t4_hw.c 151 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938
  1. /*
  2. * This file is part of the Chelsio T4 Ethernet driver for Linux.
  3. *
  4. * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
  5. *
  6. * This software is available to you under a choice of one of two
  7. * licenses. You may choose to be licensed under the terms of the GNU
  8. * General Public License (GPL) Version 2, available from the file
  9. * COPYING in the main directory of this source tree, or the
  10. * OpenIB.org BSD license below:
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above
  17. * copyright notice, this list of conditions and the following
  18. * disclaimer.
  19. *
  20. * - Redistributions in binary form must reproduce the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer in the documentation and/or other materials
  23. * provided with the distribution.
  24. *
  25. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32. * SOFTWARE.
  33. */
  34. #include <linux/delay.h>
  35. #include "cxgb4.h"
  36. #include "t4_regs.h"
  37. #include "t4_values.h"
  38. #include "t4fw_api.h"
  39. /**
  40. * t4_wait_op_done_val - wait until an operation is completed
  41. * @adapter: the adapter performing the operation
  42. * @reg: the register to check for completion
  43. * @mask: a single-bit field within @reg that indicates completion
  44. * @polarity: the value of the field when the operation is completed
  45. * @attempts: number of check iterations
  46. * @delay: delay in usecs between iterations
  47. * @valp: where to store the value of the register at completion time
  48. *
  49. * Wait until an operation is completed by checking a bit in a register
  50. * up to @attempts times. If @valp is not NULL the value of the register
  51. * at the time it indicated completion is stored there. Returns 0 if the
  52. * operation completes and -EAGAIN otherwise.
  53. */
  54. static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  55. int polarity, int attempts, int delay, u32 *valp)
  56. {
  57. while (1) {
  58. u32 val = t4_read_reg(adapter, reg);
  59. if (!!(val & mask) == polarity) {
  60. if (valp)
  61. *valp = val;
  62. return 0;
  63. }
  64. if (--attempts == 0)
  65. return -EAGAIN;
  66. if (delay)
  67. udelay(delay);
  68. }
  69. }
  70. static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
  71. int polarity, int attempts, int delay)
  72. {
  73. return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
  74. delay, NULL);
  75. }
  76. /**
  77. * t4_set_reg_field - set a register field to a value
  78. * @adapter: the adapter to program
  79. * @addr: the register address
  80. * @mask: specifies the portion of the register to modify
  81. * @val: the new value for the register field
  82. *
  83. * Sets a register field specified by the supplied mask to the
  84. * given value.
  85. */
  86. void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  87. u32 val)
  88. {
  89. u32 v = t4_read_reg(adapter, addr) & ~mask;
  90. t4_write_reg(adapter, addr, v | val);
  91. (void) t4_read_reg(adapter, addr); /* flush */
  92. }
  93. /**
  94. * t4_read_indirect - read indirectly addressed registers
  95. * @adap: the adapter
  96. * @addr_reg: register holding the indirect address
  97. * @data_reg: register holding the value of the indirect register
  98. * @vals: where the read register values are stored
  99. * @nregs: how many indirect registers to read
  100. * @start_idx: index of first indirect register to read
  101. *
  102. * Reads registers that are accessed indirectly through an address/data
  103. * register pair.
  104. */
  105. void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
  106. unsigned int data_reg, u32 *vals,
  107. unsigned int nregs, unsigned int start_idx)
  108. {
  109. while (nregs--) {
  110. t4_write_reg(adap, addr_reg, start_idx);
  111. *vals++ = t4_read_reg(adap, data_reg);
  112. start_idx++;
  113. }
  114. }
  115. /**
  116. * t4_write_indirect - write indirectly addressed registers
  117. * @adap: the adapter
  118. * @addr_reg: register holding the indirect addresses
  119. * @data_reg: register holding the value for the indirect registers
  120. * @vals: values to write
  121. * @nregs: how many indirect registers to write
  122. * @start_idx: address of first indirect register to write
  123. *
  124. * Writes a sequential block of registers that are accessed indirectly
  125. * through an address/data register pair.
  126. */
  127. void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
  128. unsigned int data_reg, const u32 *vals,
  129. unsigned int nregs, unsigned int start_idx)
  130. {
  131. while (nregs--) {
  132. t4_write_reg(adap, addr_reg, start_idx++);
  133. t4_write_reg(adap, data_reg, *vals++);
  134. }
  135. }
  136. /*
  137. * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
  138. * mechanism. This guarantees that we get the real value even if we're
  139. * operating within a Virtual Machine and the Hypervisor is trapping our
  140. * Configuration Space accesses.
  141. */
  142. void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
  143. {
  144. u32 req = ENABLE_F | FUNCTION_V(adap->fn) | REGISTER_V(reg);
  145. if (is_t4(adap->params.chip))
  146. req |= LOCALCFG_F;
  147. t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
  148. *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
  149. /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
  150. * Configuration Space read. (None of the other fields matter when
  151. * ENABLE is 0 so a simple register write is easier than a
  152. * read-modify-write via t4_set_reg_field().)
  153. */
  154. t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
  155. }
  156. /*
  157. * t4_report_fw_error - report firmware error
  158. * @adap: the adapter
  159. *
  160. * The adapter firmware can indicate error conditions to the host.
  161. * If the firmware has indicated an error, print out the reason for
  162. * the firmware error.
  163. */
  164. static void t4_report_fw_error(struct adapter *adap)
  165. {
  166. static const char *const reason[] = {
  167. "Crash", /* PCIE_FW_EVAL_CRASH */
  168. "During Device Preparation", /* PCIE_FW_EVAL_PREP */
  169. "During Device Configuration", /* PCIE_FW_EVAL_CONF */
  170. "During Device Initialization", /* PCIE_FW_EVAL_INIT */
  171. "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
  172. "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
  173. "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
  174. "Reserved", /* reserved */
  175. };
  176. u32 pcie_fw;
  177. pcie_fw = t4_read_reg(adap, PCIE_FW_A);
  178. if (pcie_fw & PCIE_FW_ERR_F)
  179. dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
  180. reason[PCIE_FW_EVAL_G(pcie_fw)]);
  181. }
  182. /*
  183. * Get the reply to a mailbox command and store it in @rpl in big-endian order.
  184. */
  185. static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
  186. u32 mbox_addr)
  187. {
  188. for ( ; nflit; nflit--, mbox_addr += 8)
  189. *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
  190. }
  191. /*
  192. * Handle a FW assertion reported in a mailbox.
  193. */
  194. static void fw_asrt(struct adapter *adap, u32 mbox_addr)
  195. {
  196. struct fw_debug_cmd asrt;
  197. get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
  198. dev_alert(adap->pdev_dev,
  199. "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
  200. asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
  201. ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
  202. }
  203. static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
  204. {
  205. dev_err(adap->pdev_dev,
  206. "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
  207. (unsigned long long)t4_read_reg64(adap, data_reg),
  208. (unsigned long long)t4_read_reg64(adap, data_reg + 8),
  209. (unsigned long long)t4_read_reg64(adap, data_reg + 16),
  210. (unsigned long long)t4_read_reg64(adap, data_reg + 24),
  211. (unsigned long long)t4_read_reg64(adap, data_reg + 32),
  212. (unsigned long long)t4_read_reg64(adap, data_reg + 40),
  213. (unsigned long long)t4_read_reg64(adap, data_reg + 48),
  214. (unsigned long long)t4_read_reg64(adap, data_reg + 56));
  215. }
  216. /**
  217. * t4_wr_mbox_meat - send a command to FW through the given mailbox
  218. * @adap: the adapter
  219. * @mbox: index of the mailbox to use
  220. * @cmd: the command to write
  221. * @size: command length in bytes
  222. * @rpl: where to optionally store the reply
  223. * @sleep_ok: if true we may sleep while awaiting command completion
  224. *
  225. * Sends the given command to FW through the selected mailbox and waits
  226. * for the FW to execute the command. If @rpl is not %NULL it is used to
  227. * store the FW's reply to the command. The command and its optional
  228. * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
  229. * to respond. @sleep_ok determines whether we may sleep while awaiting
  230. * the response. If sleeping is allowed we use progressive backoff
  231. * otherwise we spin.
  232. *
  233. * The return value is 0 on success or a negative errno on failure. A
  234. * failure can happen either because we are not able to execute the
  235. * command or FW executes it but signals an error. In the latter case
  236. * the return value is the error code indicated by FW (negated).
  237. */
  238. int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
  239. void *rpl, bool sleep_ok)
  240. {
  241. static const int delay[] = {
  242. 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
  243. };
  244. u32 v;
  245. u64 res;
  246. int i, ms, delay_idx;
  247. const __be64 *p = cmd;
  248. u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
  249. u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
  250. if ((size & 15) || size > MBOX_LEN)
  251. return -EINVAL;
  252. /*
  253. * If the device is off-line, as in EEH, commands will time out.
  254. * Fail them early so we don't waste time waiting.
  255. */
  256. if (adap->pdev->error_state != pci_channel_io_normal)
  257. return -EIO;
  258. v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
  259. for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
  260. v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
  261. if (v != MBOX_OWNER_DRV)
  262. return v ? -EBUSY : -ETIMEDOUT;
  263. for (i = 0; i < size; i += 8)
  264. t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
  265. t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
  266. t4_read_reg(adap, ctl_reg); /* flush write */
  267. delay_idx = 0;
  268. ms = delay[0];
  269. for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
  270. if (sleep_ok) {
  271. ms = delay[delay_idx]; /* last element may repeat */
  272. if (delay_idx < ARRAY_SIZE(delay) - 1)
  273. delay_idx++;
  274. msleep(ms);
  275. } else
  276. mdelay(ms);
  277. v = t4_read_reg(adap, ctl_reg);
  278. if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
  279. if (!(v & MBMSGVALID_F)) {
  280. t4_write_reg(adap, ctl_reg, 0);
  281. continue;
  282. }
  283. res = t4_read_reg64(adap, data_reg);
  284. if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
  285. fw_asrt(adap, data_reg);
  286. res = FW_CMD_RETVAL_V(EIO);
  287. } else if (rpl) {
  288. get_mbox_rpl(adap, rpl, size / 8, data_reg);
  289. }
  290. if (FW_CMD_RETVAL_G((int)res))
  291. dump_mbox(adap, mbox, data_reg);
  292. t4_write_reg(adap, ctl_reg, 0);
  293. return -FW_CMD_RETVAL_G((int)res);
  294. }
  295. }
  296. dump_mbox(adap, mbox, data_reg);
  297. dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
  298. *(const u8 *)cmd, mbox);
  299. t4_report_fw_error(adap);
  300. return -ETIMEDOUT;
  301. }
  302. /**
  303. * t4_mc_read - read from MC through backdoor accesses
  304. * @adap: the adapter
  305. * @addr: address of first byte requested
  306. * @idx: which MC to access
  307. * @data: 64 bytes of data containing the requested address
  308. * @ecc: where to store the corresponding 64-bit ECC word
  309. *
  310. * Read 64 bytes of data from MC starting at a 64-byte-aligned address
  311. * that covers the requested address @addr. If @parity is not %NULL it
  312. * is assigned the 64-bit ECC word for the read data.
  313. */
  314. int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  315. {
  316. int i;
  317. u32 mc_bist_cmd, mc_bist_cmd_addr, mc_bist_cmd_len;
  318. u32 mc_bist_status_rdata, mc_bist_data_pattern;
  319. if (is_t4(adap->params.chip)) {
  320. mc_bist_cmd = MC_BIST_CMD_A;
  321. mc_bist_cmd_addr = MC_BIST_CMD_ADDR_A;
  322. mc_bist_cmd_len = MC_BIST_CMD_LEN_A;
  323. mc_bist_status_rdata = MC_BIST_STATUS_RDATA_A;
  324. mc_bist_data_pattern = MC_BIST_DATA_PATTERN_A;
  325. } else {
  326. mc_bist_cmd = MC_REG(MC_P_BIST_CMD_A, idx);
  327. mc_bist_cmd_addr = MC_REG(MC_P_BIST_CMD_ADDR_A, idx);
  328. mc_bist_cmd_len = MC_REG(MC_P_BIST_CMD_LEN_A, idx);
  329. mc_bist_status_rdata = MC_REG(MC_P_BIST_STATUS_RDATA_A, idx);
  330. mc_bist_data_pattern = MC_REG(MC_P_BIST_DATA_PATTERN_A, idx);
  331. }
  332. if (t4_read_reg(adap, mc_bist_cmd) & START_BIST_F)
  333. return -EBUSY;
  334. t4_write_reg(adap, mc_bist_cmd_addr, addr & ~0x3fU);
  335. t4_write_reg(adap, mc_bist_cmd_len, 64);
  336. t4_write_reg(adap, mc_bist_data_pattern, 0xc);
  337. t4_write_reg(adap, mc_bist_cmd, BIST_OPCODE_V(1) | START_BIST_F |
  338. BIST_CMD_GAP_V(1));
  339. i = t4_wait_op_done(adap, mc_bist_cmd, START_BIST_F, 0, 10, 1);
  340. if (i)
  341. return i;
  342. #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i)
  343. for (i = 15; i >= 0; i--)
  344. *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
  345. if (ecc)
  346. *ecc = t4_read_reg64(adap, MC_DATA(16));
  347. #undef MC_DATA
  348. return 0;
  349. }
  350. /**
  351. * t4_edc_read - read from EDC through backdoor accesses
  352. * @adap: the adapter
  353. * @idx: which EDC to access
  354. * @addr: address of first byte requested
  355. * @data: 64 bytes of data containing the requested address
  356. * @ecc: where to store the corresponding 64-bit ECC word
  357. *
  358. * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
  359. * that covers the requested address @addr. If @parity is not %NULL it
  360. * is assigned the 64-bit ECC word for the read data.
  361. */
  362. int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  363. {
  364. int i;
  365. u32 edc_bist_cmd, edc_bist_cmd_addr, edc_bist_cmd_len;
  366. u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata;
  367. if (is_t4(adap->params.chip)) {
  368. edc_bist_cmd = EDC_REG(EDC_BIST_CMD_A, idx);
  369. edc_bist_cmd_addr = EDC_REG(EDC_BIST_CMD_ADDR_A, idx);
  370. edc_bist_cmd_len = EDC_REG(EDC_BIST_CMD_LEN_A, idx);
  371. edc_bist_cmd_data_pattern = EDC_REG(EDC_BIST_DATA_PATTERN_A,
  372. idx);
  373. edc_bist_status_rdata = EDC_REG(EDC_BIST_STATUS_RDATA_A,
  374. idx);
  375. } else {
  376. edc_bist_cmd = EDC_REG_T5(EDC_H_BIST_CMD_A, idx);
  377. edc_bist_cmd_addr = EDC_REG_T5(EDC_H_BIST_CMD_ADDR_A, idx);
  378. edc_bist_cmd_len = EDC_REG_T5(EDC_H_BIST_CMD_LEN_A, idx);
  379. edc_bist_cmd_data_pattern =
  380. EDC_REG_T5(EDC_H_BIST_DATA_PATTERN_A, idx);
  381. edc_bist_status_rdata =
  382. EDC_REG_T5(EDC_H_BIST_STATUS_RDATA_A, idx);
  383. }
  384. if (t4_read_reg(adap, edc_bist_cmd) & START_BIST_F)
  385. return -EBUSY;
  386. t4_write_reg(adap, edc_bist_cmd_addr, addr & ~0x3fU);
  387. t4_write_reg(adap, edc_bist_cmd_len, 64);
  388. t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
  389. t4_write_reg(adap, edc_bist_cmd,
  390. BIST_OPCODE_V(1) | BIST_CMD_GAP_V(1) | START_BIST_F);
  391. i = t4_wait_op_done(adap, edc_bist_cmd, START_BIST_F, 0, 10, 1);
  392. if (i)
  393. return i;
  394. #define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i))
  395. for (i = 15; i >= 0; i--)
  396. *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
  397. if (ecc)
  398. *ecc = t4_read_reg64(adap, EDC_DATA(16));
  399. #undef EDC_DATA
  400. return 0;
  401. }
  402. /**
  403. * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
  404. * @adap: the adapter
  405. * @win: PCI-E Memory Window to use
  406. * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
  407. * @addr: address within indicated memory type
  408. * @len: amount of memory to transfer
  409. * @hbuf: host memory buffer
  410. * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
  411. *
  412. * Reads/writes an [almost] arbitrary memory region in the firmware: the
  413. * firmware memory address and host buffer must be aligned on 32-bit
  414. * boudaries; the length may be arbitrary. The memory is transferred as
  415. * a raw byte sequence from/to the firmware's memory. If this memory
  416. * contains data structures which contain multi-byte integers, it's the
  417. * caller's responsibility to perform appropriate byte order conversions.
  418. */
  419. int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
  420. u32 len, void *hbuf, int dir)
  421. {
  422. u32 pos, offset, resid, memoffset;
  423. u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
  424. u32 *buf;
  425. /* Argument sanity checks ...
  426. */
  427. if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
  428. return -EINVAL;
  429. buf = (u32 *)hbuf;
  430. /* It's convenient to be able to handle lengths which aren't a
  431. * multiple of 32-bits because we often end up transferring files to
  432. * the firmware. So we'll handle that by normalizing the length here
  433. * and then handling any residual transfer at the end.
  434. */
  435. resid = len & 0x3;
  436. len -= resid;
  437. /* Offset into the region of memory which is being accessed
  438. * MEM_EDC0 = 0
  439. * MEM_EDC1 = 1
  440. * MEM_MC = 2 -- T4
  441. * MEM_MC0 = 2 -- For T5
  442. * MEM_MC1 = 3 -- For T5
  443. */
  444. edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
  445. if (mtype != MEM_MC1)
  446. memoffset = (mtype * (edc_size * 1024 * 1024));
  447. else {
  448. mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
  449. MA_EXT_MEMORY1_BAR_A));
  450. memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
  451. }
  452. /* Determine the PCIE_MEM_ACCESS_OFFSET */
  453. addr = addr + memoffset;
  454. /* Each PCI-E Memory Window is programmed with a window size -- or
  455. * "aperture" -- which controls the granularity of its mapping onto
  456. * adapter memory. We need to grab that aperture in order to know
  457. * how to use the specified window. The window is also programmed
  458. * with the base address of the Memory Window in BAR0's address
  459. * space. For T4 this is an absolute PCI-E Bus Address. For T5
  460. * the address is relative to BAR0.
  461. */
  462. mem_reg = t4_read_reg(adap,
  463. PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
  464. win));
  465. mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
  466. mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
  467. if (is_t4(adap->params.chip))
  468. mem_base -= adap->t4_bar0;
  469. win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->fn);
  470. /* Calculate our initial PCI-E Memory Window Position and Offset into
  471. * that Window.
