mvneta.c 84 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126
  1. /*
  2. * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
  3. *
  4. * Copyright (C) 2012 Marvell
  5. *
  6. * Rami Rosen <rosenr@marvell.com>
  7. * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
  8. *
  9. * This file is licensed under the terms of the GNU General Public
  10. * License version 2. This program is licensed "as is" without any
  11. * warranty of any kind, whether express or implied.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/netdevice.h>
  15. #include <linux/etherdevice.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/skbuff.h>
  18. #include <linux/inetdevice.h>
  19. #include <linux/mbus.h>
  20. #include <linux/module.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/if_vlan.h>
  23. #include <net/ip.h>
  24. #include <net/ipv6.h>
  25. #include <linux/io.h>
  26. #include <net/tso.h>
  27. #include <linux/of.h>
  28. #include <linux/of_irq.h>
  29. #include <linux/of_mdio.h>
  30. #include <linux/of_net.h>
  31. #include <linux/of_address.h>
  32. #include <linux/phy.h>
  33. #include <linux/clk.h>
  34. /* Registers */
  35. #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
  36. #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
  37. #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
  38. #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
  39. #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
  40. #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
  41. #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
  42. #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
  43. #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
  44. #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
  45. #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
  46. #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
  47. #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
  48. #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
  49. #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
  50. #define MVNETA_PORT_RX_RESET 0x1cc0
  51. #define MVNETA_PORT_RX_DMA_RESET BIT(0)
  52. #define MVNETA_PHY_ADDR 0x2000
  53. #define MVNETA_PHY_ADDR_MASK 0x1f
  54. #define MVNETA_MBUS_RETRY 0x2010
  55. #define MVNETA_UNIT_INTR_CAUSE 0x2080
  56. #define MVNETA_UNIT_CONTROL 0x20B0
  57. #define MVNETA_PHY_POLLING_ENABLE BIT(1)
  58. #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
  59. #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
  60. #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
  61. #define MVNETA_BASE_ADDR_ENABLE 0x2290
  62. #define MVNETA_PORT_CONFIG 0x2400
  63. #define MVNETA_UNI_PROMISC_MODE BIT(0)
  64. #define MVNETA_DEF_RXQ(q) ((q) << 1)
  65. #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
  66. #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
  67. #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
  68. #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
  69. #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
  70. #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
  71. #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
  72. MVNETA_DEF_RXQ_ARP(q) | \
  73. MVNETA_DEF_RXQ_TCP(q) | \
  74. MVNETA_DEF_RXQ_UDP(q) | \
  75. MVNETA_DEF_RXQ_BPDU(q) | \
  76. MVNETA_TX_UNSET_ERR_SUM | \
  77. MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  78. #define MVNETA_PORT_CONFIG_EXTEND 0x2404
  79. #define MVNETA_MAC_ADDR_LOW 0x2414
  80. #define MVNETA_MAC_ADDR_HIGH 0x2418
  81. #define MVNETA_SDMA_CONFIG 0x241c
  82. #define MVNETA_SDMA_BRST_SIZE_16 4
  83. #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
  84. #define MVNETA_RX_NO_DATA_SWAP BIT(4)
  85. #define MVNETA_TX_NO_DATA_SWAP BIT(5)
  86. #define MVNETA_DESC_SWAP BIT(6)
  87. #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
  88. #define MVNETA_PORT_STATUS 0x2444
  89. #define MVNETA_TX_IN_PRGRS BIT(1)
  90. #define MVNETA_TX_FIFO_EMPTY BIT(8)
  91. #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
  92. #define MVNETA_SERDES_CFG 0x24A0
  93. #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
  94. #define MVNETA_QSGMII_SERDES_PROTO 0x0667
  95. #define MVNETA_TYPE_PRIO 0x24bc
  96. #define MVNETA_FORCE_UNI BIT(21)
  97. #define MVNETA_TXQ_CMD_1 0x24e4
  98. #define MVNETA_TXQ_CMD 0x2448
  99. #define MVNETA_TXQ_DISABLE_SHIFT 8
  100. #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
  101. #define MVNETA_ACC_MODE 0x2500
  102. #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
  103. #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
  104. #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
  105. #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
  106. /* Exception Interrupt Port/Queue Cause register */
  107. #define MVNETA_INTR_NEW_CAUSE 0x25a0
  108. #define MVNETA_INTR_NEW_MASK 0x25a4
  109. /* bits 0..7 = TXQ SENT, one bit per queue.
  110. * bits 8..15 = RXQ OCCUP, one bit per queue.
  111. * bits 16..23 = RXQ FREE, one bit per queue.
  112. * bit 29 = OLD_REG_SUM, see old reg ?
  113. * bit 30 = TX_ERR_SUM, one bit for 4 ports
  114. * bit 31 = MISC_SUM, one bit for 4 ports
  115. */
  116. #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
  117. #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
  118. #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
  119. #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
  120. #define MVNETA_INTR_OLD_CAUSE 0x25a8
  121. #define MVNETA_INTR_OLD_MASK 0x25ac
  122. /* Data Path Port/Queue Cause Register */
  123. #define MVNETA_INTR_MISC_CAUSE 0x25b0
  124. #define MVNETA_INTR_MISC_MASK 0x25b4
  125. #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
  126. #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
  127. #define MVNETA_CAUSE_PTP BIT(4)
  128. #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
  129. #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
  130. #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
  131. #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
  132. #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
  133. #define MVNETA_CAUSE_PRBS_ERR BIT(12)
  134. #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
  135. #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
  136. #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
  137. #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
  138. #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
  139. #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
  140. #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
  141. #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
  142. #define MVNETA_INTR_ENABLE 0x25b8
  143. #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
  144. #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF
  145. #define MVNETA_RXQ_CMD 0x2680
  146. #define MVNETA_RXQ_DISABLE_SHIFT 8
  147. #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
  148. #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
  149. #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
  150. #define MVNETA_GMAC_CTRL_0 0x2c00
  151. #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
  152. #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
  153. #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
  154. #define MVNETA_GMAC_CTRL_2 0x2c08
  155. #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
  156. #define MVNETA_GMAC2_PORT_RGMII BIT(4)
  157. #define MVNETA_GMAC2_PORT_RESET BIT(6)
  158. #define MVNETA_GMAC_STATUS 0x2c10
  159. #define MVNETA_GMAC_LINK_UP BIT(0)
  160. #define MVNETA_GMAC_SPEED_1000 BIT(1)
  161. #define MVNETA_GMAC_SPEED_100 BIT(2)
  162. #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
  163. #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
  164. #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
  165. #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
  166. #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
  167. #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
  168. #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
  169. #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
  170. #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
  171. #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
  172. #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
  173. #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
  174. #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
  175. #define MVNETA_MIB_COUNTERS_BASE 0x3080
  176. #define MVNETA_MIB_LATE_COLLISION 0x7c
  177. #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
  178. #define MVNETA_DA_FILT_OTH_MCAST 0x3500
  179. #define MVNETA_DA_FILT_UCAST_BASE 0x3600
  180. #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
  181. #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
  182. #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
  183. #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
  184. #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
  185. #define MVNETA_TXQ_DEC_SENT_SHIFT 16
  186. #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
  187. #define MVNETA_TXQ_SENT_DESC_SHIFT 16
  188. #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
  189. #define MVNETA_PORT_TX_RESET 0x3cf0
  190. #define MVNETA_PORT_TX_DMA_RESET BIT(0)
  191. #define MVNETA_TX_MTU 0x3e0c
  192. #define MVNETA_TX_TOKEN_SIZE 0x3e14
  193. #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
  194. #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
  195. #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
  196. #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
  197. /* Descriptor ring Macros */
  198. #define MVNETA_QUEUE_NEXT_DESC(q, index) \
  199. (((index) < (q)->last_desc) ? ((index) + 1) : 0)
  200. /* Various constants */
  201. /* Coalescing */
  202. #define MVNETA_TXDONE_COAL_PKTS 1
  203. #define MVNETA_RX_COAL_PKTS 32
  204. #define MVNETA_RX_COAL_USEC 100
  205. /* The two bytes Marvell header. Either contains a special value used
  206. * by Marvell switches when a specific hardware mode is enabled (not
  207. * supported by this driver) or is filled automatically by zeroes on
  208. * the RX side. Those two bytes being at the front of the Ethernet
  209. * header, they allow to have the IP header aligned on a 4 bytes
  210. * boundary automatically: the hardware skips those two bytes on its
  211. * own.
  212. */
  213. #define MVNETA_MH_SIZE 2
  214. #define MVNETA_VLAN_TAG_LEN 4
  215. #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
  216. #define MVNETA_TX_CSUM_MAX_SIZE 9800
  217. #define MVNETA_ACC_MODE_EXT 1
  218. /* Timeout constants */
  219. #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
  220. #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
  221. #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
  222. #define MVNETA_TX_MTU_MAX 0x3ffff
  223. /* TSO header size */
  224. #define TSO_HEADER_SIZE 128
  225. /* Max number of Rx descriptors */
  226. #define MVNETA_MAX_RXD 128
  227. /* Max number of Tx descriptors */
  228. #define MVNETA_MAX_TXD 532
  229. /* Max number of allowed TCP segments for software TSO */
  230. #define MVNETA_MAX_TSO_SEGS 100
  231. #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
  232. /* descriptor aligned size */
  233. #define MVNETA_DESC_ALIGNED_SIZE 32
  234. #define MVNETA_RX_PKT_SIZE(mtu) \
  235. ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
  236. ETH_HLEN + ETH_FCS_LEN, \
  237. MVNETA_CPU_D_CACHE_LINE_SIZE)
  238. #define IS_TSO_HEADER(txq, addr) \
  239. ((addr >= txq->tso_hdrs_phys) && \
  240. (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
  241. #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
  242. struct mvneta_pcpu_stats {
  243. struct u64_stats_sync syncp;
  244. u64 rx_packets;
  245. u64 rx_bytes;
  246. u64 tx_packets;
  247. u64 tx_bytes;
  248. };
  249. struct mvneta_port {
  250. int pkt_size;
  251. unsigned int frag_size;
  252. void __iomem *base;
  253. struct mvneta_rx_queue *rxqs;
  254. struct mvneta_tx_queue *txqs;
  255. struct net_device *dev;
  256. u32 cause_rx_tx;
  257. struct napi_struct napi;
  258. /* Core clock */
  259. struct clk *clk;
  260. u8 mcast_count[256];
  261. u16 tx_ring_size;
  262. u16 rx_ring_size;
  263. struct mvneta_pcpu_stats *stats;
  264. struct mii_bus *mii_bus;
  265. struct phy_device *phy_dev;
  266. phy_interface_t phy_interface;
  267. struct device_node *phy_node;
  268. unsigned int link;
  269. unsigned int duplex;
  270. unsigned int speed;
  271. };
