *src_hw,
  440. const unsigned char *target_hw)
  441. {
  442. struct sk_buff *skb;
  443. struct arphdr *arp;
  444. unsigned char *arp_ptr;
  445. int hlen = LL_RESERVED_SPACE(dev);
  446. int tlen = dev->needed_tailroom;
  447. /*
  448. * Allocate a buffer
  449. */
  450. skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
  451. if (skb == NULL)
  452. return NULL;
  453. skb_reserve(skb, hlen);
  454. skb_reset_network_header(skb);
  455. arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
  456. skb->dev = dev;
  457. skb->protocol = htons(ETH_P_ARP);
  458. if (src_hw == NULL)
  459. src_hw = dev->dev_addr;
  460. if (dest_hw == NULL)
  461. dest_hw = dev->broadcast;
  462. /*
  463. * Fill the device header for the ARP frame
  464. */
  465. if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
  466. goto out;
  467. /*
  468. * Fill out the arp protocol part.
  469. *
  470. * The arp hardware type should match the device type, except for FDDI,
  471. * which (according to RFC 1390) should always equal 1 (Ethernet).
  472. */
  473. /*
  474. * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
  475. * DIX code for the protocol. Make these device structure fields.
  476. */
  477. switch (dev->type) {
  478. default:
  479. arp->ar_hrd = htons(dev->type);
  480. arp->ar_pro = htons(ETH_P_IP);
  481. break;
  482. #if IS_ENABLED(CONFIG_AX25)
  483. case ARPHRD_AX25:
  484. arp->ar_hrd = htons(ARPHRD_AX25);
  485. arp->ar_pro = htons(AX25_P_IP);
  486. break;
  487. #if IS_ENABLED(CONFIG_NETROM)
  488. case ARPHRD_NETROM:
  489. arp->ar_hrd = htons(ARPHRD_NETROM);
  490. arp->ar_pro = htons(AX25_P_IP);
  491. break;
  492. #endif
  493. #endif
  494. #if IS_ENABLED(CONFIG_FDDI)
  495. case ARPHRD_FDDI:
  496. arp->ar_hrd = htons(ARPHRD_ETHER);
  497. arp->ar_pro = htons(ETH_P_IP);
  498. break;
  499. #endif
  500. }
  501. arp->ar_hln = dev->addr_len;
  502. arp->ar_pln = 4;
  503. arp->ar_op = htons(type);
  504. arp_ptr = (unsigned char *)(arp + 1);
  505. memcpy(arp_ptr, src_hw, dev->addr_len);
  506. arp_ptr += dev->addr_len;
  507. memcpy(arp_ptr, &src_ip, 4);
  508. arp_ptr += 4;
  509. switch (dev->type) {
  510. #if IS_ENABLED(CONFIG_FIREWIRE_NET)
  511. case ARPHRD_IEEE1394:
  512. break;
  513. #endif
  514. default:
  515. if (target_hw != NULL)
  516. memcpy(arp_ptr, target_hw, dev->addr_len);
  517. else
  518. memset(arp_ptr, 0, dev->addr_len);
  519. arp_ptr += dev->addr_len;
  520. }
  521. memcpy(arp_ptr, &dest_ip, 4);
  522. return skb;
  523. out:
  524. kfree_skb(skb);
  525. return NULL;
  526. }
  527. EXPORT_SYMBOL(arp_create);
  528. /*
  529. * Send an arp packet.
  530. */
  531. void arp_xmit(struct sk_buff *skb)
  532. {
  533. /* Send it off, maybe filter it using firewalling first. */
  534. NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
  535. }
  536. EXPORT_SYMBOL(arp_xmit);
  537. /*
  538. * Create and send an arp packet.
  539. */
  540. void arp_send(int type, int ptype, __be32 dest_ip,
  541. struct net_device *dev, __be32 src_ip,
  542. const unsigned char *dest_hw, const unsigned char *src_hw,
  543. const unsigned char *target_hw)
  544. {
  545. struct sk_buff *skb;
  546. /*
  547. * No arp on this interface.
