segment.c 72 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759
  1. /*
  2. * segment.c - NILFS segment constructor.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21. *
  22. */
  23. #include <linux/pagemap.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/writeback.h>
  26. #include <linux/bio.h>
  27. #include <linux/completion.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/freezer.h>
  31. #include <linux/kthread.h>
  32. #include <linux/crc32.h>
  33. #include <linux/pagevec.h>
  34. #include <linux/slab.h>
  35. #include "nilfs.h"
  36. #include "btnode.h"
  37. #include "page.h"
  38. #include "segment.h"
  39. #include "sufile.h"
  40. #include "cpfile.h"
  41. #include "ifile.h"
  42. #include "segbuf.h"
  43. /*
  44. * Segment constructor
  45. */
  46. #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
  47. #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
  48. appended in collection retry loop */
  49. /* Construction mode */
  50. enum {
  51. SC_LSEG_SR = 1, /* Make a logical segment having a super root */
  52. SC_LSEG_DSYNC, /* Flush data blocks of a given file and make
  53. a logical segment without a super root */
  54. SC_FLUSH_FILE, /* Flush data files, leads to segment writes without
  55. creating a checkpoint */
  56. SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without
  57. a checkpoint */
  58. };
  59. /* Stage numbers of dirty block collection */
  60. enum {
  61. NILFS_ST_INIT = 0,
  62. NILFS_ST_GC, /* Collecting dirty blocks for GC */
  63. NILFS_ST_FILE,
  64. NILFS_ST_IFILE,
  65. NILFS_ST_CPFILE,
  66. NILFS_ST_SUFILE,
  67. NILFS_ST_DAT,
  68. NILFS_ST_SR, /* Super root */
  69. NILFS_ST_DSYNC, /* Data sync blocks */
  70. NILFS_ST_DONE,
  71. };
  72. /* State flags of collection */
  73. #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
  74. #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
  75. #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
  76. #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
  77. /* Operations depending on the construction mode and file type */
  78. struct nilfs_sc_operations {
  79. int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
  80. struct inode *);
  81. int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
  82. struct inode *);
  83. int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
  84. struct inode *);
  85. void (*write_data_binfo)(struct nilfs_sc_info *,
  86. struct nilfs_segsum_pointer *,
  87. union nilfs_binfo *);
  88. void (*write_node_binfo)(struct nilfs_sc_info *,
  89. struct nilfs_segsum_pointer *,
  90. union nilfs_binfo *);
  91. };
  92. /*
  93. * Other definitions
  94. */
  95. static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
  96. static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
  97. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
  98. static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
  99. #define nilfs_cnt32_gt(a, b) \
  100. (typecheck(__u32, a) && typecheck(__u32, b) && \
  101. ((__s32)(b) - (__s32)(a) < 0))
  102. #define nilfs_cnt32_ge(a, b) \
  103. (typecheck(__u32, a) && typecheck(__u32, b) && \
  104. ((__s32)(a) - (__s32)(b) >= 0))
  105. #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
  106. #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
  107. static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
  108. {
  109. struct nilfs_transaction_info *cur_ti = current->journal_info;
  110. void *save = NULL;
  111. if (cur_ti) {
  112. if (cur_ti->ti_magic == NILFS_TI_MAGIC)
  113. return ++cur_ti->ti_count;
  114. else {
  115. /*
  116. * If journal_info field is occupied by other FS,
  117. * it is saved and will be restored on
  118. * nilfs_transaction_commit().
  119. */
  120. printk(KERN_WARNING
  121. "NILFS warning: journal info from a different "
  122. "FS\n");
  123. save = current->journal_info;
  124. }
  125. }
  126. if (!ti) {
  127. ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
  128. if (!ti)
  129. return -ENOMEM;
  130. ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
  131. } else {
  132. ti->ti_flags = 0;
  133. }
  134. ti->ti_count = 0;
  135. ti->ti_save = save;
  136. ti->ti_magic = NILFS_TI_MAGIC;
  137. current->journal_info = ti;
  138. return 0;
  139. }
  140. /**
  141. * nilfs_transaction_begin - start indivisible file operations.
  142. * @sb: super block
  143. * @ti: nilfs_transaction_info
  144. * @vacancy_check: flags for vacancy rate checks
  145. *
  146. * nilfs_transaction_begin() acquires a reader/writer semaphore, called
  147. * the segment semaphore, to make a segment construction and write tasks
  148. * exclusive. The function is used with nilfs_transaction_commit() in pairs.
  149. * The region enclosed by these two functions can be nested. To avoid a
  150. * deadlock, the semaphore is only acquired or released in the outermost call.
  151. *
  152. * This function allocates a nilfs_transaction_info struct to keep context
  153. * information on it. It is initialized and hooked onto the current task in
  154. * the outermost call. If a pre-allocated struct is given to @ti, it is used
  155. * instead; otherwise a new struct is assigned from a slab.
  156. *
  157. * When @vacancy_check flag is set, this function will check the amount of
  158. * free space, and will wait for the GC to reclaim disk space if low capacity.
  159. *
  160. * Return Value: On success, 0 is returned. On error, one of the following
  161. * negative error code is returned.
  162. *
  163. * %-ENOMEM - Insufficient memory available.
  164. *
  165. * %-ENOSPC - No space left on device
  166. */
  167. int nilfs_transaction_begin(struct super_block *sb,
  168. struct nilfs_transaction_info *ti,
  169. int vacancy_check)
  170. {
  171. struct the_nilfs *nilfs;
  172. int ret = nilfs_prepare_segment_lock(ti);
  173. if (unlikely(ret < 0))
  174. return ret;
  175. if (ret > 0)
  176. return 0;
  177. sb_start_intwrite(sb);
  178. nilfs = sb->s_fs_info;
  179. down_read(&nilfs->ns_segctor_sem);
  180. if (vacancy_check && nilfs_near_disk_full(nilfs)) {
  181. up_read(&nilfs->ns_segctor_sem);
  182. ret = -ENOSPC;
  183. goto failed;
  184. }
  185. return 0;
  186. failed:
  187. ti = current->journal_info;
  188. current->journal_info = ti->ti_save;
  189. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  190. kmem_cache_free(nilfs_transaction_cachep, ti);
  191. sb_end_intwrite(sb);
  192. return ret;
  193. }
  194. /**
  195. * nilfs_transaction_commit - commit indivisible file operations.
  196. * @sb: super block
  197. *
  198. * nilfs_transaction_commit() releases the read semaphore which is
  199. * acquired by nilfs_transaction_begin(). This is only performed
  200. * in outermost call of this function. If a commit flag is set,
  201. * nilfs_transaction_commit() sets a timer to start the segment
  202. * constructor. If a sync flag is set, it starts construction
  203. * directly.
  204. */
  205. int nilfs_transaction_commit(struct super_block *sb)
  206. {
  207. struct nilfs_transaction_info *ti = current->journal_info;
  208. struct the_nilfs *nilfs = sb->s_fs_info;
  209. int err = 0;
  210. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  211. ti->ti_flags |= NILFS_TI_COMMIT;
  212. if (ti->ti_count > 0) {
  213. ti->ti_count--;
  214. return 0;
  215. }
  216. if (nilfs->ns_writer) {
  217. struct nilfs_sc_info *sci = nilfs->ns_writer;
  218. if (ti->ti_flags & NILFS_TI_COMMIT)
  219. nilfs_segctor_start_timer(sci);
  220. if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
  221. nilfs_segctor_do_flush(sci, 0);
  222. }
  223. up_read(&nilfs->ns_segctor_sem);
  224. current->journal_info = ti->ti_save;
  225. if (ti->ti_flags & NILFS_TI_SYNC)
  226. err = nilfs_construct_segment(sb);
  227. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  228. kmem_cache_free(nilfs_transaction_cachep, ti);
  229. sb_end_intwrite(sb);
  230. return err;
  231. }
  232. void nilfs_transaction_abort(struct super_block *sb)
  233. {
  234. struct nilfs_transaction_info *ti = current->journal_info;
  235. struct the_nilfs *nilfs = sb->s_fs_info;
  236. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  237. if (ti->ti_count > 0) {
  238. ti->ti_count--;
  239. return;
  240. }
  241. up_read(&nilfs->ns_segctor_sem);
  242. current->journal_info = ti->ti_save;
  243. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  244. kmem_cache_free(nilfs_transaction_cachep, ti);
  245. sb_end_intwrite(sb);
  246. }
  247. void nilfs_relax_pressure_in_lock(struct super_block *sb)
  248. {
  249. struct the_nilfs *nilfs = sb->s_fs_info;
  250. struct nilfs_sc_info *sci = nilfs->ns_writer;
  251. if (!sci || !sci->sc_flush_request)
  252. return;
  253. set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  254. up_read(&nilfs->ns_segctor_sem);
  255. down_write(&nilfs->ns_segctor_sem);
  256. if (sci->sc_flush_request &&
  257. test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
  258. struct nilfs_transaction_info *ti = current->journal_info;
  259. ti->ti_flags |= NILFS_TI_WRITER;
  260. nilfs_segctor_do_immediate_flush(sci);
  261. ti->ti_flags &= ~NILFS_TI_WRITER;
  262. }
  263. downgrade_write(&nilfs->ns_segctor_sem);
  264. }
  265. static void nilfs_transaction_lock(struct super_block *sb,
  266. struct nilfs_transaction_info *ti,
  267. int gcflag)
  268. {
  269. struct nilfs_transaction_info *cur_ti = current->journal_info;
  270. struct the_nilfs *nilfs = sb->s_fs_info;
  271. struct nilfs_sc_info *sci = nilfs->ns_writer;
  272. WARN_ON(cur_ti);
  273. ti->ti_flags = NILFS_TI_WRITER;
  274. ti->ti_count = 0;
  275. ti->ti_save = cur_ti;
  276. ti->ti_magic = NILFS_TI_MAGIC;
  277. current->journal_info = ti;
  278. for (;;) {
  279. down_write(&nilfs->ns_segctor_sem);
  280. if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
  281. break;
  282. nilfs_segctor_do_immediate_flush(sci);
  283. up_write(&nilfs->ns_segctor_sem);
  284. yield();
  285. }
  286. if (gcflag)
  287. ti->ti_flags |= NILFS_TI_GC;
  288. }