  272. /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
  273. * layout of the transmit and reception DMA descriptors, and their
  274. * layout is therefore defined by the hardware design
  275. */
  276. #define MVNETA_TX_L3_OFF_SHIFT 0
  277. #define MVNETA_TX_IP_HLEN_SHIFT 8
  278. #define MVNETA_TX_L4_UDP BIT(16)
  279. #define MVNETA_TX_L3_IP6 BIT(17)
  280. #define MVNETA_TXD_IP_CSUM BIT(18)
  281. #define MVNETA_TXD_Z_PAD BIT(19)
  282. #define MVNETA_TXD_L_DESC BIT(20)
  283. #define MVNETA_TXD_F_DESC BIT(21)
  284. #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
  285. MVNETA_TXD_L_DESC | \
  286. MVNETA_TXD_F_DESC)
  287. #define MVNETA_TX_L4_CSUM_FULL BIT(30)
  288. #define MVNETA_TX_L4_CSUM_NOT BIT(31)
  289. #define MVNETA_RXD_ERR_CRC 0x0
  290. #define MVNETA_RXD_ERR_SUMMARY BIT(16)
  291. #define MVNETA_RXD_ERR_OVERRUN BIT(17)
  292. #define MVNETA_RXD_ERR_LEN BIT(18)
  293. #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
  294. #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
  295. #define MVNETA_RXD_L3_IP4 BIT(25)
  296. #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
  297. #define MVNETA_RXD_L4_CSUM_OK BIT(30)
  298. #if defined(__LITTLE_ENDIAN)
  299. struct mvneta_tx_desc {
  300. u32 command; /* Options used by HW for packet transmitting.*/
  301. u16 reserverd1; /* csum_l4 (for future use) */
  302. u16 data_size; /* Data size of transmitted packet in bytes */
  303. u32 buf_phys_addr; /* Physical addr of transmitted buffer */
  304. u32 reserved2; /* hw_cmd - (for future use, PMT) */
  305. u32 reserved3[4]; /* Reserved - (for future use) */
  306. };
  307. struct mvneta_rx_desc {
  308. u32 status; /* Info about received packet */
  309. u16 reserved1; /* pnc_info - (for future use, PnC) */
  310. u16 data_size; /* Size of received packet in bytes */
  311. u32 buf_phys_addr; /* Physical address of the buffer */
  312. u32 reserved2; /* pnc_flow_id (for future use, PnC) */
  313. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  314. u16 reserved3; /* prefetch_cmd, for future use */
  315. u16 reserved4; /* csum_l4 - (for future use, PnC) */
  316. u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
  317. u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
  318. };
  319. #else
  320. struct mvneta_tx_desc {
  321. u16 data_size; /* Data size of transmitted packet in bytes */
  322. u16 reserverd1; /* csum_l4 (for future use) */
  323. u32 command; /* Options used by HW for packet transmitting.*/
  324. u32 reserved2; /* hw_cmd - (for future use, PMT) */
  325. u32 buf_phys_addr; /* Physical addr of transmitted buffer */
  326. u32 reserved3[4]; /* Reserved - (for future use) */
  327. };
  328. struct mvneta_rx_desc {
  329. u16 data_size; /* Size of received packet in bytes */
  330. u16 reserved1; /* pnc_info - (for future use, PnC) */
  331. u32 status; /* Info about received packet */
  332. u32 reserved2; /* pnc_flow_id (for future use, PnC) */
  333. u32 buf_phys_addr; /* Physical address of the buffer */
  334. u16 reserved4; /* csum_l4 - (for future use, PnC) */
  335. u16 reserved3; /* prefetch_cmd, for future use */
  336. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  337. u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
  338. u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
  339. };
  340. #endif
  341. struct mvneta_tx_queue {
  342. /* Number of this TX queue, in the range 0-7 */
  343. u8 id;
  344. /* Number of TX DMA descriptors in the descriptor ring */
  345. int size;
  346. /* Number of currently used TX DMA descriptor in the
  347. * descriptor ring
  348. */
  349. int count;
  350. int tx_stop_threshold;
  351. int tx_wake_threshold;
  352. /* Array of transmitted skb */
  353. struct sk_buff **tx_skb;
  354. /* Index of last TX DMA descriptor that was inserted */
  355. int txq_put_index;
  356. /* Index of the TX DMA descriptor to be cleaned up */
  357. int txq_get_index;
  358. u32 done_pkts_coal;
  359. /* Virtual address of the TX DMA descriptors array */
  360. struct mvneta_tx_desc *descs;
  361. /* DMA address of the TX DMA descriptors array */
  362. dma_addr_t descs_phys;
  363. /* Index of the last TX DMA descriptor */
  364. int last_desc;
  365. /* Index of the next TX DMA descriptor to process */
  366. int next_desc_to_proc;
  367. /* DMA buffers for TSO headers */
  368. char *tso_hdrs;
  369. /* DMA address of TSO headers */
  370. dma_addr_t tso_hdrs_phys;
  371. };
  372. struct mvneta_rx_queue {
  373. /* rx queue number, in the range 0-7 */
  374. u8 id;
  375. /* num of rx descriptors in the rx descriptor ring */
  376. int size;
  377. /* counter of times when mvneta_refill() failed */
  378. int missed;
  379. u32 pkts_coal;
  380. u32 time_coal;
  381. /* Virtual address of the RX DMA descriptors array */
  382. struct mvneta_rx_desc *descs;
  383. /* DMA address of the RX DMA descriptors array */
  384. dma_addr_t descs_phys;
  385. /* Index of the last RX DMA descriptor */
  386. int last_desc;
  387. /* Index of the next RX DMA descriptor to process */
  388. int next_desc_to_proc;
  389. };
  390. /* The hardware supports eight (8) rx queues, but we are only allowing
  391. * the first one to be used. Therefore, let's just allocate one queue.
  392. */
  393. static int rxq_number = 1;
  394. static int txq_number = 8;
  395. static int rxq_def;
  396. static int rx_copybreak __read_mostly = 256;
  397. #define MVNETA_DRIVER_NAME "mvneta"
  398. #define MVNETA_DRIVER_VERSION "1.0"
  399. /* Utility/helper methods */
  400. /* Write helper method */
  401. static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
  402. {
  403. writel(data, pp->base + offset);
  404. }
  405. /* Read helper method */
  406. static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
  407. {
  408. return readl(pp->base + offset);
  409. }
  410. /* Increment txq get counter */
  411. static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
  412. {
  413. txq->txq_get_index++;
  414. if (txq->txq_get_index == txq->size)
  415. txq->txq_get_index = 0;
  416. }
  417. /* Increment txq put counter */
  418. static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
  419. {
  420. txq->txq_put_index++;
  421. if (txq->txq_put_index == txq->size)
  422. txq->txq_put_index = 0;
  423. }
  424. /* Clear all MIB counters */
  425. static void mvneta_mib_counters_clear(struct mvneta_port *pp)
  426. {
  427. int i;
  428. u32 dummy;
  429. /* Perform dummy reads from MIB counters */
  430. for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
  431. dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
  432. }
  433. /* Get System Network Statistics */
  434. struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
  435. struct rtnl_link_stats64 *stats)
  436. {
  437. struct mvneta_port *pp = netdev_priv(dev);
  438. unsigned int start;
  439. int cpu;
  440. for_each_possible_cpu(cpu) {
  441. struct mvneta_pcpu_stats *cpu_stats;
  442. u64 rx_packets;
  443. u64 rx_bytes;
  444. u64 tx_packets;
  445. u64 tx_bytes;
  446. cpu_stats = per_cpu_ptr(pp->stats, cpu);
  447. do {
  448. start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
  449. rx_packets = cpu_stats->rx_packets;
  450. rx_bytes = cpu_stats->rx_bytes;
  451. tx_packets = cpu_stats->tx_packets;
  452. tx_bytes = cpu_stats->tx_bytes;
  453. } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
  454. stats->rx_packets += rx_packets;
  455. stats->rx_bytes += rx_bytes;
  456. stats->tx_packets += tx_packets;
  457. stats->tx_bytes += tx_bytes;
  458. }
  459. stats->rx_errors = dev->stats.rx_errors;
  460. stats->rx_dropped = dev->stats.rx_dropped;
  461. stats->tx_dropped = dev->stats.tx_dropped;
  462. return stats;
  463. }
  464. /* Rx descriptors helper methods */
  465. /* Checks whether the RX descriptor having this status is both the first
  466. * and the last descriptor for the RX packet. Each RX packet is currently
  467. * received through a single RX descriptor, so not having each RX
  468. * descriptor with its first and last bits set is an error
  469. */
  470. static int mvneta_rxq_desc_is_first_last(u32 status)
  471. {
  472. return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
  473. MVNETA_RXD_FIRST_LAST_DESC;
  474. }
  475. /* Add number of descriptors ready to receive new packets */
  476. static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
  477. struct mvneta_rx_queue *rxq,
  478. int ndescs)
  479. {
  480. /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
  481. * be added at once
  482. */
  483. while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
  484. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  485. (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
  486. MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  487. ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
  488. }
  489. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  490. (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  491. }
  492. /* Get number of RX descriptors occupied by received packets */
  493. static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
  494. struct mvneta_rx_queue *rxq)
  495. {
  496. u32 val;
  497. val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
  498. return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
  499. }
  500. /* Update num of rx desc called upon return from rx path or
  501. * from mvneta_rxq_drop_pkts().
  502. */
  503. static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
  504. struct mvneta_rx_queue *rxq,
  505. int rx_done, int rx_filled)
  506. {
  507. u32 val;
  508. if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
  509. val = rx_done |
  510. (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
  511. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  512. return;
  513. }
  514. /* Only 255 descriptors can be added at once */
  515. while ((rx_done > 0) || (rx_filled > 0)) {
  516. if (rx_done <= 0xff) {
  517. val = rx_done;
  518. rx_done = 0;
  519. } else {
  520. val = 0xff;
  521. rx_done -= 0xff;
  522. }
  523. if (rx_filled <= 0xff) {
  524. val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  525. rx_filled = 0;
  526. } else {
  527. val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  528. rx_filled -= 0xff;
  529. }
  530. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  531. }
  532. }
  533. /* Get pointer to next RX descriptor to be processed by SW */
  534. static struct mvneta_rx_desc *
  535. mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
  536. {
  537. int rx_desc = rxq->next_desc_to_proc;
  538. rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
  539. prefetch(rxq->descs + rxq->next_desc_to_proc);
  540. return rxq->descs + rx_desc;
  541. }
  542. /* Change maximum receive size of the port. */
  543. static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
  544. {
  545. u32 val;
  546. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  547. val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
  548. val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
  549. MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
  550. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  551. }
  552. /* Set rx queue offset */
  553. static void mvneta_rxq_offset_set(struct mvneta_port *pp,
  554. struct mvneta_rx_queue *rxq,
  555. int offset)
  556. {
  557. u32 val;
  558. val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
  559. val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
  560. /* Offset is in */
  561. val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
  562. mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
  563. }
  564. /* Tx descriptors helper methods */
  565. /* Update HW with number of TX descriptors to be sent */
  566. static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
  567. struct mvneta_tx_queue *txq,
  568. int pend_desc)
  569. {
  570. u32 val;
  571. /* Only 255 descriptors can be added at once ; Assume caller
  572. * process TX desriptors in quanta less than 256
  573. */
  574. val = pend_desc;
  575. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  576. }
  577. /* Get pointer to next TX descriptor to be processed (send) by HW */
  578. static struct mvneta_tx_desc *
  579. mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
  580. {
  581. int tx_desc = txq->next_desc_to_proc;
  582. txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
  583. return txq->descs + tx_desc;
  584. }
  585. /* Release the last allocated TX descriptor. Useful to handle DMA
  586. * mapping failures in the TX path.
