en_rx.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287
  1. /*
  2. * Copyright (c) 2007 Mellanox Technologies. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <net/busy_poll.h>
  34. #include <linux/mlx4/cq.h>
  35. #include <linux/slab.h>
  36. #include <linux/mlx4/qp.h>
  37. #include <linux/skbuff.h>
  38. #include <linux/rculist.h>
  39. #include <linux/if_ether.h>
  40. #include <linux/if_vlan.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/irq.h>
  43. #if IS_ENABLED(CONFIG_IPV6)
  44. #include <net/ip6_checksum.h>
  45. #endif
  46. #include "mlx4_en.h"
  47. static int mlx4_alloc_pages(struct mlx4_en_priv *priv,
  48. struct mlx4_en_rx_alloc *page_alloc,
  49. const struct mlx4_en_frag_info *frag_info,
  50. gfp_t _gfp)
  51. {
  52. int order;
  53. struct page *page;
  54. dma_addr_t dma;
  55. for (order = MLX4_EN_ALLOC_PREFER_ORDER; ;) {
  56. gfp_t gfp = _gfp;
  57. if (order)
  58. gfp |= __GFP_COMP | __GFP_NOWARN;
  59. page = alloc_pages(gfp, order);
  60. if (likely(page))
  61. break;
  62. if (--order < 0 ||
  63. ((PAGE_SIZE << order) < frag_info->frag_size))
  64. return -ENOMEM;
  65. }
  66. dma = dma_map_page(priv->ddev, page, 0, PAGE_SIZE << order,
  67. PCI_DMA_FROMDEVICE);
  68. if (dma_mapping_error(priv->ddev, dma)) {
  69. put_page(page);
  70. return -ENOMEM;
  71. }
  72. page_alloc->page_size = PAGE_SIZE << order;
  73. page_alloc->page = page;
  74. page_alloc->dma = dma;
  75. page_alloc->page_offset = 0;
  76. /* Not doing get_page() for each frag is a big win
  77. * on asymetric workloads. Note we can not use atomic_set().
  78. */
  79. atomic_add(page_alloc->page_size / frag_info->frag_stride - 1,
  80. &page->_count);
  81. return 0;
  82. }
  83. static int mlx4_en_alloc_frags(struct mlx4_en_priv *priv,
  84. struct mlx4_en_rx_desc *rx_desc,
  85. struct mlx4_en_rx_alloc *frags,
  86. struct mlx4_en_rx_alloc *ring_alloc,
  87. gfp_t gfp)
  88. {
  89. struct mlx4_en_rx_alloc page_alloc[MLX4_EN_MAX_RX_FRAGS];
  90. const struct mlx4_en_frag_info *frag_info;
  91. struct page *page;
  92. dma_addr_t dma;
  93. int i;
  94. for (i = 0; i < priv->num_frags; i++) {
  95. frag_info = &priv->frag_info[i];
  96. page_alloc[i] = ring_alloc[i];
  97. page_alloc[i].page_offset += frag_info->frag_stride;
  98. if (page_alloc[i].page_offset + frag_info->frag_stride <=
  99. ring_alloc[i].page_size)
  100. continue;
  101. if (mlx4_alloc_pages(priv, &page_alloc[i], frag_info, gfp))
  102. goto out;
  103. }
  104. for (i = 0; i < priv->num_frags; i++) {
  105. frags[i] = ring_alloc[i];
  106. dma = ring_alloc[i].dma + ring_alloc[i].page_offset;
  107. ring_alloc[i] = page_alloc[i];
  108. rx_desc->data[i].addr = cpu_to_be64(dma);
  109. }
  110. return 0;
  111. out:
  112. while (i--) {
  113. if (page_alloc[i].page != ring_alloc[i].page) {
  114. dma_unmap_page(priv->ddev, page_alloc[i].dma,
  115. page_alloc[i].page_size, PCI_DMA_FROMDEVICE);
  116. page = page_alloc[i].page;
  117. atomic_set(&page->_count, 1);
  118. put_page(page);
  119. }
  120. }
  121. return -ENOMEM;
  122. }
  123. static void mlx4_en_free_frag(struct mlx4_en_priv *priv,
  124. struct mlx4_en_rx_alloc *frags,
  125. int i)
  126. {
  127. const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
  128. u32 next_frag_end = frags[i].page_offset + 2 * frag_info->frag_stride;
  129. if (next_frag_end > frags[i].page_size)
  130. dma_unmap_page(priv->ddev, frags[i].dma, frags[i].page_size,
  131. PCI_DMA_FROMDEVICE);
  132. if (frags[i].page)
  133. put_page(frags[i].page);
  134. }
  135. static int mlx4_en_init_allocator(struct mlx4_en_priv *priv,
  136. struct mlx4_en_rx_ring *ring)
  137. {
  138. int i;
  139. struct mlx4_en_rx_alloc *page_alloc;
  140. for (i = 0; i < priv->num_frags; i++) {
  141. const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
  142. if (mlx4_alloc_pages(priv, &ring->page_alloc[i],
  143. frag_info, GFP_KERNEL | __GFP_COLD))
  144. goto out;
  145. en_dbg(DRV, priv, " frag %d allocator: - size:%d frags:%d\n",
  146. i, ring->page_alloc[i].page_size,
  147. atomic_read(&ring->page_alloc[i].page->_count));
  148. }
  149. return 0;
  150. out:
  151. while (i--) {
  152. struct page *page;
  153. page_alloc = &ring->page_alloc[i];
  154. dma_unmap_page(priv->ddev, page_alloc->dma,
  155. page_alloc->page_size, PCI_DMA_FROMDEVICE);
  156. page = page_alloc->page;
  157. atomic_set(&page->_count, 1);
  158. put_page(page);
  159. page_alloc->page = NULL;
  160. }
  161. return -ENOMEM;
  162. }
  163. static void mlx4_en_destroy_allocator(struct mlx4_en_priv *priv,
  164. struct mlx4_en_rx_ring *ring)
  165. {
  166. struct mlx4_en_rx_alloc *page_alloc;
  167. int i;
  168. for (i = 0; i < priv->num_frags; i++) {
  169. const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
  170. page_alloc = &ring->page_alloc[i];