  289. static void nilfs_transaction_unlock(struct super_block *sb)
  290. {
  291. struct nilfs_transaction_info *ti = current->journal_info;
  292. struct the_nilfs *nilfs = sb->s_fs_info;
  293. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  294. BUG_ON(ti->ti_count > 0);
  295. up_write(&nilfs->ns_segctor_sem);
  296. current->journal_info = ti->ti_save;
  297. }
  298. static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
  299. struct nilfs_segsum_pointer *ssp,
  300. unsigned bytes)
  301. {
  302. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  303. unsigned blocksize = sci->sc_super->s_blocksize;
  304. void *p;
  305. if (unlikely(ssp->offset + bytes > blocksize)) {
  306. ssp->offset = 0;
  307. BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
  308. &segbuf->sb_segsum_buffers));
  309. ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
  310. }
  311. p = ssp->bh->b_data + ssp->offset;
  312. ssp->offset += bytes;
  313. return p;
  314. }
  315. /**
  316. * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
  317. * @sci: nilfs_sc_info
  318. */
  319. static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
  320. {
  321. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  322. struct buffer_head *sumbh;
  323. unsigned sumbytes;
  324. unsigned flags = 0;
  325. int err;
  326. if (nilfs_doing_gc())
  327. flags = NILFS_SS_GC;
  328. err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
  329. if (unlikely(err))
  330. return err;
  331. sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  332. sumbytes = segbuf->sb_sum.sumbytes;
  333. sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
  334. sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
  335. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  336. return 0;
  337. }
  338. static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
  339. {
  340. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  341. if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
  342. return -E2BIG; /* The current segment is filled up
  343. (internal code) */
  344. sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
  345. return nilfs_segctor_reset_segment_buffer(sci);
  346. }
  347. static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
  348. {
  349. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  350. int err;
  351. if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
  352. err = nilfs_segctor_feed_segment(sci);
  353. if (err)
  354. return err;
  355. segbuf = sci->sc_curseg;
  356. }
  357. err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
  358. if (likely(!err))
  359. segbuf->sb_sum.flags |= NILFS_SS_SR;
  360. return err;
  361. }
  362. /*
  363. * Functions for making segment summary and payloads
  364. */
  365. static int nilfs_segctor_segsum_block_required(
  366. struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
  367. unsigned binfo_size)
  368. {
  369. unsigned blocksize = sci->sc_super->s_blocksize;
  370. /* Size of finfo and binfo is enough small against blocksize */
  371. return ssp->offset + binfo_size +
  372. (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
  373. blocksize;
  374. }
  375. static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
  376. struct inode *inode)
  377. {
  378. sci->sc_curseg->sb_sum.nfinfo++;
  379. sci->sc_binfo_ptr = sci->sc_finfo_ptr;
  380. nilfs_segctor_map_segsum_entry(
  381. sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
  382. if (NILFS_I(inode)->i_root &&
  383. !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  384. set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  385. /* skip finfo */
  386. }
  387. static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
  388. struct inode *inode)
  389. {
  390. struct nilfs_finfo *finfo;
  391. struct nilfs_inode_info *ii;
  392. struct nilfs_segment_buffer *segbuf;
  393. __u64 cno;
  394. if (sci->sc_blk_cnt == 0)
  395. return;
  396. ii = NILFS_I(inode);
  397. if (test_bit(NILFS_I_GCINODE, &ii->i_state))
  398. cno = ii->i_cno;
  399. else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
  400. cno = 0;
  401. else
  402. cno = sci->sc_cno;
  403. finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
  404. sizeof(*finfo));
  405. finfo->fi_ino = cpu_to_le64(inode->i_ino);
  406. finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
  407. finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
  408. finfo->fi_cno = cpu_to_le64(cno);
  409. segbuf = sci->sc_curseg;
  410. segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
  411. sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
  412. sci->sc_finfo_ptr = sci->sc_binfo_ptr;
  413. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  414. }
  415. static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
  416. struct buffer_head *bh,
  417. struct inode *inode,
  418. unsigned binfo_size)
  419. {
  420. struct nilfs_segment_buffer *segbuf;
  421. int required, err = 0;
  422. retry:
  423. segbuf = sci->sc_curseg;
  424. required = nilfs_segctor_segsum_block_required(
  425. sci, &sci->sc_binfo_ptr, binfo_size);
  426. if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
  427. nilfs_segctor_end_finfo(sci, inode);
  428. err = nilfs_segctor_feed_segment(sci);
  429. if (err)
  430. return err;
  431. goto retry;
  432. }
  433. if (unlikely(required)) {
  434. err = nilfs_segbuf_extend_segsum(segbuf);
  435. if (unlikely(err))
  436. goto failed;
  437. }
  438. if (sci->sc_blk_cnt == 0)
  439. nilfs_segctor_begin_finfo(sci, inode);
  440. nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
  441. /* Substitution to vblocknr is delayed until update_blocknr() */
  442. nilfs_segbuf_add_file_buffer(segbuf, bh);
  443. sci->sc_blk_cnt++;
  444. failed:
  445. return err;
  446. }
  447. /*
  448. * Callback functions that enumerate, mark, and collect dirty blocks
  449. */
  450. static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
  451. struct buffer_head *bh, struct inode *inode)
  452. {
  453. int err;
  454. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  455. if (err < 0)
  456. return err;
  457. err = nilfs_segctor_add_file_block(sci, bh, inode,
  458. sizeof(struct nilfs_binfo_v));
  459. if (!err)
  460. sci->sc_datablk_cnt++;
  461. return err;
  462. }
  463. static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
  464. struct buffer_head *bh,
  465. struct inode *inode)
  466. {
  467. return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  468. }
  469. static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
  470. struct buffer_head *bh,
  471. struct inode *inode)
  472. {
  473. WARN_ON(!buffer_dirty(bh));
  474. return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  475. }
  476. static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
  477. struct nilfs_segsum_pointer *ssp,
  478. union nilfs_binfo *binfo)
  479. {
  480. struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
  481. sci, ssp, sizeof(*binfo_v));
  482. *binfo_v = binfo->bi_v;
  483. }
  484. static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
  485. struct nilfs_segsum_pointer *ssp,
  486. union nilfs_binfo *binfo)
  487. {
  488. __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
  489. sci, ssp, sizeof(*vblocknr));
  490. *vblocknr = binfo->bi_v.bi_vblocknr;
  491. }
  492. static struct nilfs_sc_operations nilfs_sc_file_ops = {
  493. .collect_data = nilfs_collect_file_data,
  494. .collect_node = nilfs_collect_file_node,
  495. .collect_bmap = nilfs_collect_file_bmap,
  496. .write_data_binfo = nilfs_write_file_data_binfo,
  497. .write_node_binfo = nilfs_write_file_node_binfo,
  498. };
  499. static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
  500. struct buffer_head *bh, struct inode *inode)
  501. {
  502. int err;
  503. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  504. if (err < 0)
  505. return err;
  506. err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  507. if (!err)
  508. sci->sc_datablk_cnt++;
  509. return err;
  510. }
  511. static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
  512. struct buffer_head *bh, struct inode *inode)
  513. {
  514. WARN_ON(!buffer_dirty(bh));
  515. return nilfs_segctor_add_file_block(sci, bh, inode,
  516. sizeof(struct nilfs_binfo_dat));
  517. }
  518. static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
  519. struct nilfs_segsum_pointer *ssp,
  520. union nilfs_binfo *binfo)
  521. {
  522. __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
  523. sizeof(*blkoff));
  524. *blkoff = binfo->bi_dat.bi_blkoff;
  525. }
  526. static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
  527. struct nilfs_segsum_pointer *ssp,
  528. union nilfs_binfo *binfo)
  529. {
  530. struct nilfs_binfo_dat *binfo_dat =
  531. nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
  532. *binfo_dat = binfo->bi_dat;
  533. }
  534. static struct nilfs_sc_operations nilfs_sc_dat_ops = {
  535. .collect_data = nilfs_collect_dat_data,
  536. .collect_node = nilfs_collect_file_node,
  537. .collect_bmap = nilfs_collect_dat_bmap,
  538. .write_data_binfo = nilfs_write_dat_data_binfo,
  539. .write_node_binfo = nilfs_write_dat_node_binfo,
  540. };
  541. static struct nilfs_sc_operations nilfs_sc_dsync_ops = {
  542. .collect_data = nilfs_collect_file_data,
  543. .collect_node = NULL,
  544. .collect_bmap = NULL,
  545. .write_data_binfo = nilfs_write_file_data_binfo,
  546. .write_node_binfo = NULL,
  547. };
  548. static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
  549. struct list_head *listp,
  550. size_t nlimit,
  551. loff_t start, loff_t end)
  552. {
  553. struct address_space *mapping = inode->i_mapping;
  554. struct pagevec pvec;
  555. pgoff_t index = 0, last = ULONG_MAX;
  556. size_t ndirties = 0;
  557. int i;
  558. if (unlikely(start != 0 || end != LLONG_MAX)) {
  559. /*
  560. * A valid range is given for sync-ing data pages. The
  561. * range is rounded to per-page; extra dirty buffers
  562. * may be included if blocksize < pagesize.