  587. */
  588. static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
  589. {
  590. if (txq->next_desc_to_proc == 0)
  591. txq->next_desc_to_proc = txq->last_desc - 1;
  592. else
  593. txq->next_desc_to_proc--;
  594. }
  595. /* Set rxq buf size */
  596. static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
  597. struct mvneta_rx_queue *rxq,
  598. int buf_size)
  599. {
  600. u32 val;
  601. val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
  602. val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
  603. val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
  604. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
  605. }
  606. /* Disable buffer management (BM) */
  607. static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
  608. struct mvneta_rx_queue *rxq)
  609. {
  610. u32 val;
  611. val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
  612. val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
  613. mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
  614. }
  615. /* Start the Ethernet port RX and TX activity */
  616. static void mvneta_port_up(struct mvneta_port *pp)
  617. {
  618. int queue;
  619. u32 q_map;
  620. /* Enable all initialized TXs. */
  621. mvneta_mib_counters_clear(pp);
  622. q_map = 0;
  623. for (queue = 0; queue < txq_number; queue++) {
  624. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  625. if (txq->descs != NULL)
  626. q_map |= (1 << queue);
  627. }
  628. mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
  629. /* Enable all initialized RXQs. */
  630. q_map = 0;
  631. for (queue = 0; queue < rxq_number; queue++) {
  632. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  633. if (rxq->descs != NULL)
  634. q_map |= (1 << queue);
  635. }
  636. mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
  637. }
  638. /* Stop the Ethernet port activity */
  639. static void mvneta_port_down(struct mvneta_port *pp)
  640. {
  641. u32 val;
  642. int count;
  643. /* Stop Rx port activity. Check port Rx activity. */
  644. val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
  645. /* Issue stop command for active channels only */
  646. if (val != 0)
  647. mvreg_write(pp, MVNETA_RXQ_CMD,
  648. val << MVNETA_RXQ_DISABLE_SHIFT);
  649. /* Wait for all Rx activity to terminate. */
  650. count = 0;
  651. do {
  652. if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
  653. netdev_warn(pp->dev,
  654. "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
  655. val);
  656. break;
  657. }
  658. mdelay(1);
  659. val = mvreg_read(pp, MVNETA_RXQ_CMD);
  660. } while (val & 0xff);
  661. /* Stop Tx port activity. Check port Tx activity. Issue stop
  662. * command for active channels only
  663. */
  664. val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
  665. if (val != 0)
  666. mvreg_write(pp, MVNETA_TXQ_CMD,
  667. (val << MVNETA_TXQ_DISABLE_SHIFT));
  668. /* Wait for all Tx activity to terminate. */
  669. count = 0;
  670. do {
  671. if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
  672. netdev_warn(pp->dev,
  673. "TIMEOUT for TX stopped status=0x%08x\n",
  674. val);
  675. break;
  676. }
  677. mdelay(1);
  678. /* Check TX Command reg that all Txqs are stopped */
  679. val = mvreg_read(pp, MVNETA_TXQ_CMD);
  680. } while (val & 0xff);
  681. /* Double check to verify that TX FIFO is empty */
  682. count = 0;
  683. do {
  684. if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
  685. netdev_warn(pp->dev,
  686. "TX FIFO empty timeout status=0x08%x\n",
  687. val);
  688. break;
  689. }
  690. mdelay(1);
  691. val = mvreg_read(pp, MVNETA_PORT_STATUS);
  692. } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
  693. (val & MVNETA_TX_IN_PRGRS));
  694. udelay(200);
  695. }
  696. /* Enable the port by setting the port enable bit of the MAC control register */
  697. static void mvneta_port_enable(struct mvneta_port *pp)
  698. {
  699. u32 val;
  700. /* Enable port */
  701. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  702. val |= MVNETA_GMAC0_PORT_ENABLE;
  703. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  704. }
  705. /* Disable the port and wait for about 200 usec before retuning */
  706. static void mvneta_port_disable(struct mvneta_port *pp)
  707. {
  708. u32 val;
  709. /* Reset the Enable bit in the Serial Control Register */
  710. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  711. val &= ~MVNETA_GMAC0_PORT_ENABLE;
  712. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  713. udelay(200);
  714. }
  715. /* Multicast tables methods */
  716. /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
  717. static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
  718. {
  719. int offset;
  720. u32 val;
  721. if (queue == -1) {
  722. val = 0;
  723. } else {
  724. val = 0x1 | (queue << 1);
  725. val |= (val << 24) | (val << 16) | (val << 8);
  726. }
  727. for (offset = 0; offset <= 0xc; offset += 4)
  728. mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
  729. }
  730. /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
  731. static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
  732. {
  733. int offset;
  734. u32 val;
  735. if (queue == -1) {
  736. val = 0;
  737. } else {
  738. val = 0x1 | (queue << 1);
  739. val |= (val << 24) | (val << 16) | (val << 8);
  740. }
  741. for (offset = 0; offset <= 0xfc; offset += 4)
  742. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
  743. }
  744. /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
  745. static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
  746. {
  747. int offset;
  748. u32 val;
  749. if (queue == -1) {
  750. memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
  751. val = 0;
  752. } else {
  753. memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
  754. val = 0x1 | (queue << 1);
  755. val |= (val << 24) | (val << 16) | (val << 8);
  756. }
  757. for (offset = 0; offset <= 0xfc; offset += 4)
  758. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
  759. }
  760. /* This method sets defaults to the NETA port:
  761. * Clears interrupt Cause and Mask registers.
  762. * Clears all MAC tables.
  763. * Sets defaults to all registers.
  764. * Resets RX and TX descriptor rings.
  765. * Resets PHY.
  766. * This method can be called after mvneta_port_down() to return the port
  767. * settings to defaults.
  768. */
  769. static void mvneta_defaults_set(struct mvneta_port *pp)
  770. {
  771. int cpu;
  772. int queue;
  773. u32 val;
  774. /* Clear all Cause registers */
  775. mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
  776. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  777. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  778. /* Mask all interrupts */
  779. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  780. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  781. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  782. mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
  783. /* Enable MBUS Retry bit16 */
  784. mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
  785. /* Set CPU queue access map - all CPUs have access to all RX
  786. * queues and to all TX queues
  787. */
  788. for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
  789. mvreg_write(pp, MVNETA_CPU_MAP(cpu),
  790. (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
  791. MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
  792. /* Reset RX and TX DMAs */
  793. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  794. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  795. /* Disable Legacy WRR, Disable EJP, Release from reset */
  796. mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
  797. for (queue = 0; queue < txq_number; queue++) {
  798. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
  799. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
  800. }
  801. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  802. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  803. /* Set Port Acceleration Mode */
  804. val = MVNETA_ACC_MODE_EXT;
  805. mvreg_write(pp, MVNETA_ACC_MODE, val);
  806. /* Update val of portCfg register accordingly with all RxQueue types */
  807. val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
  808. mvreg_write(pp, MVNETA_PORT_CONFIG, val);
  809. val = 0;
  810. mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
  811. mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
  812. /* Build PORT_SDMA_CONFIG_REG */
  813. val = 0;
  814. /* Default burst size */
  815. val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  816. val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  817. val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
  818. #if defined(__BIG_ENDIAN)
  819. val |= MVNETA_DESC_SWAP;
  820. #endif
  821. /* Assign port SDMA configuration */
  822. mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
  823. /* Disable PHY polling in hardware, since we're using the
  824. * kernel phylib to do this.
  825. */
  826. val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
  827. val &= ~MVNETA_PHY_POLLING_ENABLE;
  828. mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
  829. mvneta_set_ucast_table(pp, -1);
  830. mvneta_set_special_mcast_table(pp, -1);
  831. mvneta_set_other_mcast_table(pp, -1);
  832. /* Set port interrupt enable register - default enable all */
  833. mvreg_write(pp, MVNETA_INTR_ENABLE,
  834. (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
  835. | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
  836. }
  837. /* Set max sizes for tx queues */
  838. static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
  839. {
  840. u32 val, size, mtu;
  841. int queue;
  842. mtu = max_tx_size * 8;
  843. if (mtu > MVNETA_TX_MTU_MAX)
  844. mtu = MVNETA_TX_MTU_MAX;
  845. /* Set MTU */
  846. val = mvreg_read(pp, MVNETA_TX_MTU);
  847. val &= ~MVNETA_TX_MTU_MAX;
  848. val |= mtu;
  849. mvreg_write(pp, MVNETA_TX_MTU, val);
  850. /* TX token size and all TXQs token size must be larger that MTU */
  851. val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
  852. size = val & MVNETA_TX_TOKEN_SIZE_MAX;
  853. if (size < mtu) {
  854. size = mtu;
  855. val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
  856. val |= size;
  857. mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
  858. }
  859. for (queue = 0; queue < txq_number; queue++) {
  860. val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
  861. size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
  862. if (size < mtu) {
  863. size = mtu;
  864. val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
  865. val |= size;
  866. mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
  867. }
  868. }
  869. }
  870. /* Set unicast address */
  871. static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
  872. int queue)
  873. {
  874. unsigned int unicast_reg;
  875. unsigned int tbl_offset;
  876. unsigned int reg_offset;
  877. /* Locate the Unicast table entry */
  878. last_nibble = (0xf & last_nibble);
  879. /* offset from unicast tbl base */
  880. tbl_offset = (last_nibble / 4) * 4;
  881. /* offset within the above reg */
  882. reg_offset = last_nibble % 4;
  883. unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
  884. if (queue == -1) {
  885. /* Clear accepts frame bit at specified unicast DA tbl entry */
  886. unicast_reg &= ~(0xff << (8 * reg_offset));
  887. } else {
  888. unicast_reg &= ~(0xff << (8 * reg_offset));
  889. unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  890. }
  891. mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
  892. }
  893. /* Set mac address */
  894. static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
  895. int queue)
  896. {
  897. unsigned int mac_h;
  898. unsigned int mac_l;
  899. if (queue != -1) {
  900. mac_l = (addr[4] << 8) | (addr[5]);
  901. mac_h = (addr[0] << 24) | (addr[1] << 16) |
  902. (addr[2] << 8) | (addr[3] << 0);
  903. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
  904. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
  905. }
  906. /* Accept frames of this address */
  907. mvneta_set_ucast_addr(pp, addr[5], queue);
  908. }
  909. /* Set the number of packets that will be received before RX interrupt
  910. * will be generated by HW.
  911. */
  912. static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
  913. struct mvneta_rx_queue *rxq, u32 value)
  914. {
  915. mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
  916. value | MVNETA_RXQ_NON_OCCUPIED(0));
  917. rxq->pkts_coal = value;
  918. }
  919. /* Set the time delay in usec before RX interrupt will be generated by
  920. * HW.
  921. */
  922. static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
  923. struct mvneta_rx_queue *rxq, u32 value)
  924. {
  925. u32 val;
  926. unsigned long clk_rate;
  927. clk_rate = clk_get_rate(pp->clk);
  928. val = (clk_rate / 1000000) * value;
  929. mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
  930. rxq->time_coal = value;
  931. }
  932. /* Set threshold for TX_DONE pkts coalescing */
  933. static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
  934. struct mvneta_tx_queue *txq, u32 value)
  935. {
  936. u32 val;
  937. val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
  938. val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
  939. val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
  940. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
  941. txq->done_pkts_coal = value;
  942. }
  943. /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
  944. static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
  945. u32 phys_addr, u32 cookie)
  946. {
  947. rx_desc->buf_cookie = cookie;
  948. rx_desc->buf_phys_addr = phys_addr;
  949. }
  950. /* Decrement sent descriptors counter */
  951. static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
  952. struct mvneta_tx_queue *txq,
  953. int sent_desc)
  954. {
  955. u32 val;
  956. /* Only 255 TX descriptors can be updated at once */
  957. while (sent_desc > 0xff) {
  958. val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
  959. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  960. sent_desc = sent_desc - 0xff;
  961. }
  962. val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
  963. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  964. }
  965. /* Get number of TX descriptors already sent by HW */
  966. static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
  967. struct mvneta_tx_queue *txq)
  968. {
  969. u32 val;
  970. int sent_desc;
  971. val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
  972. sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
  973. MVNETA_TXQ_SENT_DESC_SHIFT;
  974. return sent_desc;
  975. }
  976. /* Get number of sent descriptors and decrement counter.
  977. * The number of sent descriptors is returned.