  548. */
  549. if (dev->flags&IFF_NOARP)
  550. return;
  551. skb = arp_create(type, ptype, dest_ip, dev, src_ip,
  552. dest_hw, src_hw, target_hw);
  553. if (skb == NULL)
  554. return;
  555. arp_xmit(skb);
  556. }
  557. EXPORT_SYMBOL(arp_send);
  558. /*
  559. * Process an arp request.
  560. */
  561. static int arp_process(struct sk_buff *skb)
  562. {
  563. struct net_device *dev = skb->dev;
  564. struct in_device *in_dev = __in_dev_get_rcu(dev);
  565. struct arphdr *arp;
  566. unsigned char *arp_ptr;
  567. struct rtable *rt;
  568. unsigned char *sha;
  569. __be32 sip, tip;
  570. u16 dev_type = dev->type;
  571. int addr_type;
  572. struct neighbour *n;
  573. struct net *net = dev_net(dev);
  574. bool is_garp = false;
  575. /* arp_rcv below verifies the ARP header and verifies the device
  576. * is ARP'able.
  577. */
  578. if (in_dev == NULL)
  579. goto out;
  580. arp = arp_hdr(skb);
  581. switch (dev_type) {
  582. default:
  583. if (arp->ar_pro != htons(ETH_P_IP) ||
  584. htons(dev_type) != arp->ar_hrd)
  585. goto out;
  586. break;
  587. case ARPHRD_ETHER:
  588. case ARPHRD_FDDI:
  589. case ARPHRD_IEEE802:
  590. /*
  591. * ETHERNET, and Fibre Channel (which are IEEE 802
  592. * devices, according to RFC 2625) devices will accept ARP
  593. * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
  594. * This is the case also of FDDI, where the RFC 1390 says that
  595. * FDDI devices should accept ARP hardware of (1) Ethernet,
  596. * however, to be more robust, we'll accept both 1 (Ethernet)
  597. * or 6 (IEEE 802.2)
  598. */
  599. if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
  600. arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
  601. arp->ar_pro != htons(ETH_P_IP))
  602. goto out;
  603. break;
  604. case ARPHRD_AX25:
  605. if (arp->ar_pro != htons(AX25_P_IP) ||
  606. arp->ar_hrd != htons(ARPHRD_AX25))
  607. goto out;
  608. break;
  609. case ARPHRD_NETROM:
  610. if (arp->ar_pro != htons(AX25_P_IP) ||
  611. arp->ar_hrd != htons(ARPHRD_NETROM))
  612. goto out;
  613. break;
  614. }
  615. /* Understand only these message types */
  616. if (arp->ar_op != htons(ARPOP_REPLY) &&
  617. arp->ar_op != htons(ARPOP_REQUEST))
  618. goto out;
  619. /*
  620. * Extract fields
  621. */
  622. arp_ptr = (unsigned char *)(arp + 1);
  623. sha = arp_ptr;
  624. arp_ptr += dev->addr_len;
  625. memcpy(&sip, arp_ptr, 4);
  626. arp_ptr += 4;
  627. switch (dev_type) {
  628. #if IS_ENABLED(CONFIG_FIREWIRE_NET)
  629. case ARPHRD_IEEE1394:
  630. break;
  631. #endif
  632. default:
  633. arp_ptr += dev->addr_len;
  634. }
  635. memcpy(&tip, arp_ptr, 4);
  636. /*
  637. * Check for bad requests for 127.x.x.x and requests for multicast
  638. * addresses. If this is one such, delete it.
  639. */
  640. if (ipv4_is_multicast(tip) ||
  641. (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
  642. goto out;
  643. /*
  644. * Special case: We must set Frame Relay source Q.922 address
  645. */
  646. if (dev_type == ARPHRD_DLCI)
  647. sha = dev->broadcast;
  648. /*
  649. * Process entry. The idea here is we want to send a reply if it is a
  650. * request for us or if it is a request for someone else that we hold
  651. * a proxy for. We want to add an entry to our cache if it is a reply
  652. * to us or if it is a request for our address.