  563. */
  564. index = start >> PAGE_SHIFT;
  565. last = end >> PAGE_SHIFT;
  566. }
  567. pagevec_init(&pvec, 0);
  568. repeat:
  569. if (unlikely(index > last) ||
  570. !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  571. min_t(pgoff_t, last - index,
  572. PAGEVEC_SIZE - 1) + 1))
  573. return ndirties;
  574. for (i = 0; i < pagevec_count(&pvec); i++) {
  575. struct buffer_head *bh, *head;
  576. struct page *page = pvec.pages[i];
  577. if (unlikely(page->index > last))
  578. break;
  579. lock_page(page);
  580. if (!page_has_buffers(page))
  581. create_empty_buffers(page, 1 << inode->i_blkbits, 0);
  582. unlock_page(page);
  583. bh = head = page_buffers(page);
  584. do {
  585. if (!buffer_dirty(bh) || buffer_async_write(bh))
  586. continue;
  587. get_bh(bh);
  588. list_add_tail(&bh->b_assoc_buffers, listp);
  589. ndirties++;
  590. if (unlikely(ndirties >= nlimit)) {
  591. pagevec_release(&pvec);
  592. cond_resched();
  593. return ndirties;
  594. }
  595. } while (bh = bh->b_this_page, bh != head);
  596. }
  597. pagevec_release(&pvec);
  598. cond_resched();
  599. goto repeat;
  600. }
  601. static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
  602. struct list_head *listp)
  603. {
  604. struct nilfs_inode_info *ii = NILFS_I(inode);
  605. struct address_space *mapping = &ii->i_btnode_cache;
  606. struct pagevec pvec;
  607. struct buffer_head *bh, *head;
  608. unsigned int i;
  609. pgoff_t index = 0;
  610. pagevec_init(&pvec, 0);
  611. while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  612. PAGEVEC_SIZE)) {
  613. for (i = 0; i < pagevec_count(&pvec); i++) {
  614. bh = head = page_buffers(pvec.pages[i]);
  615. do {
  616. if (buffer_dirty(bh) &&
  617. !buffer_async_write(bh)) {
  618. get_bh(bh);
  619. list_add_tail(&bh->b_assoc_buffers,
  620. listp);
  621. }
  622. bh = bh->b_this_page;
  623. } while (bh != head);
  624. }
  625. pagevec_release(&pvec);
  626. cond_resched();
  627. }
  628. }
  629. static void nilfs_dispose_list(struct the_nilfs *nilfs,
  630. struct list_head *head, int force)
  631. {
  632. struct nilfs_inode_info *ii, *n;
  633. struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
  634. unsigned nv = 0;
  635. while (!list_empty(head)) {
  636. spin_lock(&nilfs->ns_inode_lock);
  637. list_for_each_entry_safe(ii, n, head, i_dirty) {
  638. list_del_init(&ii->i_dirty);
  639. if (force) {
  640. if (unlikely(ii->i_bh)) {
  641. brelse(ii->i_bh);
  642. ii->i_bh = NULL;
  643. }
  644. } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  645. set_bit(NILFS_I_QUEUED, &ii->i_state);
  646. list_add_tail(&ii->i_dirty,
  647. &nilfs->ns_dirty_files);
  648. continue;
  649. }
  650. ivec[nv++] = ii;
  651. if (nv == SC_N_INODEVEC)
  652. break;
  653. }
  654. spin_unlock(&nilfs->ns_inode_lock);
  655. for (pii = ivec; nv > 0; pii++, nv--)
  656. iput(&(*pii)->vfs_inode);
  657. }
  658. }
  659. static void nilfs_iput_work_func(struct work_struct *work)
  660. {
  661. struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
  662. sc_iput_work);
  663. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  664. nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
  665. }
  666. static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
  667. struct nilfs_root *root)
  668. {
  669. int ret = 0;
  670. if (nilfs_mdt_fetch_dirty(root->ifile))
  671. ret++;
  672. if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
  673. ret++;
  674. if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
  675. ret++;
  676. if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
  677. ret++;
  678. return ret;
  679. }
  680. static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
  681. {
  682. return list_empty(&sci->sc_dirty_files) &&
  683. !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
  684. sci->sc_nfreesegs == 0 &&
  685. (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
  686. }
  687. static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
  688. {
  689. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  690. int ret = 0;
  691. if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
  692. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  693. spin_lock(&nilfs->ns_inode_lock);
  694. if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
  695. ret++;
  696. spin_unlock(&nilfs->ns_inode_lock);
  697. return ret;
  698. }
  699. static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
  700. {
  701. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  702. nilfs_mdt_clear_dirty(sci->sc_root->ifile);
  703. nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
  704. nilfs_mdt_clear_dirty(nilfs->ns_sufile);
  705. nilfs_mdt_clear_dirty(nilfs->ns_dat);
  706. }
  707. static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
  708. {
  709. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  710. struct buffer_head *bh_cp;
  711. struct nilfs_checkpoint *raw_cp;
  712. int err;
  713. /* XXX: this interface will be changed */
  714. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
  715. &raw_cp, &bh_cp);
  716. if (likely(!err)) {
  717. /* The following code is duplicated with cpfile. But, it is
  718. needed to collect the checkpoint even if it was not newly
  719. created */
  720. mark_buffer_dirty(bh_cp);
  721. nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
  722. nilfs_cpfile_put_checkpoint(
  723. nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  724. } else
  725. WARN_ON(err == -EINVAL || err == -ENOENT);
  726. return err;
  727. }
  728. static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
  729. {
  730. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  731. struct buffer_head *bh_cp;
  732. struct nilfs_checkpoint *raw_cp;
  733. int err;
  734. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
  735. &raw_cp, &bh_cp);
  736. if (unlikely(err)) {
  737. WARN_ON(err == -EINVAL || err == -ENOENT);
  738. goto failed_ibh;
  739. }
  740. raw_cp->cp_snapshot_list.ssl_next = 0;
  741. raw_cp->cp_snapshot_list.ssl_prev = 0;
  742. raw_cp->cp_inodes_count =
  743. cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count));
  744. raw_cp->cp_blocks_count =
  745. cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count));
  746. raw_cp->cp_nblk_inc =
  747. cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
  748. raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
  749. raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
  750. if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  751. nilfs_checkpoint_clear_minor(raw_cp);
  752. else
  753. nilfs_checkpoint_set_minor(raw_cp);
  754. nilfs_write_inode_common(sci->sc_root->ifile,
  755. &raw_cp->cp_ifile_inode, 1);
  756. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  757. return 0;
  758. failed_ibh:
  759. return err;
  760. }
  761. static void nilfs_fill_in_file_bmap(struct inode *ifile,
  762. struct nilfs_inode_info *ii)
  763. {
  764. struct buffer_head *ibh;
  765. struct nilfs_inode *raw_inode;
  766. if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
  767. ibh = ii->i_bh;
  768. BUG_ON(!ibh);
  769. raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
  770. ibh);
  771. nilfs_bmap_write(ii->i_bmap, raw_inode);
  772. nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
  773. }
  774. }
  775. static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
  776. {
  777. struct nilfs_inode_info *ii;
  778. list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
  779. nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
  780. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  781. }
  782. }
  783. static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
  784. struct the_nilfs *nilfs)
  785. {
  786. struct buffer_head *bh_sr;
  787. struct nilfs_super_root *raw_sr;
  788. unsigned isz, srsz;
  789. bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
  790. raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
  791. isz = nilfs->ns_inode_size;
  792. srsz = NILFS_SR_BYTES(isz);
  793. raw_sr->sr_bytes = cpu_to_le16(srsz);
  794. raw_sr->sr_nongc_ctime
  795. = cpu_to_le64(nilfs_doing_gc() ?
  796. nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
  797. raw_sr->sr_flags = 0;
  798. nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
  799. NILFS_SR_DAT_OFFSET(isz), 1);
  800. nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
  801. NILFS_SR_CPFILE_OFFSET(isz), 1);
  802. nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
  803. NILFS_SR_SUFILE_OFFSET(isz), 1);
  804. memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
  805. }
  806. static void nilfs_redirty_inodes(struct list_head *head)
  807. {
  808. struct nilfs_inode_info *ii;
  809. list_for_each_entry(ii, head, i_dirty) {
  810. if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
  811. clear_bit(NILFS_I_COLLECTED, &ii->i_state);
  812. }
  813. }
  814. static void nilfs_drop_collected_inodes(struct list_head *head)
  815. {
  816. struct nilfs_inode_info *ii;
  817. list_for_each_entry(ii, head, i_dirty) {
  818. if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
  819. continue;
  820. clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
  821. set_bit(NILFS_I_UPDATED, &ii->i_state);
  822. }
  823. }
  824. static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
  825. struct inode *inode,
  826. struct list_head *listp,
  827. int (*collect)(struct nilfs_sc_info *,
  828. struct buffer_head *,
  829. struct inode *))
  830. {
  831. struct buffer_head *bh, *n;
  832. int err = 0;
  833. if (collect) {
  834. list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
  835. list_del_init(&bh->b_assoc_buffers);
  836. err = collect(sci, bh, inode);
  837. brelse(bh);
  838. if (unlikely(err))
  839. goto dispose_buffers;
  840. }
  841. return 0;
  842. }
  843. dispose_buffers:
  844. while (!list_empty(listp)) {
  845. bh = list_first_entry(listp, struct buffer_head,
  846. b_assoc_buffers);
  847. list_del_init(&bh->b_assoc_buffers);
  848. brelse(bh);
  849. }
  850. return err;
  851. }
  852. static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
  853. {
  854. /* Remaining number of blocks within segment buffer */
  855. return sci->sc_segbuf_nblocks -
  856. (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
  857. }
  858. static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
  859. struct inode *inode,
  860. struct nilfs_sc_operations *sc_ops)
  861. {
  862. LIST_HEAD(data_buffers);
  863. LIST_HEAD(node_buffers);
  864. int err;
  865. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  866. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  867. n = nilfs_lookup_dirty_data_buffers(
  868. inode, &data_buffers, rest + 1, 0, LLONG_MAX);
  869. if (n > rest) {
  870. err = nilfs_segctor_apply_buffers(
  871. sci, inode, &data_buffers,
  872. sc_ops->collect_data);
  873. BUG_ON(!err); /* always receive -E2BIG or true error */
  874. goto break_or_fail;
  875. }
  876. }
  877. nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
  878. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  879. err = nilfs_segctor_apply_buffers(
  880. sci, inode, &data_buffers, sc_ops->collect_data);
  881. if (unlikely(err)) {
  882. /* dispose node list */
  883. nilfs_segctor_apply_buffers(
  884. sci, inode, &node_buffers, NULL);
  885. goto break_or_fail;
  886. }
  887. sci->sc_stage.flags |= NILFS_CF_NODE;
  888. }
  889. /* Collect node */
  890. err = nilfs_segctor_apply_buffers(
  891. sci, inode, &node_buffers, sc_ops->collect_node);
  892. if (unlikely(err))
  893. goto break_or_fail;
