icm.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462
  1. /*
  2. * Copyright (c) 2005, 2006, 2007, 2008 Mellanox Technologies. All rights reserved.
  3. * Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved.
  4. *
  5. * This software is available to you under a choice of one of two
  6. * licenses. You may choose to be licensed under the terms of the GNU
  7. * General Public License (GPL) Version 2, available from the file
  8. * COPYING in the main directory of this source tree, or the
  9. * OpenIB.org BSD license below:
  10. *
  11. * Redistribution and use in source and binary forms, with or
  12. * without modification, are permitted provided that the following
  13. * conditions are met:
  14. *
  15. * - Redistributions of source code must retain the above
  16. * copyright notice, this list of conditions and the following
  17. * disclaimer.
  18. *
  19. * - Redistributions in binary form must reproduce the above
  20. * copyright notice, this list of conditions and the following
  21. * disclaimer in the documentation and/or other materials
  22. * provided with the distribution.
  23. *
  24. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31. * SOFTWARE.
  32. */
  33. #include <linux/errno.h>
  34. #include <linux/mm.h>
  35. #include <linux/scatterlist.h>
  36. #include <linux/slab.h>
  37. #include <linux/mlx4/cmd.h>
  38. #include "mlx4.h"
  39. #include "icm.h"
  40. #include "fw.h"
  41. /*
  42. * We allocate in as big chunks as we can, up to a maximum of 256 KB
  43. * per chunk.
  44. */
  45. enum {
  46. MLX4_ICM_ALLOC_SIZE = 1 << 18,
  47. MLX4_TABLE_CHUNK_SIZE = 1 << 18
  48. };
  49. static void mlx4_free_icm_pages(struct mlx4_dev *dev, struct mlx4_icm_chunk *chunk)
  50. {
  51. int i;
  52. if (chunk->nsg > 0)
  53. pci_unmap_sg(dev->persist->pdev, chunk->mem, chunk->npages,
  54. PCI_DMA_BIDIRECTIONAL);
  55. for (i = 0; i < chunk->npages; ++i)
  56. __free_pages(sg_page(&chunk->mem[i]),
  57. get_order(chunk->mem[i].length));
  58. }
  59. static void mlx4_free_icm_coherent(struct mlx4_dev *dev, struct mlx4_icm_chunk *chunk)
  60. {
  61. int i;
  62. for (i = 0; i < chunk->npages; ++i)
  63. dma_free_coherent(&dev->persist->pdev->dev,
  64. chunk->mem[i].length,
  65. lowmem_page_address(sg_page(&chunk->mem[i])),
  66. sg_dma_address(&chunk->mem[i]));
  67. }
  68. void mlx4_free_icm(struct mlx4_dev *dev, struct mlx4_icm *icm, int coherent)
  69. {
  70. struct mlx4_icm_chunk *chunk, *tmp;
  71. if (!icm)
  72. return;
  73. list_for_each_entry_safe(chunk, tmp, &icm->chunk_list, list) {
  74. if (coherent)
  75. mlx4_free_icm_coherent(dev, chunk);
  76. else
  77. mlx4_free_icm_pages(dev, chunk);
  78. kfree(chunk);
  79. }
  80. kfree(icm);
  81. }
  82. static int mlx4_alloc_icm_pages(struct scatterlist *mem, int order,
  83. gfp_t gfp_mask, int node)
  84. {
  85. struct page *page;
  86. page = alloc_pages_node(node, gfp_mask, order);
  87. if (!page) {
  88. page = alloc_pages(gfp_mask, order);
  89. if (!page)
  90. return -ENOMEM;
  91. }
  92. sg_set_page(mem, page, PAGE_SIZE << order, 0);