  472. */
  473. pos = addr & ~(mem_aperture-1);
  474. offset = addr - pos;
  475. /* Set up initial PCI-E Memory Window to cover the start of our
  476. * transfer. (Read it back to ensure that changes propagate before we
  477. * attempt to use the new value.)
  478. */
  479. t4_write_reg(adap,
  480. PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
  481. pos | win_pf);
  482. t4_read_reg(adap,
  483. PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
  484. /* Transfer data to/from the adapter as long as there's an integral
  485. * number of 32-bit transfers to complete.
  486. *
  487. * A note on Endianness issues:
  488. *
  489. * The "register" reads and writes below from/to the PCI-E Memory
  490. * Window invoke the standard adapter Big-Endian to PCI-E Link
  491. * Little-Endian "swizzel." As a result, if we have the following
  492. * data in adapter memory:
  493. *
  494. * Memory: ... | b0 | b1 | b2 | b3 | ...
  495. * Address: i+0 i+1 i+2 i+3
  496. *
  497. * Then a read of the adapter memory via the PCI-E Memory Window
  498. * will yield:
  499. *
  500. * x = readl(i)
  501. * 31 0
  502. * [ b3 | b2 | b1 | b0 ]
  503. *
  504. * If this value is stored into local memory on a Little-Endian system
  505. * it will show up correctly in local memory as:
  506. *
  507. * ( ..., b0, b1, b2, b3, ... )
  508. *
  509. * But on a Big-Endian system, the store will show up in memory
  510. * incorrectly swizzled as:
  511. *
  512. * ( ..., b3, b2, b1, b0, ... )
  513. *
  514. * So we need to account for this in the reads and writes to the
  515. * PCI-E Memory Window below by undoing the register read/write
  516. * swizzels.
  517. */
  518. while (len > 0) {
  519. if (dir == T4_MEMORY_READ)
  520. *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
  521. mem_base + offset));
  522. else
  523. t4_write_reg(adap, mem_base + offset,
  524. (__force u32)cpu_to_le32(*buf++));
  525. offset += sizeof(__be32);
  526. len -= sizeof(__be32);
  527. /* If we've reached the end of our current window aperture,
  528. * move the PCI-E Memory Window on to the next. Note that
  529. * doing this here after "len" may be 0 allows us to set up
  530. * the PCI-E Memory Window for a possible final residual
  531. * transfer below ...
  532. */
  533. if (offset == mem_aperture) {
  534. pos += mem_aperture;
  535. offset = 0;
  536. t4_write_reg(adap,
  537. PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
  538. win), pos | win_pf);
  539. t4_read_reg(adap,
  540. PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
  541. win));
  542. }
  543. }
  544. /* If the original transfer had a length which wasn't a multiple of
  545. * 32-bits, now's where we need to finish off the transfer of the
  546. * residual amount. The PCI-E Memory Window has already been moved
  547. * above (if necessary) to cover this final transfer.
  548. */
  549. if (resid) {
  550. union {
  551. u32 word;
  552. char byte[4];
  553. } last;
  554. unsigned char *bp;
  555. int i;
  556. if (dir == T4_MEMORY_READ) {
  557. last.word = le32_to_cpu(
  558. (__force __le32)t4_read_reg(adap,
  559. mem_base + offset));
  560. for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
  561. bp[i] = last.byte[i];
  562. } else {
  563. last.word = *buf;
  564. for (i = resid; i < 4; i++)
  565. last.byte[i] = 0;
  566. t4_write_reg(adap, mem_base + offset,
  567. (__force u32)cpu_to_le32(last.word));
  568. }
  569. }
  570. return 0;
  571. }
  572. #define EEPROM_STAT_ADDR 0x7bfc
  573. #define VPD_BASE 0x400
  574. #define VPD_BASE_OLD 0
  575. #define VPD_LEN 1024
  576. #define CHELSIO_VPD_UNIQUE_ID 0x82
  577. /**
  578. * t4_seeprom_wp - enable/disable EEPROM write protection
  579. * @adapter: the adapter
  580. * @enable: whether to enable or disable write protection
  581. *
  582. * Enables or disables write protection on the serial EEPROM.
  583. */
  584. int t4_seeprom_wp(struct adapter *adapter, bool enable)
  585. {
  586. unsigned int v = enable ? 0xc : 0;
  587. int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
  588. return ret < 0 ? ret : 0;
  589. }
  590. /**
  591. * get_vpd_params - read VPD parameters from VPD EEPROM
  592. * @adapter: adapter to read
  593. * @p: where to store the parameters
  594. *
  595. * Reads card parameters stored in VPD EEPROM.
  596. */
  597. int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  598. {
  599. u32 cclk_param, cclk_val;
  600. int i, ret, addr;
  601. int ec, sn, pn;
  602. u8 *vpd, csum;
  603. unsigned int vpdr_len, kw_offset, id_len;
  604. vpd = vmalloc(VPD_LEN);
  605. if (!vpd)
  606. return -ENOMEM;
  607. ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
  608. if (ret < 0)
  609. goto out;
  610. /* The VPD shall have a unique identifier specified by the PCI SIG.
  611. * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
  612. * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
  613. * is expected to automatically put this entry at the
  614. * beginning of the VPD.
  615. */
  616. addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
  617. ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
  618. if (ret < 0)
  619. goto out;
  620. if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
  621. dev_err(adapter->pdev_dev, "missing VPD ID string\n");
  622. ret = -EINVAL;
  623. goto out;
  624. }
  625. id_len = pci_vpd_lrdt_size(vpd);
  626. if (id_len > ID_LEN)
  627. id_len = ID_LEN;
  628. i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  629. if (i < 0) {
  630. dev_err(adapter->pdev_dev, "missing VPD-R section\n");
  631. ret = -EINVAL;
  632. goto out;
  633. }
  634. vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
  635. kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
  636. if (vpdr_len + kw_offset > VPD_LEN) {
  637. dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
  638. ret = -EINVAL;
  639. goto out;
  640. }
  641. #define FIND_VPD_KW(var, name) do { \
  642. var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
  643. if (var < 0) { \
  644. dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
  645. ret = -EINVAL; \
  646. goto out; \
  647. } \
  648. var += PCI_VPD_INFO_FLD_HDR_SIZE; \
  649. } while (0)
  650. FIND_VPD_KW(i, "RV");
  651. for (csum = 0; i >= 0; i--)
  652. csum += vpd[i];
  653. if (csum) {
  654. dev_err(adapter->pdev_dev,
  655. "corrupted VPD EEPROM, actual csum %u\n", csum);
  656. ret = -EINVAL;
  657. goto out;
  658. }
  659. FIND_VPD_KW(ec, "EC");
  660. FIND_VPD_KW(sn, "SN");
  661. FIND_VPD_KW(pn, "PN");
  662. #undef FIND_VPD_KW
  663. memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
  664. strim(p->id);
  665. memcpy(p->ec, vpd + ec, EC_LEN);
  666. strim(p->ec);
  667. i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
  668. memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
  669. strim(p->sn);
  670. i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
  671. memcpy(p->pn, vpd + pn, min(i, PN_LEN));
  672. strim(p->pn);
  673. /*
  674. * Ask firmware for the Core Clock since it knows how to translate the
  675. * Reference Clock ('V2') VPD field into a Core Clock value ...
  676. */
  677. cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
  678. FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
  679. ret = t4_query_params(adapter, adapter->mbox, 0, 0,
  680. 1, &cclk_param, &cclk_val);
  681. out:
  682. vfree(vpd);
  683. if (ret)
  684. return ret;
  685. p->cclk = cclk_val;
  686. return 0;
  687. }
  688. /* serial flash and firmware constants */
  689. enum {
  690. SF_ATTEMPTS = 10, /* max retries for SF operations */
  691. /* flash command opcodes */
  692. SF_PROG_PAGE = 2, /* program page */
  693. SF_WR_DISABLE = 4, /* disable writes */
  694. SF_RD_STATUS = 5, /* read status register */
  695. SF_WR_ENABLE = 6, /* enable writes */
  696. SF_RD_DATA_FAST = 0xb, /* read flash */
  697. SF_RD_ID = 0x9f, /* read ID */
  698. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  699. FW_MAX_SIZE = 16 * SF_SEC_SIZE,
  700. };
  701. /**
  702. * sf1_read - read data from the serial flash
  703. * @adapter: the adapter
  704. * @byte_cnt: number of bytes to read
  705. * @cont: whether another operation will be chained
  706. * @lock: whether to lock SF for PL access only
  707. * @valp: where to store the read data
  708. *
  709. * Reads up to 4 bytes of data from the serial flash. The location of
  710. * the read needs to be specified prior to calling this by issuing the
  711. * appropriate commands to the serial flash.
  712. */
  713. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  714. int lock, u32 *valp)
  715. {
  716. int ret;
  717. if (!byte_cnt || byte_cnt > 4)
  718. return -EINVAL;
  719. if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
  720. return -EBUSY;
  721. t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
  722. SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
  723. ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
  724. if (!ret)
  725. *valp = t4_read_reg(adapter, SF_DATA_A);
  726. return ret;
  727. }
  728. /**
  729. * sf1_write - write data to the serial flash
  730. * @adapter: the adapter
  731. * @byte_cnt: number of bytes to write
  732. * @cont: whether another operation will be chained
  733. * @lock: whether to lock SF for PL access only
  734. * @val: value to write
  735. *
  736. * Writes up to 4 bytes of data to the serial flash. The location of
  737. * the write needs to be specified prior to calling this by issuing the
  738. * appropriate commands to the serial flash.
  739. */
  740. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  741. int lock, u32 val)
  742. {
  743. if (!byte_cnt || byte_cnt > 4)
  744. return -EINVAL;
  745. if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
  746. return -EBUSY;
  747. t4_write_reg(adapter, SF_DATA_A, val);
  748. t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
  749. SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
  750. return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
  751. }
  752. /**
  753. * flash_wait_op - wait for a flash operation to complete
  754. * @adapter: the adapter
  755. * @attempts: max number of polls of the status register
  756. * @delay: delay between polls in ms
  757. *
  758. * Wait for a flash operation to complete by polling the status register.
  759. */
  760. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  761. {
  762. int ret;
  763. u32 status;
  764. while (1) {
  765. if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
  766. (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
  767. return ret;
  768. if (!(status & 1))
  769. return 0;
  770. if (--attempts == 0)
  771. return -EAGAIN;
  772. if (delay)
  773. msleep(delay);
  774. }
  775. }
  776. /**
  777. * t4_read_flash - read words from serial flash
  778. * @adapter: the adapter
  779. * @addr: the start address for the read
  780. * @nwords: how many 32-bit words to read
  781. * @data: where to store the read data
  782. * @byte_oriented: whether to store data as bytes or as words
  783. *
  784. * Read the specified number of 32-bit words from the serial flash.
  785. * If @byte_oriented is set the read data is stored as a byte array
  786. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  787. * natural endianness.
  788. */
  789. int t4_read_flash(struct adapter *adapter, unsigned int addr,
  790. unsigned int nwords, u32 *data, int byte_oriented)
  791. {
  792. int ret;
  793. if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
  794. return -EINVAL;
  795. addr = swab32(addr) | SF_RD_DATA_FAST;
  796. if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
  797. (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
  798. return ret;
  799. for ( ; nwords; nwords--, data++) {
  800. ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
  801. if (nwords == 1)
  802. t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
  803. if (ret)
  804. return ret;
  805. if (byte_oriented)
  806. *data = (__force __u32) (htonl(*data));
  807. }
  808. return 0;
  809. }
  810. /**
  811. * t4_write_flash - write up to a page of data to the serial flash
  812. * @adapter: the adapter
  813. * @addr: the start address to write
  814. * @n: length of data to write in bytes
  815. * @data: the data to write
  816. *
  817. * Writes up to a page of data (256 bytes) to the serial flash starting
  818. * at the given address. All the data must be written to the same page.
  819. */
  820. static int t4_write_flash(struct adapter *adapter, unsigned int addr,
  821. unsigned int n, const u8 *data)
  822. {
  823. int ret;
  824. u32 buf[64];
  825. unsigned int i, c, left, val, offset = addr & 0xff;
  826. if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
  827. return -EINVAL;
  828. val = swab32(addr) | SF_PROG_PAGE;
  829. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  830. (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
  831. goto unlock;
  832. for (left = n; left; left -= c) {
  833. c = min(left, 4U);
  834. for (val = 0, i = 0; i < c; ++i)
  835. val = (val << 8) + *data++;
  836. ret = sf1_write(adapter, c, c != left, 1, val);
  837. if (ret)
  838. goto unlock;
  839. }
  840. ret = flash_wait_op(adapter, 8, 1);
  841. if (ret)
  842. goto unlock;
  843. t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
  844. /* Read the page to verify the write succeeded */
  845. ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  846. if (ret)
  847. return ret;
  848. if (memcmp(data - n, (u8 *)buf + offset, n)) {
  849. dev_err(adapter->pdev_dev,
  850. "failed to correctly write the flash page at %#x\n",
  851. addr);
  852. return -EIO;
  853. }
  854. return 0;
  855. unlock:
  856. t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
  857. return ret;
  858. }
  859. /**
  860. * t4_get_fw_version - read the firmware version
  861. * @adapter: the adapter
  862. * @vers: where to place the version
  863. *
  864. * Reads the FW version from flash.
  865. */
  866. int t4_get_fw_version(struct adapter *adapter, u32 *vers)
  867. {
  868. return t4_read_flash(adapter, FLASH_FW_START +
  869. offsetof(struct fw_hdr, fw_ver), 1,
  870. vers, 0);
  871. }
  872. /**
  873. * t4_get_tp_version - read the TP microcode version
  874. * @adapter: the adapter
  875. * @vers: where to place the version
  876. *
  877. * Reads the TP microcode version from flash.
  878. */
  879. int t4_get_tp_version(struct adapter *adapter, u32 *vers)
  880. {
  881. return t4_read_flash(adapter, FLASH_FW_START +
  882. offsetof(struct fw_hdr, tp_microcode_ver),
  883. 1, vers, 0);
  884. }
  885. /**
  886. * t4_get_exprom_version - return the Expansion ROM version (if any)
  887. * @adapter: the adapter
  888. * @vers: where to place the version
  889. *
  890. * Reads the Expansion ROM header from FLASH and returns the version
  891. * number (if present) through the @vers return value pointer. We return
  892. * this in the Firmware Version Format since it's convenient. Return
  893. * 0 on success, -ENOENT if no Expansion ROM is present.
  894. */
  895. int t4_get_exprom_version(struct adapter *adap, u32 *vers)
  896. {
  897. struct exprom_header {
  898. unsigned char hdr_arr[16]; /* must start with 0x55aa */
  899. unsigned char hdr_ver[4]; /* Expansion ROM version */
  900. } *hdr;
  901. u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
  902. sizeof(u32))];
  903. int ret;
  904. ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
  905. ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
  906. 0);
  907. if (ret)
  908. return ret;
  909. hdr = (struct exprom_header *)exprom_header_buf;
  910. if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
  911. return -ENOENT;
  912. *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
  913. FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
  914. FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
  915. FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
  916. return 0;
  917. }
  918. /* Is the given firmware API compatible with the one the driver was compiled
  919. * with?
  920. */
  921. static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
  922. {
  923. /* short circuit if it's the exact same firmware version */
  924. if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
  925. return 1;
  926. #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
  927. if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
  928. SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
  929. return 1;
  930. #undef SAME_INTF
  931. return 0;
  932. }
  933. /* The firmware in the filesystem is usable, but should it be installed?
  934. * This routine explains itself in detail if it indicates the filesystem
  935. * firmware should be installed.
  936. */
  937. static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
  938. int k, int c)
  939. {
  940. const char *reason;
  941. if (!card_fw_usable) {
  942. reason = "incompatible or unusable";
  943. goto install;
  944. }
  945. if (k > c) {
  946. reason = "older than the version supported with this driver";
  947. goto install;
  948. }
  949. return 0;
  950. install:
  951. dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
  952. "installing firmware %u.%u.%u.%u on card.\n",
  953. FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
  954. FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
  955. FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
  956. FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
  957. return 1;
  958. }
  959. int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
  960. const u8 *fw_data, unsigned int fw_size,
  961. struct fw_hdr *card_fw, enum dev_state state,
  962. int *reset)
  963. {
  964. int ret, card_fw_usable, fs_fw_usable;
  965. const struct fw_hdr *fs_fw;
  966. const struct fw_hdr *drv_fw;
  967. drv_fw = &fw_info->fw_hdr;
  968. /* Read the header of the firmware on the card */
  969. ret = -t4_read_flash(adap, FLASH_FW_START,
  970. sizeof(*card_fw) / sizeof(uint32_t),
  971. (uint32_t *)card_fw, 1);
  972. if (ret == 0) {
  973. card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
  974. } else {
  975. dev_err(adap->pdev_dev,
  976. "Unable to read card's firmware header: %d\n", ret);
  977. card_fw_usable = 0;
  978. }
  979. if (fw_data != NULL) {
  980. fs_fw = (const void *)fw_data;
  981. fs_fw_usable = fw_compatible(drv_fw, fs_fw);
  982. } else {
  983. fs_fw = NULL;
  984. fs_fw_usable = 0;
  985. }
  986. if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
  987. (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
  988. /* Common case: the firmware on the card is an exact match and
  989. * the filesystem one is an exact match too, or the filesystem
  990. * one is absent/incompatible.
  991. */
  992. } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
  993. should_install_fs_fw(adap, card_fw_usable,
  994. be32_to_cpu(fs_fw->fw_ver),
  995. be32_to_cpu(card_fw->fw_ver))) {
  996. ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
  997. fw_size, 0);
  998. if (ret != 0) {
  999. dev_err(adap->pdev_dev,
  1000. "failed to install firmware: %d\n", ret);
  1001. goto bye;
  1002. }
  1003. /* Installed successfully, update the cached header too. */
  1004. *card_fw = *fs_fw;
  1005. card_fw_usable = 1;
  1006. *reset = 0; /* already reset as part of load_fw */
  1007. }
  1008. if (!card_fw_usable) {
  1009. uint32_t d, c, k;
  1010. d = be32_to_cpu(drv_fw->fw_ver);
  1011. c = be32_to_cpu(card_fw->fw_ver);
  1012. k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
  1013. dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
  1014. "chip state %d, "
  1015. "driver compiled with %d.%d.%d.%d, "
  1016. "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
  1017. state,
  1018. FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
  1019. FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
  1020. FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
  1021. FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
  1022. FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
  1023. FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
  1024. ret = EINVAL;
  1025. goto bye;
  1026. }
  1027. /* We're using whatever's on the card and it's known to be good. */
  1028. adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
  1029. adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
  1030. bye:
  1031. return ret;
  1032. }
  1033. /**
  1034. * t4_flash_erase_sectors - erase a range of flash sectors
  1035. * @adapter: the adapter
  1036. * @start: the first sector to erase
  1037. * @end: the last sector to erase
  1038. *
  1039. * Erases the sectors in the given inclusive range.