  894. nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
  895. err = nilfs_segctor_apply_buffers(
  896. sci, inode, &node_buffers, sc_ops->collect_bmap);
  897. if (unlikely(err))
  898. goto break_or_fail;
  899. nilfs_segctor_end_finfo(sci, inode);
  900. sci->sc_stage.flags &= ~NILFS_CF_NODE;
  901. break_or_fail:
  902. return err;
  903. }
  904. static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
  905. struct inode *inode)
  906. {
  907. LIST_HEAD(data_buffers);
  908. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  909. int err;
  910. n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
  911. sci->sc_dsync_start,
  912. sci->sc_dsync_end);
  913. err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
  914. nilfs_collect_file_data);
  915. if (!err) {
  916. nilfs_segctor_end_finfo(sci, inode);
  917. BUG_ON(n > rest);
  918. /* always receive -E2BIG or true error if n > rest */
  919. }
  920. return err;
  921. }
  922. static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
  923. {
  924. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  925. struct list_head *head;
  926. struct nilfs_inode_info *ii;
  927. size_t ndone;
  928. int err = 0;
  929. switch (sci->sc_stage.scnt) {
  930. case NILFS_ST_INIT:
  931. /* Pre-processes */
  932. sci->sc_stage.flags = 0;
  933. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
  934. sci->sc_nblk_inc = 0;
  935. sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
  936. if (mode == SC_LSEG_DSYNC) {
  937. sci->sc_stage.scnt = NILFS_ST_DSYNC;
  938. goto dsync_mode;
  939. }
  940. }
  941. sci->sc_stage.dirty_file_ptr = NULL;
  942. sci->sc_stage.gc_inode_ptr = NULL;
  943. if (mode == SC_FLUSH_DAT) {
  944. sci->sc_stage.scnt = NILFS_ST_DAT;
  945. goto dat_stage;
  946. }
  947. sci->sc_stage.scnt++; /* Fall through */
  948. case NILFS_ST_GC:
  949. if (nilfs_doing_gc()) {
  950. head = &sci->sc_gc_inodes;
  951. ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
  952. head, i_dirty);
  953. list_for_each_entry_continue(ii, head, i_dirty) {
  954. err = nilfs_segctor_scan_file(
  955. sci, &ii->vfs_inode,
  956. &nilfs_sc_file_ops);
  957. if (unlikely(err)) {
  958. sci->sc_stage.gc_inode_ptr = list_entry(
  959. ii->i_dirty.prev,
  960. struct nilfs_inode_info,
  961. i_dirty);
  962. goto break_or_fail;
  963. }
  964. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  965. }
  966. sci->sc_stage.gc_inode_ptr = NULL;
  967. }
  968. sci->sc_stage.scnt++; /* Fall through */
  969. case NILFS_ST_FILE:
  970. head = &sci->sc_dirty_files;
  971. ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
  972. i_dirty);
  973. list_for_each_entry_continue(ii, head, i_dirty) {
  974. clear_bit(NILFS_I_DIRTY, &ii->i_state);
  975. err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
  976. &nilfs_sc_file_ops);
  977. if (unlikely(err)) {
  978. sci->sc_stage.dirty_file_ptr =
  979. list_entry(ii->i_dirty.prev,
  980. struct nilfs_inode_info,
  981. i_dirty);
  982. goto break_or_fail;
  983. }
  984. /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
  985. /* XXX: required ? */
  986. }
  987. sci->sc_stage.dirty_file_ptr = NULL;
  988. if (mode == SC_FLUSH_FILE) {
  989. sci->sc_stage.scnt = NILFS_ST_DONE;
  990. return 0;
  991. }
  992. sci->sc_stage.scnt++;
  993. sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
  994. /* Fall through */
  995. case NILFS_ST_IFILE:
  996. err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
  997. &nilfs_sc_file_ops);
  998. if (unlikely(err))
  999. break;
  1000. sci->sc_stage.scnt++;
  1001. /* Creating a checkpoint */
  1002. err = nilfs_segctor_create_checkpoint(sci);
  1003. if (unlikely(err))
  1004. break;
  1005. /* Fall through */
  1006. case NILFS_ST_CPFILE:
  1007. err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
  1008. &nilfs_sc_file_ops);
  1009. if (unlikely(err))
  1010. break;
  1011. sci->sc_stage.scnt++; /* Fall through */
  1012. case NILFS_ST_SUFILE:
  1013. err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
  1014. sci->sc_nfreesegs, &ndone);
  1015. if (unlikely(err)) {
  1016. nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1017. sci->sc_freesegs, ndone,
  1018. NULL);
  1019. break;
  1020. }
  1021. sci->sc_stage.flags |= NILFS_CF_SUFREED;
  1022. err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
  1023. &nilfs_sc_file_ops);
  1024. if (unlikely(err))
  1025. break;
  1026. sci->sc_stage.scnt++; /* Fall through */
  1027. case NILFS_ST_DAT:
  1028. dat_stage:
  1029. err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
  1030. &nilfs_sc_dat_ops);
  1031. if (unlikely(err))
  1032. break;
  1033. if (mode == SC_FLUSH_DAT) {
  1034. sci->sc_stage.scnt = NILFS_ST_DONE;
  1035. return 0;
  1036. }
  1037. sci->sc_stage.scnt++; /* Fall through */
  1038. case NILFS_ST_SR:
  1039. if (mode == SC_LSEG_SR) {
  1040. /* Appending a super root */
  1041. err = nilfs_segctor_add_super_root(sci);
  1042. if (unlikely(err))
  1043. break;
  1044. }
  1045. /* End of a logical segment */
  1046. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1047. sci->sc_stage.scnt = NILFS_ST_DONE;
  1048. return 0;
  1049. case NILFS_ST_DSYNC:
  1050. dsync_mode:
  1051. sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
  1052. ii = sci->sc_dsync_inode;
  1053. if (!test_bit(NILFS_I_BUSY, &ii->i_state))
  1054. break;
  1055. err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
  1056. if (unlikely(err))
  1057. break;
  1058. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1059. sci->sc_stage.scnt = NILFS_ST_DONE;
  1060. return 0;
  1061. case NILFS_ST_DONE:
  1062. return 0;
  1063. default:
  1064. BUG();
  1065. }
  1066. break_or_fail:
  1067. return err;
  1068. }
  1069. /**
  1070. * nilfs_segctor_begin_construction - setup segment buffer to make a new log
  1071. * @sci: nilfs_sc_info
  1072. * @nilfs: nilfs object
  1073. */
  1074. static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
  1075. struct the_nilfs *nilfs)
  1076. {
  1077. struct nilfs_segment_buffer *segbuf, *prev;
  1078. __u64 nextnum;
  1079. int err, alloc = 0;
  1080. segbuf = nilfs_segbuf_new(sci->sc_super);
  1081. if (unlikely(!segbuf))
  1082. return -ENOMEM;
  1083. if (list_empty(&sci->sc_write_logs)) {
  1084. nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
  1085. nilfs->ns_pseg_offset, nilfs);
  1086. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1087. nilfs_shift_to_next_segment(nilfs);
  1088. nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
  1089. }
  1090. segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
  1091. nextnum = nilfs->ns_nextnum;
  1092. if (nilfs->ns_segnum == nilfs->ns_nextnum)
  1093. /* Start from the head of a new full segment */
  1094. alloc++;
  1095. } else {
  1096. /* Continue logs */
  1097. prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1098. nilfs_segbuf_map_cont(segbuf, prev);
  1099. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
  1100. nextnum = prev->sb_nextnum;
  1101. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1102. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1103. segbuf->sb_sum.seg_seq++;
  1104. alloc++;
  1105. }
  1106. }
  1107. err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
  1108. if (err)
  1109. goto failed;
  1110. if (alloc) {
  1111. err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
  1112. if (err)
  1113. goto failed;
  1114. }
  1115. nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
  1116. BUG_ON(!list_empty(&sci->sc_segbufs));
  1117. list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
  1118. sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
  1119. return 0;
  1120. failed:
  1121. nilfs_segbuf_free(segbuf);
  1122. return err;
  1123. }
  1124. static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
  1125. struct the_nilfs *nilfs, int nadd)
  1126. {
  1127. struct nilfs_segment_buffer *segbuf, *prev;
  1128. struct inode *sufile = nilfs->ns_sufile;
  1129. __u64 nextnextnum;
  1130. LIST_HEAD(list);
  1131. int err, ret, i;
  1132. prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1133. /*
  1134. * Since the segment specified with nextnum might be allocated during
  1135. * the previous construction, the buffer including its segusage may
  1136. * not be dirty. The following call ensures that the buffer is dirty
  1137. * and will pin the buffer on memory until the sufile is written.
  1138. */
  1139. err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
  1140. if (unlikely(err))
  1141. return err;
  1142. for (i = 0; i < nadd; i++) {
  1143. /* extend segment info */
  1144. err = -ENOMEM;
  1145. segbuf = nilfs_segbuf_new(sci->sc_super);
  1146. if (unlikely(!segbuf))
  1147. goto failed;
  1148. /* map this buffer to region of segment on-disk */
  1149. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1150. sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
  1151. /* allocate the next next full segment */
  1152. err = nilfs_sufile_alloc(sufile, &nextnextnum);
  1153. if (unlikely(err))
  1154. goto failed_segbuf;
  1155. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
  1156. nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
  1157. list_add_tail(&segbuf->sb_list, &list);
  1158. prev = segbuf;
  1159. }
  1160. list_splice_tail(&list, &sci->sc_segbufs);
  1161. return 0;
  1162. failed_segbuf:
  1163. nilfs_segbuf_free(segbuf);
  1164. failed:
  1165. list_for_each_entry(segbuf, &list, sb_list) {
  1166. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1167. WARN_ON(ret); /* never fails */
  1168. }
  1169. nilfs_destroy_logs(&list);
  1170. return err;
  1171. }
  1172. static void nilfs_free_incomplete_logs(struct list_head *logs,
  1173. struct the_nilfs *nilfs)
  1174. {
  1175. struct nilfs_segment_buffer *segbuf, *prev;
  1176. struct inode *sufile = nilfs->ns_sufile;
  1177. int ret;
  1178. segbuf = NILFS_FIRST_SEGBUF(logs);
  1179. if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
  1180. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1181. WARN_ON(ret); /* never fails */
  1182. }
  1183. if (atomic_read(&segbuf->sb_err)) {
  1184. /* Case 1: The first segment failed */
  1185. if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
  1186. /* Case 1a: Partial segment appended into an existing
  1187. segment */
  1188. nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
  1189. segbuf->sb_fseg_end);
  1190. else /* Case 1b: New full segment */
  1191. set_nilfs_discontinued(nilfs);
  1192. }
  1193. prev = segbuf;
  1194. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1195. if (prev->sb_nextnum != segbuf->sb_nextnum) {
  1196. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1197. WARN_ON(ret); /* never fails */
  1198. }
  1199. if (atomic_read(&segbuf->sb_err) &&
  1200. segbuf->sb_segnum != nilfs->ns_nextnum)
  1201. /* Case 2: extended segment (!= next) failed */
  1202. nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
  1203. prev = segbuf;
  1204. }
  1205. }
  1206. static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
  1207. struct inode *sufile)
  1208. {
  1209. struct nilfs_segment_buffer *segbuf;
  1210. unsigned long live_blocks;
  1211. int ret;
  1212. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1213. live_blocks = segbuf->sb_sum.nblocks +
  1214. (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
  1215. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1216. live_blocks,
  1217. sci->sc_seg_ctime);
  1218. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1219. }
  1220. }
  1221. static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
  1222. {