  653. * (The assumption for this last is that if someone is requesting our
  654. * address, they are probably intending to talk to us, so it saves time
  655. * if we cache their address. Their address is also probably not in
  656. * our cache, since ours is not in their cache.)
  657. *
  658. * Putting this another way, we only care about replies if they are to
  659. * us, in which case we add them to the cache. For requests, we care
  660. * about those for us and those for our proxies. We reply to both,
  661. * and in the case of requests for us we add the requester to the arp
  662. * cache.
  663. */
  664. /* Special case: IPv4 duplicate address detection packet (RFC2131) */
  665. if (sip == 0) {
  666. if (arp->ar_op == htons(ARPOP_REQUEST) &&
  667. inet_addr_type(net, tip) == RTN_LOCAL &&
  668. !arp_ignore(in_dev, sip, tip))
  669. arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
  670. dev->dev_addr, sha);
  671. goto out;
  672. }
  673. if (arp->ar_op == htons(ARPOP_REQUEST) &&
  674. ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
  675. rt = skb_rtable(skb);
  676. addr_type = rt->rt_type;
  677. if (addr_type == RTN_LOCAL) {
  678. int dont_send;
  679. dont_send = arp_ignore(in_dev, sip, tip);
  680. if (!dont_send && IN_DEV_ARPFILTER(in_dev))
  681. dont_send = arp_filter(sip, tip, dev);
  682. if (!dont_send) {
  683. n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
  684. if (n) {
  685. arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
  686. dev, tip, sha, dev->dev_addr,
  687. sha);
  688. neigh_release(n);
  689. }
  690. }
  691. goto out;
  692. } else if (IN_DEV_FORWARD(in_dev)) {
  693. if (addr_type == RTN_UNICAST &&
  694. (arp_fwd_proxy(in_dev, dev, rt) ||
  695. arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
  696. (rt->dst.dev != dev &&
  697. pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
  698. n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
  699. if (n)
  700. neigh_release(n);
  701. if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
  702. skb->pkt_type == PACKET_HOST ||
  703. NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
  704. arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
  705. dev, tip, sha, dev->dev_addr,
  706. sha);
  707. } else {
  708. pneigh_enqueue(&arp_tbl,
  709. in_dev->arp_parms, skb);
  710. return 0;
  711. }
  712. goto out;
  713. }
  714. }
  715. }
  716. /* Update our ARP tables */
  717. n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
  718. if (IN_DEV_ARP_ACCEPT(in_dev)) {
  719. /* Unsolicited ARP is not accepted by default.
  720. It is possible, that this option should be enabled for some
  721. devices (strip is candidate)
  722. */
  723. is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
  724. inet_addr_type(net, sip) == RTN_UNICAST;
  725. if (n == NULL &&
  726. ((arp->ar_op == htons(ARPOP_REPLY) &&
  727. inet_addr_type(net, sip) == RTN_UNICAST) || is_garp))
  728. n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
  729. }
  730. if (n) {
  731. int state = NUD_REACHABLE;
  732. int override;
  733. /* If several different ARP replies follows back-to-back,
  734. use the FIRST one. It is possible, if several proxy
  735. agents are active. Taking the first reply prevents
  736. arp trashing and chooses the fastest router.
  737. */
  738. override = time_after(jiffies,
  739. n->updated +
  740. NEIGH_VAR(n->parms, LOCKTIME)) ||
  741. is_garp;
  742. /* Broadcast replies and request packets
  743. do not assert neighbour reachability.
  744. */
  745. if (arp->ar_op != htons(ARPOP_REPLY) ||
  746. skb->pkt_type != PACKET_HOST)
  747. state = NUD_STALE;
  748. neigh_update(n, sha, state,
  749. override ? NEIGH_UPDATE_F_OVERRIDE : 0);
  750. neigh_release(n);
  751. }
  752. out:
  753. consume_skb(skb);
  754. return 0;
  755. }
  756. static void parp_redo(struct sk_buff *skb)
  757. {
  758. arp_process(skb);
  759. }
  760. /*
  761. * Receive an arp request from the device layer.