  1040. */
  1041. static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
  1042. {
  1043. int ret = 0;
  1044. if (end >= adapter->params.sf_nsec)
  1045. return -EINVAL;
  1046. while (start <= end) {
  1047. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  1048. (ret = sf1_write(adapter, 4, 0, 1,
  1049. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  1050. (ret = flash_wait_op(adapter, 14, 500)) != 0) {
  1051. dev_err(adapter->pdev_dev,
  1052. "erase of flash sector %d failed, error %d\n",
  1053. start, ret);
  1054. break;
  1055. }
  1056. start++;
  1057. }
  1058. t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
  1059. return ret;
  1060. }
  1061. /**
  1062. * t4_flash_cfg_addr - return the address of the flash configuration file
  1063. * @adapter: the adapter
  1064. *
  1065. * Return the address within the flash where the Firmware Configuration
  1066. * File is stored.
  1067. */
  1068. unsigned int t4_flash_cfg_addr(struct adapter *adapter)
  1069. {
  1070. if (adapter->params.sf_size == 0x100000)
  1071. return FLASH_FPGA_CFG_START;
  1072. else
  1073. return FLASH_CFG_START;
  1074. }
  1075. /* Return TRUE if the specified firmware matches the adapter. I.e. T4
  1076. * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
  1077. * and emit an error message for mismatched firmware to save our caller the
  1078. * effort ...
  1079. */
  1080. static bool t4_fw_matches_chip(const struct adapter *adap,
  1081. const struct fw_hdr *hdr)
  1082. {
  1083. /* The expression below will return FALSE for any unsupported adapter
  1084. * which will keep us "honest" in the future ...
  1085. */
  1086. if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
  1087. (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5))
  1088. return true;
  1089. dev_err(adap->pdev_dev,
  1090. "FW image (%d) is not suitable for this adapter (%d)\n",
  1091. hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
  1092. return false;
  1093. }
  1094. /**
  1095. * t4_load_fw - download firmware
  1096. * @adap: the adapter
  1097. * @fw_data: the firmware image to write
  1098. * @size: image size
  1099. *
  1100. * Write the supplied firmware image to the card's serial flash.
  1101. */
  1102. int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
  1103. {
  1104. u32 csum;
  1105. int ret, addr;
  1106. unsigned int i;
  1107. u8 first_page[SF_PAGE_SIZE];
  1108. const __be32 *p = (const __be32 *)fw_data;
  1109. const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
  1110. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  1111. unsigned int fw_img_start = adap->params.sf_fw_start;
  1112. unsigned int fw_start_sec = fw_img_start / sf_sec_size;
  1113. if (!size) {
  1114. dev_err(adap->pdev_dev, "FW image has no data\n");
  1115. return -EINVAL;
  1116. }
  1117. if (size & 511) {
  1118. dev_err(adap->pdev_dev,
  1119. "FW image size not multiple of 512 bytes\n");
  1120. return -EINVAL;
  1121. }
  1122. if (ntohs(hdr->len512) * 512 != size) {
  1123. dev_err(adap->pdev_dev,
  1124. "FW image size differs from size in FW header\n");
  1125. return -EINVAL;
  1126. }
  1127. if (size > FW_MAX_SIZE) {
  1128. dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
  1129. FW_MAX_SIZE);
  1130. return -EFBIG;
  1131. }
  1132. if (!t4_fw_matches_chip(adap, hdr))
  1133. return -EINVAL;
  1134. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  1135. csum += ntohl(p[i]);
  1136. if (csum != 0xffffffff) {
  1137. dev_err(adap->pdev_dev,
  1138. "corrupted firmware image, checksum %#x\n", csum);
  1139. return -EINVAL;
  1140. }
  1141. i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
  1142. ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
  1143. if (ret)
  1144. goto out;
  1145. /*
  1146. * We write the correct version at the end so the driver can see a bad
  1147. * version if the FW write fails. Start by writing a copy of the
  1148. * first page with a bad version.
  1149. */
  1150. memcpy(first_page, fw_data, SF_PAGE_SIZE);
  1151. ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
  1152. ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
  1153. if (ret)
  1154. goto out;
  1155. addr = fw_img_start;
  1156. for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
  1157. addr += SF_PAGE_SIZE;
  1158. fw_data += SF_PAGE_SIZE;
  1159. ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
  1160. if (ret)
  1161. goto out;
  1162. }
  1163. ret = t4_write_flash(adap,
  1164. fw_img_start + offsetof(struct fw_hdr, fw_ver),
  1165. sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
  1166. out:
  1167. if (ret)
  1168. dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
  1169. ret);
  1170. else
  1171. ret = t4_get_fw_version(adap, &adap->params.fw_vers);
  1172. return ret;
  1173. }
  1174. /**
  1175. * t4_fwcache - firmware cache operation
  1176. * @adap: the adapter
  1177. * @op : the operation (flush or flush and invalidate)
  1178. */
  1179. int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
  1180. {
  1181. struct fw_params_cmd c;
  1182. memset(&c, 0, sizeof(c));
  1183. c.op_to_vfn =
  1184. cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
  1185. FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
  1186. FW_PARAMS_CMD_PFN_V(adap->fn) |
  1187. FW_PARAMS_CMD_VFN_V(0));
  1188. c.retval_len16 = cpu_to_be32(FW_LEN16(c));
  1189. c.param[0].mnem =
  1190. cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
  1191. FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
  1192. c.param[0].val = (__force __be32)op;
  1193. return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
  1194. }
  1195. void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
  1196. {
  1197. unsigned int i, j;
  1198. for (i = 0; i < 8; i++) {
  1199. u32 *p = la_buf + i;
  1200. t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
  1201. j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
  1202. t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
  1203. for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
  1204. *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
  1205. }
  1206. }
  1207. #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
  1208. FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
  1209. FW_PORT_CAP_ANEG)
  1210. /**
  1211. * t4_link_start - apply link configuration to MAC/PHY
  1212. * @phy: the PHY to setup
  1213. * @mac: the MAC to setup
  1214. * @lc: the requested link configuration
  1215. *
  1216. * Set up a port's MAC and PHY according to a desired link configuration.
  1217. * - If the PHY can auto-negotiate first decide what to advertise, then
  1218. * enable/disable auto-negotiation as desired, and reset.
  1219. * - If the PHY does not auto-negotiate just reset it.
  1220. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1221. * otherwise do it later based on the outcome of auto-negotiation.
  1222. */
  1223. int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
  1224. struct link_config *lc)
  1225. {
  1226. struct fw_port_cmd c;
  1227. unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
  1228. lc->link_ok = 0;
  1229. if (lc->requested_fc & PAUSE_RX)
  1230. fc |= FW_PORT_CAP_FC_RX;
  1231. if (lc->requested_fc & PAUSE_TX)
  1232. fc |= FW_PORT_CAP_FC_TX;
  1233. memset(&c, 0, sizeof(c));
  1234. c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F |
  1235. FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port));
  1236. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
  1237. FW_LEN16(c));
  1238. if (!(lc->supported & FW_PORT_CAP_ANEG)) {
  1239. c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
  1240. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1241. } else if (lc->autoneg == AUTONEG_DISABLE) {
  1242. c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
  1243. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1244. } else
  1245. c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
  1246. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1247. }
  1248. /**
  1249. * t4_restart_aneg - restart autonegotiation
  1250. * @adap: the adapter
  1251. * @mbox: mbox to use for the FW command
  1252. * @port: the port id
  1253. *
  1254. * Restarts autonegotiation for the selected port.
  1255. */
  1256. int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
  1257. {
  1258. struct fw_port_cmd c;
  1259. memset(&c, 0, sizeof(c));
  1260. c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F |
  1261. FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port));
  1262. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
  1263. FW_LEN16(c));
  1264. c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
  1265. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1266. }
  1267. typedef void (*int_handler_t)(struct adapter *adap);
  1268. struct intr_info {
  1269. unsigned int mask; /* bits to check in interrupt status */
  1270. const char *msg; /* message to print or NULL */
  1271. short stat_idx; /* stat counter to increment or -1 */
  1272. unsigned short fatal; /* whether the condition reported is fatal */
  1273. int_handler_t int_handler; /* platform-specific int handler */
  1274. };
  1275. /**
  1276. * t4_handle_intr_status - table driven interrupt handler
  1277. * @adapter: the adapter that generated the interrupt
  1278. * @reg: the interrupt status register to process
  1279. * @acts: table of interrupt actions
  1280. *
  1281. * A table driven interrupt handler that applies a set of masks to an
  1282. * interrupt status word and performs the corresponding actions if the
  1283. * interrupts described by the mask have occurred. The actions include
  1284. * optionally emitting a warning or alert message. The table is terminated
  1285. * by an entry specifying mask 0. Returns the number of fatal interrupt
  1286. * conditions.
  1287. */
  1288. static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1289. const struct intr_info *acts)
  1290. {
  1291. int fatal = 0;
  1292. unsigned int mask = 0;
  1293. unsigned int status = t4_read_reg(adapter, reg);
  1294. for ( ; acts->mask; ++acts) {
  1295. if (!(status & acts->mask))
  1296. continue;
  1297. if (acts->fatal) {
  1298. fatal++;
  1299. dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1300. status & acts->mask);
  1301. } else if (acts->msg && printk_ratelimit())
  1302. dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1303. status & acts->mask);
  1304. if (acts->int_handler)
  1305. acts->int_handler(adapter);
  1306. mask |= acts->mask;
  1307. }
  1308. status &= mask;
  1309. if (status) /* clear processed interrupts */
  1310. t4_write_reg(adapter, reg, status);
  1311. return fatal;
  1312. }
  1313. /*
  1314. * Interrupt handler for the PCIE module.
  1315. */
  1316. static void pcie_intr_handler(struct adapter *adapter)
  1317. {
  1318. static const struct intr_info sysbus_intr_info[] = {
  1319. { RNPP_F, "RXNP array parity error", -1, 1 },
  1320. { RPCP_F, "RXPC array parity error", -1, 1 },
  1321. { RCIP_F, "RXCIF array parity error", -1, 1 },
  1322. { RCCP_F, "Rx completions control array parity error", -1, 1 },
  1323. { RFTP_F, "RXFT array parity error", -1, 1 },
  1324. { 0 }
  1325. };
  1326. static const struct intr_info pcie_port_intr_info[] = {
  1327. { TPCP_F, "TXPC array parity error", -1, 1 },
  1328. { TNPP_F, "TXNP array parity error", -1, 1 },
  1329. { TFTP_F, "TXFT array parity error", -1, 1 },
  1330. { TCAP_F, "TXCA array parity error", -1, 1 },
  1331. { TCIP_F, "TXCIF array parity error", -1, 1 },
  1332. { RCAP_F, "RXCA array parity error", -1, 1 },
  1333. { OTDD_F, "outbound request TLP discarded", -1, 1 },
  1334. { RDPE_F, "Rx data parity error", -1, 1 },
  1335. { TDUE_F, "Tx uncorrectable data error", -1, 1 },
  1336. { 0 }
  1337. };
  1338. static const struct intr_info pcie_intr_info[] = {
  1339. { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
  1340. { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
  1341. { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
  1342. { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
  1343. { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
  1344. { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
  1345. { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
  1346. { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
  1347. { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
  1348. { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
  1349. { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
  1350. { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
  1351. { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
  1352. { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
  1353. { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
  1354. { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
  1355. { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
  1356. { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
  1357. { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
  1358. { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
  1359. { FIDPERR_F, "PCI FID parity error", -1, 1 },
  1360. { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
  1361. { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
  1362. { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
  1363. { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
  1364. { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
  1365. { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
  1366. { PCIESINT_F, "PCI core secondary fault", -1, 1 },
  1367. { PCIEPINT_F, "PCI core primary fault", -1, 1 },
  1368. { UNXSPLCPLERR_F, "PCI unexpected split completion error",
  1369. -1, 0 },
  1370. { 0 }
  1371. };
  1372. static struct intr_info t5_pcie_intr_info[] = {
  1373. { MSTGRPPERR_F, "Master Response Read Queue parity error",
  1374. -1, 1 },
  1375. { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
  1376. { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
  1377. { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
  1378. { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
  1379. { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
  1380. { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
  1381. { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
  1382. -1, 1 },
  1383. { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
  1384. -1, 1 },
  1385. { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
  1386. { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
  1387. { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
  1388. { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
  1389. { DREQWRPERR_F, "PCI DMA channel write request parity error",
  1390. -1, 1 },
  1391. { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
  1392. { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
  1393. { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
  1394. { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
  1395. { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
  1396. { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
  1397. { FIDPERR_F, "PCI FID parity error", -1, 1 },
  1398. { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
  1399. { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
  1400. { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
  1401. { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
  1402. -1, 1 },
  1403. { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
  1404. -1, 1 },
  1405. { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
  1406. { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
  1407. { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
  1408. { READRSPERR_F, "Outbound read error", -1, 0 },
  1409. { 0 }
  1410. };
  1411. int fat;
  1412. if (is_t4(adapter->params.chip))
  1413. fat = t4_handle_intr_status(adapter,
  1414. PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
  1415. sysbus_intr_info) +
  1416. t4_handle_intr_status(adapter,
  1417. PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
  1418. pcie_port_intr_info) +
  1419. t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
  1420. pcie_intr_info);
  1421. else
  1422. fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
  1423. t5_pcie_intr_info);
  1424. if (fat)
  1425. t4_fatal_err(adapter);
  1426. }
  1427. /*
  1428. * TP interrupt handler.
  1429. */
  1430. static void tp_intr_handler(struct adapter *adapter)
  1431. {
  1432. static const struct intr_info tp_intr_info[] = {
  1433. { 0x3fffffff, "TP parity error", -1, 1 },
  1434. { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
  1435. { 0 }
  1436. };
  1437. if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
  1438. t4_fatal_err(adapter);
  1439. }
  1440. /*
  1441. * SGE interrupt handler.
  1442. */
  1443. static void sge_intr_handler(struct adapter *adapter)
  1444. {
  1445. u64 v;
  1446. static const struct intr_info sge_intr_info[] = {
  1447. { ERR_CPL_EXCEED_IQE_SIZE_F,
  1448. "SGE received CPL exceeding IQE size", -1, 1 },
  1449. { ERR_INVALID_CIDX_INC_F,
  1450. "SGE GTS CIDX increment too large", -1, 0 },
  1451. { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
  1452. { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
  1453. { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
  1454. { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
  1455. { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
  1456. "SGE IQID > 1023 received CPL for FL", -1, 0 },
  1457. { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
  1458. 0 },
  1459. { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
  1460. 0 },
  1461. { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
  1462. 0 },
  1463. { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
  1464. 0 },
  1465. { ERR_ING_CTXT_PRIO_F,
  1466. "SGE too many priority ingress contexts", -1, 0 },
  1467. { ERR_EGR_CTXT_PRIO_F,
  1468. "SGE too many priority egress contexts", -1, 0 },
  1469. { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
  1470. { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
  1471. { 0 }
  1472. };
  1473. v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
  1474. ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
  1475. if (v) {
  1476. dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
  1477. (unsigned long long)v);
  1478. t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
  1479. t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
  1480. }
  1481. if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info) ||
  1482. v != 0)
  1483. t4_fatal_err(adapter);
  1484. }
  1485. #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
  1486. OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
  1487. #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
  1488. IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
  1489. /*
  1490. * CIM interrupt handler.
  1491. */
  1492. static void cim_intr_handler(struct adapter *adapter)
  1493. {
  1494. static const struct intr_info cim_intr_info[] = {
  1495. { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
  1496. { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
  1497. { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
  1498. { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
  1499. { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
  1500. { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
  1501. { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
  1502. { 0 }
  1503. };
  1504. static const struct intr_info cim_upintr_info[] = {
  1505. { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
  1506. { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
  1507. { ILLWRINT_F, "CIM illegal write", -1, 1 },
  1508. { ILLRDINT_F, "CIM illegal read", -1, 1 },
  1509. { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
  1510. { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
  1511. { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
  1512. { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
  1513. { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
  1514. { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
  1515. { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
  1516. { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
  1517. { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
  1518. { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
  1519. { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
  1520. { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
  1521. { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
  1522. { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
  1523. { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
  1524. { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
  1525. { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
  1526. { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
  1527. { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
  1528. { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
  1529. { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
  1530. { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
  1531. { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
  1532. { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
  1533. { 0 }
  1534. };
  1535. int fat;
  1536. if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
  1537. t4_report_fw_error(adapter);
  1538. fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
  1539. cim_intr_info) +
  1540. t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
  1541. cim_upintr_info);
  1542. if (fat)
  1543. t4_fatal_err(adapter);
  1544. }
  1545. /*
  1546. * ULP RX interrupt handler.
  1547. */
  1548. static void ulprx_intr_handler(struct adapter *adapter)
  1549. {
  1550. static const struct intr_info ulprx_intr_info[] = {
  1551. { 0x1800000, "ULPRX context error", -1, 1 },
  1552. { 0x7fffff, "ULPRX parity error", -1, 1 },
  1553. { 0 }
  1554. };
  1555. if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
  1556. t4_fatal_err(adapter);
  1557. }
  1558. /*
  1559. * ULP TX interrupt handler.
  1560. */
  1561. static void ulptx_intr_handler(struct adapter *adapter)
  1562. {
  1563. static const struct intr_info ulptx_intr_info[] = {
  1564. { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
  1565. 0 },
  1566. { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
  1567. 0 },
  1568. { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
  1569. 0 },
  1570. { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
  1571. 0 },
  1572. { 0xfffffff, "ULPTX parity error", -1, 1 },
  1573. { 0 }
  1574. };
  1575. if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
  1576. t4_fatal_err(adapter);
  1577. }
  1578. /*
  1579. * PM TX interrupt handler.
  1580. */
  1581. static void pmtx_intr_handler(struct adapter *adapter)
  1582. {
  1583. static const struct intr_info pmtx_intr_info[] = {
  1584. { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
  1585. { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
  1586. { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
  1587. { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
  1588. { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
  1589. { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
  1590. { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
  1591. -1, 1 },
  1592. { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
  1593. { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
  1594. { 0 }
  1595. };
  1596. if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
  1597. t4_fatal_err(adapter);
  1598. }
  1599. /*
  1600. * PM RX interrupt handler.