  171. en_dbg(DRV, priv, "Freeing allocator:%d count:%d\n",
  172. i, page_count(page_alloc->page));
  173. dma_unmap_page(priv->ddev, page_alloc->dma,
  174. page_alloc->page_size, PCI_DMA_FROMDEVICE);
  175. while (page_alloc->page_offset + frag_info->frag_stride <
  176. page_alloc->page_size) {
  177. put_page(page_alloc->page);
  178. page_alloc->page_offset += frag_info->frag_stride;
  179. }
  180. page_alloc->page = NULL;
  181. }
  182. }
  183. static void mlx4_en_init_rx_desc(struct mlx4_en_priv *priv,
  184. struct mlx4_en_rx_ring *ring, int index)
  185. {
  186. struct mlx4_en_rx_desc *rx_desc = ring->buf + ring->stride * index;
  187. int possible_frags;
  188. int i;
  189. /* Set size and memtype fields */
  190. for (i = 0; i < priv->num_frags; i++) {
  191. rx_desc->data[i].byte_count =
  192. cpu_to_be32(priv->frag_info[i].frag_size);
  193. rx_desc->data[i].lkey = cpu_to_be32(priv->mdev->mr.key);
  194. }
  195. /* If the number of used fragments does not fill up the ring stride,
  196. * remaining (unused) fragments must be padded with null address/size
  197. * and a special memory key */
  198. possible_frags = (ring->stride - sizeof(struct mlx4_en_rx_desc)) / DS_SIZE;
  199. for (i = priv->num_frags; i < possible_frags; i++) {
  200. rx_desc->data[i].byte_count = 0;
  201. rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD);
  202. rx_desc->data[i].addr = 0;
  203. }
  204. }
  205. static int mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv,
  206. struct mlx4_en_rx_ring *ring, int index,
  207. gfp_t gfp)
  208. {
  209. struct mlx4_en_rx_desc *rx_desc = ring->buf + (index * ring->stride);
  210. struct mlx4_en_rx_alloc *frags = ring->rx_info +
  211. (index << priv->log_rx_info);
  212. return mlx4_en_alloc_frags(priv, rx_desc, frags, ring->page_alloc, gfp);
  213. }
  214. static inline void mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring)
  215. {
  216. *ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff);
  217. }
  218. static void mlx4_en_free_rx_desc(struct mlx4_en_priv *priv,
  219. struct mlx4_en_rx_ring *ring,
  220. int index)
  221. {
  222. struct mlx4_en_rx_alloc *frags;
  223. int nr;
  224. frags = ring->rx_info + (index << priv->log_rx_info);
  225. for (nr = 0; nr < priv->num_frags; nr++) {
  226. en_dbg(DRV, priv, "Freeing fragment:%d\n", nr);
  227. mlx4_en_free_frag(priv, frags, nr);
  228. }
  229. }
  230. static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv)
  231. {
  232. struct mlx4_en_rx_ring *ring;
  233. int ring_ind;
  234. int buf_ind;
  235. int new_size;
  236. for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) {
  237. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
  238. ring = priv->rx_ring[ring_ind];
  239. if (mlx4_en_prepare_rx_desc(priv, ring,
  240. ring->actual_size,
  241. GFP_KERNEL | __GFP_COLD)) {
  242. if (ring->actual_size < MLX4_EN_MIN_RX_SIZE) {
  243. en_err(priv, "Failed to allocate enough rx buffers\n");
  244. return -ENOMEM;
  245. } else {
  246. new_size = rounddown_pow_of_two(ring->actual_size);
  247. en_warn(priv, "Only %d buffers allocated reducing ring size to %d\n",
  248. ring->actual_size, new_size);
  249. goto reduce_rings;
  250. }
  251. }
  252. ring->actual_size++;
  253. ring->prod++;
  254. }
  255. }
  256. return 0;
  257. reduce_rings:
  258. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
  259. ring = priv->rx_ring[ring_ind];
  260. while (ring->actual_size > new_size) {
  261. ring->actual_size--;
  262. ring->prod--;
  263. mlx4_en_free_rx_desc(priv, ring, ring->actual_size);
  264. }
  265. }
  266. return 0;
  267. }
  268. static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv,
  269. struct mlx4_en_rx_ring *ring)
  270. {
  271. int index;
  272. en_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n",
  273. ring->cons, ring->prod);
  274. /* Unmap and free Rx buffers */
  275. BUG_ON((u32) (ring->prod - ring->cons) > ring->actual_size);
  276. while (ring->cons != ring->prod) {
  277. index = ring->cons & ring->size_mask;
  278. en_dbg(DRV, priv, "Processing descriptor:%d\n", index);
  279. mlx4_en_free_rx_desc(priv, ring, index);
  280. ++ring->cons;
  281. }
  282. }
  283. void mlx4_en_set_num_rx_rings(struct mlx4_en_dev *mdev)
  284. {
  285. int i;
  286. int num_of_eqs;
  287. int num_rx_rings;
  288. struct mlx4_dev *dev = mdev->dev;
  289. mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) {
  290. if (!dev->caps.comp_pool)
  291. num_of_eqs = max_t(int, MIN_RX_RINGS,
  292. min_t(int,
  293. dev->caps.num_comp_vectors,
  294. DEF_RX_RINGS));
  295. else
  296. num_of_eqs = min_t(int, MAX_MSIX_P_PORT,
  297. dev->caps.comp_pool/
  298. dev->caps.num_ports) - 1;
  299. num_rx_rings = mlx4_low_memory_profile() ? MIN_RX_RINGS :
  300. min_t(int, num_of_eqs,