  762. */
  763. static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
  764. struct packet_type *pt, struct net_device *orig_dev)
  765. {
  766. const struct arphdr *arp;
  767. /* do not tweak dropwatch on an ARP we will ignore */
  768. if (dev->flags & IFF_NOARP ||
  769. skb->pkt_type == PACKET_OTHERHOST ||
  770. skb->pkt_type == PACKET_LOOPBACK)
  771. goto consumeskb;
  772. skb = skb_share_check(skb, GFP_ATOMIC);
  773. if (!skb)
  774. goto out_of_mem;
  775. /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
  776. if (!pskb_may_pull(skb, arp_hdr_len(dev)))
  777. goto freeskb;
  778. arp = arp_hdr(skb);
  779. if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
  780. goto freeskb;
  781. memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
  782. return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
  783. consumeskb:
  784. consume_skb(skb);
  785. return 0;
  786. freeskb:
  787. kfree_skb(skb);
  788. out_of_mem:
  789. return 0;
  790. }
  791. /*
  792. * User level interface (ioctl)
  793. */
  794. /*
  795. * Set (create) an ARP cache entry.
  796. */
  797. static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
  798. {
  799. if (dev == NULL) {
  800. IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
  801. return 0;
  802. }
  803. if (__in_dev_get_rtnl(dev)) {
  804. IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
  805. return 0;
  806. }
  807. return -ENXIO;
  808. }
  809. static int arp_req_set_public(struct net *net, struct arpreq *r,
  810. struct net_device *dev)
  811. {
  812. __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
  813. __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
  814. if (mask && mask != htonl(0xFFFFFFFF))
  815. return -EINVAL;
  816. if (!dev && (r->arp_flags & ATF_COM)) {
  817. dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
  818. r->arp_ha.sa_data);
  819. if (!dev)
  820. return -ENODEV;
  821. }
  822. if (mask) {
  823. if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
  824. return -ENOBUFS;
  825. return 0;
  826. }
  827. return arp_req_set_proxy(net, dev, 1);
  828. }
  829. static int arp_req_set(struct net *net, struct arpreq *r,
  830. struct net_device *dev)
  831. {
  832. __be32 ip;
  833. struct neighbour *neigh;
  834. int err;
  835. if (r->arp_flags & ATF_PUBL)
  836. return arp_req_set_public(net, r, dev);
  837. ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
  838. if (r->arp_flags & ATF_PERM)
  839. r->arp_flags |= ATF_COM;
  840. if (dev == NULL) {
  841. struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
  842. if (IS_ERR(rt))
  843. return PTR_ERR(rt);
  844. dev = rt->dst.dev;
  845. ip_rt_put(rt);
  846. if (!dev)
  847. return -EINVAL;
  848. }
  849. switch (dev->type) {
  850. #if IS_ENABLED(CONFIG_FDDI)
  851. case ARPHRD_FDDI:
  852. /*
  853. * According to RFC 1390, FDDI devices should accept ARP
  854. * hardware types of 1 (Ethernet). However, to be more
  855. * robust, we'll accept hardware types of either 1 (Ethernet)
  856. * or 6 (IEEE 802.2).