  978. */
  979. static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
  980. struct mvneta_tx_queue *txq)
  981. {
  982. int sent_desc;
  983. /* Get number of sent descriptors */
  984. sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
  985. /* Decrement sent descriptors counter */
  986. if (sent_desc)
  987. mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
  988. return sent_desc;
  989. }
  990. /* Set TXQ descriptors fields relevant for CSUM calculation */
  991. static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
  992. int ip_hdr_len, int l4_proto)
  993. {
  994. u32 command;
  995. /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
  996. * G_L4_chk, L4_type; required only for checksum
  997. * calculation
  998. */
  999. command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
  1000. command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
  1001. if (l3_proto == htons(ETH_P_IP))
  1002. command |= MVNETA_TXD_IP_CSUM;
  1003. else
  1004. command |= MVNETA_TX_L3_IP6;
  1005. if (l4_proto == IPPROTO_TCP)
  1006. command |= MVNETA_TX_L4_CSUM_FULL;
  1007. else if (l4_proto == IPPROTO_UDP)
  1008. command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
  1009. else
  1010. command |= MVNETA_TX_L4_CSUM_NOT;
  1011. return command;
  1012. }
  1013. /* Display more error info */
  1014. static void mvneta_rx_error(struct mvneta_port *pp,
  1015. struct mvneta_rx_desc *rx_desc)
  1016. {
  1017. u32 status = rx_desc->status;
  1018. if (!mvneta_rxq_desc_is_first_last(status)) {
  1019. netdev_err(pp->dev,
  1020. "bad rx status %08x (buffer oversize), size=%d\n",
  1021. status, rx_desc->data_size);
  1022. return;
  1023. }
  1024. switch (status & MVNETA_RXD_ERR_CODE_MASK) {
  1025. case MVNETA_RXD_ERR_CRC:
  1026. netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
  1027. status, rx_desc->data_size);
  1028. break;
  1029. case MVNETA_RXD_ERR_OVERRUN:
  1030. netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
  1031. status, rx_desc->data_size);
  1032. break;
  1033. case MVNETA_RXD_ERR_LEN:
  1034. netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
  1035. status, rx_desc->data_size);
  1036. break;
  1037. case MVNETA_RXD_ERR_RESOURCE:
  1038. netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
  1039. status, rx_desc->data_size);
  1040. break;
  1041. }
  1042. }
  1043. /* Handle RX checksum offload based on the descriptor's status */
  1044. static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
  1045. struct sk_buff *skb)
  1046. {
  1047. if ((status & MVNETA_RXD_L3_IP4) &&
  1048. (status & MVNETA_RXD_L4_CSUM_OK)) {
  1049. skb->csum = 0;
  1050. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1051. return;
  1052. }
  1053. skb->ip_summed = CHECKSUM_NONE;
  1054. }
  1055. /* Return tx queue pointer (find last set bit) according to <cause> returned
  1056. * form tx_done reg. <cause> must not be null. The return value is always a
  1057. * valid queue for matching the first one found in <cause>.
  1058. */
  1059. static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
  1060. u32 cause)
  1061. {
  1062. int queue = fls(cause) - 1;
  1063. return &pp->txqs[queue];
  1064. }
  1065. /* Free tx queue skbuffs */
  1066. static void mvneta_txq_bufs_free(struct mvneta_port *pp,
  1067. struct mvneta_tx_queue *txq, int num)
  1068. {
  1069. int i;
  1070. for (i = 0; i < num; i++) {
  1071. struct mvneta_tx_desc *tx_desc = txq->descs +
  1072. txq->txq_get_index;
  1073. struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
  1074. mvneta_txq_inc_get(txq);
  1075. if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
  1076. dma_unmap_single(pp->dev->dev.parent,
  1077. tx_desc->buf_phys_addr,
  1078. tx_desc->data_size, DMA_TO_DEVICE);
  1079. if (!skb)
  1080. continue;
  1081. dev_kfree_skb_any(skb);
  1082. }
  1083. }
  1084. /* Handle end of transmission */
  1085. static void mvneta_txq_done(struct mvneta_port *pp,
  1086. struct mvneta_tx_queue *txq)
  1087. {
  1088. struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
  1089. int tx_done;
  1090. tx_done = mvneta_txq_sent_desc_proc(pp, txq);
  1091. if (!tx_done)
  1092. return;
  1093. mvneta_txq_bufs_free(pp, txq, tx_done);
  1094. txq->count -= tx_done;
  1095. if (netif_tx_queue_stopped(nq)) {
  1096. if (txq->count <= txq->tx_wake_threshold)
  1097. netif_tx_wake_queue(nq);
  1098. }
  1099. }
  1100. static void *mvneta_frag_alloc(const struct mvneta_port *pp)
  1101. {
  1102. if (likely(pp->frag_size <= PAGE_SIZE))
  1103. return netdev_alloc_frag(pp->frag_size);
  1104. else
  1105. return kmalloc(pp->frag_size, GFP_ATOMIC);
  1106. }
  1107. static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
  1108. {
  1109. if (likely(pp->frag_size <= PAGE_SIZE))
  1110. put_page(virt_to_head_page(data));
  1111. else
  1112. kfree(data);
  1113. }
  1114. /* Refill processing */
  1115. static int mvneta_rx_refill(struct mvneta_port *pp,
  1116. struct mvneta_rx_desc *rx_desc)
  1117. {
  1118. dma_addr_t phys_addr;
  1119. void *data;
  1120. data = mvneta_frag_alloc(pp);
  1121. if (!data)
  1122. return -ENOMEM;
  1123. phys_addr = dma_map_single(pp->dev->dev.parent, data,
  1124. MVNETA_RX_BUF_SIZE(pp->pkt_size),
  1125. DMA_FROM_DEVICE);
  1126. if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
  1127. mvneta_frag_free(pp, data);
  1128. return -ENOMEM;
  1129. }
  1130. mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
  1131. return 0;
  1132. }
  1133. /* Handle tx checksum */
  1134. static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
  1135. {
  1136. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1137. int ip_hdr_len = 0;
  1138. __be16 l3_proto = vlan_get_protocol(skb);
  1139. u8 l4_proto;
  1140. if (l3_proto == htons(ETH_P_IP)) {
  1141. struct iphdr *ip4h = ip_hdr(skb);
  1142. /* Calculate IPv4 checksum and L4 checksum */
  1143. ip_hdr_len = ip4h->ihl;
  1144. l4_proto = ip4h->protocol;
  1145. } else if (l3_proto == htons(ETH_P_IPV6)) {
  1146. struct ipv6hdr *ip6h = ipv6_hdr(skb);
  1147. /* Read l4_protocol from one of IPv6 extra headers */
  1148. if (skb_network_header_len(skb) > 0)
  1149. ip_hdr_len = (skb_network_header_len(skb) >> 2);
  1150. l4_proto = ip6h->nexthdr;
  1151. } else
  1152. return MVNETA_TX_L4_CSUM_NOT;
  1153. return mvneta_txq_desc_csum(skb_network_offset(skb),
  1154. l3_proto, ip_hdr_len, l4_proto);
  1155. }
  1156. return MVNETA_TX_L4_CSUM_NOT;
  1157. }
  1158. /* Returns rx queue pointer (find last set bit) according to causeRxTx
  1159. * value
  1160. */
  1161. static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
  1162. u32 cause)
  1163. {
  1164. int queue = fls(cause >> 8) - 1;
  1165. return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
  1166. }
  1167. /* Drop packets received by the RXQ and free buffers */
  1168. static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
  1169. struct mvneta_rx_queue *rxq)
  1170. {
  1171. int rx_done, i;
  1172. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1173. for (i = 0; i < rxq->size; i++) {
  1174. struct mvneta_rx_desc *rx_desc = rxq->descs + i;
  1175. void *data = (void *)rx_desc->buf_cookie;
  1176. mvneta_frag_free(pp, data);
  1177. dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
  1178. MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
  1179. }
  1180. if (rx_done)
  1181. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
  1182. }
  1183. /* Main rx processing */
  1184. static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
  1185. struct mvneta_rx_queue *rxq)
  1186. {
  1187. struct net_device *dev = pp->dev;
  1188. int rx_done, rx_filled;
  1189. u32 rcvd_pkts = 0;
  1190. u32 rcvd_bytes = 0;
  1191. /* Get number of received packets */
  1192. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1193. if (rx_todo > rx_done)
  1194. rx_todo = rx_done;
  1195. rx_done = 0;
  1196. rx_filled = 0;
  1197. /* Fairness NAPI loop */
  1198. while (rx_done < rx_todo) {
  1199. struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
  1200. struct sk_buff *skb;
  1201. unsigned char *data;
  1202. u32 rx_status;
  1203. int rx_bytes, err;
  1204. rx_done++;
  1205. rx_filled++;
  1206. rx_status = rx_desc->status;
  1207. rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
  1208. data = (unsigned char *)rx_desc->buf_cookie;
  1209. if (!mvneta_rxq_desc_is_first_last(rx_status) ||
  1210. (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
  1211. err_drop_frame:
  1212. dev->stats.rx_errors++;
  1213. mvneta_rx_error(pp, rx_desc);
  1214. /* leave the descriptor untouched */
  1215. continue;
  1216. }
  1217. if (rx_bytes <= rx_copybreak) {
  1218. /* better copy a small frame and not unmap the DMA region */
  1219. skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
  1220. if (unlikely(!skb))
  1221. goto err_drop_frame;
  1222. dma_sync_single_range_for_cpu(dev->dev.parent,
  1223. rx_desc->buf_phys_addr,
  1224. MVNETA_MH_SIZE + NET_SKB_PAD,
  1225. rx_bytes,
  1226. DMA_FROM_DEVICE);
  1227. memcpy(skb_put(skb, rx_bytes),
  1228. data + MVNETA_MH_SIZE + NET_SKB_PAD,
  1229. rx_bytes);
  1230. skb->protocol = eth_type_trans(skb, dev);
  1231. mvneta_rx_csum(pp, rx_status, skb);
  1232. napi_gro_receive(&pp->napi, skb);
  1233. rcvd_pkts++;
  1234. rcvd_bytes += rx_bytes;
  1235. /* leave the descriptor and buffer untouched */
  1236. continue;
  1237. }
  1238. skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
  1239. if (!skb)
  1240. goto err_drop_frame;
  1241. dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr,
  1242. MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
  1243. rcvd_pkts++;
  1244. rcvd_bytes += rx_bytes;
  1245. /* Linux processing */
  1246. skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
  1247. skb_put(skb, rx_bytes);
  1248. skb->protocol = eth_type_trans(skb, dev);
  1249. mvneta_rx_csum(pp, rx_status, skb);
  1250. napi_gro_receive(&pp->napi, skb);
  1251. /* Refill processing */
  1252. err = mvneta_rx_refill(pp, rx_desc);
  1253. if (err) {
  1254. netdev_err(dev, "Linux processing - Can't refill\n");
  1255. rxq->missed++;
  1256. rx_filled--;
  1257. }
  1258. }
  1259. if (rcvd_pkts) {
  1260. struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
  1261. u64_stats_update_begin(&stats->syncp);
  1262. stats->rx_packets += rcvd_pkts;
  1263. stats->rx_bytes += rcvd_bytes;
  1264. u64_stats_update_end(&stats->syncp);
  1265. }
  1266. /* Update rxq management counters */
  1267. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
  1268. return rx_done;
  1269. }
  1270. static inline void
  1271. mvneta_tso_put_hdr(struct sk_buff *skb,
  1272. struct mvneta_port *pp, struct mvneta_tx_queue *txq)
  1273. {
  1274. struct mvneta_tx_desc *tx_desc;
  1275. int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
  1276. txq->tx_skb[txq->txq_put_index] = NULL;
  1277. tx_desc = mvneta_txq_next_desc_get(txq);
  1278. tx_desc->data_size = hdr_len;
  1279. tx_desc->command = mvneta_skb_tx_csum(pp, skb);
  1280. tx_desc->command |= MVNETA_TXD_F_DESC;
  1281. tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
  1282. txq->txq_put_index * TSO_HEADER_SIZE;
  1283. mvneta_txq_inc_put(txq);
  1284. }
  1285. static inline int
  1286. mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
  1287. struct sk_buff *skb, char *data, int size,
  1288. bool last_tcp, bool is_last)
  1289. {
  1290. struct mvneta_tx_desc *tx_desc;
  1291. tx_desc = mvneta_txq_next_desc_get(txq);
  1292. tx_desc->data_size = size;
  1293. tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
  1294. size, DMA_TO_DEVICE);
  1295. if (unlikely(dma_mapping_error(dev->dev.parent,
  1296. tx_desc->buf_phys_addr))) {
  1297. mvneta_txq_desc_put(txq);
  1298. return -ENOMEM;
  1299. }
  1300. tx_desc->command = 0;
  1301. txq->tx_skb[txq->txq_put_index] = NULL;
  1302. if (last_tcp) {
  1303. /* last descriptor in the TCP packet */
  1304. tx_desc->command = MVNETA_TXD_L_DESC;
  1305. /* last descriptor in SKB */
  1306. if (is_last)
  1307. txq->tx_skb[txq->txq_put_index] = skb;
  1308. }
  1309. mvneta_txq_inc_put(txq);
  1310. return 0;
  1311. }
  1312. static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
  1313. struct mvneta_tx_queue *txq)
  1314. {
  1315. int total_len, data_left;
  1316. int desc_count = 0;
  1317. struct mvneta_port *pp = netdev_priv(dev);
  1318. struct tso_t tso;
  1319. int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
  1320. int i;
  1321. /* Count needed descriptors */
  1322. if ((txq->count + tso_count_descs(skb)) >= txq->size)
  1323. return 0;
  1324. if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
  1325. pr_info("*** Is this even possible???!?!?\n");
  1326. return 0;
  1327. }
  1328. /* Initialize the TSO handler, and prepare the first payload */
  1329. tso_start(skb, &tso);
  1330. total_len = skb->len - hdr_len;
  1331. while (total_len > 0) {
  1332. char *hdr;
  1333. data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
  1334. total_len -= data_left;
  1335. desc_count++;
  1336. /* prepare packet headers: MAC + IP + TCP */
  1337. hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
  1338. tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
  1339. mvneta_tso_put_hdr(skb, pp, txq);
  1340. while (data_left > 0) {
  1341. int size;
  1342. desc_count++;
  1343. size = min_t(int, tso.size, data_left);
  1344. if (mvneta_tso_put_data(dev, txq, skb,
  1345. tso.data, size,
  1346. size == data_left,
  1347. total_len == 0))
  1348. goto err_release;
  1349. data_left -= size;
  1350. tso_build_data(skb, &tso, size);
  1351. }
  1352. }
  1353. return desc_count;
  1354. err_release:
  1355. /* Release all used data descriptors; header descriptors must not
  1356. * be DMA-unmapped.