  301. netif_get_num_default_rss_queues());
  302. mdev->profile.prof[i].rx_ring_num =
  303. rounddown_pow_of_two(num_rx_rings);
  304. }
  305. }
  306. int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv,
  307. struct mlx4_en_rx_ring **pring,
  308. u32 size, u16 stride, int node)
  309. {
  310. struct mlx4_en_dev *mdev = priv->mdev;
  311. struct mlx4_en_rx_ring *ring;
  312. int err = -ENOMEM;
  313. int tmp;
  314. ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node);
  315. if (!ring) {
  316. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  317. if (!ring) {
  318. en_err(priv, "Failed to allocate RX ring structure\n");
  319. return -ENOMEM;
  320. }
  321. }
  322. ring->prod = 0;
  323. ring->cons = 0;
  324. ring->size = size;
  325. ring->size_mask = size - 1;
  326. ring->stride = stride;
  327. ring->log_stride = ffs(ring->stride) - 1;
  328. ring->buf_size = ring->size * ring->stride + TXBB_SIZE;
  329. tmp = size * roundup_pow_of_two(MLX4_EN_MAX_RX_FRAGS *
  330. sizeof(struct mlx4_en_rx_alloc));
  331. ring->rx_info = vmalloc_node(tmp, node);
  332. if (!ring->rx_info) {
  333. ring->rx_info = vmalloc(tmp);
  334. if (!ring->rx_info) {
  335. err = -ENOMEM;
  336. goto err_ring;
  337. }
  338. }
  339. en_dbg(DRV, priv, "Allocated rx_info ring at addr:%p size:%d\n",
  340. ring->rx_info, tmp);
  341. /* Allocate HW buffers on provided NUMA node */
  342. set_dev_node(&mdev->dev->persist->pdev->dev, node);
  343. err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres,
  344. ring->buf_size, 2 * PAGE_SIZE);
  345. set_dev_node(&mdev->dev->persist->pdev->dev, mdev->dev->numa_node);
  346. if (err)
  347. goto err_info;
  348. err = mlx4_en_map_buffer(&ring->wqres.buf);
  349. if (err) {
  350. en_err(priv, "Failed to map RX buffer\n");
  351. goto err_hwq;
  352. }
  353. ring->buf = ring->wqres.buf.direct.buf;
  354. ring->hwtstamp_rx_filter = priv->hwtstamp_config.rx_filter;
  355. *pring = ring;
  356. return 0;
  357. err_hwq:
  358. mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
  359. err_info:
  360. vfree(ring->rx_info);
  361. ring->rx_info = NULL;
  362. err_ring:
  363. kfree(ring);
  364. *pring = NULL;
  365. return err;
  366. }
  367. int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv)
  368. {
  369. struct mlx4_en_rx_ring *ring;
  370. int i;
  371. int ring_ind;
  372. int err;
  373. int stride = roundup_pow_of_two(sizeof(struct mlx4_en_rx_desc) +
  374. DS_SIZE * priv->num_frags);
  375. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
  376. ring = priv->rx_ring[ring_ind];
  377. ring->prod = 0;
  378. ring->cons = 0;
  379. ring->actual_size = 0;
  380. ring->cqn = priv->rx_cq[ring_ind]->mcq.cqn;
  381. ring->stride = stride;
  382. if (ring->stride <= TXBB_SIZE)
  383. ring->buf += TXBB_SIZE;
  384. ring->log_stride = ffs(ring->stride) - 1;
  385. ring->buf_size = ring->size * ring->stride;
  386. memset(ring->buf, 0, ring->buf_size);
  387. mlx4_en_update_rx_prod_db(ring);
  388. /* Initialize all descriptors */
  389. for (i = 0; i < ring->size; i++)
  390. mlx4_en_init_rx_desc(priv, ring, i);
  391. /* Initialize page allocators */
  392. err = mlx4_en_init_allocator(priv, ring);
  393. if (err) {
  394. en_err(priv, "Failed initializing ring allocator\n");
  395. if (ring->stride <= TXBB_SIZE)
  396. ring->buf -= TXBB_SIZE;
  397. ring_ind--;
  398. goto err_allocator;
  399. }
  400. }
  401. err = mlx4_en_fill_rx_buffers(priv);
  402. if (err)
  403. goto err_buffers;
  404. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
  405. ring = priv->rx_ring[ring_ind];
  406. ring->size_mask = ring->actual_size - 1;
  407. mlx4_en_update_rx_prod_db(ring);
  408. }
  409. return 0;
  410. err_buffers:
  411. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++)
  412. mlx4_en_free_rx_buf(priv, priv->rx_ring[ring_ind]);
  413. ring_ind = priv->rx_ring_num - 1;
  414. err_allocator:
  415. while (ring_ind >= 0) {
  416. if (priv->rx_ring[ring_ind]->stride <= TXBB_SIZE)
  417. priv->rx_ring[ring_ind]->buf -= TXBB_SIZE;
  418. mlx4_en_destroy_allocator(priv, priv->rx_ring[ring_ind]);
  419. ring_ind--;
  420. }
  421. return err;
  422. }
  423. void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv,
  424. struct mlx4_en_rx_ring **pring,
  425. u32 size, u16 stride)
  426. {
  427. struct mlx4_en_dev *mdev = priv->mdev;
  428. struct mlx4_en_rx_ring *ring = *pring;
  429. mlx4_en_unmap_buffer(&ring->wqres.buf);
  430. mlx4_free_hwq_res(mdev->dev, &ring->wqres, size * stride + TXBB_SIZE);
  431. vfree(ring->rx_info);
  432. ring->rx_info = NULL;
  433. kfree(ring);
  434. *pring = NULL;
  435. #ifdef CONFIG_RFS_ACCEL
  436. mlx4_en_cleanup_filters(priv);
  437. #endif
  438. }
  439. void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv,
  440. struct mlx4_en_rx_ring *ring)