  857. */
  858. if (r->arp_ha.sa_family != ARPHRD_FDDI &&
  859. r->arp_ha.sa_family != ARPHRD_ETHER &&
  860. r->arp_ha.sa_family != ARPHRD_IEEE802)
  861. return -EINVAL;
  862. break;
  863. #endif
  864. default:
  865. if (r->arp_ha.sa_family != dev->type)
  866. return -EINVAL;
  867. break;
  868. }
  869. neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
  870. err = PTR_ERR(neigh);
  871. if (!IS_ERR(neigh)) {
  872. unsigned int state = NUD_STALE;
  873. if (r->arp_flags & ATF_PERM)
  874. state = NUD_PERMANENT;
  875. err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
  876. r->arp_ha.sa_data : NULL, state,
  877. NEIGH_UPDATE_F_OVERRIDE |
  878. NEIGH_UPDATE_F_ADMIN);
  879. neigh_release(neigh);
  880. }
  881. return err;
  882. }
  883. static unsigned int arp_state_to_flags(struct neighbour *neigh)
  884. {
  885. if (neigh->nud_state&NUD_PERMANENT)
  886. return ATF_PERM | ATF_COM;
  887. else if (neigh->nud_state&NUD_VALID)
  888. return ATF_COM;
  889. else
  890. return 0;
  891. }
  892. /*
  893. * Get an ARP cache entry.
  894. */
  895. static int arp_req_get(struct arpreq *r, struct net_device *dev)
  896. {
  897. __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
  898. struct neighbour *neigh;
  899. int err = -ENXIO;
  900. neigh = neigh_lookup(&arp_tbl, &ip, dev);
  901. if (neigh) {
  902. read_lock_bh(&neigh->lock);
  903. memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
  904. r->arp_flags = arp_state_to_flags(neigh);
  905. read_unlock_bh(&neigh->lock);
  906. r->arp_ha.sa_family = dev->type;
  907. strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
  908. neigh_release(neigh);
  909. err = 0;
  910. }
  911. return err;
  912. }
  913. static int arp_invalidate(struct net_device *dev, __be32 ip)
  914. {
  915. struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
  916. int err = -ENXIO;
  917. if (neigh) {
  918. if (neigh->nud_state & ~NUD_NOARP)
  919. err = neigh_update(neigh, NULL, NUD_FAILED,
  920. NEIGH_UPDATE_F_OVERRIDE|
  921. NEIGH_UPDATE_F_ADMIN);
  922. neigh_release(neigh);
  923. }
  924. return err;
  925. }
  926. static int arp_req_delete_public(struct net *net, struct arpreq *r,
  927. struct net_device *dev)
  928. {
  929. __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
  930. __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
  931. if (mask == htonl(0xFFFFFFFF))
  932. return pneigh_delete(&arp_tbl, net, &ip, dev);
  933. if (mask)
  934. return -EINVAL;
  935. return arp_req_set_proxy(net, dev, 0);
  936. }
  937. static int arp_req_delete(struct net *net, struct arpreq *r,
  938. struct net_device *dev)
  939. {
  940. __be32 ip;
  941. if (r->arp_flags & ATF_PUBL)
  942. return arp_req_delete_public(net, r, dev);
  943. ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
  944. if (dev == NULL) {
  945. struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
  946. if (IS_ERR(rt))
  947. return PTR_ERR(rt);
  948. dev = rt->dst.dev;
  949. ip_rt_put(rt);
  950. if (!dev)
  951. return -EINVAL;
  952. }
  953. return arp_invalidate(dev, ip);
  954. }
  955. /*
  956. * Handle an ARP layer I/O control request.