  1357. */
  1358. for (i = desc_count - 1; i >= 0; i--) {
  1359. struct mvneta_tx_desc *tx_desc = txq->descs + i;
  1360. if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
  1361. dma_unmap_single(pp->dev->dev.parent,
  1362. tx_desc->buf_phys_addr,
  1363. tx_desc->data_size,
  1364. DMA_TO_DEVICE);
  1365. mvneta_txq_desc_put(txq);
  1366. }
  1367. return 0;
  1368. }
  1369. /* Handle tx fragmentation processing */
  1370. static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
  1371. struct mvneta_tx_queue *txq)
  1372. {
  1373. struct mvneta_tx_desc *tx_desc;
  1374. int i, nr_frags = skb_shinfo(skb)->nr_frags;
  1375. for (i = 0; i < nr_frags; i++) {
  1376. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1377. void *addr = page_address(frag->page.p) + frag->page_offset;
  1378. tx_desc = mvneta_txq_next_desc_get(txq);
  1379. tx_desc->data_size = frag->size;
  1380. tx_desc->buf_phys_addr =
  1381. dma_map_single(pp->dev->dev.parent, addr,
  1382. tx_desc->data_size, DMA_TO_DEVICE);
  1383. if (dma_mapping_error(pp->dev->dev.parent,
  1384. tx_desc->buf_phys_addr)) {
  1385. mvneta_txq_desc_put(txq);
  1386. goto error;
  1387. }
  1388. if (i == nr_frags - 1) {
  1389. /* Last descriptor */
  1390. tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
  1391. txq->tx_skb[txq->txq_put_index] = skb;
  1392. } else {
  1393. /* Descriptor in the middle: Not First, Not Last */
  1394. tx_desc->command = 0;
  1395. txq->tx_skb[txq->txq_put_index] = NULL;
  1396. }
  1397. mvneta_txq_inc_put(txq);
  1398. }
  1399. return 0;
  1400. error:
  1401. /* Release all descriptors that were used to map fragments of
  1402. * this packet, as well as the corresponding DMA mappings
  1403. */
  1404. for (i = i - 1; i >= 0; i--) {
  1405. tx_desc = txq->descs + i;
  1406. dma_unmap_single(pp->dev->dev.parent,
  1407. tx_desc->buf_phys_addr,
  1408. tx_desc->data_size,
  1409. DMA_TO_DEVICE);
  1410. mvneta_txq_desc_put(txq);
  1411. }
  1412. return -ENOMEM;
  1413. }
  1414. /* Main tx processing */
  1415. static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
  1416. {
  1417. struct mvneta_port *pp = netdev_priv(dev);
  1418. u16 txq_id = skb_get_queue_mapping(skb);
  1419. struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
  1420. struct mvneta_tx_desc *tx_desc;
  1421. int len = skb->len;
  1422. int frags = 0;
  1423. u32 tx_cmd;
  1424. if (!netif_running(dev))
  1425. goto out;
  1426. if (skb_is_gso(skb)) {
  1427. frags = mvneta_tx_tso(skb, dev, txq);
  1428. goto out;
  1429. }
  1430. frags = skb_shinfo(skb)->nr_frags + 1;
  1431. /* Get a descriptor for the first part of the packet */
  1432. tx_desc = mvneta_txq_next_desc_get(txq);
  1433. tx_cmd = mvneta_skb_tx_csum(pp, skb);
  1434. tx_desc->data_size = skb_headlen(skb);
  1435. tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
  1436. tx_desc->data_size,
  1437. DMA_TO_DEVICE);
  1438. if (unlikely(dma_mapping_error(dev->dev.parent,
  1439. tx_desc->buf_phys_addr))) {
  1440. mvneta_txq_desc_put(txq);
  1441. frags = 0;
  1442. goto out;
  1443. }
  1444. if (frags == 1) {
  1445. /* First and Last descriptor */
  1446. tx_cmd |= MVNETA_TXD_FLZ_DESC;
  1447. tx_desc->command = tx_cmd;
  1448. txq->tx_skb[txq->txq_put_index] = skb;
  1449. mvneta_txq_inc_put(txq);
  1450. } else {
  1451. /* First but not Last */
  1452. tx_cmd |= MVNETA_TXD_F_DESC;
  1453. txq->tx_skb[txq->txq_put_index] = NULL;
  1454. mvneta_txq_inc_put(txq);
  1455. tx_desc->command = tx_cmd;
  1456. /* Continue with other skb fragments */
  1457. if (mvneta_tx_frag_process(pp, skb, txq)) {
  1458. dma_unmap_single(dev->dev.parent,
  1459. tx_desc->buf_phys_addr,
  1460. tx_desc->data_size,
  1461. DMA_TO_DEVICE);
  1462. mvneta_txq_desc_put(txq);
  1463. frags = 0;
  1464. goto out;
  1465. }
  1466. }
  1467. out:
  1468. if (frags > 0) {
  1469. struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
  1470. struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
  1471. txq->count += frags;
  1472. mvneta_txq_pend_desc_add(pp, txq, frags);
  1473. if (txq->count >= txq->tx_stop_threshold)
  1474. netif_tx_stop_queue(nq);
  1475. u64_stats_update_begin(&stats->syncp);
  1476. stats->tx_packets++;
  1477. stats->tx_bytes += len;
  1478. u64_stats_update_end(&stats->syncp);
  1479. } else {
  1480. dev->stats.tx_dropped++;
  1481. dev_kfree_skb_any(skb);
  1482. }
  1483. return NETDEV_TX_OK;
  1484. }
  1485. /* Free tx resources, when resetting a port */
  1486. static void mvneta_txq_done_force(struct mvneta_port *pp,
  1487. struct mvneta_tx_queue *txq)
  1488. {
  1489. int tx_done = txq->count;
  1490. mvneta_txq_bufs_free(pp, txq, tx_done);
  1491. /* reset txq */
  1492. txq->count = 0;
  1493. txq->txq_put_index = 0;
  1494. txq->txq_get_index = 0;
  1495. }
  1496. /* Handle tx done - called in softirq context. The <cause_tx_done> argument
  1497. * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
  1498. */
  1499. static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
  1500. {
  1501. struct mvneta_tx_queue *txq;
  1502. struct netdev_queue *nq;
  1503. while (cause_tx_done) {
  1504. txq = mvneta_tx_done_policy(pp, cause_tx_done);
  1505. nq = netdev_get_tx_queue(pp->dev, txq->id);
  1506. __netif_tx_lock(nq, smp_processor_id());
  1507. if (txq->count)
  1508. mvneta_txq_done(pp, txq);
  1509. __netif_tx_unlock(nq);
  1510. cause_tx_done &= ~((1 << txq->id));
  1511. }
  1512. }
  1513. /* Compute crc8 of the specified address, using a unique algorithm ,
  1514. * according to hw spec, different than generic crc8 algorithm
  1515. */
  1516. static int mvneta_addr_crc(unsigned char *addr)
  1517. {
  1518. int crc = 0;
  1519. int i;
  1520. for (i = 0; i < ETH_ALEN; i++) {
  1521. int j;
  1522. crc = (crc ^ addr[i]) << 8;
  1523. for (j = 7; j >= 0; j--) {
  1524. if (crc & (0x100 << j))
  1525. crc ^= 0x107 << j;
  1526. }
  1527. }
  1528. return crc;
  1529. }
  1530. /* This method controls the net device special MAC multicast support.
  1531. * The Special Multicast Table for MAC addresses supports MAC of the form
  1532. * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
  1533. * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
  1534. * Table entries in the DA-Filter table. This method set the Special
  1535. * Multicast Table appropriate entry.
  1536. */
  1537. static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
  1538. unsigned char last_byte,
  1539. int queue)
  1540. {
  1541. unsigned int smc_table_reg;
  1542. unsigned int tbl_offset;
  1543. unsigned int reg_offset;
  1544. /* Register offset from SMC table base */
  1545. tbl_offset = (last_byte / 4);
  1546. /* Entry offset within the above reg */
  1547. reg_offset = last_byte % 4;
  1548. smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
  1549. + tbl_offset * 4));
  1550. if (queue == -1)
  1551. smc_table_reg &= ~(0xff << (8 * reg_offset));
  1552. else {
  1553. smc_table_reg &= ~(0xff << (8 * reg_offset));
  1554. smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  1555. }
  1556. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
  1557. smc_table_reg);
  1558. }
  1559. /* This method controls the network device Other MAC multicast support.
  1560. * The Other Multicast Table is used for multicast of another type.
  1561. * A CRC-8 is used as an index to the Other Multicast Table entries
  1562. * in the DA-Filter table.
  1563. * The method gets the CRC-8 value from the calling routine and
  1564. * sets the Other Multicast Table appropriate entry according to the
  1565. * specified CRC-8 .
  1566. */
  1567. static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
  1568. unsigned char crc8,
  1569. int queue)
  1570. {
  1571. unsigned int omc_table_reg;
  1572. unsigned int tbl_offset;
  1573. unsigned int reg_offset;
  1574. tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
  1575. reg_offset = crc8 % 4; /* Entry offset within the above reg */
  1576. omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
  1577. if (queue == -1) {
  1578. /* Clear accepts frame bit at specified Other DA table entry */
  1579. omc_table_reg &= ~(0xff << (8 * reg_offset));
  1580. } else {
  1581. omc_table_reg &= ~(0xff << (8 * reg_offset));
  1582. omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  1583. }
  1584. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
  1585. }
  1586. /* The network device supports multicast using two tables:
  1587. * 1) Special Multicast Table for MAC addresses of the form
  1588. * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
  1589. * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
  1590. * Table entries in the DA-Filter table.
  1591. * 2) Other Multicast Table for multicast of another type. A CRC-8 value
  1592. * is used as an index to the Other Multicast Table entries in the
  1593. * DA-Filter table.