  1601. */
  1602. static void pmrx_intr_handler(struct adapter *adapter)
  1603. {
  1604. static const struct intr_info pmrx_intr_info[] = {
  1605. { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
  1606. { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
  1607. { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
  1608. { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
  1609. -1, 1 },
  1610. { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
  1611. { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
  1612. { 0 }
  1613. };
  1614. if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
  1615. t4_fatal_err(adapter);
  1616. }
  1617. /*
  1618. * CPL switch interrupt handler.
  1619. */
  1620. static void cplsw_intr_handler(struct adapter *adapter)
  1621. {
  1622. static const struct intr_info cplsw_intr_info[] = {
  1623. { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
  1624. { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
  1625. { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
  1626. { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
  1627. { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
  1628. { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
  1629. { 0 }
  1630. };
  1631. if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
  1632. t4_fatal_err(adapter);
  1633. }
  1634. /*
  1635. * LE interrupt handler.
  1636. */
  1637. static void le_intr_handler(struct adapter *adap)
  1638. {
  1639. static const struct intr_info le_intr_info[] = {
  1640. { LIPMISS_F, "LE LIP miss", -1, 0 },
  1641. { LIP0_F, "LE 0 LIP error", -1, 0 },
  1642. { PARITYERR_F, "LE parity error", -1, 1 },
  1643. { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
  1644. { REQQPARERR_F, "LE request queue parity error", -1, 1 },
  1645. { 0 }
  1646. };
  1647. if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, le_intr_info))
  1648. t4_fatal_err(adap);
  1649. }
  1650. /*
  1651. * MPS interrupt handler.
  1652. */
  1653. static void mps_intr_handler(struct adapter *adapter)
  1654. {
  1655. static const struct intr_info mps_rx_intr_info[] = {
  1656. { 0xffffff, "MPS Rx parity error", -1, 1 },
  1657. { 0 }
  1658. };
  1659. static const struct intr_info mps_tx_intr_info[] = {
  1660. { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
  1661. { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
  1662. { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
  1663. -1, 1 },
  1664. { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
  1665. -1, 1 },
  1666. { BUBBLE_F, "MPS Tx underflow", -1, 1 },
  1667. { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
  1668. { FRMERR_F, "MPS Tx framing error", -1, 1 },
  1669. { 0 }
  1670. };
  1671. static const struct intr_info mps_trc_intr_info[] = {
  1672. { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
  1673. { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
  1674. -1, 1 },
  1675. { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
  1676. { 0 }
  1677. };
  1678. static const struct intr_info mps_stat_sram_intr_info[] = {
  1679. { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
  1680. { 0 }
  1681. };
  1682. static const struct intr_info mps_stat_tx_intr_info[] = {
  1683. { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
  1684. { 0 }
  1685. };
  1686. static const struct intr_info mps_stat_rx_intr_info[] = {
  1687. { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
  1688. { 0 }
  1689. };
  1690. static const struct intr_info mps_cls_intr_info[] = {
  1691. { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
  1692. { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
  1693. { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
  1694. { 0 }
  1695. };
  1696. int fat;
  1697. fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
  1698. mps_rx_intr_info) +
  1699. t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
  1700. mps_tx_intr_info) +
  1701. t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
  1702. mps_trc_intr_info) +
  1703. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
  1704. mps_stat_sram_intr_info) +
  1705. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
  1706. mps_stat_tx_intr_info) +
  1707. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
  1708. mps_stat_rx_intr_info) +
  1709. t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
  1710. mps_cls_intr_info);
  1711. t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
  1712. t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */
  1713. if (fat)
  1714. t4_fatal_err(adapter);
  1715. }
  1716. #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
  1717. ECC_UE_INT_CAUSE_F)
  1718. /*
  1719. * EDC/MC interrupt handler.
  1720. */
  1721. static void mem_intr_handler(struct adapter *adapter, int idx)
  1722. {
  1723. static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
  1724. unsigned int addr, cnt_addr, v;
  1725. if (idx <= MEM_EDC1) {
  1726. addr = EDC_REG(EDC_INT_CAUSE_A, idx);
  1727. cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
  1728. } else if (idx == MEM_MC) {
  1729. if (is_t4(adapter->params.chip)) {
  1730. addr = MC_INT_CAUSE_A;
  1731. cnt_addr = MC_ECC_STATUS_A;
  1732. } else {
  1733. addr = MC_P_INT_CAUSE_A;
  1734. cnt_addr = MC_P_ECC_STATUS_A;
  1735. }
  1736. } else {
  1737. addr = MC_REG(MC_P_INT_CAUSE_A, 1);
  1738. cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
  1739. }
  1740. v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
  1741. if (v & PERR_INT_CAUSE_F)
  1742. dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
  1743. name[idx]);
  1744. if (v & ECC_CE_INT_CAUSE_F) {
  1745. u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
  1746. t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
  1747. if (printk_ratelimit())
  1748. dev_warn(adapter->pdev_dev,
  1749. "%u %s correctable ECC data error%s\n",
  1750. cnt, name[idx], cnt > 1 ? "s" : "");
  1751. }
  1752. if (v & ECC_UE_INT_CAUSE_F)
  1753. dev_alert(adapter->pdev_dev,
  1754. "%s uncorrectable ECC data error\n", name[idx]);
  1755. t4_write_reg(adapter, addr, v);
  1756. if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
  1757. t4_fatal_err(adapter);
  1758. }
  1759. /*
  1760. * MA interrupt handler.
  1761. */
  1762. static void ma_intr_handler(struct adapter *adap)
  1763. {
  1764. u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
  1765. if (status & MEM_PERR_INT_CAUSE_F) {
  1766. dev_alert(adap->pdev_dev,
  1767. "MA parity error, parity status %#x\n",
  1768. t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
  1769. if (is_t5(adap->params.chip))
  1770. dev_alert(adap->pdev_dev,
  1771. "MA parity error, parity status %#x\n",
  1772. t4_read_reg(adap,
  1773. MA_PARITY_ERROR_STATUS2_A));
  1774. }
  1775. if (status & MEM_WRAP_INT_CAUSE_F) {
  1776. v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
  1777. dev_alert(adap->pdev_dev, "MA address wrap-around error by "
  1778. "client %u to address %#x\n",
  1779. MEM_WRAP_CLIENT_NUM_G(v),
  1780. MEM_WRAP_ADDRESS_G(v) << 4);
  1781. }
  1782. t4_write_reg(adap, MA_INT_CAUSE_A, status);
  1783. t4_fatal_err(adap);
  1784. }
  1785. /*
  1786. * SMB interrupt handler.
  1787. */
  1788. static void smb_intr_handler(struct adapter *adap)
  1789. {
  1790. static const struct intr_info smb_intr_info[] = {
  1791. { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
  1792. { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
  1793. { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
  1794. { 0 }
  1795. };
  1796. if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
  1797. t4_fatal_err(adap);
  1798. }
  1799. /*
  1800. * NC-SI interrupt handler.
  1801. */
  1802. static void ncsi_intr_handler(struct adapter *adap)
  1803. {
  1804. static const struct intr_info ncsi_intr_info[] = {
  1805. { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
  1806. { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
  1807. { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
  1808. { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
  1809. { 0 }
  1810. };
  1811. if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
  1812. t4_fatal_err(adap);
  1813. }
  1814. /*
  1815. * XGMAC interrupt handler.
  1816. */
  1817. static void xgmac_intr_handler(struct adapter *adap, int port)
  1818. {
  1819. u32 v, int_cause_reg;
  1820. if (is_t4(adap->params.chip))
  1821. int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
  1822. else
  1823. int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
  1824. v = t4_read_reg(adap, int_cause_reg);
  1825. v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
  1826. if (!v)
  1827. return;
  1828. if (v & TXFIFO_PRTY_ERR_F)
  1829. dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
  1830. port);
  1831. if (v & RXFIFO_PRTY_ERR_F)
  1832. dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
  1833. port);
  1834. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
  1835. t4_fatal_err(adap);
  1836. }
  1837. /*
  1838. * PL interrupt handler.
  1839. */
  1840. static void pl_intr_handler(struct adapter *adap)
  1841. {
  1842. static const struct intr_info pl_intr_info[] = {
  1843. { FATALPERR_F, "T4 fatal parity error", -1, 1 },
  1844. { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
  1845. { 0 }
  1846. };
  1847. if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
  1848. t4_fatal_err(adap);
  1849. }
  1850. #define PF_INTR_MASK (PFSW_F)
  1851. #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
  1852. EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
  1853. CPL_SWITCH_F | SGE_F | ULP_TX_F)
  1854. /**
  1855. * t4_slow_intr_handler - control path interrupt handler
  1856. * @adapter: the adapter
  1857. *
  1858. * T4 interrupt handler for non-data global interrupt events, e.g., errors.
  1859. * The designation 'slow' is because it involves register reads, while
  1860. * data interrupts typically don't involve any MMIOs.
  1861. */
  1862. int t4_slow_intr_handler(struct adapter *adapter)
  1863. {
  1864. u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
  1865. if (!(cause & GLBL_INTR_MASK))
  1866. return 0;
  1867. if (cause & CIM_F)
  1868. cim_intr_handler(adapter);
  1869. if (cause & MPS_F)
  1870. mps_intr_handler(adapter);
  1871. if (cause & NCSI_F)
  1872. ncsi_intr_handler(adapter);
  1873. if (cause & PL_F)
  1874. pl_intr_handler(adapter);
  1875. if (cause & SMB_F)
  1876. smb_intr_handler(adapter);
  1877. if (cause & XGMAC0_F)
  1878. xgmac_intr_handler(adapter, 0);
  1879. if (cause & XGMAC1_F)
  1880. xgmac_intr_handler(adapter, 1);
  1881. if (cause & XGMAC_KR0_F)
  1882. xgmac_intr_handler(adapter, 2);
  1883. if (cause & XGMAC_KR1_F)
  1884. xgmac_intr_handler(adapter, 3);
  1885. if (cause & PCIE_F)
  1886. pcie_intr_handler(adapter);
  1887. if (cause & MC_F)
  1888. mem_intr_handler(adapter, MEM_MC);
  1889. if (!is_t4(adapter->params.chip) && (cause & MC1_S))
  1890. mem_intr_handler(adapter, MEM_MC1);
  1891. if (cause & EDC0_F)
  1892. mem_intr_handler(adapter, MEM_EDC0);
  1893. if (cause & EDC1_F)
  1894. mem_intr_handler(adapter, MEM_EDC1);
  1895. if (cause & LE_F)
  1896. le_intr_handler(adapter);
  1897. if (cause & TP_F)
  1898. tp_intr_handler(adapter);
  1899. if (cause & MA_F)
  1900. ma_intr_handler(adapter);
  1901. if (cause & PM_TX_F)
  1902. pmtx_intr_handler(adapter);
  1903. if (cause & PM_RX_F)
  1904. pmrx_intr_handler(adapter);
  1905. if (cause & ULP_RX_F)
  1906. ulprx_intr_handler(adapter);
  1907. if (cause & CPL_SWITCH_F)
  1908. cplsw_intr_handler(adapter);
  1909. if (cause & SGE_F)
  1910. sge_intr_handler(adapter);
  1911. if (cause & ULP_TX_F)
  1912. ulptx_intr_handler(adapter);
  1913. /* Clear the interrupts just processed for which we are the master. */
  1914. t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
  1915. (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
  1916. return 1;
  1917. }
  1918. /**
  1919. * t4_intr_enable - enable interrupts
  1920. * @adapter: the adapter whose interrupts should be enabled
  1921. *
  1922. * Enable PF-specific interrupts for the calling function and the top-level
  1923. * interrupt concentrator for global interrupts. Interrupts are already
  1924. * enabled at each module, here we just enable the roots of the interrupt
  1925. * hierarchies.
  1926. *
  1927. * Note: this function should be called only when the driver manages
  1928. * non PF-specific interrupts from the various HW modules. Only one PCI
  1929. * function at a time should be doing this.
  1930. */
  1931. void t4_intr_enable(struct adapter *adapter)
  1932. {
  1933. u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A));
  1934. t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
  1935. ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
  1936. ERR_DROPPED_DB_F | ERR_DATA_CPL_ON_HIGH_QID1_F |
  1937. ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
  1938. ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
  1939. ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
  1940. ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F |
  1941. DBFIFO_HP_INT_F | DBFIFO_LP_INT_F |
  1942. EGRESS_SIZE_ERR_F);
  1943. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
  1944. t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
  1945. }
  1946. /**
  1947. * t4_intr_disable - disable interrupts
  1948. * @adapter: the adapter whose interrupts should be disabled
  1949. *
  1950. * Disable interrupts. We only disable the top-level interrupt
  1951. * concentrators. The caller must be a PCI function managing global
  1952. * interrupts.
  1953. */
  1954. void t4_intr_disable(struct adapter *adapter)
  1955. {
  1956. u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A));
  1957. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
  1958. t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
  1959. }
  1960. /**
  1961. * hash_mac_addr - return the hash value of a MAC address
  1962. * @addr: the 48-bit Ethernet MAC address
  1963. *
  1964. * Hashes a MAC address according to the hash function used by HW inexact
  1965. * (hash) address matching.
  1966. */
  1967. static int hash_mac_addr(const u8 *addr)
  1968. {
  1969. u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
  1970. u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
  1971. a ^= b;
  1972. a ^= (a >> 12);
  1973. a ^= (a >> 6);
  1974. return a & 0x3f;
  1975. }
  1976. /**
  1977. * t4_config_rss_range - configure a portion of the RSS mapping table
  1978. * @adapter: the adapter
  1979. * @mbox: mbox to use for the FW command
  1980. * @viid: virtual interface whose RSS subtable is to be written
  1981. * @start: start entry in the table to write
  1982. * @n: how many table entries to write
  1983. * @rspq: values for the response queue lookup table
  1984. * @nrspq: number of values in @rspq
  1985. *
  1986. * Programs the selected part of the VI's RSS mapping table with the
  1987. * provided values. If @nrspq < @n the supplied values are used repeatedly
  1988. * until the full table range is populated.
  1989. *
  1990. * The caller must ensure the values in @rspq are in the range allowed for
  1991. * @viid.
  1992. */
  1993. int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
  1994. int start, int n, const u16 *rspq, unsigned int nrspq)
  1995. {
  1996. int ret;
  1997. const u16 *rsp = rspq;
  1998. const u16 *rsp_end = rspq + nrspq;
  1999. struct fw_rss_ind_tbl_cmd cmd;
  2000. memset(&cmd, 0, sizeof(cmd));
  2001. cmd.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
  2002. FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
  2003. FW_RSS_IND_TBL_CMD_VIID_V(viid));
  2004. cmd.retval_len16 = htonl(FW_LEN16(cmd));
  2005. /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
  2006. while (n > 0) {
  2007. int nq = min(n, 32);
  2008. __be32 *qp = &cmd.iq0_to_iq2;
  2009. cmd.niqid = htons(nq);
  2010. cmd.startidx = htons(start);
  2011. start += nq;
  2012. n -= nq;
  2013. while (nq > 0) {
  2014. unsigned int v;
  2015. v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
  2016. if (++rsp >= rsp_end)
  2017. rsp = rspq;
  2018. v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
  2019. if (++rsp >= rsp_end)
  2020. rsp = rspq;
  2021. v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
  2022. if (++rsp >= rsp_end)
  2023. rsp = rspq;
  2024. *qp++ = htonl(v);
  2025. nq -= 3;
  2026. }
  2027. ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
  2028. if (ret)
  2029. return ret;
  2030. }
  2031. return 0;
  2032. }
  2033. /**
  2034. * t4_config_glbl_rss - configure the global RSS mode
  2035. * @adapter: the adapter
  2036. * @mbox: mbox to use for the FW command
  2037. * @mode: global RSS mode
  2038. * @flags: mode-specific flags
  2039. *
  2040. * Sets the global RSS mode.
  2041. */
  2042. int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
  2043. unsigned int flags)
  2044. {
  2045. struct fw_rss_glb_config_cmd c;
  2046. memset(&c, 0, sizeof(c));
  2047. c.op_to_write = htonl(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
  2048. FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
  2049. c.retval_len16 = htonl(FW_LEN16(c));
  2050. if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
  2051. c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
  2052. } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
  2053. c.u.basicvirtual.mode_pkd =
  2054. htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
  2055. c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
  2056. } else
  2057. return -EINVAL;
  2058. return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
  2059. }
  2060. /* Read an RSS table row */
  2061. static int rd_rss_row(struct adapter *adap, int row, u32 *val)
  2062. {
  2063. t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
  2064. return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
  2065. 5, 0, val);
  2066. }
  2067. /**
  2068. * t4_read_rss - read the contents of the RSS mapping table
  2069. * @adapter: the adapter
  2070. * @map: holds the contents of the RSS mapping table
  2071. *
  2072. * Reads the contents of the RSS hash->queue mapping table.
  2073. */
  2074. int t4_read_rss(struct adapter *adapter, u16 *map)
  2075. {
  2076. u32 val;
  2077. int i, ret;
  2078. for (i = 0; i < RSS_NENTRIES / 2; ++i) {
  2079. ret = rd_rss_row(adapter, i, &val);
  2080. if (ret)
  2081. return ret;
  2082. *map++ = LKPTBLQUEUE0_G(val);
  2083. *map++ = LKPTBLQUEUE1_G(val);
  2084. }
  2085. return 0;
  2086. }
  2087. /**
  2088. * t4_read_rss_key - read the global RSS key
  2089. * @adap: the adapter
  2090. * @key: 10-entry array holding the 320-bit RSS key
  2091. *
  2092. * Reads the global 320-bit RSS key.
  2093. */
  2094. void t4_read_rss_key(struct adapter *adap, u32 *key)
  2095. {
  2096. t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
  2097. TP_RSS_SECRET_KEY0_A);
  2098. }
  2099. /**
  2100. * t4_write_rss_key - program one of the RSS keys
  2101. * @adap: the adapter
  2102. * @key: 10-entry array holding the 320-bit RSS key
  2103. * @idx: which RSS key to write
  2104. *
  2105. * Writes one of the RSS keys with the given 320-bit value. If @idx is
  2106. * 0..15 the corresponding entry in the RSS key table is written,
  2107. * otherwise the global RSS key is written.