  1223. struct nilfs_segment_buffer *segbuf;
  1224. int ret;
  1225. segbuf = NILFS_FIRST_SEGBUF(logs);
  1226. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1227. segbuf->sb_pseg_start -
  1228. segbuf->sb_fseg_start, 0);
  1229. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1230. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1231. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1232. 0, 0);
  1233. WARN_ON(ret); /* always succeed */
  1234. }
  1235. }
  1236. static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
  1237. struct nilfs_segment_buffer *last,
  1238. struct inode *sufile)
  1239. {
  1240. struct nilfs_segment_buffer *segbuf = last;
  1241. int ret;
  1242. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1243. sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
  1244. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1245. WARN_ON(ret);
  1246. }
  1247. nilfs_truncate_logs(&sci->sc_segbufs, last);
  1248. }
  1249. static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
  1250. struct the_nilfs *nilfs, int mode)
  1251. {
  1252. struct nilfs_cstage prev_stage = sci->sc_stage;
  1253. int err, nadd = 1;
  1254. /* Collection retry loop */
  1255. for (;;) {
  1256. sci->sc_nblk_this_inc = 0;
  1257. sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1258. err = nilfs_segctor_reset_segment_buffer(sci);
  1259. if (unlikely(err))
  1260. goto failed;
  1261. err = nilfs_segctor_collect_blocks(sci, mode);
  1262. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  1263. if (!err)
  1264. break;
  1265. if (unlikely(err != -E2BIG))
  1266. goto failed;
  1267. /* The current segment is filled up */
  1268. if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
  1269. break;
  1270. nilfs_clear_logs(&sci->sc_segbufs);
  1271. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1272. err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1273. sci->sc_freesegs,
  1274. sci->sc_nfreesegs,
  1275. NULL);
  1276. WARN_ON(err); /* do not happen */
  1277. sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
  1278. }
  1279. err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
  1280. if (unlikely(err))
  1281. return err;
  1282. nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
  1283. sci->sc_stage = prev_stage;
  1284. }
  1285. nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
  1286. return 0;
  1287. failed:
  1288. return err;
  1289. }
  1290. static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
  1291. struct buffer_head *new_bh)
  1292. {
  1293. BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
  1294. list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
  1295. /* The caller must release old_bh */
  1296. }
  1297. static int
  1298. nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
  1299. struct nilfs_segment_buffer *segbuf,
  1300. int mode)
  1301. {
  1302. struct inode *inode = NULL;
  1303. sector_t blocknr;
  1304. unsigned long nfinfo = segbuf->sb_sum.nfinfo;
  1305. unsigned long nblocks = 0, ndatablk = 0;
  1306. struct nilfs_sc_operations *sc_op = NULL;
  1307. struct nilfs_segsum_pointer ssp;
  1308. struct nilfs_finfo *finfo = NULL;
  1309. union nilfs_binfo binfo;
  1310. struct buffer_head *bh, *bh_org;
  1311. ino_t ino = 0;
  1312. int err = 0;
  1313. if (!nfinfo)
  1314. goto out;
  1315. blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
  1316. ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  1317. ssp.offset = sizeof(struct nilfs_segment_summary);
  1318. list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
  1319. if (bh == segbuf->sb_super_root)
  1320. break;
  1321. if (!finfo) {
  1322. finfo = nilfs_segctor_map_segsum_entry(
  1323. sci, &ssp, sizeof(*finfo));
  1324. ino = le64_to_cpu(finfo->fi_ino);
  1325. nblocks = le32_to_cpu(finfo->fi_nblocks);
  1326. ndatablk = le32_to_cpu(finfo->fi_ndatablk);
  1327. inode = bh->b_page->mapping->host;
  1328. if (mode == SC_LSEG_DSYNC)
  1329. sc_op = &nilfs_sc_dsync_ops;
  1330. else if (ino == NILFS_DAT_INO)
  1331. sc_op = &nilfs_sc_dat_ops;
  1332. else /* file blocks */
  1333. sc_op = &nilfs_sc_file_ops;
  1334. }
  1335. bh_org = bh;
  1336. get_bh(bh_org);
  1337. err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
  1338. &binfo);
  1339. if (bh != bh_org)
  1340. nilfs_list_replace_buffer(bh_org, bh);
  1341. brelse(bh_org);
  1342. if (unlikely(err))
  1343. goto failed_bmap;
  1344. if (ndatablk > 0)
  1345. sc_op->write_data_binfo(sci, &ssp, &binfo);
  1346. else
  1347. sc_op->write_node_binfo(sci, &ssp, &binfo);
  1348. blocknr++;
  1349. if (--nblocks == 0) {
  1350. finfo = NULL;
  1351. if (--nfinfo == 0)
  1352. break;
  1353. } else if (ndatablk > 0)
  1354. ndatablk--;
  1355. }
  1356. out:
  1357. return 0;
  1358. failed_bmap:
  1359. return err;
  1360. }
  1361. static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
  1362. {
  1363. struct nilfs_segment_buffer *segbuf;
  1364. int err;
  1365. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1366. err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
  1367. if (unlikely(err))
  1368. return err;
  1369. nilfs_segbuf_fill_in_segsum(segbuf);
  1370. }
  1371. return 0;
  1372. }
  1373. static void nilfs_begin_page_io(struct page *page)
  1374. {
  1375. if (!page || PageWriteback(page))
  1376. /* For split b-tree node pages, this function may be called
  1377. twice. We ignore the 2nd or later calls by this check. */
  1378. return;
  1379. lock_page(page);
  1380. clear_page_dirty_for_io(page);
  1381. set_page_writeback(page);
  1382. unlock_page(page);
  1383. }
  1384. static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
  1385. {
  1386. struct nilfs_segment_buffer *segbuf;
  1387. struct page *bd_page = NULL, *fs_page = NULL;
  1388. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1389. struct buffer_head *bh;
  1390. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1391. b_assoc_buffers) {
  1392. set_buffer_async_write(bh);
  1393. if (bh->b_page != bd_page) {
  1394. if (bd_page) {
  1395. lock_page(bd_page);
  1396. clear_page_dirty_for_io(bd_page);
  1397. set_page_writeback(bd_page);
  1398. unlock_page(bd_page);
  1399. }
  1400. bd_page = bh->b_page;
  1401. }
  1402. }
  1403. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1404. b_assoc_buffers) {
  1405. set_buffer_async_write(bh);
  1406. if (bh == segbuf->sb_super_root) {
  1407. if (bh->b_page != bd_page) {
  1408. lock_page(bd_page);
  1409. clear_page_dirty_for_io(bd_page);
  1410. set_page_writeback(bd_page);
  1411. unlock_page(bd_page);
  1412. bd_page = bh->b_page;
  1413. }
  1414. break;
  1415. }
  1416. if (bh->b_page != fs_page) {
  1417. nilfs_begin_page_io(fs_page);
  1418. fs_page = bh->b_page;
  1419. }
  1420. }
  1421. }
  1422. if (bd_page) {
  1423. lock_page(bd_page);
  1424. clear_page_dirty_for_io(bd_page);
  1425. set_page_writeback(bd_page);
  1426. unlock_page(bd_page);
  1427. }
  1428. nilfs_begin_page_io(fs_page);
  1429. }
  1430. static int nilfs_segctor_write(struct nilfs_sc_info *sci,
  1431. struct the_nilfs *nilfs)
  1432. {
  1433. int ret;
  1434. ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
  1435. list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
  1436. return ret;
  1437. }
  1438. static void nilfs_end_page_io(struct page *page, int err)
  1439. {
  1440. if (!page)
  1441. return;
  1442. if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
  1443. /*
  1444. * For b-tree node pages, this function may be called twice
  1445. * or more because they might be split in a segment.
  1446. */
  1447. if (PageDirty(page)) {
  1448. /*
  1449. * For pages holding split b-tree node buffers, dirty
  1450. * flag on the buffers may be cleared discretely.
  1451. * In that case, the page is once redirtied for
  1452. * remaining buffers, and it must be cancelled if
  1453. * all the buffers get cleaned later.
  1454. */
  1455. lock_page(page);
  1456. if (nilfs_page_buffers_clean(page))
  1457. __nilfs_clear_page_dirty(page);
  1458. unlock_page(page);
  1459. }
  1460. return;
  1461. }
  1462. if (!err) {
  1463. if (!nilfs_page_buffers_clean(page))
  1464. __set_page_dirty_nobuffers(page);
  1465. ClearPageError(page);
  1466. } else {
  1467. __set_page_dirty_nobuffers(page);
  1468. SetPageError(page);
  1469. }
  1470. end_page_writeback(page);
  1471. }
  1472. static void nilfs_abort_logs(struct list_head *logs, int err)
  1473. {
  1474. struct nilfs_segment_buffer *segbuf;
  1475. struct page *bd_page = NULL, *fs_page = NULL;
  1476. struct buffer_head *bh;
  1477. if (list_empty(logs))
  1478. return;
  1479. list_for_each_entry(segbuf, logs, sb_list) {
  1480. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1481. b_assoc_buffers) {
  1482. clear_buffer_async_write(bh);
  1483. if (bh->b_page != bd_page) {
  1484. if (bd_page)
  1485. end_page_writeback(bd_page);
  1486. bd_page = bh->b_page;
  1487. }
  1488. }
  1489. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1490. b_assoc_buffers) {
  1491. clear_buffer_async_write(bh);
  1492. if (bh == segbuf->sb_super_root) {
  1493. if (bh->b_page != bd_page) {
  1494. end_page_writeback(bd_page);
  1495. bd_page = bh->b_page;
  1496. }
  1497. break;
  1498. }
  1499. if (bh->b_page != fs_page) {
  1500. nilfs_end_page_io(fs_page, err);
  1501. fs_page = bh->b_page;
  1502. }
  1503. }
  1504. }
  1505. if (bd_page)
  1506. end_page_writeback(bd_page);
  1507. nilfs_end_page_io(fs_page, err);
  1508. }
  1509. static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
  1510. struct the_nilfs *nilfs, int err)
  1511. {
  1512. LIST_HEAD(logs);
  1513. int ret;
  1514. list_splice_tail_init(&sci->sc_write_logs, &logs);
  1515. ret = nilfs_wait_on_logs(&logs);
  1516. nilfs_abort_logs(&logs, ret ? : err);
  1517. list_splice_tail_init(&sci->sc_segbufs, &logs);
  1518. nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
  1519. nilfs_free_incomplete_logs(&logs, nilfs);
  1520. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1521. ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1522. sci->sc_freesegs,
  1523. sci->sc_nfreesegs,
  1524. NULL);
  1525. WARN_ON(ret); /* do not happen */
  1526. }
  1527. nilfs_destroy_logs(&logs);
  1528. }
  1529. static void nilfs_set_next_segment(struct the_nilfs *nilfs,
  1530. struct nilfs_segment_buffer *segbuf)
  1531. {
  1532. nilfs->ns_segnum = segbuf->sb_segnum;
  1533. nilfs->ns_nextnum = segbuf->sb_nextnum;
  1534. nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
  1535. + segbuf->sb_sum.nblocks;
  1536. nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
  1537. nilfs->ns_ctime = segbuf->sb_sum.ctime;
  1538. }
  1539. static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
  1540. {
  1541. struct nilfs_segment_buffer *segbuf;
  1542. struct page *bd_page = NULL, *fs_page = NULL;
  1543. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  1544. int update_sr = false;
  1545. list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
  1546. struct buffer_head *bh;
  1547. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1548. b_assoc_buffers) {
  1549. set_buffer_uptodate(bh);
  1550. clear_buffer_dirty(bh);
  1551. clear_buffer_async_write(bh);
  1552. if (bh->b_page != bd_page) {
  1553. if (bd_page)
  1554. end_page_writeback(bd_page);
  1555. bd_page = bh->b_page;
  1556. }
  1557. }
  1558. /*
  1559. * We assume that the buffers which belong to the same page
  1560. * continue over the buffer list.
  1561. * Under this assumption, the last BHs of pages is
  1562. * identifiable by the discontinuity of bh->b_page
  1563. * (page != fs_page).