  957. */
  958. int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
  959. {
  960. int err;
  961. struct arpreq r;
  962. struct net_device *dev = NULL;
  963. switch (cmd) {
  964. case SIOCDARP:
  965. case SIOCSARP:
  966. if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
  967. return -EPERM;
  968. case SIOCGARP:
  969. err = copy_from_user(&r, arg, sizeof(struct arpreq));
  970. if (err)
  971. return -EFAULT;
  972. break;
  973. default:
  974. return -EINVAL;
  975. }
  976. if (r.arp_pa.sa_family != AF_INET)
  977. return -EPFNOSUPPORT;
  978. if (!(r.arp_flags & ATF_PUBL) &&
  979. (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
  980. return -EINVAL;
  981. if (!(r.arp_flags & ATF_NETMASK))
  982. ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
  983. htonl(0xFFFFFFFFUL);
  984. rtnl_lock();
  985. if (r.arp_dev[0]) {
  986. err = -ENODEV;
  987. dev = __dev_get_by_name(net, r.arp_dev);
  988. if (dev == NULL)
  989. goto out;
  990. /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
  991. if (!r.arp_ha.sa_family)
  992. r.arp_ha.sa_family = dev->type;
  993. err = -EINVAL;
  994. if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
  995. goto out;
  996. } else if (cmd == SIOCGARP) {
  997. err = -ENODEV;
  998. goto out;
  999. }
  1000. switch (cmd) {
  1001. case SIOCDARP:
  1002. err = arp_req_delete(net, &r, dev);
  1003. break;
  1004. case SIOCSARP:
  1005. err = arp_req_set(net, &r, dev);
  1006. break;
  1007. case SIOCGARP:
  1008. err = arp_req_get(&r, dev);
  1009. break;
  1010. }
  1011. out:
  1012. rtnl_unlock();
  1013. if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
  1014. err = -EFAULT;
  1015. return err;
  1016. }
  1017. static int arp_netdev_event(struct notifier_block *this, unsigned long event,
  1018. void *ptr)
  1019. {
  1020. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1021. struct netdev_notifier_change_info *change_info;
  1022. switch (event) {
  1023. case NETDEV_CHANGEADDR:
  1024. neigh_changeaddr(&arp_tbl, dev);
  1025. rt_cache_flush(dev_net(dev));
  1026. break;
  1027. case NETDEV_CHANGE:
  1028. change_info = ptr;
  1029. if (change_info->flags_changed & IFF_NOARP)
  1030. neigh_changeaddr(&arp_tbl, dev);
  1031. break;
  1032. default:
  1033. break;
  1034. }
  1035. return NOTIFY_DONE;
  1036. }
  1037. static struct notifier_block arp_netdev_notifier = {
  1038. .notifier_call = arp_netdev_event,
  1039. };
  1040. /* Note, that it is not on notifier chain.
  1041. It is necessary, that this routine was called after route cache will be
  1042. flushed.
  1043. */
  1044. void arp_ifdown(struct net_device *dev)
  1045. {
  1046. neigh_ifdown(&arp_tbl, dev);
  1047. }
  1048. /*
  1049. * Called once on startup.
  1050. */
  1051. static struct packet_type arp_packet_type __read_mostly = {
  1052. .type = cpu_to_be16(ETH_P_ARP),
  1053. .func = arp_rcv,
  1054. };
  1055. static int arp_proc_init(void);
  1056. void __init arp_init(void)
  1057. {
  1058. neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
  1059. dev_add_pack(&arp_packet_type);
  1060. arp_proc_init();
  1061. #ifdef CONFIG_SYSCTL
  1062. neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
  1063. #endif
  1064. register_netdevice_notifier(&arp_netdev_notifier);
  1065. }
  1066. #ifdef CONFIG_PROC_FS
  1067. #if IS_ENABLED(CONFIG_AX25)
  1068. /* ------------------------------------------------------------------------ */
  1069. /*
  1070. * ax25 -> ASCII conversion
  1071. */
  1072. static char *ax2asc2(ax25_address *a, char *buf)
  1073. {
  1074. char c, *s;
  1075. int n;
  1076. for (n = 0, s = buf; n < 6; n++) {
  1077. c = (a->ax25_call[n] >> 1) & 0x7F;
  1078. if (c != ' ')
  1079. *s++ = c;
  1080. }
  1081. *s++ = '-';
  1082. n = (a->ax25_call[6] >> 1) & 0x0F;
  1083. if (n > 9) {