  2108. */
  2109. void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
  2110. {
  2111. t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
  2112. TP_RSS_SECRET_KEY0_A);
  2113. if (idx >= 0 && idx < 16)
  2114. t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
  2115. KEYWRADDR_V(idx) | KEYWREN_F);
  2116. }
  2117. /**
  2118. * t4_read_rss_pf_config - read PF RSS Configuration Table
  2119. * @adapter: the adapter
  2120. * @index: the entry in the PF RSS table to read
  2121. * @valp: where to store the returned value
  2122. *
  2123. * Reads the PF RSS Configuration Table at the specified index and returns
  2124. * the value found there.
  2125. */
  2126. void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
  2127. u32 *valp)
  2128. {
  2129. t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
  2130. valp, 1, TP_RSS_PF0_CONFIG_A + index);
  2131. }
  2132. /**
  2133. * t4_read_rss_vf_config - read VF RSS Configuration Table
  2134. * @adapter: the adapter
  2135. * @index: the entry in the VF RSS table to read
  2136. * @vfl: where to store the returned VFL
  2137. * @vfh: where to store the returned VFH
  2138. *
  2139. * Reads the VF RSS Configuration Table at the specified index and returns
  2140. * the (VFL, VFH) values found there.
  2141. */
  2142. void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
  2143. u32 *vfl, u32 *vfh)
  2144. {
  2145. u32 vrt, mask, data;
  2146. mask = VFWRADDR_V(VFWRADDR_M);
  2147. data = VFWRADDR_V(index);
  2148. /* Request that the index'th VF Table values be read into VFL/VFH.
  2149. */
  2150. vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
  2151. vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
  2152. vrt |= data | VFRDEN_F;
  2153. t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
  2154. /* Grab the VFL/VFH values ...
  2155. */
  2156. t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
  2157. vfl, 1, TP_RSS_VFL_CONFIG_A);
  2158. t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
  2159. vfh, 1, TP_RSS_VFH_CONFIG_A);
  2160. }
  2161. /**
  2162. * t4_read_rss_pf_map - read PF RSS Map
  2163. * @adapter: the adapter
  2164. *
  2165. * Reads the PF RSS Map register and returns its value.
  2166. */
  2167. u32 t4_read_rss_pf_map(struct adapter *adapter)
  2168. {
  2169. u32 pfmap;
  2170. t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
  2171. &pfmap, 1, TP_RSS_PF_MAP_A);
  2172. return pfmap;
  2173. }
  2174. /**
  2175. * t4_read_rss_pf_mask - read PF RSS Mask
  2176. * @adapter: the adapter
  2177. *
  2178. * Reads the PF RSS Mask register and returns its value.
  2179. */
  2180. u32 t4_read_rss_pf_mask(struct adapter *adapter)
  2181. {
  2182. u32 pfmask;
  2183. t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
  2184. &pfmask, 1, TP_RSS_PF_MSK_A);
  2185. return pfmask;
  2186. }
  2187. /**
  2188. * t4_tp_get_tcp_stats - read TP's TCP MIB counters
  2189. * @adap: the adapter
  2190. * @v4: holds the TCP/IP counter values
  2191. * @v6: holds the TCP/IPv6 counter values
  2192. *
  2193. * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
  2194. * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
  2195. */
  2196. void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
  2197. struct tp_tcp_stats *v6)
  2198. {
  2199. u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
  2200. #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
  2201. #define STAT(x) val[STAT_IDX(x)]
  2202. #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
  2203. if (v4) {
  2204. t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
  2205. ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
  2206. v4->tcpOutRsts = STAT(OUT_RST);
  2207. v4->tcpInSegs = STAT64(IN_SEG);
  2208. v4->tcpOutSegs = STAT64(OUT_SEG);
  2209. v4->tcpRetransSegs = STAT64(RXT_SEG);
  2210. }
  2211. if (v6) {
  2212. t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
  2213. ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
  2214. v6->tcpOutRsts = STAT(OUT_RST);
  2215. v6->tcpInSegs = STAT64(IN_SEG);
  2216. v6->tcpOutSegs = STAT64(OUT_SEG);
  2217. v6->tcpRetransSegs = STAT64(RXT_SEG);
  2218. }
  2219. #undef STAT64
  2220. #undef STAT
  2221. #undef STAT_IDX
  2222. }
  2223. /**
  2224. * t4_read_mtu_tbl - returns the values in the HW path MTU table
  2225. * @adap: the adapter
  2226. * @mtus: where to store the MTU values
  2227. * @mtu_log: where to store the MTU base-2 log (may be %NULL)
  2228. *
  2229. * Reads the HW path MTU table.
  2230. */
  2231. void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
  2232. {
  2233. u32 v;
  2234. int i;
  2235. for (i = 0; i < NMTUS; ++i) {
  2236. t4_write_reg(adap, TP_MTU_TABLE_A,
  2237. MTUINDEX_V(0xff) | MTUVALUE_V(i));
  2238. v = t4_read_reg(adap, TP_MTU_TABLE_A);
  2239. mtus[i] = MTUVALUE_G(v);
  2240. if (mtu_log)
  2241. mtu_log[i] = MTUWIDTH_G(v);
  2242. }
  2243. }
  2244. /**
  2245. * t4_read_cong_tbl - reads the congestion control table
  2246. * @adap: the adapter
  2247. * @incr: where to store the alpha values
  2248. *
  2249. * Reads the additive increments programmed into the HW congestion
  2250. * control table.
  2251. */
  2252. void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
  2253. {
  2254. unsigned int mtu, w;
  2255. for (mtu = 0; mtu < NMTUS; ++mtu)
  2256. for (w = 0; w < NCCTRL_WIN; ++w) {
  2257. t4_write_reg(adap, TP_CCTRL_TABLE_A,
  2258. ROWINDEX_V(0xffff) | (mtu << 5) | w);
  2259. incr[mtu][w] = (u16)t4_read_reg(adap,
  2260. TP_CCTRL_TABLE_A) & 0x1fff;
  2261. }
  2262. }
  2263. /**
  2264. * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
  2265. * @adap: the adapter
  2266. * @addr: the indirect TP register address
  2267. * @mask: specifies the field within the register to modify
  2268. * @val: new value for the field
  2269. *
  2270. * Sets a field of an indirect TP register to the given value.
  2271. */
  2272. void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
  2273. unsigned int mask, unsigned int val)
  2274. {
  2275. t4_write_reg(adap, TP_PIO_ADDR_A, addr);
  2276. val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
  2277. t4_write_reg(adap, TP_PIO_DATA_A, val);
  2278. }
  2279. /**
  2280. * init_cong_ctrl - initialize congestion control parameters
  2281. * @a: the alpha values for congestion control
  2282. * @b: the beta values for congestion control
  2283. *
  2284. * Initialize the congestion control parameters.
  2285. */
  2286. static void init_cong_ctrl(unsigned short *a, unsigned short *b)
  2287. {
  2288. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  2289. a[9] = 2;
  2290. a[10] = 3;
  2291. a[11] = 4;
  2292. a[12] = 5;
  2293. a[13] = 6;
  2294. a[14] = 7;
  2295. a[15] = 8;
  2296. a[16] = 9;
  2297. a[17] = 10;
  2298. a[18] = 14;
  2299. a[19] = 17;
  2300. a[20] = 21;
  2301. a[21] = 25;
  2302. a[22] = 30;
  2303. a[23] = 35;
  2304. a[24] = 45;
  2305. a[25] = 60;
  2306. a[26] = 80;
  2307. a[27] = 100;
  2308. a[28] = 200;
  2309. a[29] = 300;
  2310. a[30] = 400;
  2311. a[31] = 500;
  2312. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2313. b[9] = b[10] = 1;
  2314. b[11] = b[12] = 2;
  2315. b[13] = b[14] = b[15] = b[16] = 3;
  2316. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2317. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2318. b[28] = b[29] = 6;
  2319. b[30] = b[31] = 7;
  2320. }
  2321. /* The minimum additive increment value for the congestion control table */
  2322. #define CC_MIN_INCR 2U
  2323. /**
  2324. * t4_load_mtus - write the MTU and congestion control HW tables
  2325. * @adap: the adapter
  2326. * @mtus: the values for the MTU table
  2327. * @alpha: the values for the congestion control alpha parameter
  2328. * @beta: the values for the congestion control beta parameter
  2329. *
  2330. * Write the HW MTU table with the supplied MTUs and the high-speed
  2331. * congestion control table with the supplied alpha, beta, and MTUs.
  2332. * We write the two tables together because the additive increments
  2333. * depend on the MTUs.
  2334. */
  2335. void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
  2336. const unsigned short *alpha, const unsigned short *beta)
  2337. {
  2338. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2339. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2340. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2341. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2342. };
  2343. unsigned int i, w;
  2344. for (i = 0; i < NMTUS; ++i) {
  2345. unsigned int mtu = mtus[i];
  2346. unsigned int log2 = fls(mtu);
  2347. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2348. log2--;
  2349. t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
  2350. MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
  2351. for (w = 0; w < NCCTRL_WIN; ++w) {
  2352. unsigned int inc;
  2353. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2354. CC_MIN_INCR);
  2355. t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
  2356. (w << 16) | (beta[w] << 13) | inc);
  2357. }
  2358. }
  2359. }
  2360. /**
  2361. * t4_pmtx_get_stats - returns the HW stats from PMTX
  2362. * @adap: the adapter
  2363. * @cnt: where to store the count statistics
  2364. * @cycles: where to store the cycle statistics
  2365. *
  2366. * Returns performance statistics from PMTX.
  2367. */
  2368. void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
  2369. {
  2370. int i;
  2371. u32 data[2];
  2372. for (i = 0; i < PM_NSTATS; i++) {
  2373. t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
  2374. cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
  2375. if (is_t4(adap->params.chip)) {
  2376. cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
  2377. } else {
  2378. t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
  2379. PM_TX_DBG_DATA_A, data, 2,
  2380. PM_TX_DBG_STAT_MSB_A);
  2381. cycles[i] = (((u64)data[0] << 32) | data[1]);
  2382. }
  2383. }
  2384. }
  2385. /**
  2386. * t4_pmrx_get_stats - returns the HW stats from PMRX
  2387. * @adap: the adapter
  2388. * @cnt: where to store the count statistics
  2389. * @cycles: where to store the cycle statistics
  2390. *
  2391. * Returns performance statistics from PMRX.
  2392. */
  2393. void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
  2394. {
  2395. int i;
  2396. u32 data[2];
  2397. for (i = 0; i < PM_NSTATS; i++) {
  2398. t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
  2399. cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
  2400. if (is_t4(adap->params.chip)) {
  2401. cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
  2402. } else {
  2403. t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
  2404. PM_RX_DBG_DATA_A, data, 2,
  2405. PM_RX_DBG_STAT_MSB_A);
  2406. cycles[i] = (((u64)data[0] << 32) | data[1]);
  2407. }
  2408. }
  2409. }
  2410. /**
  2411. * get_mps_bg_map - return the buffer groups associated with a port
  2412. * @adap: the adapter
  2413. * @idx: the port index
  2414. *
  2415. * Returns a bitmap indicating which MPS buffer groups are associated
  2416. * with the given port. Bit i is set if buffer group i is used by the
  2417. * port.
  2418. */
  2419. static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
  2420. {
  2421. u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
  2422. if (n == 0)
  2423. return idx == 0 ? 0xf : 0;
  2424. if (n == 1)
  2425. return idx < 2 ? (3 << (2 * idx)) : 0;
  2426. return 1 << idx;
  2427. }
  2428. /**
  2429. * t4_get_port_type_description - return Port Type string description
  2430. * @port_type: firmware Port Type enumeration
  2431. */
  2432. const char *t4_get_port_type_description(enum fw_port_type port_type)
  2433. {
  2434. static const char *const port_type_description[] = {
  2435. "R XFI",
  2436. "R XAUI",
  2437. "T SGMII",
  2438. "T XFI",
  2439. "T XAUI",
  2440. "KX4",
  2441. "CX4",
  2442. "KX",
  2443. "KR",
  2444. "R SFP+",
  2445. "KR/KX",
  2446. "KR/KX/KX4",
  2447. "R QSFP_10G",
  2448. "R QSA",
  2449. "R QSFP",
  2450. "R BP40_BA",
  2451. };
  2452. if (port_type < ARRAY_SIZE(port_type_description))
  2453. return port_type_description[port_type];
  2454. return "UNKNOWN";
  2455. }
  2456. /**
  2457. * t4_get_port_stats - collect port statistics
  2458. * @adap: the adapter
  2459. * @idx: the port index
  2460. * @p: the stats structure to fill
  2461. *
  2462. * Collect statistics related to the given port from HW.
  2463. */
  2464. void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
  2465. {
  2466. u32 bgmap = get_mps_bg_map(adap, idx);
  2467. #define GET_STAT(name) \
  2468. t4_read_reg64(adap, \
  2469. (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
  2470. T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
  2471. #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
  2472. p->tx_octets = GET_STAT(TX_PORT_BYTES);
  2473. p->tx_frames = GET_STAT(TX_PORT_FRAMES);
  2474. p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
  2475. p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
  2476. p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
  2477. p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
  2478. p->tx_frames_64 = GET_STAT(TX_PORT_64B);
  2479. p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
  2480. p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
  2481. p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
  2482. p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
  2483. p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
  2484. p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
  2485. p->tx_drop = GET_STAT(TX_PORT_DROP);
  2486. p->tx_pause = GET_STAT(TX_PORT_PAUSE);
  2487. p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
  2488. p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
  2489. p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
  2490. p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
  2491. p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
  2492. p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
  2493. p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
  2494. p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
  2495. p->rx_octets = GET_STAT(RX_PORT_BYTES);
  2496. p->rx_frames = GET_STAT(RX_PORT_FRAMES);
  2497. p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
  2498. p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
  2499. p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
  2500. p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
  2501. p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
  2502. p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
  2503. p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
  2504. p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
  2505. p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
  2506. p->rx_frames_64 = GET_STAT(RX_PORT_64B);
  2507. p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
  2508. p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
  2509. p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
  2510. p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
  2511. p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
  2512. p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
  2513. p->rx_pause = GET_STAT(RX_PORT_PAUSE);
  2514. p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
  2515. p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
  2516. p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
  2517. p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
  2518. p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
  2519. p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
  2520. p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
  2521. p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
  2522. p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
  2523. p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
  2524. p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
  2525. p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
  2526. p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
  2527. p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
  2528. p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
  2529. p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
  2530. #undef GET_STAT
  2531. #undef GET_STAT_COM
  2532. }
  2533. /**
  2534. * t4_wol_magic_enable - enable/disable magic packet WoL
  2535. * @adap: the adapter
  2536. * @port: the physical port index
  2537. * @addr: MAC address expected in magic packets, %NULL to disable
  2538. *
  2539. * Enables/disables magic packet wake-on-LAN for the selected port.
  2540. */
  2541. void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
  2542. const u8 *addr)
  2543. {
  2544. u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
  2545. if (is_t4(adap->params.chip)) {
  2546. mag_id_reg_l = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO);
  2547. mag_id_reg_h = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI);
  2548. port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2_A);
  2549. } else {
  2550. mag_id_reg_l = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_LO);
  2551. mag_id_reg_h = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_HI);
  2552. port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2_A);
  2553. }
  2554. if (addr) {
  2555. t4_write_reg(adap, mag_id_reg_l,
  2556. (addr[2] << 24) | (addr[3] << 16) |
  2557. (addr[4] << 8) | addr[5]);
  2558. t4_write_reg(adap, mag_id_reg_h,
  2559. (addr[0] << 8) | addr[1]);
  2560. }
  2561. t4_set_reg_field(adap, port_cfg_reg, MAGICEN_F,
  2562. addr ? MAGICEN_F : 0);
  2563. }
  2564. /**
  2565. * t4_wol_pat_enable - enable/disable pattern-based WoL
  2566. * @adap: the adapter
  2567. * @port: the physical port index
  2568. * @map: bitmap of which HW pattern filters to set
  2569. * @mask0: byte mask for bytes 0-63 of a packet
  2570. * @mask1: byte mask for bytes 64-127 of a packet
  2571. * @crc: Ethernet CRC for selected bytes
  2572. * @enable: enable/disable switch
  2573. *
  2574. * Sets the pattern filters indicated in @map to mask out the bytes
  2575. * specified in @mask0/@mask1 in received packets and compare the CRC of
  2576. * the resulting packet against @crc. If @enable is %true pattern-based
  2577. * WoL is enabled, otherwise disabled.
  2578. */
  2579. int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
  2580. u64 mask0, u64 mask1, unsigned int crc, bool enable)
  2581. {
  2582. int i;
  2583. u32 port_cfg_reg;
  2584. if (is_t4(adap->params.chip))
  2585. port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2_A);
  2586. else
  2587. port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2_A);
  2588. if (!enable) {
  2589. t4_set_reg_field(adap, port_cfg_reg, PATEN_F, 0);
  2590. return 0;
  2591. }
  2592. if (map > 0xff)
  2593. return -EINVAL;
  2594. #define EPIO_REG(name) \
  2595. (is_t4(adap->params.chip) ? \
  2596. PORT_REG(port, XGMAC_PORT_EPIO_##name##_A) : \
  2597. T5_PORT_REG(port, MAC_PORT_EPIO_##name##_A))
  2598. t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
  2599. t4_write_reg(adap, EPIO_REG(DATA2), mask1);
  2600. t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
  2601. for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
  2602. if (!(map & 1))
  2603. continue;
  2604. /* write byte masks */
  2605. t4_write_reg(adap, EPIO_REG(DATA0), mask0);
  2606. t4_write_reg(adap, EPIO_REG(OP), ADDRESS_V(i) | EPIOWR_F);
  2607. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2608. if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY_F)
  2609. return -ETIMEDOUT;
  2610. /* write CRC */
  2611. t4_write_reg(adap, EPIO_REG(DATA0), crc);
  2612. t4_write_reg(adap, EPIO_REG(OP), ADDRESS_V(i + 32) | EPIOWR_F);
  2613. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2614. if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY_F)
  2615. return -ETIMEDOUT;
  2616. }
  2617. #undef EPIO_REG
  2618. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2_A), 0, PATEN_F);
  2619. return 0;
  2620. }
  2621. /* t4_mk_filtdelwr - create a delete filter WR
  2622. * @ftid: the filter ID
  2623. * @wr: the filter work request to populate
  2624. * @qid: ingress queue to receive the delete notification
  2625. *
  2626. * Creates a filter work request to delete the supplied filter. If @qid is
  2627. * negative the delete notification is suppressed.