  93. return 0;
  94. }
  95. static int mlx4_alloc_icm_coherent(struct device *dev, struct scatterlist *mem,
  96. int order, gfp_t gfp_mask)
  97. {
  98. void *buf = dma_alloc_coherent(dev, PAGE_SIZE << order,
  99. &sg_dma_address(mem), gfp_mask);
  100. if (!buf)
  101. return -ENOMEM;
  102. sg_set_buf(mem, buf, PAGE_SIZE << order);
  103. BUG_ON(mem->offset);
  104. sg_dma_len(mem) = PAGE_SIZE << order;
  105. return 0;
  106. }
  107. struct mlx4_icm *mlx4_alloc_icm(struct mlx4_dev *dev, int npages,
  108. gfp_t gfp_mask, int coherent)
  109. {
  110. struct mlx4_icm *icm;
  111. struct mlx4_icm_chunk *chunk = NULL;
  112. int cur_order;
  113. int ret;
  114. /* We use sg_set_buf for coherent allocs, which assumes low memory */
  115. BUG_ON(coherent && (gfp_mask & __GFP_HIGHMEM));
  116. icm = kmalloc_node(sizeof(*icm),
  117. gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN),
  118. dev->numa_node);
  119. if (!icm) {
  120. icm = kmalloc(sizeof(*icm),
  121. gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN));
  122. if (!icm)
  123. return NULL;
  124. }
  125. icm->refcount = 0;
  126. INIT_LIST_HEAD(&icm->chunk_list);
  127. cur_order = get_order(MLX4_ICM_ALLOC_SIZE);
  128. while (npages > 0) {
  129. if (!chunk) {
  130. chunk = kmalloc_node(sizeof(*chunk),
  131. gfp_mask & ~(__GFP_HIGHMEM |
  132. __GFP_NOWARN),
  133. dev->numa_node);
  134. if (!chunk) {
  135. chunk = kmalloc(sizeof(*chunk),
  136. gfp_mask & ~(__GFP_HIGHMEM |
  137. __GFP_NOWARN));
  138. if (!chunk)
  139. goto fail;
  140. }
  141. sg_init_table(chunk->mem, MLX4_ICM_CHUNK_LEN);
  142. chunk->npages = 0;
  143. chunk->nsg = 0;
  144. list_add_tail(&chunk->list, &icm->chunk_list);
  145. }
  146. while (1 << cur_order > npages)
  147. --cur_order;
  148. if (coherent)
  149. ret = mlx4_alloc_icm_coherent(&dev->persist->pdev->dev,
  150. &chunk->mem[chunk->npages],
  151. cur_order, gfp_mask);
  152. else
  153. ret = mlx4_alloc_icm_pages(&chunk->mem[chunk->npages],
  154. cur_order, gfp_mask,
  155. dev->numa_node);
  156. if (ret) {
  157. if (--cur_order < 0)
  158. goto fail;
  159. else
  160. continue;
  161. }
  162. ++chunk->npages;
  163. if (coherent)
  164. ++chunk->nsg;
  165. else if (chunk->npages == MLX4_ICM_CHUNK_LEN) {
  166. chunk->nsg = pci_map_sg(dev->persist->pdev, chunk->mem,
  167. chunk->npages,
  168. PCI_DMA_BIDIRECTIONAL);
  169. if (chunk->nsg <= 0)
  170. goto fail;
  171. }
  172. if (chunk->npages == MLX4_ICM_CHUNK_LEN)
  173. chunk = NULL;
  174. npages -= 1 << cur_order;
  175. }
  176. if (!coherent && chunk) {
  177. chunk->nsg = pci_map_sg(dev->persist->pdev, chunk->mem,
  178. chunk->npages,
  179. PCI_DMA_BIDIRECTIONAL);
  180. if (chunk->nsg <= 0)
  181. goto fail;
  182. }
  183. return icm;
  184. fail:
  185. mlx4_free_icm(dev, icm, coherent);
  186. return NULL;
  187. }
  188. static int mlx4_MAP_ICM(struct mlx4_dev *dev, struct mlx4_icm *icm, u64 virt)
  189. {
  190. return mlx4_map_cmd(dev, MLX4_CMD_MAP_ICM, icm, virt);
  191. }