  1564. *
  1565. * For B-tree node blocks, however, this assumption is not
  1566. * guaranteed. The cleanup code of B-tree node pages needs
  1567. * special care.
  1568. */
  1569. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1570. b_assoc_buffers) {
  1571. set_buffer_uptodate(bh);
  1572. clear_buffer_dirty(bh);
  1573. clear_buffer_async_write(bh);
  1574. clear_buffer_delay(bh);
  1575. clear_buffer_nilfs_volatile(bh);
  1576. clear_buffer_nilfs_redirected(bh);
  1577. if (bh == segbuf->sb_super_root) {
  1578. if (bh->b_page != bd_page) {
  1579. end_page_writeback(bd_page);
  1580. bd_page = bh->b_page;
  1581. }
  1582. update_sr = true;
  1583. break;
  1584. }
  1585. if (bh->b_page != fs_page) {
  1586. nilfs_end_page_io(fs_page, 0);
  1587. fs_page = bh->b_page;
  1588. }
  1589. }
  1590. if (!nilfs_segbuf_simplex(segbuf)) {
  1591. if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
  1592. set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1593. sci->sc_lseg_stime = jiffies;
  1594. }
  1595. if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
  1596. clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1597. }
  1598. }
  1599. /*
  1600. * Since pages may continue over multiple segment buffers,
  1601. * end of the last page must be checked outside of the loop.
  1602. */
  1603. if (bd_page)
  1604. end_page_writeback(bd_page);
  1605. nilfs_end_page_io(fs_page, 0);
  1606. nilfs_drop_collected_inodes(&sci->sc_dirty_files);
  1607. if (nilfs_doing_gc())
  1608. nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
  1609. else
  1610. nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
  1611. sci->sc_nblk_inc += sci->sc_nblk_this_inc;
  1612. segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1613. nilfs_set_next_segment(nilfs, segbuf);
  1614. if (update_sr) {
  1615. nilfs->ns_flushed_device = 0;
  1616. nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
  1617. segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
  1618. clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  1619. clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1620. set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1621. nilfs_segctor_clear_metadata_dirty(sci);
  1622. } else
  1623. clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1624. }
  1625. static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
  1626. {
  1627. int ret;
  1628. ret = nilfs_wait_on_logs(&sci->sc_write_logs);
  1629. if (!ret) {
  1630. nilfs_segctor_complete_write(sci);
  1631. nilfs_destroy_logs(&sci->sc_write_logs);
  1632. }
  1633. return ret;
  1634. }
  1635. static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
  1636. struct the_nilfs *nilfs)
  1637. {
  1638. struct nilfs_inode_info *ii, *n;
  1639. struct inode *ifile = sci->sc_root->ifile;
  1640. spin_lock(&nilfs->ns_inode_lock);
  1641. retry:
  1642. list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
  1643. if (!ii->i_bh) {
  1644. struct buffer_head *ibh;
  1645. int err;
  1646. spin_unlock(&nilfs->ns_inode_lock);
  1647. err = nilfs_ifile_get_inode_block(
  1648. ifile, ii->vfs_inode.i_ino, &ibh);
  1649. if (unlikely(err)) {
  1650. nilfs_warning(sci->sc_super, __func__,
  1651. "failed to get inode block.\n");
  1652. return err;
  1653. }
  1654. mark_buffer_dirty(ibh);
  1655. nilfs_mdt_mark_dirty(ifile);
  1656. spin_lock(&nilfs->ns_inode_lock);
  1657. if (likely(!ii->i_bh))
  1658. ii->i_bh = ibh;
  1659. else
  1660. brelse(ibh);
  1661. goto retry;
  1662. }
  1663. clear_bit(NILFS_I_QUEUED, &ii->i_state);
  1664. set_bit(NILFS_I_BUSY, &ii->i_state);
  1665. list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
  1666. }
  1667. spin_unlock(&nilfs->ns_inode_lock);
  1668. return 0;
  1669. }
  1670. static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
  1671. struct the_nilfs *nilfs)
  1672. {
  1673. struct nilfs_inode_info *ii, *n;
  1674. int during_mount = !(sci->sc_super->s_flags & MS_ACTIVE);
  1675. int defer_iput = false;
  1676. spin_lock(&nilfs->ns_inode_lock);
  1677. list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
  1678. if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
  1679. test_bit(NILFS_I_DIRTY, &ii->i_state))
  1680. continue;
  1681. clear_bit(NILFS_I_BUSY, &ii->i_state);
  1682. brelse(ii->i_bh);
  1683. ii->i_bh = NULL;
  1684. list_del_init(&ii->i_dirty);
  1685. if (!ii->vfs_inode.i_nlink || during_mount) {
  1686. /*
  1687. * Defer calling iput() to avoid deadlocks if
  1688. * i_nlink == 0 or mount is not yet finished.
  1689. */
  1690. list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
  1691. defer_iput = true;
  1692. } else {
  1693. spin_unlock(&nilfs->ns_inode_lock);
  1694. iput(&ii->vfs_inode);
  1695. spin_lock(&nilfs->ns_inode_lock);
  1696. }
  1697. }
  1698. spin_unlock(&nilfs->ns_inode_lock);
  1699. if (defer_iput)
  1700. schedule_work(&sci->sc_iput_work);
  1701. }
  1702. /*
  1703. * Main procedure of segment constructor
  1704. */
  1705. static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
  1706. {
  1707. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  1708. int err;
  1709. sci->sc_stage.scnt = NILFS_ST_INIT;
  1710. sci->sc_cno = nilfs->ns_cno;
  1711. err = nilfs_segctor_collect_dirty_files(sci, nilfs);
  1712. if (unlikely(err))
  1713. goto out;
  1714. if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
  1715. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1716. if (nilfs_segctor_clean(sci))
  1717. goto out;
  1718. do {
  1719. sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
  1720. err = nilfs_segctor_begin_construction(sci, nilfs);
  1721. if (unlikely(err))
  1722. goto out;
  1723. /* Update time stamp */
  1724. sci->sc_seg_ctime = get_seconds();
  1725. err = nilfs_segctor_collect(sci, nilfs, mode);
  1726. if (unlikely(err))
  1727. goto failed;
  1728. /* Avoid empty segment */
  1729. if (sci->sc_stage.scnt == NILFS_ST_DONE &&
  1730. nilfs_segbuf_empty(sci->sc_curseg)) {
  1731. nilfs_segctor_abort_construction(sci, nilfs, 1);
  1732. goto out;
  1733. }
  1734. err = nilfs_segctor_assign(sci, mode);
  1735. if (unlikely(err))
  1736. goto failed;
  1737. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1738. nilfs_segctor_fill_in_file_bmap(sci);
  1739. if (mode == SC_LSEG_SR &&
  1740. sci->sc_stage.scnt >= NILFS_ST_CPFILE) {
  1741. err = nilfs_segctor_fill_in_checkpoint(sci);
  1742. if (unlikely(err))
  1743. goto failed_to_write;
  1744. nilfs_segctor_fill_in_super_root(sci, nilfs);
  1745. }
  1746. nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
  1747. /* Write partial segments */
  1748. nilfs_segctor_prepare_write(sci);
  1749. nilfs_add_checksums_on_logs(&sci->sc_segbufs,
  1750. nilfs->ns_crc_seed);
  1751. err = nilfs_segctor_write(sci, nilfs);
  1752. if (unlikely(err))
  1753. goto failed_to_write;
  1754. if (sci->sc_stage.scnt == NILFS_ST_DONE ||
  1755. nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
  1756. /*
  1757. * At this point, we avoid double buffering
  1758. * for blocksize < pagesize because page dirty
  1759. * flag is turned off during write and dirty
  1760. * buffers are not properly collected for
  1761. * pages crossing over segments.
  1762. */
  1763. err = nilfs_segctor_wait(sci);
  1764. if (err)
  1765. goto failed_to_write;
  1766. }
  1767. } while (sci->sc_stage.scnt != NILFS_ST_DONE);
  1768. out:
  1769. nilfs_segctor_drop_written_files(sci, nilfs);
  1770. return err;
  1771. failed_to_write:
  1772. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1773. nilfs_redirty_inodes(&sci->sc_dirty_files);
  1774. failed:
  1775. if (nilfs_doing_gc())
  1776. nilfs_redirty_inodes(&sci->sc_gc_inodes);
  1777. nilfs_segctor_abort_construction(sci, nilfs, err);
  1778. goto out;
  1779. }
  1780. /**
  1781. * nilfs_segctor_start_timer - set timer of background write
  1782. * @sci: nilfs_sc_info
  1783. *
  1784. * If the timer has already been set, it ignores the new request.
  1785. * This function MUST be called within a section locking the segment
  1786. * semaphore.
  1787. */
  1788. static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
  1789. {
  1790. spin_lock(&sci->sc_state_lock);
  1791. if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
  1792. sci->sc_timer.expires = jiffies + sci->sc_interval;
  1793. add_timer(&sci->sc_timer);
  1794. sci->sc_state |= NILFS_SEGCTOR_COMMIT;
  1795. }
  1796. spin_unlock(&sci->sc_state_lock);
  1797. }
  1798. static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
  1799. {
  1800. spin_lock(&sci->sc_state_lock);
  1801. if (!(sci->sc_flush_request & (1 << bn))) {
  1802. unsigned long prev_req = sci->sc_flush_request;
  1803. sci->sc_flush_request |= (1 << bn);
  1804. if (!prev_req)
  1805. wake_up(&sci->sc_wait_daemon);
  1806. }
  1807. spin_unlock(&sci->sc_state_lock);
  1808. }
  1809. /**
  1810. * nilfs_flush_segment - trigger a segment construction for resource control
  1811. * @sb: super block
  1812. * @ino: inode number of the file to be flushed out.