  2628. */
  2629. void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
  2630. {
  2631. memset(wr, 0, sizeof(*wr));
  2632. wr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
  2633. wr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*wr) / 16));
  2634. wr->tid_to_iq = htonl(FW_FILTER_WR_TID_V(ftid) |
  2635. FW_FILTER_WR_NOREPLY_V(qid < 0));
  2636. wr->del_filter_to_l2tix = htonl(FW_FILTER_WR_DEL_FILTER_F);
  2637. if (qid >= 0)
  2638. wr->rx_chan_rx_rpl_iq = htons(FW_FILTER_WR_RX_RPL_IQ_V(qid));
  2639. }
  2640. #define INIT_CMD(var, cmd, rd_wr) do { \
  2641. (var).op_to_write = htonl(FW_CMD_OP_V(FW_##cmd##_CMD) | \
  2642. FW_CMD_REQUEST_F | FW_CMD_##rd_wr##_F); \
  2643. (var).retval_len16 = htonl(FW_LEN16(var)); \
  2644. } while (0)
  2645. int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
  2646. u32 addr, u32 val)
  2647. {
  2648. struct fw_ldst_cmd c;
  2649. memset(&c, 0, sizeof(c));
  2650. c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
  2651. FW_CMD_WRITE_F |
  2652. FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE));
  2653. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2654. c.u.addrval.addr = htonl(addr);
  2655. c.u.addrval.val = htonl(val);
  2656. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2657. }
  2658. /**
  2659. * t4_mdio_rd - read a PHY register through MDIO
  2660. * @adap: the adapter
  2661. * @mbox: mailbox to use for the FW command
  2662. * @phy_addr: the PHY address
  2663. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2664. * @reg: the register to read
  2665. * @valp: where to store the value
  2666. *
  2667. * Issues a FW command through the given mailbox to read a PHY register.
  2668. */
  2669. int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2670. unsigned int mmd, unsigned int reg, u16 *valp)
  2671. {
  2672. int ret;
  2673. struct fw_ldst_cmd c;
  2674. memset(&c, 0, sizeof(c));
  2675. c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
  2676. FW_CMD_READ_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO));
  2677. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2678. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) |
  2679. FW_LDST_CMD_MMD_V(mmd));
  2680. c.u.mdio.raddr = htons(reg);
  2681. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2682. if (ret == 0)
  2683. *valp = ntohs(c.u.mdio.rval);
  2684. return ret;
  2685. }
  2686. /**
  2687. * t4_mdio_wr - write a PHY register through MDIO
  2688. * @adap: the adapter
  2689. * @mbox: mailbox to use for the FW command
  2690. * @phy_addr: the PHY address
  2691. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2692. * @reg: the register to write
  2693. * @valp: value to write
  2694. *
  2695. * Issues a FW command through the given mailbox to write a PHY register.
  2696. */
  2697. int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2698. unsigned int mmd, unsigned int reg, u16 val)
  2699. {
  2700. struct fw_ldst_cmd c;
  2701. memset(&c, 0, sizeof(c));
  2702. c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
  2703. FW_CMD_WRITE_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO));
  2704. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2705. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) |
  2706. FW_LDST_CMD_MMD_V(mmd));
  2707. c.u.mdio.raddr = htons(reg);
  2708. c.u.mdio.rval = htons(val);
  2709. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2710. }
  2711. /**
  2712. * t4_sge_decode_idma_state - decode the idma state
  2713. * @adap: the adapter
  2714. * @state: the state idma is stuck in
  2715. */
  2716. void t4_sge_decode_idma_state(struct adapter *adapter, int state)
  2717. {
  2718. static const char * const t4_decode[] = {
  2719. "IDMA_IDLE",
  2720. "IDMA_PUSH_MORE_CPL_FIFO",
  2721. "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
  2722. "Not used",
  2723. "IDMA_PHYSADDR_SEND_PCIEHDR",
  2724. "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
  2725. "IDMA_PHYSADDR_SEND_PAYLOAD",
  2726. "IDMA_SEND_FIFO_TO_IMSG",
  2727. "IDMA_FL_REQ_DATA_FL_PREP",
  2728. "IDMA_FL_REQ_DATA_FL",
  2729. "IDMA_FL_DROP",
  2730. "IDMA_FL_H_REQ_HEADER_FL",
  2731. "IDMA_FL_H_SEND_PCIEHDR",
  2732. "IDMA_FL_H_PUSH_CPL_FIFO",
  2733. "IDMA_FL_H_SEND_CPL",
  2734. "IDMA_FL_H_SEND_IP_HDR_FIRST",
  2735. "IDMA_FL_H_SEND_IP_HDR",
  2736. "IDMA_FL_H_REQ_NEXT_HEADER_FL",
  2737. "IDMA_FL_H_SEND_NEXT_PCIEHDR",
  2738. "IDMA_FL_H_SEND_IP_HDR_PADDING",
  2739. "IDMA_FL_D_SEND_PCIEHDR",
  2740. "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
  2741. "IDMA_FL_D_REQ_NEXT_DATA_FL",
  2742. "IDMA_FL_SEND_PCIEHDR",
  2743. "IDMA_FL_PUSH_CPL_FIFO",
  2744. "IDMA_FL_SEND_CPL",
  2745. "IDMA_FL_SEND_PAYLOAD_FIRST",
  2746. "IDMA_FL_SEND_PAYLOAD",
  2747. "IDMA_FL_REQ_NEXT_DATA_FL",
  2748. "IDMA_FL_SEND_NEXT_PCIEHDR",
  2749. "IDMA_FL_SEND_PADDING",
  2750. "IDMA_FL_SEND_COMPLETION_TO_IMSG",
  2751. "IDMA_FL_SEND_FIFO_TO_IMSG",
  2752. "IDMA_FL_REQ_DATAFL_DONE",
  2753. "IDMA_FL_REQ_HEADERFL_DONE",
  2754. };
  2755. static const char * const t5_decode[] = {
  2756. "IDMA_IDLE",
  2757. "IDMA_ALMOST_IDLE",
  2758. "IDMA_PUSH_MORE_CPL_FIFO",
  2759. "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
  2760. "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
  2761. "IDMA_PHYSADDR_SEND_PCIEHDR",
  2762. "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
  2763. "IDMA_PHYSADDR_SEND_PAYLOAD",
  2764. "IDMA_SEND_FIFO_TO_IMSG",
  2765. "IDMA_FL_REQ_DATA_FL",
  2766. "IDMA_FL_DROP",
  2767. "IDMA_FL_DROP_SEND_INC",
  2768. "IDMA_FL_H_REQ_HEADER_FL",
  2769. "IDMA_FL_H_SEND_PCIEHDR",
  2770. "IDMA_FL_H_PUSH_CPL_FIFO",
  2771. "IDMA_FL_H_SEND_CPL",
  2772. "IDMA_FL_H_SEND_IP_HDR_FIRST",
  2773. "IDMA_FL_H_SEND_IP_HDR",
  2774. "IDMA_FL_H_REQ_NEXT_HEADER_FL",
  2775. "IDMA_FL_H_SEND_NEXT_PCIEHDR",
  2776. "IDMA_FL_H_SEND_IP_HDR_PADDING",
  2777. "IDMA_FL_D_SEND_PCIEHDR",
  2778. "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
  2779. "IDMA_FL_D_REQ_NEXT_DATA_FL",
  2780. "IDMA_FL_SEND_PCIEHDR",
  2781. "IDMA_FL_PUSH_CPL_FIFO",
  2782. "IDMA_FL_SEND_CPL",
  2783. "IDMA_FL_SEND_PAYLOAD_FIRST",
  2784. "IDMA_FL_SEND_PAYLOAD",
  2785. "IDMA_FL_REQ_NEXT_DATA_FL",
  2786. "IDMA_FL_SEND_NEXT_PCIEHDR",
  2787. "IDMA_FL_SEND_PADDING",
  2788. "IDMA_FL_SEND_COMPLETION_TO_IMSG",
  2789. };
  2790. static const u32 sge_regs[] = {
  2791. SGE_DEBUG_DATA_LOW_INDEX_2_A,
  2792. SGE_DEBUG_DATA_LOW_INDEX_3_A,
  2793. SGE_DEBUG_DATA_HIGH_INDEX_10_A,
  2794. };
  2795. const char **sge_idma_decode;
  2796. int sge_idma_decode_nstates;
  2797. int i;
  2798. if (is_t4(adapter->params.chip)) {
  2799. sge_idma_decode = (const char **)t4_decode;
  2800. sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
  2801. } else {
  2802. sge_idma_decode = (const char **)t5_decode;
  2803. sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
  2804. }
  2805. if (state < sge_idma_decode_nstates)
  2806. CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
  2807. else
  2808. CH_WARN(adapter, "idma state %d unknown\n", state);
  2809. for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
  2810. CH_WARN(adapter, "SGE register %#x value %#x\n",
  2811. sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
  2812. }
  2813. /**
  2814. * t4_fw_hello - establish communication with FW
  2815. * @adap: the adapter
  2816. * @mbox: mailbox to use for the FW command
  2817. * @evt_mbox: mailbox to receive async FW events
  2818. * @master: specifies the caller's willingness to be the device master
  2819. * @state: returns the current device state (if non-NULL)
  2820. *
  2821. * Issues a command to establish communication with FW. Returns either
  2822. * an error (negative integer) or the mailbox of the Master PF.
  2823. */
  2824. int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
  2825. enum dev_master master, enum dev_state *state)
  2826. {
  2827. int ret;
  2828. struct fw_hello_cmd c;
  2829. u32 v;
  2830. unsigned int master_mbox;
  2831. int retries = FW_CMD_HELLO_RETRIES;
  2832. retry:
  2833. memset(&c, 0, sizeof(c));
  2834. INIT_CMD(c, HELLO, WRITE);
  2835. c.err_to_clearinit = htonl(
  2836. FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
  2837. FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
  2838. FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? mbox :
  2839. FW_HELLO_CMD_MBMASTER_M) |
  2840. FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
  2841. FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
  2842. FW_HELLO_CMD_CLEARINIT_F);
  2843. /*
  2844. * Issue the HELLO command to the firmware. If it's not successful
  2845. * but indicates that we got a "busy" or "timeout" condition, retry
  2846. * the HELLO until we exhaust our retry limit. If we do exceed our
  2847. * retry limit, check to see if the firmware left us any error
  2848. * information and report that if so.
  2849. */
  2850. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2851. if (ret < 0) {
  2852. if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
  2853. goto retry;
  2854. if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
  2855. t4_report_fw_error(adap);
  2856. return ret;
  2857. }
  2858. v = ntohl(c.err_to_clearinit);
  2859. master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
  2860. if (state) {
  2861. if (v & FW_HELLO_CMD_ERR_F)
  2862. *state = DEV_STATE_ERR;
  2863. else if (v & FW_HELLO_CMD_INIT_F)
  2864. *state = DEV_STATE_INIT;
  2865. else
  2866. *state = DEV_STATE_UNINIT;
  2867. }
  2868. /*
  2869. * If we're not the Master PF then we need to wait around for the
  2870. * Master PF Driver to finish setting up the adapter.
  2871. *
  2872. * Note that we also do this wait if we're a non-Master-capable PF and
  2873. * there is no current Master PF; a Master PF may show up momentarily
  2874. * and we wouldn't want to fail pointlessly. (This can happen when an
  2875. * OS loads lots of different drivers rapidly at the same time). In
  2876. * this case, the Master PF returned by the firmware will be
  2877. * PCIE_FW_MASTER_M so the test below will work ...
  2878. */
  2879. if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
  2880. master_mbox != mbox) {
  2881. int waiting = FW_CMD_HELLO_TIMEOUT;
  2882. /*
  2883. * Wait for the firmware to either indicate an error or
  2884. * initialized state. If we see either of these we bail out
  2885. * and report the issue to the caller. If we exhaust the
  2886. * "hello timeout" and we haven't exhausted our retries, try
  2887. * again. Otherwise bail with a timeout error.
  2888. */
  2889. for (;;) {
  2890. u32 pcie_fw;
  2891. msleep(50);
  2892. waiting -= 50;
  2893. /*
  2894. * If neither Error nor Initialialized are indicated
  2895. * by the firmware keep waiting till we exaust our
  2896. * timeout ... and then retry if we haven't exhausted
  2897. * our retries ...
  2898. */
  2899. pcie_fw = t4_read_reg(adap, PCIE_FW_A);
  2900. if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
  2901. if (waiting <= 0) {
  2902. if (retries-- > 0)
  2903. goto retry;
  2904. return -ETIMEDOUT;
  2905. }
  2906. continue;
  2907. }
  2908. /*
  2909. * We either have an Error or Initialized condition
  2910. * report errors preferentially.
  2911. */
  2912. if (state) {
  2913. if (pcie_fw & PCIE_FW_ERR_F)
  2914. *state = DEV_STATE_ERR;
  2915. else if (pcie_fw & PCIE_FW_INIT_F)
  2916. *state = DEV_STATE_INIT;
  2917. }
  2918. /*
  2919. * If we arrived before a Master PF was selected and
  2920. * there's not a valid Master PF, grab its identity
  2921. * for our caller.
  2922. */
  2923. if (master_mbox == PCIE_FW_MASTER_M &&
  2924. (pcie_fw & PCIE_FW_MASTER_VLD_F))
  2925. master_mbox = PCIE_FW_MASTER_G(pcie_fw);
  2926. break;
  2927. }
  2928. }
  2929. return master_mbox;
  2930. }
  2931. /**
  2932. * t4_fw_bye - end communication with FW
  2933. * @adap: the adapter
  2934. * @mbox: mailbox to use for the FW command
  2935. *
  2936. * Issues a command to terminate communication with FW.
  2937. */
  2938. int t4_fw_bye(struct adapter *adap, unsigned int mbox)
  2939. {
  2940. struct fw_bye_cmd c;
  2941. memset(&c, 0, sizeof(c));
  2942. INIT_CMD(c, BYE, WRITE);
  2943. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2944. }
  2945. /**
  2946. * t4_init_cmd - ask FW to initialize the device
  2947. * @adap: the adapter
  2948. * @mbox: mailbox to use for the FW command
  2949. *
  2950. * Issues a command to FW to partially initialize the device. This
  2951. * performs initialization that generally doesn't depend on user input.
  2952. */
  2953. int t4_early_init(struct adapter *adap, unsigned int mbox)
  2954. {
  2955. struct fw_initialize_cmd c;
  2956. memset(&c, 0, sizeof(c));
  2957. INIT_CMD(c, INITIALIZE, WRITE);
  2958. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2959. }
  2960. /**
  2961. * t4_fw_reset - issue a reset to FW
  2962. * @adap: the adapter
  2963. * @mbox: mailbox to use for the FW command
  2964. * @reset: specifies the type of reset to perform
  2965. *
  2966. * Issues a reset command of the specified type to FW.
  2967. */
  2968. int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
  2969. {
  2970. struct fw_reset_cmd c;
  2971. memset(&c, 0, sizeof(c));
  2972. INIT_CMD(c, RESET, WRITE);
  2973. c.val = htonl(reset);
  2974. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2975. }
  2976. /**
  2977. * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
  2978. * @adap: the adapter
  2979. * @mbox: mailbox to use for the FW RESET command (if desired)
  2980. * @force: force uP into RESET even if FW RESET command fails
  2981. *
  2982. * Issues a RESET command to firmware (if desired) with a HALT indication
  2983. * and then puts the microprocessor into RESET state. The RESET command
  2984. * will only be issued if a legitimate mailbox is provided (mbox <=
  2985. * PCIE_FW_MASTER_M).
  2986. *
  2987. * This is generally used in order for the host to safely manipulate the
  2988. * adapter without fear of conflicting with whatever the firmware might
  2989. * be doing. The only way out of this state is to RESTART the firmware
  2990. * ...
  2991. */
  2992. static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
  2993. {
  2994. int ret = 0;
  2995. /*
  2996. * If a legitimate mailbox is provided, issue a RESET command
  2997. * with a HALT indication.
  2998. */
  2999. if (mbox <= PCIE_FW_MASTER_M) {
  3000. struct fw_reset_cmd c;
  3001. memset(&c, 0, sizeof(c));
  3002. INIT_CMD(c, RESET, WRITE);
  3003. c.val = htonl(PIORST_F | PIORSTMODE_F);
  3004. c.halt_pkd = htonl(FW_RESET_CMD_HALT_F);
  3005. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3006. }
  3007. /*
  3008. * Normally we won't complete the operation if the firmware RESET
  3009. * command fails but if our caller insists we'll go ahead and put the
  3010. * uP into RESET. This can be useful if the firmware is hung or even
  3011. * missing ... We'll have to take the risk of putting the uP into
  3012. * RESET without the cooperation of firmware in that case.
  3013. *
  3014. * We also force the firmware's HALT flag to be on in case we bypassed
  3015. * the firmware RESET command above or we're dealing with old firmware
  3016. * which doesn't have the HALT capability. This will serve as a flag
  3017. * for the incoming firmware to know that it's coming out of a HALT
  3018. * rather than a RESET ... if it's new enough to understand that ...
  3019. */
  3020. if (ret == 0 || force) {
  3021. t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
  3022. t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
  3023. PCIE_FW_HALT_F);
  3024. }
  3025. /*
  3026. * And we always return the result of the firmware RESET command
  3027. * even when we force the uP into RESET ...
  3028. */
  3029. return ret;
  3030. }
  3031. /**
  3032. * t4_fw_restart - restart the firmware by taking the uP out of RESET
  3033. * @adap: the adapter
  3034. * @reset: if we want to do a RESET to restart things
  3035. *
  3036. * Restart firmware previously halted by t4_fw_halt(). On successful
  3037. * return the previous PF Master remains as the new PF Master and there
  3038. * is no need to issue a new HELLO command, etc.
  3039. *
  3040. * We do this in two ways:
  3041. *
  3042. * 1. If we're dealing with newer firmware we'll simply want to take
  3043. * the chip's microprocessor out of RESET. This will cause the
  3044. * firmware to start up from its start vector. And then we'll loop
  3045. * until the firmware indicates it's started again (PCIE_FW.HALT
  3046. * reset to 0) or we timeout.
  3047. *
  3048. * 2. If we're dealing with older firmware then we'll need to RESET
  3049. * the chip since older firmware won't recognize the PCIE_FW.HALT
  3050. * flag and automatically RESET itself on startup.
  3051. */
  3052. static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
  3053. {
  3054. if (reset) {
  3055. /*
  3056. * Since we're directing the RESET instead of the firmware
  3057. * doing it automatically, we need to clear the PCIE_FW.HALT
  3058. * bit.
  3059. */
  3060. t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
  3061. /*
  3062. * If we've been given a valid mailbox, first try to get the
  3063. * firmware to do the RESET. If that works, great and we can
  3064. * return success. Otherwise, if we haven't been given a
  3065. * valid mailbox or the RESET command failed, fall back to
  3066. * hitting the chip with a hammer.