  441. {
  442. mlx4_en_free_rx_buf(priv, ring);
  443. if (ring->stride <= TXBB_SIZE)
  444. ring->buf -= TXBB_SIZE;
  445. mlx4_en_destroy_allocator(priv, ring);
  446. }
  447. static int mlx4_en_complete_rx_desc(struct mlx4_en_priv *priv,
  448. struct mlx4_en_rx_desc *rx_desc,
  449. struct mlx4_en_rx_alloc *frags,
  450. struct sk_buff *skb,
  451. int length)
  452. {
  453. struct skb_frag_struct *skb_frags_rx = skb_shinfo(skb)->frags;
  454. struct mlx4_en_frag_info *frag_info;
  455. int nr;
  456. dma_addr_t dma;
  457. /* Collect used fragments while replacing them in the HW descriptors */
  458. for (nr = 0; nr < priv->num_frags; nr++) {
  459. frag_info = &priv->frag_info[nr];
  460. if (length <= frag_info->frag_prefix_size)
  461. break;
  462. if (!frags[nr].page)
  463. goto fail;
  464. dma = be64_to_cpu(rx_desc->data[nr].addr);
  465. dma_sync_single_for_cpu(priv->ddev, dma, frag_info->frag_size,
  466. DMA_FROM_DEVICE);
  467. /* Save page reference in skb */
  468. __skb_frag_set_page(&skb_frags_rx[nr], frags[nr].page);
  469. skb_frag_size_set(&skb_frags_rx[nr], frag_info->frag_size);
  470. skb_frags_rx[nr].page_offset = frags[nr].page_offset;
  471. skb->truesize += frag_info->frag_stride;
  472. frags[nr].page = NULL;
  473. }
  474. /* Adjust size of last fragment to match actual length */
  475. if (nr > 0)
  476. skb_frag_size_set(&skb_frags_rx[nr - 1],
  477. length - priv->frag_info[nr - 1].frag_prefix_size);
  478. return nr;
  479. fail:
  480. while (nr > 0) {
  481. nr--;
  482. __skb_frag_unref(&skb_frags_rx[nr]);
  483. }
  484. return 0;
  485. }
  486. static struct sk_buff *mlx4_en_rx_skb(struct mlx4_en_priv *priv,
  487. struct mlx4_en_rx_desc *rx_desc,
  488. struct mlx4_en_rx_alloc *frags,
  489. unsigned int length)
  490. {
  491. struct sk_buff *skb;
  492. void *va;
  493. int used_frags;
  494. dma_addr_t dma;
  495. skb = netdev_alloc_skb(priv->dev, SMALL_PACKET_SIZE + NET_IP_ALIGN);
  496. if (!skb) {
  497. en_dbg(RX_ERR, priv, "Failed allocating skb\n");
  498. return NULL;
  499. }
  500. skb_reserve(skb, NET_IP_ALIGN);
  501. skb->len = length;
  502. /* Get pointer to first fragment so we could copy the headers into the
  503. * (linear part of the) skb */
  504. va = page_address(frags[0].page) + frags[0].page_offset;
  505. if (length <= SMALL_PACKET_SIZE) {
  506. /* We are copying all relevant data to the skb - temporarily
  507. * sync buffers for the copy */
  508. dma = be64_to_cpu(rx_desc->data[0].addr);
  509. dma_sync_single_for_cpu(priv->ddev, dma, length,
  510. DMA_FROM_DEVICE);
  511. skb_copy_to_linear_data(skb, va, length);
  512. skb->tail += length;
  513. } else {
  514. unsigned int pull_len;
  515. /* Move relevant fragments to skb */
  516. used_frags = mlx4_en_complete_rx_desc(priv, rx_desc, frags,
  517. skb, length);
  518. if (unlikely(!used_frags)) {
  519. kfree_skb(skb);
  520. return NULL;
  521. }
  522. skb_shinfo(skb)->nr_frags = used_frags;
  523. pull_len = eth_get_headlen(va, SMALL_PACKET_SIZE);
  524. /* Copy headers into the skb linear buffer */
  525. memcpy(skb->data, va, pull_len);
  526. skb->tail += pull_len;
  527. /* Skip headers in first fragment */
  528. skb_shinfo(skb)->frags[0].page_offset += pull_len;
  529. /* Adjust size of first fragment */
  530. skb_frag_size_sub(&skb_shinfo(skb)->frags[0], pull_len);
  531. skb->data_len = length - pull_len;
  532. }
  533. return skb;
  534. }
  535. static void validate_loopback(struct mlx4_en_priv *priv, struct sk_buff *skb)
  536. {
  537. int i;
  538. int offset = ETH_HLEN;
  539. for (i = 0; i < MLX4_LOOPBACK_TEST_PAYLOAD; i++, offset++) {
  540. if (*(skb->data + offset) != (unsigned char) (i & 0xff))
  541. goto out_loopback;
  542. }
  543. /* Loopback found */
  544. priv->loopback_ok = 1;
  545. out_loopback:
  546. dev_kfree_skb_any(skb);
  547. }
  548. static void mlx4_en_refill_rx_buffers(struct mlx4_en_priv *priv,
  549. struct mlx4_en_rx_ring *ring)
  550. {
  551. int index = ring->prod & ring->size_mask;
  552. while ((u32) (ring->prod - ring->cons) < ring->actual_size) {
  553. if (mlx4_en_prepare_rx_desc(priv, ring, index,
  554. GFP_ATOMIC | __GFP_COLD))
  555. break;
  556. ring->prod++;
  557. index = ring->prod & ring->size_mask;
  558. }
  559. }
  560. /* When hardware doesn't strip the vlan, we need to calculate the checksum
  561. * over it and add it to the hardware's checksum calculation
  562. */
  563. static inline __wsum get_fixed_vlan_csum(__wsum hw_checksum,
  564. struct vlan_hdr *vlanh)
  565. {
  566. return csum_add(hw_checksum, *(__wsum *)vlanh);
  567. }
  568. /* Although the stack expects checksum which doesn't include the pseudo
  569. * header, the HW adds it. To address that, we are subtracting the pseudo
  570. * header checksum from the checksum value provided by the HW.