  192. static int mlx4_UNMAP_ICM(struct mlx4_dev *dev, u64 virt, u32 page_count)
  193. {
  194. return mlx4_cmd(dev, virt, page_count, 0, MLX4_CMD_UNMAP_ICM,
  195. MLX4_CMD_TIME_CLASS_B, MLX4_CMD_NATIVE);
  196. }
  197. int mlx4_MAP_ICM_AUX(struct mlx4_dev *dev, struct mlx4_icm *icm)
  198. {
  199. return mlx4_map_cmd(dev, MLX4_CMD_MAP_ICM_AUX, icm, -1);
  200. }
  201. int mlx4_UNMAP_ICM_AUX(struct mlx4_dev *dev)
  202. {
  203. return mlx4_cmd(dev, 0, 0, 0, MLX4_CMD_UNMAP_ICM_AUX,
  204. MLX4_CMD_TIME_CLASS_B, MLX4_CMD_NATIVE);
  205. }
  206. int mlx4_table_get(struct mlx4_dev *dev, struct mlx4_icm_table *table, u32 obj,
  207. gfp_t gfp)
  208. {
  209. u32 i = (obj & (table->num_obj - 1)) /
  210. (MLX4_TABLE_CHUNK_SIZE / table->obj_size);
  211. int ret = 0;
  212. mutex_lock(&table->mutex);
  213. if (table->icm[i]) {
  214. ++table->icm[i]->refcount;
  215. goto out;
  216. }
  217. table->icm[i] = mlx4_alloc_icm(dev, MLX4_TABLE_CHUNK_SIZE >> PAGE_SHIFT,
  218. (table->lowmem ? gfp : GFP_HIGHUSER) |
  219. __GFP_NOWARN, table->coherent);
  220. if (!table->icm[i]) {
  221. ret = -ENOMEM;
  222. goto out;
  223. }
  224. if (mlx4_MAP_ICM(dev, table->icm[i], table->virt +
  225. (u64) i * MLX4_TABLE_CHUNK_SIZE)) {
  226. mlx4_free_icm(dev, table->icm[i], table->coherent);
  227. table->icm[i] = NULL;
  228. ret = -ENOMEM;
  229. goto out;
  230. }
  231. ++table->icm[i]->refcount;
  232. out:
  233. mutex_unlock(&table->mutex);
  234. return ret;
  235. }
  236. void mlx4_table_put(struct mlx4_dev *dev, struct mlx4_icm_table *table, u32 obj)
  237. {
  238. u32 i;
  239. u64 offset;
  240. i = (obj & (table->num_obj - 1)) / (MLX4_TABLE_CHUNK_SIZE / table->obj_size);
  241. mutex_lock(&table->mutex);
  242. if (--table->icm[i]->refcount == 0) {
  243. offset = (u64) i * MLX4_TABLE_CHUNK_SIZE;
  244. mlx4_UNMAP_ICM(dev, table->virt + offset,
  245. MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE);
  246. mlx4_free_icm(dev, table->icm[i], table->coherent);
  247. table->icm[i] = NULL;
  248. }
  249. mutex_unlock(&table->mutex);
  250. }
  251. void *mlx4_table_find(struct mlx4_icm_table *table, u32 obj,
  252. dma_addr_t *dma_handle)
  253. {
  254. int offset, dma_offset, i;
  255. u64 idx;
  256. struct mlx4_icm_chunk *chunk;
  257. struct mlx4_icm *icm;
  258. struct page *page = NULL;
  259. if (!table->lowmem)
  260. return NULL;
  261. mutex_lock(&table->mutex);
  262. idx = (u64) (obj & (table->num_obj - 1)) * table->obj_size;
  263. icm = table->icm[idx / MLX4_TABLE_CHUNK_SIZE];
  264. dma_offset = offset = idx % MLX4_TABLE_CHUNK_SIZE;
  265. if (!icm)
  266. goto out;
  267. list_for_each_entry(chunk, &icm->chunk_list, list) {
  268. for (i = 0; i < chunk->npages; ++i) {
  269. if (dma_handle && dma_offset >= 0) {
  270. if (sg_dma_len(&chunk->mem[i]) > dma_offset)
  271. *dma_handle = sg_dma_address(&chunk->mem[i]) +
  272. dma_offset;
  273. dma_offset -= sg_dma_len(&chunk->mem[i]);
  274. }
  275. /*
  276. * DMA mapping can merge pages but not split them,
  277. * so if we found the page, dma_handle has already
  278. * been assigned to.