  1594. */
  1595. static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
  1596. int queue)
  1597. {
  1598. unsigned char crc_result = 0;
  1599. if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
  1600. mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
  1601. return 0;
  1602. }
  1603. crc_result = mvneta_addr_crc(p_addr);
  1604. if (queue == -1) {
  1605. if (pp->mcast_count[crc_result] == 0) {
  1606. netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
  1607. crc_result);
  1608. return -EINVAL;
  1609. }
  1610. pp->mcast_count[crc_result]--;
  1611. if (pp->mcast_count[crc_result] != 0) {
  1612. netdev_info(pp->dev,
  1613. "After delete there are %d valid Mcast for crc8=0x%02x\n",
  1614. pp->mcast_count[crc_result], crc_result);
  1615. return -EINVAL;
  1616. }
  1617. } else
  1618. pp->mcast_count[crc_result]++;
  1619. mvneta_set_other_mcast_addr(pp, crc_result, queue);
  1620. return 0;
  1621. }
  1622. /* Configure Fitering mode of Ethernet port */
  1623. static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
  1624. int is_promisc)
  1625. {
  1626. u32 port_cfg_reg, val;
  1627. port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
  1628. val = mvreg_read(pp, MVNETA_TYPE_PRIO);
  1629. /* Set / Clear UPM bit in port configuration register */
  1630. if (is_promisc) {
  1631. /* Accept all Unicast addresses */
  1632. port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
  1633. val |= MVNETA_FORCE_UNI;
  1634. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
  1635. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
  1636. } else {
  1637. /* Reject all Unicast addresses */
  1638. port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
  1639. val &= ~MVNETA_FORCE_UNI;
  1640. }
  1641. mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
  1642. mvreg_write(pp, MVNETA_TYPE_PRIO, val);
  1643. }
  1644. /* register unicast and multicast addresses */
  1645. static void mvneta_set_rx_mode(struct net_device *dev)
  1646. {
  1647. struct mvneta_port *pp = netdev_priv(dev);
  1648. struct netdev_hw_addr *ha;
  1649. if (dev->flags & IFF_PROMISC) {
  1650. /* Accept all: Multicast + Unicast */
  1651. mvneta_rx_unicast_promisc_set(pp, 1);
  1652. mvneta_set_ucast_table(pp, rxq_def);
  1653. mvneta_set_special_mcast_table(pp, rxq_def);
  1654. mvneta_set_other_mcast_table(pp, rxq_def);
  1655. } else {
  1656. /* Accept single Unicast */
  1657. mvneta_rx_unicast_promisc_set(pp, 0);
  1658. mvneta_set_ucast_table(pp, -1);
  1659. mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
  1660. if (dev->flags & IFF_ALLMULTI) {
  1661. /* Accept all multicast */
  1662. mvneta_set_special_mcast_table(pp, rxq_def);
  1663. mvneta_set_other_mcast_table(pp, rxq_def);
  1664. } else {
  1665. /* Accept only initialized multicast */
  1666. mvneta_set_special_mcast_table(pp, -1);
  1667. mvneta_set_other_mcast_table(pp, -1);
  1668. if (!netdev_mc_empty(dev)) {
  1669. netdev_for_each_mc_addr(ha, dev) {
  1670. mvneta_mcast_addr_set(pp, ha->addr,
  1671. rxq_def);
  1672. }
  1673. }
  1674. }
  1675. }
  1676. }
  1677. /* Interrupt handling - the callback for request_irq() */
  1678. static irqreturn_t mvneta_isr(int irq, void *dev_id)
  1679. {
  1680. struct mvneta_port *pp = (struct mvneta_port *)dev_id;
  1681. /* Mask all interrupts */
  1682. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  1683. napi_schedule(&pp->napi);
  1684. return IRQ_HANDLED;
  1685. }
  1686. /* NAPI handler
  1687. * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
  1688. * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
  1689. * Bits 8 -15 of the cause Rx Tx register indicate that are received
  1690. * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
  1691. * Each CPU has its own causeRxTx register
  1692. */
  1693. static int mvneta_poll(struct napi_struct *napi, int budget)
  1694. {
  1695. int rx_done = 0;
  1696. u32 cause_rx_tx;
  1697. unsigned long flags;
  1698. struct mvneta_port *pp = netdev_priv(napi->dev);
  1699. if (!netif_running(pp->dev)) {
  1700. napi_complete(napi);
  1701. return rx_done;
  1702. }
  1703. /* Read cause register */
  1704. cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
  1705. (MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
  1706. /* Release Tx descriptors */
  1707. if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
  1708. mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
  1709. cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
  1710. }
  1711. /* For the case where the last mvneta_poll did not process all
  1712. * RX packets
  1713. */
  1714. cause_rx_tx |= pp->cause_rx_tx;
  1715. if (rxq_number > 1) {
  1716. while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
  1717. int count;
  1718. struct mvneta_rx_queue *rxq;
  1719. /* get rx queue number from cause_rx_tx */
  1720. rxq = mvneta_rx_policy(pp, cause_rx_tx);
  1721. if (!rxq)
  1722. break;
  1723. /* process the packet in that rx queue */
  1724. count = mvneta_rx(pp, budget, rxq);
  1725. rx_done += count;
  1726. budget -= count;
  1727. if (budget > 0) {
  1728. /* set off the rx bit of the
  1729. * corresponding bit in the cause rx
  1730. * tx register, so that next iteration
  1731. * will find the next rx queue where
  1732. * packets are received on
  1733. */
  1734. cause_rx_tx &= ~((1 << rxq->id) << 8);
  1735. }
  1736. }
  1737. } else {
  1738. rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
  1739. budget -= rx_done;
  1740. }
  1741. if (budget > 0) {
  1742. cause_rx_tx = 0;
  1743. napi_complete(napi);
  1744. local_irq_save(flags);
  1745. mvreg_write(pp, MVNETA_INTR_NEW_MASK,
  1746. MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
  1747. local_irq_restore(flags);
  1748. }
  1749. pp->cause_rx_tx = cause_rx_tx;
  1750. return rx_done;
  1751. }
  1752. /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
  1753. static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
  1754. int num)
  1755. {
  1756. int i;
  1757. for (i = 0; i < num; i++) {
  1758. memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
  1759. if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
  1760. netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
  1761. __func__, rxq->id, i, num);
  1762. break;
  1763. }
  1764. }
  1765. /* Add this number of RX descriptors as non occupied (ready to
  1766. * get packets)
  1767. */
  1768. mvneta_rxq_non_occup_desc_add(pp, rxq, i);
  1769. return i;
  1770. }
  1771. /* Free all packets pending transmit from all TXQs and reset TX port */
  1772. static void mvneta_tx_reset(struct mvneta_port *pp)
  1773. {
  1774. int queue;
  1775. /* free the skb's in the tx ring */
  1776. for (queue = 0; queue < txq_number; queue++)
  1777. mvneta_txq_done_force(pp, &pp->txqs[queue]);
  1778. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  1779. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  1780. }
  1781. static void mvneta_rx_reset(struct mvneta_port *pp)
  1782. {
  1783. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  1784. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  1785. }
  1786. /* Rx/Tx queue initialization/cleanup methods */
  1787. /* Create a specified RX queue */
  1788. static int mvneta_rxq_init(struct mvneta_port *pp,
  1789. struct mvneta_rx_queue *rxq)
  1790. {
  1791. rxq->size = pp->rx_ring_size;
  1792. /* Allocate memory for RX descriptors */
  1793. rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
  1794. rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1795. &rxq->descs_phys, GFP_KERNEL);
  1796. if (rxq->descs == NULL)
  1797. return -ENOMEM;
  1798. BUG_ON(rxq->descs !=
  1799. PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
  1800. rxq->last_desc = rxq->size - 1;
  1801. /* Set Rx descriptors queue starting address */
  1802. mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
  1803. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
  1804. /* Set Offset */
  1805. mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
  1806. /* Set coalescing pkts and time */
  1807. mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
  1808. mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
  1809. /* Fill RXQ with buffers from RX pool */
  1810. mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
  1811. mvneta_rxq_bm_disable(pp, rxq);
  1812. mvneta_rxq_fill(pp, rxq, rxq->size);
  1813. return 0;
  1814. }
  1815. /* Cleanup Rx queue */
  1816. static void mvneta_rxq_deinit(struct mvneta_port *pp,
  1817. struct mvneta_rx_queue *rxq)
  1818. {
  1819. mvneta_rxq_drop_pkts(pp, rxq);
  1820. if (rxq->descs)
  1821. dma_free_coherent(pp->dev->dev.parent,
  1822. rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1823. rxq->descs,
  1824. rxq->descs_phys);
  1825. rxq->descs = NULL;
  1826. rxq->last_desc = 0;
  1827. rxq->next_desc_to_proc = 0;
  1828. rxq->descs_phys = 0;
  1829. }
  1830. /* Create and initialize a tx queue */
  1831. static int mvneta_txq_init(struct mvneta_port *pp,
  1832. struct mvneta_tx_queue *txq)
  1833. {
  1834. txq->size = pp->tx_ring_size;
  1835. /* A queue must always have room for at least one skb.
  1836. * Therefore, stop the queue when the free entries reaches
  1837. * the maximum number of descriptors per skb.
  1838. */
  1839. txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
  1840. txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
  1841. /* Allocate memory for TX descriptors */
  1842. txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
  1843. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1844. &txq->descs_phys, GFP_KERNEL);
  1845. if (txq->descs == NULL)
  1846. return -ENOMEM;
  1847. /* Make sure descriptor address is cache line size aligned */
  1848. BUG_ON(txq->descs !=
  1849. PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
  1850. txq->last_desc = txq->size - 1;
  1851. /* Set maximum bandwidth for enabled TXQs */
  1852. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
  1853. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
  1854. /* Set Tx descriptors queue starting address */
  1855. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
  1856. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
  1857. txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
  1858. if (txq->tx_skb == NULL) {
  1859. dma_free_coherent(pp->dev->dev.parent,
  1860. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1861. txq->descs, txq->descs_phys);
  1862. return -ENOMEM;
  1863. }
  1864. /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
  1865. txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
  1866. txq->size * TSO_HEADER_SIZE,
  1867. &txq->tso_hdrs_phys, GFP_KERNEL);
  1868. if (txq->tso_hdrs == NULL) {
  1869. kfree(txq->tx_skb);
  1870. dma_free_coherent(pp->dev->dev.parent,
  1871. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1872. txq->descs, txq->descs_phys);
  1873. return -ENOMEM;
  1874. }
  1875. mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
  1876. return 0;
  1877. }
  1878. /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
  1879. static void mvneta_txq_deinit(struct mvneta_port *pp,
  1880. struct mvneta_tx_queue *txq)
  1881. {
  1882. kfree(txq->tx_skb);
  1883. if (txq->tso_hdrs)
  1884. dma_free_coherent(pp->dev->dev.parent,
  1885. txq->size * TSO_HEADER_SIZE,
  1886. txq->tso_hdrs, txq->tso_hdrs_phys);
  1887. if (txq->descs)
  1888. dma_free_coherent(pp->dev->dev.parent,
  1889. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1890. txq->descs, txq->descs_phys);
  1891. txq->descs = NULL;
  1892. txq->last_desc = 0;
  1893. txq->next_desc_to_proc = 0;
  1894. txq->descs_phys = 0;
  1895. /* Set minimum bandwidth for disabled TXQs */
  1896. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
  1897. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