  1813. */
  1814. void nilfs_flush_segment(struct super_block *sb, ino_t ino)
  1815. {
  1816. struct the_nilfs *nilfs = sb->s_fs_info;
  1817. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1818. if (!sci || nilfs_doing_construction())
  1819. return;
  1820. nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
  1821. /* assign bit 0 to data files */
  1822. }
  1823. struct nilfs_segctor_wait_request {
  1824. wait_queue_t wq;
  1825. __u32 seq;
  1826. int err;
  1827. atomic_t done;
  1828. };
  1829. static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
  1830. {
  1831. struct nilfs_segctor_wait_request wait_req;
  1832. int err = 0;
  1833. spin_lock(&sci->sc_state_lock);
  1834. init_wait(&wait_req.wq);
  1835. wait_req.err = 0;
  1836. atomic_set(&wait_req.done, 0);
  1837. wait_req.seq = ++sci->sc_seq_request;
  1838. spin_unlock(&sci->sc_state_lock);
  1839. init_waitqueue_entry(&wait_req.wq, current);
  1840. add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
  1841. set_current_state(TASK_INTERRUPTIBLE);
  1842. wake_up(&sci->sc_wait_daemon);
  1843. for (;;) {
  1844. if (atomic_read(&wait_req.done)) {
  1845. err = wait_req.err;
  1846. break;
  1847. }
  1848. if (!signal_pending(current)) {
  1849. schedule();
  1850. continue;
  1851. }
  1852. err = -ERESTARTSYS;
  1853. break;
  1854. }
  1855. finish_wait(&sci->sc_wait_request, &wait_req.wq);
  1856. return err;
  1857. }
  1858. static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
  1859. {
  1860. struct nilfs_segctor_wait_request *wrq, *n;
  1861. unsigned long flags;
  1862. spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
  1863. list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
  1864. wq.task_list) {
  1865. if (!atomic_read(&wrq->done) &&
  1866. nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
  1867. wrq->err = err;
  1868. atomic_set(&wrq->done, 1);
  1869. }
  1870. if (atomic_read(&wrq->done)) {
  1871. wrq->wq.func(&wrq->wq,
  1872. TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  1873. 0, NULL);
  1874. }
  1875. }
  1876. spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
  1877. }
  1878. /**
  1879. * nilfs_construct_segment - construct a logical segment
  1880. * @sb: super block
  1881. *
  1882. * Return Value: On success, 0 is retured. On errors, one of the following
  1883. * negative error code is returned.
  1884. *
  1885. * %-EROFS - Read only filesystem.
  1886. *
  1887. * %-EIO - I/O error
  1888. *
  1889. * %-ENOSPC - No space left on device (only in a panic state).
  1890. *
  1891. * %-ERESTARTSYS - Interrupted.
  1892. *
  1893. * %-ENOMEM - Insufficient memory available.
  1894. */
  1895. int nilfs_construct_segment(struct super_block *sb)
  1896. {
  1897. struct the_nilfs *nilfs = sb->s_fs_info;
  1898. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1899. struct nilfs_transaction_info *ti;
  1900. int err;
  1901. if (!sci)
  1902. return -EROFS;
  1903. /* A call inside transactions causes a deadlock. */
  1904. BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
  1905. err = nilfs_segctor_sync(sci);
  1906. return err;
  1907. }
  1908. /**
  1909. * nilfs_construct_dsync_segment - construct a data-only logical segment
  1910. * @sb: super block
  1911. * @inode: inode whose data blocks should be written out
  1912. * @start: start byte offset
  1913. * @end: end byte offset (inclusive)
  1914. *
  1915. * Return Value: On success, 0 is retured. On errors, one of the following
  1916. * negative error code is returned.
  1917. *
  1918. * %-EROFS - Read only filesystem.
  1919. *
  1920. * %-EIO - I/O error
  1921. *
  1922. * %-ENOSPC - No space left on device (only in a panic state).
  1923. *
  1924. * %-ERESTARTSYS - Interrupted.
  1925. *
  1926. * %-ENOMEM - Insufficient memory available.
  1927. */
  1928. int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
  1929. loff_t start, loff_t end)
  1930. {
  1931. struct the_nilfs *nilfs = sb->s_fs_info;
  1932. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1933. struct nilfs_inode_info *ii;
  1934. struct nilfs_transaction_info ti;
  1935. int err = 0;
  1936. if (!sci)
  1937. return -EROFS;
  1938. nilfs_transaction_lock(sb, &ti, 0);
  1939. ii = NILFS_I(inode);
  1940. if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
  1941. nilfs_test_opt(nilfs, STRICT_ORDER) ||
  1942. test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  1943. nilfs_discontinued(nilfs)) {
  1944. nilfs_transaction_unlock(sb);
  1945. err = nilfs_segctor_sync(sci);
  1946. return err;
  1947. }
  1948. spin_lock(&nilfs->ns_inode_lock);
  1949. if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
  1950. !test_bit(NILFS_I_BUSY, &ii->i_state)) {
  1951. spin_unlock(&nilfs->ns_inode_lock);
  1952. nilfs_transaction_unlock(sb);
  1953. return 0;
  1954. }
  1955. spin_unlock(&nilfs->ns_inode_lock);
  1956. sci->sc_dsync_inode = ii;
  1957. sci->sc_dsync_start = start;
  1958. sci->sc_dsync_end = end;
  1959. err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
  1960. if (!err)
  1961. nilfs->ns_flushed_device = 0;
  1962. nilfs_transaction_unlock(sb);
  1963. return err;
  1964. }
  1965. #define FLUSH_FILE_BIT (0x1) /* data file only */
  1966. #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
  1967. /**
  1968. * nilfs_segctor_accept - record accepted sequence count of log-write requests
  1969. * @sci: segment constructor object
  1970. */
  1971. static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
  1972. {
  1973. spin_lock(&sci->sc_state_lock);
  1974. sci->sc_seq_accepted = sci->sc_seq_request;
  1975. spin_unlock(&sci->sc_state_lock);
  1976. del_timer_sync(&sci->sc_timer);
  1977. }
  1978. /**
  1979. * nilfs_segctor_notify - notify the result of request to caller threads
  1980. * @sci: segment constructor object
  1981. * @mode: mode of log forming
  1982. * @err: error code to be notified
  1983. */
  1984. static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
  1985. {
  1986. /* Clear requests (even when the construction failed) */
  1987. spin_lock(&sci->sc_state_lock);
  1988. if (mode == SC_LSEG_SR) {
  1989. sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
  1990. sci->sc_seq_done = sci->sc_seq_accepted;
  1991. nilfs_segctor_wakeup(sci, err);
  1992. sci->sc_flush_request = 0;
  1993. } else {
  1994. if (mode == SC_FLUSH_FILE)
  1995. sci->sc_flush_request &= ~FLUSH_FILE_BIT;
  1996. else if (mode == SC_FLUSH_DAT)
  1997. sci->sc_flush_request &= ~FLUSH_DAT_BIT;
  1998. /* re-enable timer if checkpoint creation was not done */
  1999. if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2000. time_before(jiffies, sci->sc_timer.expires))
  2001. add_timer(&sci->sc_timer);
  2002. }
  2003. spin_unlock(&sci->sc_state_lock);
  2004. }
  2005. /**
  2006. * nilfs_segctor_construct - form logs and write them to disk
  2007. * @sci: segment constructor object
  2008. * @mode: mode of log forming
  2009. */
  2010. static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
  2011. {
  2012. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  2013. struct nilfs_super_block **sbp;
  2014. int err = 0;
  2015. nilfs_segctor_accept(sci);
  2016. if (nilfs_discontinued(nilfs))
  2017. mode = SC_LSEG_SR;
  2018. if (!nilfs_segctor_confirm(sci))
  2019. err = nilfs_segctor_do_construct(sci, mode);
  2020. if (likely(!err)) {
  2021. if (mode != SC_FLUSH_DAT)
  2022. atomic_set(&nilfs->ns_ndirtyblks, 0);
  2023. if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
  2024. nilfs_discontinued(nilfs)) {
  2025. down_write(&nilfs->ns_sem);
  2026. err = -EIO;
  2027. sbp = nilfs_prepare_super(sci->sc_super,
  2028. nilfs_sb_will_flip(nilfs));
  2029. if (likely(sbp)) {
  2030. nilfs_set_log_cursor(sbp[0], nilfs);
  2031. err = nilfs_commit_super(sci->sc_super,
  2032. NILFS_SB_COMMIT);
  2033. }
  2034. up_write(&nilfs->ns_sem);
  2035. }
  2036. }
  2037. nilfs_segctor_notify(sci, mode, err);
  2038. return err;
  2039. }
  2040. static void nilfs_construction_timeout(unsigned long data)
  2041. {
  2042. struct task_struct *p = (struct task_struct *)data;
  2043. wake_up_process(p);
  2044. }
  2045. static void
  2046. nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
  2047. {
  2048. struct nilfs_inode_info *ii, *n;
  2049. list_for_each_entry_safe(ii, n, head, i_dirty) {
  2050. if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
  2051. continue;
  2052. list_del_init(&ii->i_dirty);
  2053. truncate_inode_pages(&ii->vfs_inode.i_data, 0);
  2054. nilfs_btnode_cache_clear(&ii->i_btnode_cache);
  2055. iput(&ii->vfs_inode);
  2056. }
  2057. }
  2058. int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
  2059. void **kbufs)
  2060. {
  2061. struct the_nilfs *nilfs = sb->s_fs_info;
  2062. struct nilfs_sc_info *sci = nilfs->ns_writer;
  2063. struct nilfs_transaction_info ti;
  2064. int err;
  2065. if (unlikely(!sci))
  2066. return -EROFS;
  2067. nilfs_transaction_lock(sb, &ti, 1);
  2068. err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
  2069. if (unlikely(err))
  2070. goto out_unlock;
  2071. err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
  2072. if (unlikely(err)) {
  2073. nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
  2074. goto out_unlock;
  2075. }
  2076. sci->sc_freesegs = kbufs[4];
  2077. sci->sc_nfreesegs = argv[4].v_nmembs;
  2078. list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
  2079. for (;;) {
  2080. err = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2081. nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
  2082. if (likely(!err))
  2083. break;
  2084. nilfs_warning(sb, __func__,
  2085. "segment construction failed. (err=%d)", err);
  2086. set_current_state(TASK_INTERRUPTIBLE);
  2087. schedule_timeout(sci->sc_interval);
  2088. }
  2089. if (nilfs_test_opt(nilfs, DISCARD)) {
  2090. int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
  2091. sci->sc_nfreesegs);
  2092. if (ret) {
  2093. printk(KERN_WARNING
  2094. "NILFS warning: error %d on discard request, "
  2095. "turning discards off for the device\n", ret);
  2096. nilfs_clear_opt(nilfs, DISCARD);
  2097. }
  2098. }
  2099. out_unlock:
  2100. sci->sc_freesegs = NULL;
  2101. sci->sc_nfreesegs = 0;
  2102. nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
  2103. nilfs_transaction_unlock(sb);
  2104. return err;
  2105. }
  2106. static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
  2107. {
  2108. struct nilfs_transaction_info ti;
  2109. nilfs_transaction_lock(sci->sc_super, &ti, 0);
  2110. nilfs_segctor_construct(sci, mode);
  2111. /*
  2112. * Unclosed segment should be retried. We do this using sc_timer.
  2113. * Timeout of sc_timer will invoke complete construction which leads
  2114. * to close the current logical segment.