  571. */
  572. static void get_fixed_ipv4_csum(__wsum hw_checksum, struct sk_buff *skb,
  573. struct iphdr *iph)
  574. {
  575. __u16 length_for_csum = 0;
  576. __wsum csum_pseudo_header = 0;
  577. length_for_csum = (be16_to_cpu(iph->tot_len) - (iph->ihl << 2));
  578. csum_pseudo_header = csum_tcpudp_nofold(iph->saddr, iph->daddr,
  579. length_for_csum, iph->protocol, 0);
  580. skb->csum = csum_sub(hw_checksum, csum_pseudo_header);
  581. }
  582. #if IS_ENABLED(CONFIG_IPV6)
  583. /* In IPv6 packets, besides subtracting the pseudo header checksum,
  584. * we also compute/add the IP header checksum which
  585. * is not added by the HW.
  586. */
  587. static int get_fixed_ipv6_csum(__wsum hw_checksum, struct sk_buff *skb,
  588. struct ipv6hdr *ipv6h)
  589. {
  590. __wsum csum_pseudo_hdr = 0;
  591. if (ipv6h->nexthdr == IPPROTO_FRAGMENT || ipv6h->nexthdr == IPPROTO_HOPOPTS)
  592. return -1;
  593. hw_checksum = csum_add(hw_checksum, (__force __wsum)(ipv6h->nexthdr << 8));
  594. csum_pseudo_hdr = csum_partial(&ipv6h->saddr,
  595. sizeof(ipv6h->saddr) + sizeof(ipv6h->daddr), 0);
  596. csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ipv6h->payload_len);
  597. csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ntohs(ipv6h->nexthdr));
  598. skb->csum = csum_sub(hw_checksum, csum_pseudo_hdr);
  599. skb->csum = csum_add(skb->csum, csum_partial(ipv6h, sizeof(struct ipv6hdr), 0));
  600. return 0;
  601. }
  602. #endif
  603. static int check_csum(struct mlx4_cqe *cqe, struct sk_buff *skb, void *va,
  604. int hwtstamp_rx_filter)
  605. {
  606. __wsum hw_checksum = 0;
  607. void *hdr = (u8 *)va + sizeof(struct ethhdr);
  608. hw_checksum = csum_unfold((__force __sum16)cqe->checksum);
  609. if (((struct ethhdr *)va)->h_proto == htons(ETH_P_8021Q) &&
  610. hwtstamp_rx_filter != HWTSTAMP_FILTER_NONE) {
  611. /* next protocol non IPv4 or IPv6 */
  612. if (((struct vlan_hdr *)hdr)->h_vlan_encapsulated_proto
  613. != htons(ETH_P_IP) &&
  614. ((struct vlan_hdr *)hdr)->h_vlan_encapsulated_proto
  615. != htons(ETH_P_IPV6))
  616. return -1;
  617. hw_checksum = get_fixed_vlan_csum(hw_checksum, hdr);
  618. hdr += sizeof(struct vlan_hdr);
  619. }
  620. if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4))
  621. get_fixed_ipv4_csum(hw_checksum, skb, hdr);
  622. #if IS_ENABLED(CONFIG_IPV6)
  623. else if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV6))
  624. if (get_fixed_ipv6_csum(hw_checksum, skb, hdr))
  625. return -1;
  626. #endif
  627. return 0;
  628. }
  629. int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget)
  630. {
  631. struct mlx4_en_priv *priv = netdev_priv(dev);
  632. struct mlx4_en_dev *mdev = priv->mdev;
  633. struct mlx4_cqe *cqe;
  634. struct mlx4_en_rx_ring *ring = priv->rx_ring[cq->ring];
  635. struct mlx4_en_rx_alloc *frags;
  636. struct mlx4_en_rx_desc *rx_desc;
  637. struct sk_buff *skb;
  638. int index;
  639. int nr;
  640. unsigned int length;
  641. int polled = 0;
  642. int ip_summed;
  643. int factor = priv->cqe_factor;
  644. u64 timestamp;
  645. bool l2_tunnel;
  646. if (!priv->port_up)
  647. return 0;
  648. if (budget <= 0)
  649. return polled;
  650. /* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx
  651. * descriptor offset can be deduced from the CQE index instead of
  652. * reading 'cqe->index' */
  653. index = cq->mcq.cons_index & ring->size_mask;
  654. cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor;
  655. /* Process all completed CQEs */
  656. while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
  657. cq->mcq.cons_index & cq->size)) {
  658. frags = ring->rx_info + (index << priv->log_rx_info);
  659. rx_desc = ring->buf + (index << ring->log_stride);
  660. /*
  661. * make sure we read the CQE after we read the ownership bit
  662. */
  663. rmb();
  664. /* Drop packet on bad receive or bad checksum */
  665. if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
  666. MLX4_CQE_OPCODE_ERROR)) {
  667. en_err(priv, "CQE completed in error - vendor syndrom:%d syndrom:%d\n",
  668. ((struct mlx4_err_cqe *)cqe)->vendor_err_syndrome,
  669. ((struct mlx4_err_cqe *)cqe)->syndrome);
  670. goto next;
  671. }
  672. if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) {
  673. en_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n");
  674. goto next;
  675. }
  676. /* Check if we need to drop the packet if SRIOV is not enabled
  677. * and not performing the selftest or flb disabled
  678. */
  679. if (priv->flags & MLX4_EN_FLAG_RX_FILTER_NEEDED) {
  680. struct ethhdr *ethh;
  681. dma_addr_t dma;
  682. /* Get pointer to first fragment since we haven't
  683. * skb yet and cast it to ethhdr struct
  684. */
  685. dma = be64_to_cpu(rx_desc->data[0].addr);
  686. dma_sync_single_for_cpu(priv->ddev, dma, sizeof(*ethh),
  687. DMA_FROM_DEVICE);
  688. ethh = (struct ethhdr *)(page_address(frags[0].page) +
  689. frags[0].page_offset);
  690. if (is_multicast_ether_addr(ethh->h_dest)) {
  691. struct mlx4_mac_entry *entry;
  692. struct hlist_head *bucket;
  693. unsigned int mac_hash;
  694. /* Drop the packet, since HW loopback-ed it */
  695. mac_hash = ethh->h_source[MLX4_EN_MAC_HASH_IDX];
  696. bucket = &priv->mac_hash[mac_hash];
  697. rcu_read_lock();
  698. hlist_for_each_entry_rcu(entry, bucket, hlist) {
  699. if (ether_addr_equal_64bits(entry->mac,
  700. ethh->h_source)) {
  701. rcu_read_unlock();
  702. goto next;
  703. }
  704. }
  705. rcu_read_unlock();
  706. }
  707. }
  708. /*
  709. * Packet is OK - process it.