  1898. /* Set Tx descriptors queue starting address and size */
  1899. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
  1900. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
  1901. }
  1902. /* Cleanup all Tx queues */
  1903. static void mvneta_cleanup_txqs(struct mvneta_port *pp)
  1904. {
  1905. int queue;
  1906. for (queue = 0; queue < txq_number; queue++)
  1907. mvneta_txq_deinit(pp, &pp->txqs[queue]);
  1908. }
  1909. /* Cleanup all Rx queues */
  1910. static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
  1911. {
  1912. int queue;
  1913. for (queue = 0; queue < rxq_number; queue++)
  1914. mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
  1915. }
  1916. /* Init all Rx queues */
  1917. static int mvneta_setup_rxqs(struct mvneta_port *pp)
  1918. {
  1919. int queue;
  1920. for (queue = 0; queue < rxq_number; queue++) {
  1921. int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
  1922. if (err) {
  1923. netdev_err(pp->dev, "%s: can't create rxq=%d\n",
  1924. __func__, queue);
  1925. mvneta_cleanup_rxqs(pp);
  1926. return err;
  1927. }
  1928. }
  1929. return 0;
  1930. }
  1931. /* Init all tx queues */
  1932. static int mvneta_setup_txqs(struct mvneta_port *pp)
  1933. {
  1934. int queue;
  1935. for (queue = 0; queue < txq_number; queue++) {
  1936. int err = mvneta_txq_init(pp, &pp->txqs[queue]);
  1937. if (err) {
  1938. netdev_err(pp->dev, "%s: can't create txq=%d\n",
  1939. __func__, queue);
  1940. mvneta_cleanup_txqs(pp);
  1941. return err;
  1942. }
  1943. }
  1944. return 0;
  1945. }
  1946. static void mvneta_start_dev(struct mvneta_port *pp)
  1947. {
  1948. mvneta_max_rx_size_set(pp, pp->pkt_size);
  1949. mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
  1950. /* start the Rx/Tx activity */
  1951. mvneta_port_enable(pp);
  1952. /* Enable polling on the port */
  1953. napi_enable(&pp->napi);
  1954. /* Unmask interrupts */
  1955. mvreg_write(pp, MVNETA_INTR_NEW_MASK,
  1956. MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
  1957. phy_start(pp->phy_dev);
  1958. netif_tx_start_all_queues(pp->dev);
  1959. }
  1960. static void mvneta_stop_dev(struct mvneta_port *pp)
  1961. {
  1962. phy_stop(pp->phy_dev);
  1963. napi_disable(&pp->napi);
  1964. netif_carrier_off(pp->dev);
  1965. mvneta_port_down(pp);
  1966. netif_tx_stop_all_queues(pp->dev);
  1967. /* Stop the port activity */
  1968. mvneta_port_disable(pp);
  1969. /* Clear all ethernet port interrupts */
  1970. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  1971. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  1972. /* Mask all ethernet port interrupts */
  1973. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  1974. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  1975. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  1976. mvneta_tx_reset(pp);
  1977. mvneta_rx_reset(pp);
  1978. }
  1979. /* Return positive if MTU is valid */
  1980. static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
  1981. {
  1982. if (mtu < 68) {
  1983. netdev_err(dev, "cannot change mtu to less than 68\n");
  1984. return -EINVAL;
  1985. }
  1986. /* 9676 == 9700 - 20 and rounding to 8 */
  1987. if (mtu > 9676) {
  1988. netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
  1989. mtu = 9676;
  1990. }
  1991. if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
  1992. netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
  1993. mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
  1994. mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
  1995. }
  1996. return mtu;
  1997. }
  1998. /* Change the device mtu */
  1999. static int mvneta_change_mtu(struct net_device *dev, int mtu)
  2000. {
  2001. struct mvneta_port *pp = netdev_priv(dev);
  2002. int ret;
  2003. mtu = mvneta_check_mtu_valid(dev, mtu);
  2004. if (mtu < 0)
  2005. return -EINVAL;
  2006. dev->mtu = mtu;
  2007. if (!netif_running(dev))
  2008. return 0;
  2009. /* The interface is running, so we have to force a
  2010. * reallocation of the queues
  2011. */
  2012. mvneta_stop_dev(pp);
  2013. mvneta_cleanup_txqs(pp);
  2014. mvneta_cleanup_rxqs(pp);
  2015. pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
  2016. pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
  2017. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  2018. ret = mvneta_setup_rxqs(pp);
  2019. if (ret) {
  2020. netdev_err(dev, "unable to setup rxqs after MTU change\n");
  2021. return ret;
  2022. }
  2023. ret = mvneta_setup_txqs(pp);
  2024. if (ret) {
  2025. netdev_err(dev, "unable to setup txqs after MTU change\n");
  2026. return ret;
  2027. }
  2028. mvneta_start_dev(pp);
  2029. mvneta_port_up(pp);
  2030. return 0;
  2031. }
  2032. /* Get mac address */
  2033. static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
  2034. {
  2035. u32 mac_addr_l, mac_addr_h;
  2036. mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
  2037. mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
  2038. addr[0] = (mac_addr_h >> 24) & 0xFF;
  2039. addr[1] = (mac_addr_h >> 16) & 0xFF;
  2040. addr[2] = (mac_addr_h >> 8) & 0xFF;
  2041. addr[3] = mac_addr_h & 0xFF;
  2042. addr[4] = (mac_addr_l >> 8) & 0xFF;
  2043. addr[5] = mac_addr_l & 0xFF;
  2044. }
  2045. /* Handle setting mac address */
  2046. static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
  2047. {
  2048. struct mvneta_port *pp = netdev_priv(dev);
  2049. struct sockaddr *sockaddr = addr;
  2050. int ret;
  2051. ret = eth_prepare_mac_addr_change(dev, addr);
  2052. if (ret < 0)
  2053. return ret;
  2054. /* Remove previous address table entry */
  2055. mvneta_mac_addr_set(pp, dev->dev_addr, -1);
  2056. /* Set new addr in hw */
  2057. mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def);
  2058. eth_commit_mac_addr_change(dev, addr);
  2059. return 0;
  2060. }
  2061. static void mvneta_adjust_link(struct net_device *ndev)
  2062. {
  2063. struct mvneta_port *pp = netdev_priv(ndev);
  2064. struct phy_device *phydev = pp->phy_dev;
  2065. int status_change = 0;
  2066. if (phydev->link) {
  2067. if ((pp->speed != phydev->speed) ||
  2068. (pp->duplex != phydev->duplex)) {
  2069. u32 val;
  2070. val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  2071. val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
  2072. MVNETA_GMAC_CONFIG_GMII_SPEED |
  2073. MVNETA_GMAC_CONFIG_FULL_DUPLEX |
  2074. MVNETA_GMAC_AN_SPEED_EN |
  2075. MVNETA_GMAC_AN_DUPLEX_EN);
  2076. if (phydev->duplex)
  2077. val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
  2078. if (phydev->speed == SPEED_1000)
  2079. val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
  2080. else if (phydev->speed == SPEED_100)
  2081. val |= MVNETA_GMAC_CONFIG_MII_SPEED;
  2082. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  2083. pp->duplex = phydev->duplex;
  2084. pp->speed = phydev->speed;
  2085. }
  2086. }
  2087. if (phydev->link != pp->link) {
  2088. if (!phydev->link) {
  2089. pp->duplex = -1;
  2090. pp->speed = 0;
  2091. }
  2092. pp->link = phydev->link;
  2093. status_change = 1;
  2094. }
  2095. if (status_change) {
  2096. if (phydev->link) {
  2097. u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  2098. val |= (MVNETA_GMAC_FORCE_LINK_PASS |
  2099. MVNETA_GMAC_FORCE_LINK_DOWN);
  2100. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  2101. mvneta_port_up(pp);
  2102. } else {
  2103. mvneta_port_down(pp);
  2104. }
  2105. phy_print_status(phydev);
  2106. }
  2107. }
  2108. static int mvneta_mdio_probe(struct mvneta_port *pp)
  2109. {
  2110. struct phy_device *phy_dev;
  2111. phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
  2112. pp->phy_interface);
  2113. if (!phy_dev) {
  2114. netdev_err(pp->dev, "could not find the PHY\n");
  2115. return -ENODEV;
  2116. }
  2117. phy_dev->supported &= PHY_GBIT_FEATURES;
  2118. phy_dev->advertising = phy_dev->supported;
  2119. pp->phy_dev = phy_dev;
  2120. pp->link = 0;
  2121. pp->duplex = 0;
  2122. pp->speed = 0;
  2123. return 0;
  2124. }
  2125. static void mvneta_mdio_remove(struct mvneta_port *pp)
  2126. {
  2127. phy_disconnect(pp->phy_dev);
  2128. pp->phy_dev = NULL;
  2129. }
  2130. static int mvneta_open(struct net_device *dev)
  2131. {
  2132. struct mvneta_port *pp = netdev_priv(dev);
  2133. int ret;
  2134. pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
  2135. pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
  2136. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  2137. ret = mvneta_setup_rxqs(pp);
  2138. if (ret)
  2139. return ret;
  2140. ret = mvneta_setup_txqs(pp);
  2141. if (ret)
  2142. goto err_cleanup_rxqs;
  2143. /* Connect to port interrupt line */
  2144. ret = request_irq(pp->dev->irq, mvneta_isr, 0,
  2145. MVNETA_DRIVER_NAME, pp);
  2146. if (ret) {
  2147. netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
  2148. goto err_cleanup_txqs;
  2149. }
  2150. /* In default link is down */
  2151. netif_carrier_off(pp->dev);
  2152. ret = mvneta_mdio_probe(pp);
  2153. if (ret < 0) {
  2154. netdev_err(dev, "cannot probe MDIO bus\n");
  2155. goto err_free_irq;
  2156. }
  2157. mvneta_start_dev(pp);
  2158. return 0;
  2159. err_free_irq:
  2160. free_irq(pp->dev->irq, pp);
  2161. err_cleanup_txqs:
  2162. mvneta_cleanup_txqs(pp);
  2163. err_cleanup_rxqs:
  2164. mvneta_cleanup_rxqs(pp);
  2165. return ret;
  2166. }
  2167. /* Stop the port, free port interrupt line */
  2168. static int mvneta_stop(struct net_device *dev)
  2169. {
  2170. struct mvneta_port *pp = netdev_priv(dev);
  2171. mvneta_stop_dev(pp);
  2172. mvneta_mdio_remove(pp);
  2173. free_irq(dev->irq, pp);
  2174. mvneta_cleanup_rxqs(pp);
  2175. mvneta_cleanup_txqs(pp);
  2176. return 0;
  2177. }
  2178. static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2179. {
  2180. struct mvneta_port *pp = netdev_priv(dev);
  2181. int ret;
  2182. if (!pp->phy_dev)
  2183. return -ENOTSUPP;
  2184. ret = phy_mii_ioctl(pp->phy_dev, ifr, cmd);
  2185. if (!ret)
  2186. mvneta_adjust_link(dev);
  2187. return ret;
  2188. }
  2189. /* Ethtool methods */
  2190. /* Get settings (phy address, speed) for ethtools */
  2191. int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2192. {
  2193. struct mvneta_port *pp = netdev_priv(dev);
  2194. if (!pp->phy_dev)
  2195. return -ENODEV;
  2196. return phy_ethtool_gset(pp->phy_dev, cmd);
  2197. }
  2198. /* Set settings (phy address, speed) for ethtools */
  2199. int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2200. {
  2201. struct mvneta_port *pp = netdev_priv(dev);
  2202. if (!pp->phy_dev)
  2203. return -ENODEV;
  2204. return phy_ethtool_sset(pp->phy_dev, cmd);
  2205. }
  2206. /* Set interrupt coalescing for ethtools */
  2207. static int mvneta_ethtool_set_coalesce(struct net_device *dev,
  2208. struct ethtool_coalesce *c)
  2209. {
  2210. struct mvneta_port *pp = netdev_priv(dev);
  2211. int queue;
  2212. for (queue = 0; queue < rxq_number; queue++) {
  2213. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  2214. rxq->time_coal = c->rx_coalesce_usecs;
  2215. rxq->pkts_coal = c->rx_max_coalesced_frames;
  2216. mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
  2217. mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
  2218. }
  2219. for (queue = 0; queue < txq_number; queue++) {
  2220. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  2221. txq->done_pkts_coal = c->tx_max_coalesced_frames;
  2222. mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
  2223. }
  2224. return 0;
  2225. }
  2226. /* get coalescing for ethtools */
  2227. static int mvneta_ethtool_get_coalesce(struct net_device *dev,
  2228. struct ethtool_coalesce *c)
  2229. {
  2230. struct mvneta_port *pp = netdev_priv(dev);
  2231. c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
  2232. c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
  2233. c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