  1084. *s++ = '1';
  1085. n -= 10;
  1086. }
  1087. *s++ = n + '0';
  1088. *s++ = '\0';
  1089. if (*buf == '\0' || *buf == '-')
  1090. return "*";
  1091. return buf;
  1092. }
  1093. #endif /* CONFIG_AX25 */
  1094. #define HBUFFERLEN 30
  1095. static void arp_format_neigh_entry(struct seq_file *seq,
  1096. struct neighbour *n)
  1097. {
  1098. char hbuffer[HBUFFERLEN];
  1099. int k, j;
  1100. char tbuf[16];
  1101. struct net_device *dev = n->dev;
  1102. int hatype = dev->type;
  1103. read_lock(&n->lock);
  1104. /* Convert hardware address to XX:XX:XX:XX ... form. */
  1105. #if IS_ENABLED(CONFIG_AX25)
  1106. if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
  1107. ax2asc2((ax25_address *)n->ha, hbuffer);
  1108. else {
  1109. #endif
  1110. for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
  1111. hbuffer[k++] = hex_asc_hi(n->ha[j]);
  1112. hbuffer[k++] = hex_asc_lo(n->ha[j]);
  1113. hbuffer[k++] = ':';
  1114. }
  1115. if (k != 0)
  1116. --k;
  1117. hbuffer[k] = 0;
  1118. #if IS_ENABLED(CONFIG_AX25)
  1119. }
  1120. #endif
  1121. sprintf(tbuf, "%pI4", n->primary_key);
  1122. seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
  1123. tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
  1124. read_unlock(&n->lock);
  1125. }
  1126. static void arp_format_pneigh_entry(struct seq_file *seq,
  1127. struct pneigh_entry *n)
  1128. {
  1129. struct net_device *dev = n->dev;
  1130. int hatype = dev ? dev->type : 0;
  1131. char tbuf[16];
  1132. sprintf(tbuf, "%pI4", n->key);
  1133. seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
  1134. tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
  1135. dev ? dev->name : "*");
  1136. }
  1137. static int arp_seq_show(struct seq_file *seq, void *v)
  1138. {
  1139. if (v == SEQ_START_TOKEN) {
  1140. seq_puts(seq, "IP address HW type Flags "
  1141. "HW address Mask Device\n");
  1142. } else {
  1143. struct neigh_seq_state *state = seq->private;
  1144. if (state->flags & NEIGH_SEQ_IS_PNEIGH)
  1145. arp_format_pneigh_entry(seq, v);
  1146. else
  1147. arp_format_neigh_entry(seq, v);
  1148. }
  1149. return 0;
  1150. }
  1151. static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
  1152. {
  1153. /* Don't want to confuse "arp -a" w/ magic entries,
  1154. * so we tell the generic iterator to skip NUD_NOARP.
  1155. */
  1156. return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
  1157. }
  1158. /* ------------------------------------------------------------------------ */
  1159. static const struct seq_operations arp_seq_ops = {
  1160. .start = arp_seq_start,
  1161. .next = neigh_seq_next,
  1162. .stop = neigh_seq_stop,
  1163. .show = arp_seq_show,
  1164. };
  1165. static int arp_seq_open(struct inode *inode, struct file *file)
  1166. {
  1167. return seq_open_net(inode, file, &arp_seq_ops,
  1168. sizeof(struct neigh_seq_state));
  1169. }
  1170. static const struct file_operations arp_seq_fops = {
  1171. .owner = THIS_MODULE,
  1172. .open = arp_seq_open,
  1173. .read = seq_read,
  1174. .llseek = seq_lseek,
  1175. .release = seq_release_net,
  1176. };
  1177. static int __net_init arp_net_init(struct net *net)
  1178. {
  1179. if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
  1180. return -ENOMEM;
  1181. return 0;
  1182. }
  1183. static void __net_exit arp_net_exit(struct net *net)
  1184. {
  1185. remove_proc_entry("arp", net->proc_net);
  1186. }
  1187. static struct pernet_operations arp_net_ops = {
  1188. .init = arp_net_init,
  1189. .exit = arp_net_exit,
  1190. };
  1191. static int __init arp_proc_init(void)
  1192. {
  1193. return register_pernet_subsys(&arp_net_ops);
  1194. }
  1195. #else /* CONFIG_PROC_FS */
  1196. static int __init arp_proc_init(void)
  1197. {
  1198. return 0;
  1199. }
  1200. #endif /* CONFIG_PROC_FS */