  710. */
  711. length = be32_to_cpu(cqe->byte_cnt);
  712. length -= ring->fcs_del;
  713. ring->bytes += length;
  714. ring->packets++;
  715. l2_tunnel = (dev->hw_enc_features & NETIF_F_RXCSUM) &&
  716. (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_L2_TUNNEL));
  717. if (likely(dev->features & NETIF_F_RXCSUM)) {
  718. if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_TCP |
  719. MLX4_CQE_STATUS_UDP)) {
  720. if ((cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) &&
  721. cqe->checksum == cpu_to_be16(0xffff)) {
  722. ip_summed = CHECKSUM_UNNECESSARY;
  723. ring->csum_ok++;
  724. } else {
  725. ip_summed = CHECKSUM_NONE;
  726. ring->csum_none++;
  727. }
  728. } else {
  729. if (priv->flags & MLX4_EN_FLAG_RX_CSUM_NON_TCP_UDP &&
  730. (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4 |
  731. MLX4_CQE_STATUS_IPV6))) {
  732. ip_summed = CHECKSUM_COMPLETE;
  733. ring->csum_complete++;
  734. } else {
  735. ip_summed = CHECKSUM_NONE;
  736. ring->csum_none++;
  737. }
  738. }
  739. } else {
  740. ip_summed = CHECKSUM_NONE;
  741. ring->csum_none++;
  742. }
  743. /* This packet is eligible for GRO if it is:
  744. * - DIX Ethernet (type interpretation)
  745. * - TCP/IP (v4)
  746. * - without IP options
  747. * - not an IP fragment
  748. * - no LLS polling in progress
  749. */
  750. if (!mlx4_en_cq_busy_polling(cq) &&
  751. (dev->features & NETIF_F_GRO)) {
  752. struct sk_buff *gro_skb = napi_get_frags(&cq->napi);
  753. if (!gro_skb)
  754. goto next;
  755. nr = mlx4_en_complete_rx_desc(priv,
  756. rx_desc, frags, gro_skb,
  757. length);
  758. if (!nr)
  759. goto next;
  760. if (ip_summed == CHECKSUM_COMPLETE) {
  761. void *va = skb_frag_address(skb_shinfo(gro_skb)->frags);
  762. if (check_csum(cqe, gro_skb, va, ring->hwtstamp_rx_filter)) {
  763. ip_summed = CHECKSUM_NONE;
  764. ring->csum_none++;
  765. ring->csum_complete--;
  766. }
  767. }
  768. skb_shinfo(gro_skb)->nr_frags = nr;
  769. gro_skb->len = length;
  770. gro_skb->data_len = length;
  771. gro_skb->ip_summed = ip_summed;
  772. if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY)
  773. gro_skb->csum_level = 1;
  774. if ((cqe->vlan_my_qpn &
  775. cpu_to_be32(MLX4_CQE_VLAN_PRESENT_MASK)) &&
  776. (dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
  777. u16 vid = be16_to_cpu(cqe->sl_vid);
  778. __vlan_hwaccel_put_tag(gro_skb, htons(ETH_P_8021Q), vid);
  779. }
  780. if (dev->features & NETIF_F_RXHASH)
  781. skb_set_hash(gro_skb,
  782. be32_to_cpu(cqe->immed_rss_invalid),
  783. PKT_HASH_TYPE_L3);
  784. skb_record_rx_queue(gro_skb, cq->ring);
  785. skb_mark_napi_id(gro_skb, &cq->napi);
  786. if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) {
  787. timestamp = mlx4_en_get_cqe_ts(cqe);
  788. mlx4_en_fill_hwtstamps(mdev,
  789. skb_hwtstamps(gro_skb),
  790. timestamp);
  791. }
  792. napi_gro_frags(&cq->napi);
  793. goto next;
  794. }
  795. /* GRO not possible, complete processing here */
  796. skb = mlx4_en_rx_skb(priv, rx_desc, frags, length);
  797. if (!skb) {
  798. priv->stats.rx_dropped++;
  799. goto next;
  800. }
  801. if (unlikely(priv->validate_loopback)) {
  802. validate_loopback(priv, skb);
  803. goto next;
  804. }
  805. if (ip_summed == CHECKSUM_COMPLETE) {
  806. if (check_csum(cqe, skb, skb->data, ring->hwtstamp_rx_filter)) {
  807. ip_summed = CHECKSUM_NONE;
  808. ring->csum_complete--;
  809. ring->csum_none++;
  810. }
  811. }
  812. skb->ip_summed = ip_summed;
  813. skb->protocol = eth_type_trans(skb, dev);
  814. skb_record_rx_queue(skb, cq->ring);
  815. if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY)
  816. skb->csum_level = 1;
  817. if (dev->features & NETIF_F_RXHASH)
  818. skb_set_hash(skb,
  819. be32_to_cpu(cqe->immed_rss_invalid),
  820. PKT_HASH_TYPE_L3);
  821. if ((be32_to_cpu(cqe->vlan_my_qpn) &
  822. MLX4_CQE_VLAN_PRESENT_MASK) &&
  823. (dev->features & NETIF_F_HW_VLAN_CTAG_RX))
  824. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(cqe->sl_vid));
  825. if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) {
  826. timestamp = mlx4_en_get_cqe_ts(cqe);
  827. mlx4_en_fill_hwtstamps(mdev, skb_hwtstamps(skb),
  828. timestamp);
  829. }
  830. skb_mark_napi_id(skb, &cq->napi);
  831. if (!mlx4_en_cq_busy_polling(cq))
  832. napi_gro_receive(&cq->napi, skb);
  833. else
  834. netif_receive_skb(skb);
  835. next:
  836. for (nr = 0; nr < priv->num_frags; nr++)
  837. mlx4_en_free_frag(priv, frags, nr);
  838. ++cq->mcq.cons_index;
  839. index = (cq->mcq.cons_index) & ring->size_mask;
  840. cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor;
  841. if (++polled == budget)
  842. goto out;
  843. }
  844. out:
  845. AVG_PERF_COUNTER(priv->pstats.rx_coal_avg, polled);
  846. mlx4_cq_set_ci(&cq->mcq);
  847. wmb(); /* ensure HW sees CQ consumer before we post new buffers */