  2115. */
  2116. if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
  2117. nilfs_segctor_start_timer(sci);
  2118. nilfs_transaction_unlock(sci->sc_super);
  2119. }
  2120. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
  2121. {
  2122. int mode = 0;
  2123. int err;
  2124. spin_lock(&sci->sc_state_lock);
  2125. mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
  2126. SC_FLUSH_DAT : SC_FLUSH_FILE;
  2127. spin_unlock(&sci->sc_state_lock);
  2128. if (mode) {
  2129. err = nilfs_segctor_do_construct(sci, mode);
  2130. spin_lock(&sci->sc_state_lock);
  2131. sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
  2132. ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
  2133. spin_unlock(&sci->sc_state_lock);
  2134. }
  2135. clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  2136. }
  2137. static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
  2138. {
  2139. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2140. time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
  2141. if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
  2142. return SC_FLUSH_FILE;
  2143. else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
  2144. return SC_FLUSH_DAT;
  2145. }
  2146. return SC_LSEG_SR;
  2147. }
  2148. /**
  2149. * nilfs_segctor_thread - main loop of the segment constructor thread.
  2150. * @arg: pointer to a struct nilfs_sc_info.
  2151. *
  2152. * nilfs_segctor_thread() initializes a timer and serves as a daemon
  2153. * to execute segment constructions.
  2154. */
  2155. static int nilfs_segctor_thread(void *arg)
  2156. {
  2157. struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
  2158. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  2159. int timeout = 0;
  2160. sci->sc_timer.data = (unsigned long)current;
  2161. sci->sc_timer.function = nilfs_construction_timeout;
  2162. /* start sync. */
  2163. sci->sc_task = current;
  2164. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
  2165. printk(KERN_INFO
  2166. "segctord starting. Construction interval = %lu seconds, "
  2167. "CP frequency < %lu seconds\n",
  2168. sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
  2169. spin_lock(&sci->sc_state_lock);
  2170. loop:
  2171. for (;;) {
  2172. int mode;
  2173. if (sci->sc_state & NILFS_SEGCTOR_QUIT)
  2174. goto end_thread;
  2175. if (timeout || sci->sc_seq_request != sci->sc_seq_done)
  2176. mode = SC_LSEG_SR;
  2177. else if (!sci->sc_flush_request)
  2178. break;
  2179. else
  2180. mode = nilfs_segctor_flush_mode(sci);
  2181. spin_unlock(&sci->sc_state_lock);
  2182. nilfs_segctor_thread_construct(sci, mode);
  2183. spin_lock(&sci->sc_state_lock);
  2184. timeout = 0;
  2185. }
  2186. if (freezing(current)) {
  2187. spin_unlock(&sci->sc_state_lock);
  2188. try_to_freeze();
  2189. spin_lock(&sci->sc_state_lock);
  2190. } else {
  2191. DEFINE_WAIT(wait);
  2192. int should_sleep = 1;
  2193. prepare_to_wait(&sci->sc_wait_daemon, &wait,
  2194. TASK_INTERRUPTIBLE);
  2195. if (sci->sc_seq_request != sci->sc_seq_done)
  2196. should_sleep = 0;
  2197. else if (sci->sc_flush_request)
  2198. should_sleep = 0;
  2199. else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
  2200. should_sleep = time_before(jiffies,
  2201. sci->sc_timer.expires);
  2202. if (should_sleep) {
  2203. spin_unlock(&sci->sc_state_lock);
  2204. schedule();
  2205. spin_lock(&sci->sc_state_lock);
  2206. }
  2207. finish_wait(&sci->sc_wait_daemon, &wait);
  2208. timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2209. time_after_eq(jiffies, sci->sc_timer.expires));
  2210. if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
  2211. set_nilfs_discontinued(nilfs);
  2212. }
  2213. goto loop;
  2214. end_thread:
  2215. spin_unlock(&sci->sc_state_lock);
  2216. /* end sync. */
  2217. sci->sc_task = NULL;
  2218. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
  2219. return 0;
  2220. }
  2221. static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
  2222. {
  2223. struct task_struct *t;
  2224. t = kthread_run(nilfs_segctor_thread, sci, "segctord");
  2225. if (IS_ERR(t)) {
  2226. int err = PTR_ERR(t);
  2227. printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
  2228. err);
  2229. return err;
  2230. }
  2231. wait_event(sci->sc_wait_task, sci->sc_task != NULL);
  2232. return 0;
  2233. }
  2234. static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
  2235. __acquires(&sci->sc_state_lock)
  2236. __releases(&sci->sc_state_lock)
  2237. {
  2238. sci->sc_state |= NILFS_SEGCTOR_QUIT;
  2239. while (sci->sc_task) {
  2240. wake_up(&sci->sc_wait_daemon);
  2241. spin_unlock(&sci->sc_state_lock);
  2242. wait_event(sci->sc_wait_task, sci->sc_task == NULL);
  2243. spin_lock(&sci->sc_state_lock);
  2244. }
  2245. }
  2246. /*
  2247. * Setup & clean-up functions
  2248. */
  2249. static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
  2250. struct nilfs_root *root)
  2251. {
  2252. struct the_nilfs *nilfs = sb->s_fs_info;
  2253. struct nilfs_sc_info *sci;
  2254. sci = kzalloc(sizeof(*sci), GFP_KERNEL);
  2255. if (!sci)
  2256. return NULL;
  2257. sci->sc_super = sb;
  2258. nilfs_get_root(root);
  2259. sci->sc_root = root;
  2260. init_waitqueue_head(&sci->sc_wait_request);
  2261. init_waitqueue_head(&sci->sc_wait_daemon);
  2262. init_waitqueue_head(&sci->sc_wait_task);
  2263. spin_lock_init(&sci->sc_state_lock);
  2264. INIT_LIST_HEAD(&sci->sc_dirty_files);
  2265. INIT_LIST_HEAD(&sci->sc_segbufs);
  2266. INIT_LIST_HEAD(&sci->sc_write_logs);
  2267. INIT_LIST_HEAD(&sci->sc_gc_inodes);
  2268. INIT_LIST_HEAD(&sci->sc_iput_queue);
  2269. INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
  2270. init_timer(&sci->sc_timer);
  2271. sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
  2272. sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
  2273. sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
  2274. if (nilfs->ns_interval)
  2275. sci->sc_interval = HZ * nilfs->ns_interval;
  2276. if (nilfs->ns_watermark)
  2277. sci->sc_watermark = nilfs->ns_watermark;
  2278. return sci;
  2279. }
  2280. static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
  2281. {
  2282. int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
  2283. /* The segctord thread was stopped and its timer was removed.
  2284. But some tasks remain. */
  2285. do {
  2286. struct nilfs_transaction_info ti;
  2287. nilfs_transaction_lock(sci->sc_super, &ti, 0);
  2288. ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2289. nilfs_transaction_unlock(sci->sc_super);
  2290. flush_work(&sci->sc_iput_work);
  2291. } while (ret && retrycount-- > 0);
  2292. }
  2293. /**
  2294. * nilfs_segctor_destroy - destroy the segment constructor.
  2295. * @sci: nilfs_sc_info
  2296. *
  2297. * nilfs_segctor_destroy() kills the segctord thread and frees
  2298. * the nilfs_sc_info struct.
  2299. * Caller must hold the segment semaphore.
  2300. */
  2301. static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
  2302. {
  2303. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  2304. int flag;
  2305. up_write(&nilfs->ns_segctor_sem);
  2306. spin_lock(&sci->sc_state_lock);
  2307. nilfs_segctor_kill_thread(sci);
  2308. flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
  2309. || sci->sc_seq_request != sci->sc_seq_done);
  2310. spin_unlock(&sci->sc_state_lock);
  2311. if (flush_work(&sci->sc_iput_work))
  2312. flag = true;
  2313. if (flag || !nilfs_segctor_confirm(sci))
  2314. nilfs_segctor_write_out(sci);
  2315. if (!list_empty(&sci->sc_dirty_files)) {
  2316. nilfs_warning(sci->sc_super, __func__,
  2317. "dirty file(s) after the final construction\n");
  2318. nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
  2319. }
  2320. if (!list_empty(&sci->sc_iput_queue)) {
  2321. nilfs_warning(sci->sc_super, __func__,
  2322. "iput queue is not empty\n");
  2323. nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
  2324. }
  2325. WARN_ON(!list_empty(&sci->sc_segbufs));
  2326. WARN_ON(!list_empty(&sci->sc_write_logs));
  2327. nilfs_put_root(sci->sc_root);
  2328. down_write(&nilfs->ns_segctor_sem);
  2329. del_timer_sync(&sci->sc_timer);
  2330. kfree(sci);
  2331. }
  2332. /**
  2333. * nilfs_attach_log_writer - attach log writer
  2334. * @sb: super block instance
  2335. * @root: root object of the current filesystem tree
  2336. *
  2337. * This allocates a log writer object, initializes it, and starts the
  2338. * log writer.
  2339. *
  2340. * Return Value: On success, 0 is returned. On error, one of the following
  2341. * negative error code is returned.
  2342. *
  2343. * %-ENOMEM - Insufficient memory available.
  2344. */
  2345. int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
  2346. {
  2347. struct the_nilfs *nilfs = sb->s_fs_info;
  2348. int err;
  2349. if (nilfs->ns_writer) {
  2350. /*
  2351. * This happens if the filesystem was remounted
  2352. * read/write after nilfs_error degenerated it into a
  2353. * read-only mount.
  2354. */
  2355. nilfs_detach_log_writer(sb);
  2356. }
  2357. nilfs->ns_writer = nilfs_segctor_new(sb, root);
  2358. if (!nilfs->ns_writer)
  2359. return -ENOMEM;
  2360. err = nilfs_segctor_start_thread(nilfs->ns_writer);
  2361. if (err) {
  2362. kfree(nilfs->ns_writer);
  2363. nilfs->ns_writer = NULL;
  2364. }
  2365. return err;
  2366. }
  2367. /**
  2368. * nilfs_detach_log_writer - destroy log writer
  2369. * @sb: super block instance
  2370. *
  2371. * This kills log writer daemon, frees the log writer object, and
  2372. * destroys list of dirty files.
  2373. */
  2374. void nilfs_detach_log_writer(struct super_block *sb)
  2375. {
  2376. struct the_nilfs *nilfs = sb->s_fs_info;
  2377. LIST_HEAD(garbage_list);
  2378. down_write(&nilfs->ns_segctor_sem);
  2379. if (nilfs->ns_writer) {
  2380. nilfs_segctor_destroy(nilfs->ns_writer);
  2381. nilfs->ns_writer = NULL;
  2382. }
  2383. /* Force to free the list of dirty files */
  2384. spin_lock(&nilfs->ns_inode_lock);
  2385. if (!list_empty(&nilfs->ns_dirty_files)) {
  2386. list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
  2387. nilfs_warning(sb, __func__,
  2388. "Hit dirty file after stopped log writer\n");
  2389. }
  2390. spin_unlock(&nilfs->ns_inode_lock);
  2391. up_write(&nilfs->ns_segctor_sem);
  2392. nilfs_dispose_list(nilfs, &garbage_list, 1);
  2393. }