  279. */
  280. if (chunk->mem[i].length > offset) {
  281. page = sg_page(&chunk->mem[i]);
  282. goto out;
  283. }
  284. offset -= chunk->mem[i].length;
  285. }
  286. }
  287. out:
  288. mutex_unlock(&table->mutex);
  289. return page ? lowmem_page_address(page) + offset : NULL;
  290. }
  291. int mlx4_table_get_range(struct mlx4_dev *dev, struct mlx4_icm_table *table,
  292. u32 start, u32 end)
  293. {
  294. int inc = MLX4_TABLE_CHUNK_SIZE / table->obj_size;
  295. int err;
  296. u32 i;
  297. for (i = start; i <= end; i += inc) {
  298. err = mlx4_table_get(dev, table, i, GFP_KERNEL);
  299. if (err)
  300. goto fail;
  301. }
  302. return 0;
  303. fail:
  304. while (i > start) {
  305. i -= inc;
  306. mlx4_table_put(dev, table, i);
  307. }
  308. return err;
  309. }
  310. void mlx4_table_put_range(struct mlx4_dev *dev, struct mlx4_icm_table *table,
  311. u32 start, u32 end)
  312. {
  313. u32 i;
  314. for (i = start; i <= end; i += MLX4_TABLE_CHUNK_SIZE / table->obj_size)
  315. mlx4_table_put(dev, table, i);
  316. }
  317. int mlx4_init_icm_table(struct mlx4_dev *dev, struct mlx4_icm_table *table,
  318. u64 virt, int obj_size, u32 nobj, int reserved,
  319. int use_lowmem, int use_coherent)
  320. {
  321. int obj_per_chunk;
  322. int num_icm;
  323. unsigned chunk_size;
  324. int i;
  325. u64 size;
  326. obj_per_chunk = MLX4_TABLE_CHUNK_SIZE / obj_size;
  327. num_icm = (nobj + obj_per_chunk - 1) / obj_per_chunk;
  328. table->icm = kcalloc(num_icm, sizeof *table->icm, GFP_KERNEL);
  329. if (!table->icm)
  330. return -ENOMEM;
  331. table->virt = virt;
  332. table->num_icm = num_icm;
  333. table->num_obj = nobj;
  334. table->obj_size = obj_size;
  335. table->lowmem = use_lowmem;
  336. table->coherent = use_coherent;
  337. mutex_init(&table->mutex);
  338. size = (u64) nobj * obj_size;
  339. for (i = 0; i * MLX4_TABLE_CHUNK_SIZE < reserved * obj_size; ++i) {
  340. chunk_size = MLX4_TABLE_CHUNK_SIZE;
  341. if ((i + 1) * MLX4_TABLE_CHUNK_SIZE > size)
  342. chunk_size = PAGE_ALIGN(size -
  343. i * MLX4_TABLE_CHUNK_SIZE);
  344. table->icm[i] = mlx4_alloc_icm(dev, chunk_size >> PAGE_SHIFT,
  345. (use_lowmem ? GFP_KERNEL : GFP_HIGHUSER) |
  346. __GFP_NOWARN, use_coherent);
  347. if (!table->icm[i])
  348. goto err;
  349. if (mlx4_MAP_ICM(dev, table->icm[i], virt + i * MLX4_TABLE_CHUNK_SIZE)) {
  350. mlx4_free_icm(dev, table->icm[i], use_coherent);
  351. table->icm[i] = NULL;
  352. goto err;
  353. }
  354. /*
  355. * Add a reference to this ICM chunk so that it never
  356. * gets freed (since it contains reserved firmware objects).
  357. */
  358. ++table->icm[i]->refcount;
  359. }
  360. return 0;
  361. err:
  362. for (i = 0; i < num_icm; ++i)
  363. if (table->icm[i]) {
  364. mlx4_UNMAP_ICM(dev, virt + i * MLX4_TABLE_CHUNK_SIZE,
  365. MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE);
  366. mlx4_free_icm(dev, table->icm[i], use_coherent);
  367. }
  368. kfree(table->icm);
  369. return -ENOMEM;
  370. }
  371. void mlx4_cleanup_icm_table(struct mlx4_dev *dev, struct mlx4_icm_table *table)
  372. {
  373. int i;
  374. for (i = 0; i < table->num_icm; ++i)
  375. if (table->icm[i]) {
  376. mlx4_UNMAP_ICM(dev, table->virt + i * MLX4_TABLE_CHUNK_SIZE,
  377. MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE);
  378. mlx4_free_icm(dev, table->icm[i], table->coherent);
  379. }
  380. kfree(table->icm);
  381. }