  3067. */
  3068. if (mbox <= PCIE_FW_MASTER_M) {
  3069. t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
  3070. msleep(100);
  3071. if (t4_fw_reset(adap, mbox,
  3072. PIORST_F | PIORSTMODE_F) == 0)
  3073. return 0;
  3074. }
  3075. t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
  3076. msleep(2000);
  3077. } else {
  3078. int ms;
  3079. t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
  3080. for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
  3081. if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
  3082. return 0;
  3083. msleep(100);
  3084. ms += 100;
  3085. }
  3086. return -ETIMEDOUT;
  3087. }
  3088. return 0;
  3089. }
  3090. /**
  3091. * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
  3092. * @adap: the adapter
  3093. * @mbox: mailbox to use for the FW RESET command (if desired)
  3094. * @fw_data: the firmware image to write
  3095. * @size: image size
  3096. * @force: force upgrade even if firmware doesn't cooperate
  3097. *
  3098. * Perform all of the steps necessary for upgrading an adapter's
  3099. * firmware image. Normally this requires the cooperation of the
  3100. * existing firmware in order to halt all existing activities
  3101. * but if an invalid mailbox token is passed in we skip that step
  3102. * (though we'll still put the adapter microprocessor into RESET in
  3103. * that case).
  3104. *
  3105. * On successful return the new firmware will have been loaded and
  3106. * the adapter will have been fully RESET losing all previous setup
  3107. * state. On unsuccessful return the adapter may be completely hosed ...
  3108. * positive errno indicates that the adapter is ~probably~ intact, a
  3109. * negative errno indicates that things are looking bad ...
  3110. */
  3111. int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
  3112. const u8 *fw_data, unsigned int size, int force)
  3113. {
  3114. const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
  3115. int reset, ret;
  3116. if (!t4_fw_matches_chip(adap, fw_hdr))
  3117. return -EINVAL;
  3118. ret = t4_fw_halt(adap, mbox, force);
  3119. if (ret < 0 && !force)
  3120. return ret;
  3121. ret = t4_load_fw(adap, fw_data, size);
  3122. if (ret < 0)
  3123. return ret;
  3124. /*
  3125. * Older versions of the firmware don't understand the new
  3126. * PCIE_FW.HALT flag and so won't know to perform a RESET when they
  3127. * restart. So for newly loaded older firmware we'll have to do the
  3128. * RESET for it so it starts up on a clean slate. We can tell if
  3129. * the newly loaded firmware will handle this right by checking
  3130. * its header flags to see if it advertises the capability.
  3131. */
  3132. reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
  3133. return t4_fw_restart(adap, mbox, reset);
  3134. }
  3135. /**
  3136. * t4_fixup_host_params - fix up host-dependent parameters
  3137. * @adap: the adapter
  3138. * @page_size: the host's Base Page Size
  3139. * @cache_line_size: the host's Cache Line Size
  3140. *
  3141. * Various registers in T4 contain values which are dependent on the
  3142. * host's Base Page and Cache Line Sizes. This function will fix all of
  3143. * those registers with the appropriate values as passed in ...
  3144. */
  3145. int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
  3146. unsigned int cache_line_size)
  3147. {
  3148. unsigned int page_shift = fls(page_size) - 1;
  3149. unsigned int sge_hps = page_shift - 10;
  3150. unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
  3151. unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
  3152. unsigned int fl_align_log = fls(fl_align) - 1;
  3153. t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
  3154. HOSTPAGESIZEPF0_V(sge_hps) |
  3155. HOSTPAGESIZEPF1_V(sge_hps) |
  3156. HOSTPAGESIZEPF2_V(sge_hps) |
  3157. HOSTPAGESIZEPF3_V(sge_hps) |
  3158. HOSTPAGESIZEPF4_V(sge_hps) |
  3159. HOSTPAGESIZEPF5_V(sge_hps) |
  3160. HOSTPAGESIZEPF6_V(sge_hps) |
  3161. HOSTPAGESIZEPF7_V(sge_hps));
  3162. if (is_t4(adap->params.chip)) {
  3163. t4_set_reg_field(adap, SGE_CONTROL_A,
  3164. INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
  3165. EGRSTATUSPAGESIZE_F,
  3166. INGPADBOUNDARY_V(fl_align_log -
  3167. INGPADBOUNDARY_SHIFT_X) |
  3168. EGRSTATUSPAGESIZE_V(stat_len != 64));
  3169. } else {
  3170. /* T5 introduced the separation of the Free List Padding and
  3171. * Packing Boundaries. Thus, we can select a smaller Padding
  3172. * Boundary to avoid uselessly chewing up PCIe Link and Memory
  3173. * Bandwidth, and use a Packing Boundary which is large enough
  3174. * to avoid false sharing between CPUs, etc.
  3175. *
  3176. * For the PCI Link, the smaller the Padding Boundary the
  3177. * better. For the Memory Controller, a smaller Padding
  3178. * Boundary is better until we cross under the Memory Line
  3179. * Size (the minimum unit of transfer to/from Memory). If we
  3180. * have a Padding Boundary which is smaller than the Memory
  3181. * Line Size, that'll involve a Read-Modify-Write cycle on the
  3182. * Memory Controller which is never good. For T5 the smallest
  3183. * Padding Boundary which we can select is 32 bytes which is
  3184. * larger than any known Memory Controller Line Size so we'll
  3185. * use that.
  3186. *
  3187. * T5 has a different interpretation of the "0" value for the
  3188. * Packing Boundary. This corresponds to 16 bytes instead of
  3189. * the expected 32 bytes. We never have a Packing Boundary
  3190. * less than 32 bytes so we can't use that special value but
  3191. * on the other hand, if we wanted 32 bytes, the best we can
  3192. * really do is 64 bytes.
  3193. */
  3194. if (fl_align <= 32) {
  3195. fl_align = 64;
  3196. fl_align_log = 6;
  3197. }
  3198. t4_set_reg_field(adap, SGE_CONTROL_A,
  3199. INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
  3200. EGRSTATUSPAGESIZE_F,
  3201. INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
  3202. EGRSTATUSPAGESIZE_V(stat_len != 64));
  3203. t4_set_reg_field(adap, SGE_CONTROL2_A,
  3204. INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
  3205. INGPACKBOUNDARY_V(fl_align_log -
  3206. INGPACKBOUNDARY_SHIFT_X));
  3207. }
  3208. /*
  3209. * Adjust various SGE Free List Host Buffer Sizes.
  3210. *
  3211. * This is something of a crock since we're using fixed indices into
  3212. * the array which are also known by the sge.c code and the T4
  3213. * Firmware Configuration File. We need to come up with a much better
  3214. * approach to managing this array. For now, the first four entries
  3215. * are:
  3216. *
  3217. * 0: Host Page Size
  3218. * 1: 64KB
  3219. * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
  3220. * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
  3221. *
  3222. * For the single-MTU buffers in unpacked mode we need to include
  3223. * space for the SGE Control Packet Shift, 14 byte Ethernet header,
  3224. * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
  3225. * Padding boundary. All of these are accommodated in the Factory
  3226. * Default Firmware Configuration File but we need to adjust it for
  3227. * this host's cache line size.
  3228. */
  3229. t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
  3230. t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
  3231. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
  3232. & ~(fl_align-1));
  3233. t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
  3234. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
  3235. & ~(fl_align-1));
  3236. t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
  3237. return 0;
  3238. }
  3239. /**
  3240. * t4_fw_initialize - ask FW to initialize the device
  3241. * @adap: the adapter
  3242. * @mbox: mailbox to use for the FW command
  3243. *
  3244. * Issues a command to FW to partially initialize the device. This
  3245. * performs initialization that generally doesn't depend on user input.
  3246. */
  3247. int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
  3248. {
  3249. struct fw_initialize_cmd c;
  3250. memset(&c, 0, sizeof(c));
  3251. INIT_CMD(c, INITIALIZE, WRITE);
  3252. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3253. }
  3254. /**
  3255. * t4_query_params - query FW or device parameters
  3256. * @adap: the adapter
  3257. * @mbox: mailbox to use for the FW command
  3258. * @pf: the PF
  3259. * @vf: the VF
  3260. * @nparams: the number of parameters
  3261. * @params: the parameter names
  3262. * @val: the parameter values
  3263. *
  3264. * Reads the value of FW or device parameters. Up to 7 parameters can be
  3265. * queried at once.
  3266. */
  3267. int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3268. unsigned int vf, unsigned int nparams, const u32 *params,
  3269. u32 *val)
  3270. {
  3271. int i, ret;
  3272. struct fw_params_cmd c;
  3273. __be32 *p = &c.param[0].mnem;
  3274. if (nparams > 7)
  3275. return -EINVAL;
  3276. memset(&c, 0, sizeof(c));
  3277. c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F |
  3278. FW_CMD_READ_F | FW_PARAMS_CMD_PFN_V(pf) |
  3279. FW_PARAMS_CMD_VFN_V(vf));
  3280. c.retval_len16 = htonl(FW_LEN16(c));
  3281. for (i = 0; i < nparams; i++, p += 2)
  3282. *p = htonl(*params++);
  3283. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  3284. if (ret == 0)
  3285. for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
  3286. *val++ = ntohl(*p);
  3287. return ret;
  3288. }
  3289. /**
  3290. * t4_set_params_nosleep - sets FW or device parameters
  3291. * @adap: the adapter
  3292. * @mbox: mailbox to use for the FW command
  3293. * @pf: the PF
  3294. * @vf: the VF
  3295. * @nparams: the number of parameters
  3296. * @params: the parameter names
  3297. * @val: the parameter values
  3298. *
  3299. * Does not ever sleep
  3300. * Sets the value of FW or device parameters. Up to 7 parameters can be
  3301. * specified at once.
  3302. */
  3303. int t4_set_params_nosleep(struct adapter *adap, unsigned int mbox,
  3304. unsigned int pf, unsigned int vf,
  3305. unsigned int nparams, const u32 *params,
  3306. const u32 *val)
  3307. {
  3308. struct fw_params_cmd c;
  3309. __be32 *p = &c.param[0].mnem;
  3310. if (nparams > 7)
  3311. return -EINVAL;
  3312. memset(&c, 0, sizeof(c));
  3313. c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
  3314. FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
  3315. FW_PARAMS_CMD_PFN_V(pf) |
  3316. FW_PARAMS_CMD_VFN_V(vf));
  3317. c.retval_len16 = cpu_to_be32(FW_LEN16(c));
  3318. while (nparams--) {
  3319. *p++ = cpu_to_be32(*params++);
  3320. *p++ = cpu_to_be32(*val++);
  3321. }
  3322. return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
  3323. }
  3324. /**
  3325. * t4_set_params - sets FW or device parameters
  3326. * @adap: the adapter
  3327. * @mbox: mailbox to use for the FW command
  3328. * @pf: the PF
  3329. * @vf: the VF
  3330. * @nparams: the number of parameters
  3331. * @params: the parameter names
  3332. * @val: the parameter values
  3333. *
  3334. * Sets the value of FW or device parameters. Up to 7 parameters can be
  3335. * specified at once.
  3336. */
  3337. int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3338. unsigned int vf, unsigned int nparams, const u32 *params,
  3339. const u32 *val)
  3340. {
  3341. struct fw_params_cmd c;
  3342. __be32 *p = &c.param[0].mnem;
  3343. if (nparams > 7)
  3344. return -EINVAL;
  3345. memset(&c, 0, sizeof(c));
  3346. c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F |
  3347. FW_CMD_WRITE_F | FW_PARAMS_CMD_PFN_V(pf) |
  3348. FW_PARAMS_CMD_VFN_V(vf));
  3349. c.retval_len16 = htonl(FW_LEN16(c));
  3350. while (nparams--) {
  3351. *p++ = htonl(*params++);
  3352. *p++ = htonl(*val++);
  3353. }
  3354. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3355. }
  3356. /**
  3357. * t4_cfg_pfvf - configure PF/VF resource limits
  3358. * @adap: the adapter
  3359. * @mbox: mailbox to use for the FW command
  3360. * @pf: the PF being configured
  3361. * @vf: the VF being configured
  3362. * @txq: the max number of egress queues
  3363. * @txq_eth_ctrl: the max number of egress Ethernet or control queues
  3364. * @rxqi: the max number of interrupt-capable ingress queues
  3365. * @rxq: the max number of interruptless ingress queues
  3366. * @tc: the PCI traffic class
  3367. * @vi: the max number of virtual interfaces
  3368. * @cmask: the channel access rights mask for the PF/VF
  3369. * @pmask: the port access rights mask for the PF/VF
  3370. * @nexact: the maximum number of exact MPS filters
  3371. * @rcaps: read capabilities
  3372. * @wxcaps: write/execute capabilities
  3373. *
  3374. * Configures resource limits and capabilities for a physical or virtual
  3375. * function.
  3376. */
  3377. int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3378. unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
  3379. unsigned int rxqi, unsigned int rxq, unsigned int tc,
  3380. unsigned int vi, unsigned int cmask, unsigned int pmask,
  3381. unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
  3382. {
  3383. struct fw_pfvf_cmd c;
  3384. memset(&c, 0, sizeof(c));
  3385. c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
  3386. FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
  3387. FW_PFVF_CMD_VFN_V(vf));
  3388. c.retval_len16 = htonl(FW_LEN16(c));
  3389. c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
  3390. FW_PFVF_CMD_NIQ_V(rxq));
  3391. c.type_to_neq = htonl(FW_PFVF_CMD_CMASK_V(cmask) |
  3392. FW_PFVF_CMD_PMASK_V(pmask) |
  3393. FW_PFVF_CMD_NEQ_V(txq));
  3394. c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC_V(tc) | FW_PFVF_CMD_NVI_V(vi) |
  3395. FW_PFVF_CMD_NEXACTF_V(nexact));
  3396. c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS_V(rcaps) |
  3397. FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
  3398. FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
  3399. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3400. }
  3401. /**
  3402. * t4_alloc_vi - allocate a virtual interface
  3403. * @adap: the adapter
  3404. * @mbox: mailbox to use for the FW command
  3405. * @port: physical port associated with the VI
  3406. * @pf: the PF owning the VI
  3407. * @vf: the VF owning the VI
  3408. * @nmac: number of MAC addresses needed (1 to 5)
  3409. * @mac: the MAC addresses of the VI
  3410. * @rss_size: size of RSS table slice associated with this VI
  3411. *
  3412. * Allocates a virtual interface for the given physical port. If @mac is
  3413. * not %NULL it contains the MAC addresses of the VI as assigned by FW.
  3414. * @mac should be large enough to hold @nmac Ethernet addresses, they are
  3415. * stored consecutively so the space needed is @nmac * 6 bytes.
  3416. * Returns a negative error number or the non-negative VI id.
  3417. */
  3418. int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
  3419. unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
  3420. unsigned int *rss_size)
  3421. {
  3422. int ret;
  3423. struct fw_vi_cmd c;
  3424. memset(&c, 0, sizeof(c));
  3425. c.op_to_vfn = htonl(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
  3426. FW_CMD_WRITE_F | FW_CMD_EXEC_F |
  3427. FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
  3428. c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
  3429. c.portid_pkd = FW_VI_CMD_PORTID_V(port);
  3430. c.nmac = nmac - 1;
  3431. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  3432. if (ret)
  3433. return ret;
  3434. if (mac) {
  3435. memcpy(mac, c.mac, sizeof(c.mac));
  3436. switch (nmac) {
  3437. case 5:
  3438. memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
  3439. case 4:
  3440. memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
  3441. case 3:
  3442. memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
  3443. case 2:
  3444. memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
  3445. }
  3446. }
  3447. if (rss_size)
  3448. *rss_size = FW_VI_CMD_RSSSIZE_G(ntohs(c.rsssize_pkd));
  3449. return FW_VI_CMD_VIID_G(ntohs(c.type_viid));
  3450. }
  3451. /**
  3452. * t4_set_rxmode - set Rx properties of a virtual interface
  3453. * @adap: the adapter
  3454. * @mbox: mailbox to use for the FW command
  3455. * @viid: the VI id
  3456. * @mtu: the new MTU or -1
  3457. * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
  3458. * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
  3459. * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
  3460. * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
  3461. * @sleep_ok: if true we may sleep while awaiting command completion
  3462. *
  3463. * Sets Rx properties of a virtual interface.
  3464. */
  3465. int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3466. int mtu, int promisc, int all_multi, int bcast, int vlanex,
  3467. bool sleep_ok)
  3468. {
  3469. struct fw_vi_rxmode_cmd c;
  3470. /* convert to FW values */
  3471. if (mtu < 0)
  3472. mtu = FW_RXMODE_MTU_NO_CHG;
  3473. if (promisc < 0)
  3474. promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
  3475. if (all_multi < 0)
  3476. all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
  3477. if (bcast < 0)
  3478. bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
  3479. if (vlanex < 0)
  3480. vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
  3481. memset(&c, 0, sizeof(c));
  3482. c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST_F |
  3483. FW_CMD_WRITE_F | FW_VI_RXMODE_CMD_VIID_V(viid));
  3484. c.retval_len16 = htonl(FW_LEN16(c));
  3485. c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU_V(mtu) |
  3486. FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
  3487. FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
  3488. FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
  3489. FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
  3490. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  3491. }
  3492. /**
  3493. * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
  3494. * @adap: the adapter
  3495. * @mbox: mailbox to use for the FW command
  3496. * @viid: the VI id
  3497. * @free: if true any existing filters for this VI id are first removed
  3498. * @naddr: the number of MAC addresses to allocate filters for (up to 7)
  3499. * @addr: the MAC address(es)
  3500. * @idx: where to store the index of each allocated filter
  3501. * @hash: pointer to hash address filter bitmap
  3502. * @sleep_ok: call is allowed to sleep
  3503. *
  3504. * Allocates an exact-match filter for each of the supplied addresses and
  3505. * sets it to the corresponding address. If @idx is not %NULL it should
  3506. * have at least @naddr entries, each of which will be set to the index of
  3507. * the filter allocated for the corresponding MAC address. If a filter
  3508. * could not be allocated for an address its index is set to 0xffff.
  3509. * If @hash is not %NULL addresses that fail to allocate an exact filter
  3510. * are hashed and update the hash filter bitmap pointed at by @hash.
  3511. *
  3512. * Returns a negative error number or the number of filters allocated.
  3513. */
  3514. int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
  3515. unsigned int viid, bool free, unsigned int naddr,
  3516. const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
  3517. {
  3518. int i, ret;
  3519. struct fw_vi_mac_cmd c;
  3520. struct fw_vi_mac_exact *p;
  3521. unsigned int max_naddr = is_t4(adap->params.chip) ?