  848. ring->cons = cq->mcq.cons_index;
  849. mlx4_en_refill_rx_buffers(priv, ring);
  850. mlx4_en_update_rx_prod_db(ring);
  851. return polled;
  852. }
  853. void mlx4_en_rx_irq(struct mlx4_cq *mcq)
  854. {
  855. struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
  856. struct mlx4_en_priv *priv = netdev_priv(cq->dev);
  857. if (likely(priv->port_up))
  858. napi_schedule_irqoff(&cq->napi);
  859. else
  860. mlx4_en_arm_cq(priv, cq);
  861. }
  862. /* Rx CQ polling - called by NAPI */
  863. int mlx4_en_poll_rx_cq(struct napi_struct *napi, int budget)
  864. {
  865. struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi);
  866. struct net_device *dev = cq->dev;
  867. struct mlx4_en_priv *priv = netdev_priv(dev);
  868. int done;
  869. if (!mlx4_en_cq_lock_napi(cq))
  870. return budget;
  871. done = mlx4_en_process_rx_cq(dev, cq, budget);
  872. mlx4_en_cq_unlock_napi(cq);
  873. /* If we used up all the quota - we're probably not done yet... */
  874. if (done == budget) {
  875. int cpu_curr;
  876. const struct cpumask *aff;
  877. INC_PERF_COUNTER(priv->pstats.napi_quota);
  878. cpu_curr = smp_processor_id();
  879. aff = irq_desc_get_irq_data(cq->irq_desc)->affinity;
  880. if (likely(cpumask_test_cpu(cpu_curr, aff)))
  881. return budget;
  882. /* Current cpu is not according to smp_irq_affinity -
  883. * probably affinity changed. need to stop this NAPI
  884. * poll, and restart it on the right CPU
  885. */
  886. done = 0;
  887. }
  888. /* Done for now */
  889. napi_complete_done(napi, done);
  890. mlx4_en_arm_cq(priv, cq);
  891. return done;
  892. }
  893. static const int frag_sizes[] = {
  894. FRAG_SZ0,
  895. FRAG_SZ1,
  896. FRAG_SZ2,
  897. FRAG_SZ3
  898. };
  899. void mlx4_en_calc_rx_buf(struct net_device *dev)
  900. {
  901. struct mlx4_en_priv *priv = netdev_priv(dev);
  902. int eff_mtu = dev->mtu + ETH_HLEN + VLAN_HLEN;
  903. int buf_size = 0;
  904. int i = 0;
  905. while (buf_size < eff_mtu) {
  906. priv->frag_info[i].frag_size =
  907. (eff_mtu > buf_size + frag_sizes[i]) ?
  908. frag_sizes[i] : eff_mtu - buf_size;
  909. priv->frag_info[i].frag_prefix_size = buf_size;
  910. priv->frag_info[i].frag_stride =
  911. ALIGN(priv->frag_info[i].frag_size,
  912. SMP_CACHE_BYTES);
  913. buf_size += priv->frag_info[i].frag_size;
  914. i++;
  915. }
  916. priv->num_frags = i;
  917. priv->rx_skb_size = eff_mtu;
  918. priv->log_rx_info = ROUNDUP_LOG2(i * sizeof(struct mlx4_en_rx_alloc));
  919. en_dbg(DRV, priv, "Rx buffer scatter-list (effective-mtu:%d num_frags:%d):\n",
  920. eff_mtu, priv->num_frags);
  921. for (i = 0; i < priv->num_frags; i++) {
  922. en_err(priv,
  923. " frag:%d - size:%d prefix:%d stride:%d\n",
  924. i,
  925. priv->frag_info[i].frag_size,
  926. priv->frag_info[i].frag_prefix_size,
  927. priv->frag_info[i].frag_stride);
  928. }
  929. }
  930. /* RSS related functions */
  931. static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn,
  932. struct mlx4_en_rx_ring *ring,
  933. enum mlx4_qp_state *state,
  934. struct mlx4_qp *qp)
  935. {
  936. struct mlx4_en_dev *mdev = priv->mdev;
  937. struct mlx4_qp_context *context;
  938. int err = 0;
  939. context = kmalloc(sizeof(*context), GFP_KERNEL);
  940. if (!context)
  941. return -ENOMEM;
  942. err = mlx4_qp_alloc(mdev->dev, qpn, qp, GFP_KERNEL);
  943. if (err) {
  944. en_err(priv, "Failed to allocate qp #%x\n", qpn);
  945. goto out;
  946. }
  947. qp->event = mlx4_en_sqp_event;
  948. memset(context, 0, sizeof *context);
  949. mlx4_en_fill_qp_context(priv, ring->actual_size, ring->stride, 0, 0,
  950. qpn, ring->cqn, -1, context);
  951. context->db_rec_addr = cpu_to_be64(ring->wqres.db.dma);
  952. /* Cancel FCS removal if FW allows */
  953. if (mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP) {
  954. context->param3 |= cpu_to_be32(1 << 29);
  955. ring->fcs_del = ETH_FCS_LEN;
  956. } else
  957. ring->fcs_del = 0;
  958. err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, context, qp, state);
  959. if (err) {
  960. mlx4_qp_remove(mdev->dev, qp);
  961. mlx4_qp_free(mdev->dev, qp);
  962. }
  963. mlx4_en_update_rx_prod_db(ring);
  964. out:
  965. kfree(context);
  966. return err;
  967. }
  968. int mlx4_en_create_drop_qp(struct mlx4_en_priv *priv)
  969. {
  970. int err;
  971. u32 qpn;
  972. err = mlx4_qp_reserve_range(priv->mdev->dev, 1, 1, &qpn,
  973. MLX4_RESERVE_A0_QP);
  974. if (err) {
  975. en_err(priv, "Failed reserving drop qpn\n");
  976. return err;
  977. }
  978. err = mlx4_qp_alloc(priv->mdev->dev, qpn, &priv->drop_qp, GFP_KERNEL);
  979. if (err) {
  980. en_err(priv, "Failed allocating drop qp\n");
  981. mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
  982. return err;
  983. }
  984. return 0;
  985. }
  986. void mlx4_en_destroy_drop_qp(struct mlx4_en_priv *priv)
  987. {
  988. u32 qpn;
  989. qpn = priv->drop_qp.qpn;