  2234. return 0;
  2235. }
  2236. static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
  2237. struct ethtool_drvinfo *drvinfo)
  2238. {
  2239. strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
  2240. sizeof(drvinfo->driver));
  2241. strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
  2242. sizeof(drvinfo->version));
  2243. strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
  2244. sizeof(drvinfo->bus_info));
  2245. }
  2246. static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
  2247. struct ethtool_ringparam *ring)
  2248. {
  2249. struct mvneta_port *pp = netdev_priv(netdev);
  2250. ring->rx_max_pending = MVNETA_MAX_RXD;
  2251. ring->tx_max_pending = MVNETA_MAX_TXD;
  2252. ring->rx_pending = pp->rx_ring_size;
  2253. ring->tx_pending = pp->tx_ring_size;
  2254. }
  2255. static int mvneta_ethtool_set_ringparam(struct net_device *dev,
  2256. struct ethtool_ringparam *ring)
  2257. {
  2258. struct mvneta_port *pp = netdev_priv(dev);
  2259. if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
  2260. return -EINVAL;
  2261. pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
  2262. ring->rx_pending : MVNETA_MAX_RXD;
  2263. pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
  2264. MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
  2265. if (pp->tx_ring_size != ring->tx_pending)
  2266. netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
  2267. pp->tx_ring_size, ring->tx_pending);
  2268. if (netif_running(dev)) {
  2269. mvneta_stop(dev);
  2270. if (mvneta_open(dev)) {
  2271. netdev_err(dev,
  2272. "error on opening device after ring param change\n");
  2273. return -ENOMEM;
  2274. }
  2275. }
  2276. return 0;
  2277. }
  2278. static const struct net_device_ops mvneta_netdev_ops = {
  2279. .ndo_open = mvneta_open,
  2280. .ndo_stop = mvneta_stop,
  2281. .ndo_start_xmit = mvneta_tx,
  2282. .ndo_set_rx_mode = mvneta_set_rx_mode,
  2283. .ndo_set_mac_address = mvneta_set_mac_addr,
  2284. .ndo_change_mtu = mvneta_change_mtu,
  2285. .ndo_get_stats64 = mvneta_get_stats64,
  2286. .ndo_do_ioctl = mvneta_ioctl,
  2287. };
  2288. const struct ethtool_ops mvneta_eth_tool_ops = {
  2289. .get_link = ethtool_op_get_link,
  2290. .get_settings = mvneta_ethtool_get_settings,
  2291. .set_settings = mvneta_ethtool_set_settings,
  2292. .set_coalesce = mvneta_ethtool_set_coalesce,
  2293. .get_coalesce = mvneta_ethtool_get_coalesce,
  2294. .get_drvinfo = mvneta_ethtool_get_drvinfo,
  2295. .get_ringparam = mvneta_ethtool_get_ringparam,
  2296. .set_ringparam = mvneta_ethtool_set_ringparam,
  2297. };
  2298. /* Initialize hw */
  2299. static int mvneta_init(struct device *dev, struct mvneta_port *pp)
  2300. {
  2301. int queue;
  2302. /* Disable port */
  2303. mvneta_port_disable(pp);
  2304. /* Set port default values */
  2305. mvneta_defaults_set(pp);
  2306. pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
  2307. GFP_KERNEL);
  2308. if (!pp->txqs)
  2309. return -ENOMEM;
  2310. /* Initialize TX descriptor rings */
  2311. for (queue = 0; queue < txq_number; queue++) {
  2312. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  2313. txq->id = queue;
  2314. txq->size = pp->tx_ring_size;
  2315. txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
  2316. }
  2317. pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
  2318. GFP_KERNEL);
  2319. if (!pp->rxqs)
  2320. return -ENOMEM;
  2321. /* Create Rx descriptor rings */
  2322. for (queue = 0; queue < rxq_number; queue++) {
  2323. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  2324. rxq->id = queue;
  2325. rxq->size = pp->rx_ring_size;
  2326. rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
  2327. rxq->time_coal = MVNETA_RX_COAL_USEC;
  2328. }
  2329. return 0;
  2330. }
  2331. /* platform glue : initialize decoding windows */
  2332. static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
  2333. const struct mbus_dram_target_info *dram)
  2334. {
  2335. u32 win_enable;
  2336. u32 win_protect;
  2337. int i;
  2338. for (i = 0; i < 6; i++) {
  2339. mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
  2340. mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
  2341. if (i < 4)
  2342. mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
  2343. }
  2344. win_enable = 0x3f;
  2345. win_protect = 0;
  2346. for (i = 0; i < dram->num_cs; i++) {
  2347. const struct mbus_dram_window *cs = dram->cs + i;
  2348. mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
  2349. (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
  2350. mvreg_write(pp, MVNETA_WIN_SIZE(i),
  2351. (cs->size - 1) & 0xffff0000);
  2352. win_enable &= ~(1 << i);
  2353. win_protect |= 3 << (2 * i);
  2354. }
  2355. mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
  2356. }
  2357. /* Power up the port */
  2358. static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
  2359. {
  2360. u32 ctrl;
  2361. /* MAC Cause register should be cleared */
  2362. mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
  2363. ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
  2364. /* Even though it might look weird, when we're configured in
  2365. * SGMII or QSGMII mode, the RGMII bit needs to be set.
  2366. */
  2367. switch(phy_mode) {
  2368. case PHY_INTERFACE_MODE_QSGMII:
  2369. mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
  2370. ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
  2371. break;
  2372. case PHY_INTERFACE_MODE_SGMII:
  2373. mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
  2374. ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
  2375. break;
  2376. case PHY_INTERFACE_MODE_RGMII:
  2377. case PHY_INTERFACE_MODE_RGMII_ID:
  2378. ctrl |= MVNETA_GMAC2_PORT_RGMII;
  2379. break;
  2380. default:
  2381. return -EINVAL;
  2382. }
  2383. /* Cancel Port Reset */
  2384. ctrl &= ~MVNETA_GMAC2_PORT_RESET;
  2385. mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
  2386. while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
  2387. MVNETA_GMAC2_PORT_RESET) != 0)
  2388. continue;
  2389. return 0;
  2390. }
  2391. /* Device initialization routine */
  2392. static int mvneta_probe(struct platform_device *pdev)
  2393. {
  2394. const struct mbus_dram_target_info *dram_target_info;
  2395. struct resource *res;
  2396. struct device_node *dn = pdev->dev.of_node;
  2397. struct device_node *phy_node;
  2398. struct mvneta_port *pp;
  2399. struct net_device *dev;
  2400. const char *dt_mac_addr;
  2401. char hw_mac_addr[ETH_ALEN];
  2402. const char *mac_from;
  2403. int phy_mode;
  2404. int err;
  2405. /* Our multiqueue support is not complete, so for now, only
  2406. * allow the usage of the first RX queue
  2407. */
  2408. if (rxq_def != 0) {
  2409. dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
  2410. return -EINVAL;
  2411. }
  2412. dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
  2413. if (!dev)
  2414. return -ENOMEM;
  2415. dev->irq = irq_of_parse_and_map(dn, 0);
  2416. if (dev->irq == 0) {
  2417. err = -EINVAL;
  2418. goto err_free_netdev;
  2419. }
  2420. phy_node = of_parse_phandle(dn, "phy", 0);
  2421. if (!phy_node) {
  2422. if (!of_phy_is_fixed_link(dn)) {
  2423. dev_err(&pdev->dev, "no PHY specified\n");
  2424. err = -ENODEV;
  2425. goto err_free_irq;
  2426. }
  2427. err = of_phy_register_fixed_link(dn);
  2428. if (err < 0) {
  2429. dev_err(&pdev->dev, "cannot register fixed PHY\n");
  2430. goto err_free_irq;
  2431. }
  2432. /* In the case of a fixed PHY, the DT node associated
  2433. * to the PHY is the Ethernet MAC DT node.
  2434. */
  2435. phy_node = of_node_get(dn);
  2436. }
  2437. phy_mode = of_get_phy_mode(dn);
  2438. if (phy_mode < 0) {
  2439. dev_err(&pdev->dev, "incorrect phy-mode\n");
  2440. err = -EINVAL;
  2441. goto err_put_phy_node;
  2442. }
  2443. dev->tx_queue_len = MVNETA_MAX_TXD;
  2444. dev->watchdog_timeo = 5 * HZ;
  2445. dev->netdev_ops = &mvneta_netdev_ops;
  2446. dev->ethtool_ops = &mvneta_eth_tool_ops;
  2447. pp = netdev_priv(dev);
  2448. pp->phy_node = phy_node;
  2449. pp->phy_interface = phy_mode;
  2450. pp->clk = devm_clk_get(&pdev->dev, NULL);
  2451. if (IS_ERR(pp->clk)) {
  2452. err = PTR_ERR(pp->clk);
  2453. goto err_put_phy_node;
  2454. }
  2455. clk_prepare_enable(pp->clk);
  2456. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2457. pp->base = devm_ioremap_resource(&pdev->dev, res);
  2458. if (IS_ERR(pp->base)) {
  2459. err = PTR_ERR(pp->base);
  2460. goto err_clk;
  2461. }
  2462. /* Alloc per-cpu stats */
  2463. pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
  2464. if (!pp->stats) {
  2465. err = -ENOMEM;
  2466. goto err_clk;
  2467. }
  2468. dt_mac_addr = of_get_mac_address(dn);
  2469. if (dt_mac_addr) {
  2470. mac_from = "device tree";
  2471. memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
  2472. } else {
  2473. mvneta_get_mac_addr(pp, hw_mac_addr);
  2474. if (is_valid_ether_addr(hw_mac_addr)) {
  2475. mac_from = "hardware";
  2476. memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
  2477. } else {
  2478. mac_from = "random";
  2479. eth_hw_addr_random(dev);
  2480. }
  2481. }
  2482. pp->tx_ring_size = MVNETA_MAX_TXD;
  2483. pp->rx_ring_size = MVNETA_MAX_RXD;
  2484. pp->dev = dev;
  2485. SET_NETDEV_DEV(dev, &pdev->dev);
  2486. err = mvneta_init(&pdev->dev, pp);
  2487. if (err < 0)
  2488. goto err_free_stats;
  2489. err = mvneta_port_power_up(pp, phy_mode);
  2490. if (err < 0) {
  2491. dev_err(&pdev->dev, "can't power up port\n");
  2492. goto err_free_stats;
  2493. }
  2494. dram_target_info = mv_mbus_dram_info();
  2495. if (dram_target_info)
  2496. mvneta_conf_mbus_windows(pp, dram_target_info);
  2497. netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
  2498. dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
  2499. dev->hw_features |= dev->features;
  2500. dev->vlan_features |= dev->features;
  2501. dev->priv_flags |= IFF_UNICAST_FLT;
  2502. dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
  2503. err = register_netdev(dev);
  2504. if (err < 0) {
  2505. dev_err(&pdev->dev, "failed to register\n");
  2506. goto err_free_stats;
  2507. }
  2508. netdev_info(dev, "Using %s mac address %pM\n", mac_from,
  2509. dev->dev_addr);
  2510. platform_set_drvdata(pdev, pp->dev);
  2511. return 0;
  2512. err_free_stats:
  2513. free_percpu(pp->stats);
  2514. err_clk:
  2515. clk_disable_unprepare(pp->clk);
  2516. err_put_phy_node:
  2517. of_node_put(phy_node);
  2518. err_free_irq:
  2519. irq_dispose_mapping(dev->irq);
  2520. err_free_netdev:
  2521. free_netdev(dev);
  2522. return err;
  2523. }
  2524. /* Device removal routine */
  2525. static int mvneta_remove(struct platform_device *pdev)
  2526. {
  2527. struct net_device *dev = platform_get_drvdata(pdev);
  2528. struct mvneta_port *pp = netdev_priv(dev);
  2529. unregister_netdev(dev);
  2530. clk_disable_unprepare(pp->clk);
  2531. free_percpu(pp->stats);
  2532. irq_dispose_mapping(dev->irq);
  2533. of_node_put(pp->phy_node);
  2534. free_netdev(dev);
  2535. return 0;
  2536. }
  2537. static const struct of_device_id mvneta_match[] = {
  2538. { .compatible = "marvell,armada-370-neta" },
  2539. { }
  2540. };
  2541. MODULE_DEVICE_TABLE(of, mvneta_match);
  2542. static struct platform_driver mvneta_driver = {
  2543. .probe = mvneta_probe,
  2544. .remove = mvneta_remove,
  2545. .driver = {
  2546. .name = MVNETA_DRIVER_NAME,
  2547. .of_match_table = mvneta_match,
  2548. },
  2549. };
  2550. module_platform_driver(mvneta_driver);
  2551. MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
  2552. MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
  2553. MODULE_LICENSE("GPL");
  2554. module_param(rxq_number, int, S_IRUGO);
  2555. module_param(txq_number, int, S_IRUGO);
  2556. module_param(rxq_def, int, S_IRUGO);
  2557. module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);