  990. mlx4_qp_remove(priv->mdev->dev, &priv->drop_qp);
  991. mlx4_qp_free(priv->mdev->dev, &priv->drop_qp);
  992. mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
  993. }
  994. /* Allocate rx qp's and configure them according to rss map */
  995. int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv)
  996. {
  997. struct mlx4_en_dev *mdev = priv->mdev;
  998. struct mlx4_en_rss_map *rss_map = &priv->rss_map;
  999. struct mlx4_qp_context context;
  1000. struct mlx4_rss_context *rss_context;
  1001. int rss_rings;
  1002. void *ptr;
  1003. u8 rss_mask = (MLX4_RSS_IPV4 | MLX4_RSS_TCP_IPV4 | MLX4_RSS_IPV6 |
  1004. MLX4_RSS_TCP_IPV6);
  1005. int i, qpn;
  1006. int err = 0;
  1007. int good_qps = 0;
  1008. en_dbg(DRV, priv, "Configuring rss steering\n");
  1009. err = mlx4_qp_reserve_range(mdev->dev, priv->rx_ring_num,
  1010. priv->rx_ring_num,
  1011. &rss_map->base_qpn, 0);
  1012. if (err) {
  1013. en_err(priv, "Failed reserving %d qps\n", priv->rx_ring_num);
  1014. return err;
  1015. }
  1016. for (i = 0; i < priv->rx_ring_num; i++) {
  1017. qpn = rss_map->base_qpn + i;
  1018. err = mlx4_en_config_rss_qp(priv, qpn, priv->rx_ring[i],
  1019. &rss_map->state[i],
  1020. &rss_map->qps[i]);
  1021. if (err)
  1022. goto rss_err;
  1023. ++good_qps;
  1024. }
  1025. /* Configure RSS indirection qp */
  1026. err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, &rss_map->indir_qp, GFP_KERNEL);
  1027. if (err) {
  1028. en_err(priv, "Failed to allocate RSS indirection QP\n");
  1029. goto rss_err;
  1030. }
  1031. rss_map->indir_qp.event = mlx4_en_sqp_event;
  1032. mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn,
  1033. priv->rx_ring[0]->cqn, -1, &context);
  1034. if (!priv->prof->rss_rings || priv->prof->rss_rings > priv->rx_ring_num)
  1035. rss_rings = priv->rx_ring_num;
  1036. else
  1037. rss_rings = priv->prof->rss_rings;
  1038. ptr = ((void *) &context) + offsetof(struct mlx4_qp_context, pri_path)
  1039. + MLX4_RSS_OFFSET_IN_QPC_PRI_PATH;
  1040. rss_context = ptr;
  1041. rss_context->base_qpn = cpu_to_be32(ilog2(rss_rings) << 24 |
  1042. (rss_map->base_qpn));
  1043. rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn);
  1044. if (priv->mdev->profile.udp_rss) {
  1045. rss_mask |= MLX4_RSS_UDP_IPV4 | MLX4_RSS_UDP_IPV6;
  1046. rss_context->base_qpn_udp = rss_context->default_qpn;
  1047. }
  1048. if (mdev->dev->caps.tunnel_offload_mode == MLX4_TUNNEL_OFFLOAD_MODE_VXLAN) {
  1049. en_info(priv, "Setting RSS context tunnel type to RSS on inner headers\n");
  1050. rss_mask |= MLX4_RSS_BY_INNER_HEADERS;
  1051. }
  1052. rss_context->flags = rss_mask;
  1053. rss_context->hash_fn = MLX4_RSS_HASH_TOP;
  1054. if (priv->rss_hash_fn == ETH_RSS_HASH_XOR) {
  1055. rss_context->hash_fn = MLX4_RSS_HASH_XOR;
  1056. } else if (priv->rss_hash_fn == ETH_RSS_HASH_TOP) {
  1057. rss_context->hash_fn = MLX4_RSS_HASH_TOP;
  1058. memcpy(rss_context->rss_key, priv->rss_key,
  1059. MLX4_EN_RSS_KEY_SIZE);
  1060. netdev_rss_key_fill(rss_context->rss_key,
  1061. MLX4_EN_RSS_KEY_SIZE);
  1062. } else {
  1063. en_err(priv, "Unknown RSS hash function requested\n");
  1064. err = -EINVAL;
  1065. goto indir_err;
  1066. }
  1067. err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context,
  1068. &rss_map->indir_qp, &rss_map->indir_state);
  1069. if (err)
  1070. goto indir_err;
  1071. return 0;
  1072. indir_err:
  1073. mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
  1074. MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
  1075. mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
  1076. mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
  1077. rss_err:
  1078. for (i = 0; i < good_qps; i++) {
  1079. mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
  1080. MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
  1081. mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
  1082. mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
  1083. }
  1084. mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
  1085. return err;
  1086. }
  1087. void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv)
  1088. {
  1089. struct mlx4_en_dev *mdev = priv->mdev;
  1090. struct mlx4_en_rss_map *rss_map = &priv->rss_map;
  1091. int i;
  1092. mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
  1093. MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
  1094. mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
  1095. mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
  1096. for (i = 0; i < priv->rx_ring_num; i++) {
  1097. mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
  1098. MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
  1099. mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
  1100. mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
  1101. }
  1102. mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
  1103. }