  3522. NUM_MPS_CLS_SRAM_L_INSTANCES :
  3523. NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
  3524. if (naddr > 7)
  3525. return -EINVAL;
  3526. memset(&c, 0, sizeof(c));
  3527. c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
  3528. FW_CMD_WRITE_F | (free ? FW_CMD_EXEC_F : 0) |
  3529. FW_VI_MAC_CMD_VIID_V(viid));
  3530. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS_V(free) |
  3531. FW_CMD_LEN16_V((naddr + 2) / 2));
  3532. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  3533. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F |
  3534. FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
  3535. memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
  3536. }
  3537. ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
  3538. if (ret)
  3539. return ret;
  3540. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  3541. u16 index = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx));
  3542. if (idx)
  3543. idx[i] = index >= max_naddr ? 0xffff : index;
  3544. if (index < max_naddr)
  3545. ret++;
  3546. else if (hash)
  3547. *hash |= (1ULL << hash_mac_addr(addr[i]));
  3548. }
  3549. return ret;
  3550. }
  3551. /**
  3552. * t4_change_mac - modifies the exact-match filter for a MAC address
  3553. * @adap: the adapter
  3554. * @mbox: mailbox to use for the FW command
  3555. * @viid: the VI id
  3556. * @idx: index of existing filter for old value of MAC address, or -1
  3557. * @addr: the new MAC address value
  3558. * @persist: whether a new MAC allocation should be persistent
  3559. * @add_smt: if true also add the address to the HW SMT
  3560. *
  3561. * Modifies an exact-match filter and sets it to the new MAC address.
  3562. * Note that in general it is not possible to modify the value of a given
  3563. * filter so the generic way to modify an address filter is to free the one
  3564. * being used by the old address value and allocate a new filter for the
  3565. * new address value. @idx can be -1 if the address is a new addition.
  3566. *
  3567. * Returns a negative error number or the index of the filter with the new
  3568. * MAC value.
  3569. */
  3570. int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3571. int idx, const u8 *addr, bool persist, bool add_smt)
  3572. {
  3573. int ret, mode;
  3574. struct fw_vi_mac_cmd c;
  3575. struct fw_vi_mac_exact *p = c.u.exact;
  3576. unsigned int max_mac_addr = is_t4(adap->params.chip) ?
  3577. NUM_MPS_CLS_SRAM_L_INSTANCES :
  3578. NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
  3579. if (idx < 0) /* new allocation */
  3580. idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
  3581. mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
  3582. memset(&c, 0, sizeof(c));
  3583. c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
  3584. FW_CMD_WRITE_F | FW_VI_MAC_CMD_VIID_V(viid));
  3585. c.freemacs_to_len16 = htonl(FW_CMD_LEN16_V(1));
  3586. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F |
  3587. FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
  3588. FW_VI_MAC_CMD_IDX_V(idx));
  3589. memcpy(p->macaddr, addr, sizeof(p->macaddr));
  3590. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  3591. if (ret == 0) {
  3592. ret = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx));
  3593. if (ret >= max_mac_addr)
  3594. ret = -ENOMEM;
  3595. }
  3596. return ret;
  3597. }
  3598. /**
  3599. * t4_set_addr_hash - program the MAC inexact-match hash filter
  3600. * @adap: the adapter
  3601. * @mbox: mailbox to use for the FW command
  3602. * @viid: the VI id
  3603. * @ucast: whether the hash filter should also match unicast addresses
  3604. * @vec: the value to be written to the hash filter
  3605. * @sleep_ok: call is allowed to sleep
  3606. *
  3607. * Sets the 64-bit inexact-match hash filter for a virtual interface.
  3608. */
  3609. int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3610. bool ucast, u64 vec, bool sleep_ok)
  3611. {
  3612. struct fw_vi_mac_cmd c;
  3613. memset(&c, 0, sizeof(c));
  3614. c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
  3615. FW_CMD_WRITE_F | FW_VI_ENABLE_CMD_VIID_V(viid));
  3616. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN_F |
  3617. FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
  3618. FW_CMD_LEN16_V(1));
  3619. c.u.hash.hashvec = cpu_to_be64(vec);
  3620. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  3621. }
  3622. /**
  3623. * t4_enable_vi_params - enable/disable a virtual interface
  3624. * @adap: the adapter
  3625. * @mbox: mailbox to use for the FW command
  3626. * @viid: the VI id
  3627. * @rx_en: 1=enable Rx, 0=disable Rx
  3628. * @tx_en: 1=enable Tx, 0=disable Tx
  3629. * @dcb_en: 1=enable delivery of Data Center Bridging messages.
  3630. *
  3631. * Enables/disables a virtual interface. Note that setting DCB Enable
  3632. * only makes sense when enabling a Virtual Interface ...
  3633. */
  3634. int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
  3635. unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
  3636. {
  3637. struct fw_vi_enable_cmd c;
  3638. memset(&c, 0, sizeof(c));
  3639. c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F |
  3640. FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid));
  3641. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
  3642. FW_VI_ENABLE_CMD_EEN_V(tx_en) | FW_LEN16(c) |
  3643. FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en));
  3644. return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
  3645. }
  3646. /**
  3647. * t4_enable_vi - enable/disable a virtual interface
  3648. * @adap: the adapter
  3649. * @mbox: mailbox to use for the FW command
  3650. * @viid: the VI id
  3651. * @rx_en: 1=enable Rx, 0=disable Rx
  3652. * @tx_en: 1=enable Tx, 0=disable Tx
  3653. *
  3654. * Enables/disables a virtual interface.
  3655. */
  3656. int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3657. bool rx_en, bool tx_en)
  3658. {
  3659. return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
  3660. }
  3661. /**
  3662. * t4_identify_port - identify a VI's port by blinking its LED
  3663. * @adap: the adapter
  3664. * @mbox: mailbox to use for the FW command
  3665. * @viid: the VI id
  3666. * @nblinks: how many times to blink LED at 2.5 Hz
  3667. *
  3668. * Identifies a VI's port by blinking its LED.
  3669. */
  3670. int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3671. unsigned int nblinks)
  3672. {
  3673. struct fw_vi_enable_cmd c;
  3674. memset(&c, 0, sizeof(c));
  3675. c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F |
  3676. FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid));
  3677. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
  3678. c.blinkdur = htons(nblinks);
  3679. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3680. }
  3681. /**
  3682. * t4_iq_free - free an ingress queue and its FLs
  3683. * @adap: the adapter
  3684. * @mbox: mailbox to use for the FW command
  3685. * @pf: the PF owning the queues
  3686. * @vf: the VF owning the queues
  3687. * @iqtype: the ingress queue type
  3688. * @iqid: ingress queue id
  3689. * @fl0id: FL0 queue id or 0xffff if no attached FL0
  3690. * @fl1id: FL1 queue id or 0xffff if no attached FL1
  3691. *
  3692. * Frees an ingress queue and its associated FLs, if any.
  3693. */
  3694. int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3695. unsigned int vf, unsigned int iqtype, unsigned int iqid,
  3696. unsigned int fl0id, unsigned int fl1id)
  3697. {
  3698. struct fw_iq_cmd c;
  3699. memset(&c, 0, sizeof(c));
  3700. c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
  3701. FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
  3702. FW_IQ_CMD_VFN_V(vf));
  3703. c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE_F | FW_LEN16(c));
  3704. c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(iqtype));
  3705. c.iqid = htons(iqid);
  3706. c.fl0id = htons(fl0id);
  3707. c.fl1id = htons(fl1id);
  3708. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3709. }
  3710. /**
  3711. * t4_eth_eq_free - free an Ethernet egress queue
  3712. * @adap: the adapter
  3713. * @mbox: mailbox to use for the FW command
  3714. * @pf: the PF owning the queue
  3715. * @vf: the VF owning the queue
  3716. * @eqid: egress queue id
  3717. *
  3718. * Frees an Ethernet egress queue.
  3719. */
  3720. int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3721. unsigned int vf, unsigned int eqid)
  3722. {
  3723. struct fw_eq_eth_cmd c;
  3724. memset(&c, 0, sizeof(c));
  3725. c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
  3726. FW_CMD_EXEC_F | FW_EQ_ETH_CMD_PFN_V(pf) |
  3727. FW_EQ_ETH_CMD_VFN_V(vf));
  3728. c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
  3729. c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID_V(eqid));
  3730. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3731. }
  3732. /**
  3733. * t4_ctrl_eq_free - free a control egress queue
  3734. * @adap: the adapter
  3735. * @mbox: mailbox to use for the FW command
  3736. * @pf: the PF owning the queue
  3737. * @vf: the VF owning the queue
  3738. * @eqid: egress queue id
  3739. *
  3740. * Frees a control egress queue.
  3741. */
  3742. int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3743. unsigned int vf, unsigned int eqid)
  3744. {
  3745. struct fw_eq_ctrl_cmd c;
  3746. memset(&c, 0, sizeof(c));
  3747. c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
  3748. FW_CMD_EXEC_F | FW_EQ_CTRL_CMD_PFN_V(pf) |
  3749. FW_EQ_CTRL_CMD_VFN_V(vf));
  3750. c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
  3751. c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID_V(eqid));
  3752. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3753. }
  3754. /**
  3755. * t4_ofld_eq_free - free an offload egress queue
  3756. * @adap: the adapter
  3757. * @mbox: mailbox to use for the FW command
  3758. * @pf: the PF owning the queue
  3759. * @vf: the VF owning the queue
  3760. * @eqid: egress queue id
  3761. *
  3762. * Frees a control egress queue.
  3763. */
  3764. int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3765. unsigned int vf, unsigned int eqid)
  3766. {
  3767. struct fw_eq_ofld_cmd c;
  3768. memset(&c, 0, sizeof(c));
  3769. c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
  3770. FW_CMD_EXEC_F | FW_EQ_OFLD_CMD_PFN_V(pf) |
  3771. FW_EQ_OFLD_CMD_VFN_V(vf));
  3772. c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
  3773. c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID_V(eqid));
  3774. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3775. }
  3776. /**
  3777. * t4_handle_fw_rpl - process a FW reply message
  3778. * @adap: the adapter
  3779. * @rpl: start of the FW message
  3780. *
  3781. * Processes a FW message, such as link state change messages.
  3782. */
  3783. int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
  3784. {
  3785. u8 opcode = *(const u8 *)rpl;
  3786. if (opcode == FW_PORT_CMD) { /* link/module state change message */
  3787. int speed = 0, fc = 0;
  3788. const struct fw_port_cmd *p = (void *)rpl;
  3789. int chan = FW_PORT_CMD_PORTID_G(ntohl(p->op_to_portid));
  3790. int port = adap->chan_map[chan];
  3791. struct port_info *pi = adap2pinfo(adap, port);
  3792. struct link_config *lc = &pi->link_cfg;
  3793. u32 stat = ntohl(p->u.info.lstatus_to_modtype);
  3794. int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
  3795. u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
  3796. if (stat & FW_PORT_CMD_RXPAUSE_F)
  3797. fc |= PAUSE_RX;
  3798. if (stat & FW_PORT_CMD_TXPAUSE_F)
  3799. fc |= PAUSE_TX;
  3800. if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
  3801. speed = 100;
  3802. else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
  3803. speed = 1000;
  3804. else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
  3805. speed = 10000;
  3806. else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
  3807. speed = 40000;
  3808. if (link_ok != lc->link_ok || speed != lc->speed ||
  3809. fc != lc->fc) { /* something changed */
  3810. lc->link_ok = link_ok;
  3811. lc->speed = speed;
  3812. lc->fc = fc;
  3813. lc->supported = be16_to_cpu(p->u.info.pcap);
  3814. t4_os_link_changed(adap, port, link_ok);
  3815. }
  3816. if (mod != pi->mod_type) {
  3817. pi->mod_type = mod;
  3818. t4_os_portmod_changed(adap, port);
  3819. }
  3820. }
  3821. return 0;
  3822. }
  3823. static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
  3824. {
  3825. u16 val;
  3826. if (pci_is_pcie(adapter->pdev)) {
  3827. pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
  3828. p->speed = val & PCI_EXP_LNKSTA_CLS;
  3829. p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
  3830. }
  3831. }
  3832. /**
  3833. * init_link_config - initialize a link's SW state
  3834. * @lc: structure holding the link state
  3835. * @caps: link capabilities
  3836. *
  3837. * Initializes the SW state maintained for each link, including the link's
  3838. * capabilities and default speed/flow-control/autonegotiation settings.
  3839. */
  3840. static void init_link_config(struct link_config *lc, unsigned int caps)
  3841. {
  3842. lc->supported = caps;
  3843. lc->requested_speed = 0;
  3844. lc->speed = 0;
  3845. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  3846. if (lc->supported & FW_PORT_CAP_ANEG) {
  3847. lc->advertising = lc->supported & ADVERT_MASK;
  3848. lc->autoneg = AUTONEG_ENABLE;
  3849. lc->requested_fc |= PAUSE_AUTONEG;
  3850. } else {
  3851. lc->advertising = 0;
  3852. lc->autoneg = AUTONEG_DISABLE;
  3853. }
  3854. }
  3855. #define CIM_PF_NOACCESS 0xeeeeeeee
  3856. int t4_wait_dev_ready(void __iomem *regs)
  3857. {
  3858. u32 whoami;
  3859. whoami = readl(regs + PL_WHOAMI_A);
  3860. if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
  3861. return 0;
  3862. msleep(500);
  3863. whoami = readl(regs + PL_WHOAMI_A);
  3864. return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
  3865. }
  3866. struct flash_desc {
  3867. u32 vendor_and_model_id;
  3868. u32 size_mb;
  3869. };
  3870. static int get_flash_params(struct adapter *adap)
  3871. {
  3872. /* Table for non-Numonix supported flash parts. Numonix parts are left
  3873. * to the preexisting code. All flash parts have 64KB sectors.
  3874. */
  3875. static struct flash_desc supported_flash[] = {
  3876. { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
  3877. };
  3878. int ret;
  3879. u32 info;
  3880. ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
  3881. if (!ret)
  3882. ret = sf1_read(adap, 3, 0, 1, &info);
  3883. t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */
  3884. if (ret)
  3885. return ret;
  3886. for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
  3887. if (supported_flash[ret].vendor_and_model_id == info) {
  3888. adap->params.sf_size = supported_flash[ret].size_mb;
  3889. adap->params.sf_nsec =
  3890. adap->params.sf_size / SF_SEC_SIZE;
  3891. return 0;
  3892. }
  3893. if ((info & 0xff) != 0x20) /* not a Numonix flash */
  3894. return -EINVAL;
  3895. info >>= 16; /* log2 of size */
  3896. if (info >= 0x14 && info < 0x18)
  3897. adap->params.sf_nsec = 1 << (info - 16);
  3898. else if (info == 0x18)
  3899. adap->params.sf_nsec = 64;
  3900. else
  3901. return -EINVAL;
  3902. adap->params.sf_size = 1 << info;
  3903. adap->params.sf_fw_start =
  3904. t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
  3905. if (adap->params.sf_size < FLASH_MIN_SIZE)
  3906. dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
  3907. adap->params.sf_size, FLASH_MIN_SIZE);
  3908. return 0;
  3909. }
  3910. /**
  3911. * t4_prep_adapter - prepare SW and HW for operation
  3912. * @adapter: the adapter
  3913. * @reset: if true perform a HW reset
  3914. *
  3915. * Initialize adapter SW state for the various HW modules, set initial
  3916. * values for some adapter tunables, take PHYs out of reset, and
  3917. * initialize the MDIO interface.
  3918. */
  3919. int t4_prep_adapter(struct adapter *adapter)
  3920. {
  3921. int ret, ver;
  3922. uint16_t device_id;
  3923. u32 pl_rev;
  3924. get_pci_mode(adapter, &adapter->params.pci);
  3925. pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
  3926. ret = get_flash_params(adapter);
  3927. if (ret < 0) {
  3928. dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
  3929. return ret;
  3930. }
  3931. /* Retrieve adapter's device ID
  3932. */
  3933. pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
  3934. ver = device_id >> 12;
  3935. adapter->params.chip = 0;
  3936. switch (ver) {
  3937. case CHELSIO_T4:
  3938. adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
  3939. break;
  3940. case CHELSIO_T5:
  3941. adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
  3942. break;
  3943. default:
  3944. dev_err(adapter->pdev_dev, "Device %d is not supported\n",
  3945. device_id);
  3946. return -EINVAL;
  3947. }
  3948. adapter->params.cim_la_size = CIMLA_SIZE;
  3949. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3950. /*
  3951. * Default port for debugging in case we can't reach FW.
  3952. */
  3953. adapter->params.nports = 1;
  3954. adapter->params.portvec = 1;
  3955. adapter->params.vpd.cclk = 50000;
  3956. return 0;
  3957. }
  3958. /**
  3959. * cxgb4_t4_bar2_sge_qregs - return BAR2 SGE Queue register information
  3960. * @adapter: the adapter
  3961. * @qid: the Queue ID
  3962. * @qtype: the Ingress or Egress type for @qid
  3963. * @pbar2_qoffset: BAR2 Queue Offset
  3964. * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
  3965. *
  3966. * Returns the BAR2 SGE Queue Registers information associated with the
  3967. * indicated Absolute Queue ID. These are passed back in return value
  3968. * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
  3969. * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
  3970. *
  3971. * This may return an error which indicates that BAR2 SGE Queue
  3972. * registers aren't available. If an error is not returned, then the
  3973. * following values are returned:
  3974. *
  3975. * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
  3976. * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
  3977. *
  3978. * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
  3979. * require the "Inferred Queue ID" ability may be used. E.g. the
  3980. * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
  3981. * then these "Inferred Queue ID" register may not be used.
  3982. */
  3983. int cxgb4_t4_bar2_sge_qregs(struct adapter *adapter,
  3984. unsigned int qid,
  3985. enum t4_bar2_qtype qtype,
  3986. u64 *pbar2_qoffset,
  3987. unsigned int *pbar2_qid)
  3988. {
  3989. unsigned int page_shift, page_size, qpp_shift, qpp_mask;
  3990. u64 bar2_page_offset, bar2_qoffset;
  3991. unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
  3992. /* T4 doesn't support BAR2 SGE Queue registers.
  3993. */
  3994. if (is_t4(adapter->params.chip))
  3995. return -EINVAL;
  3996. /* Get our SGE Page Size parameters.
  3997. */
  3998. page_shift = adapter->params.sge.hps + 10;
  3999. page_size = 1 << page_shift;
  4000. /* Get the right Queues per Page parameters for our Queue.
  4001. */
  4002. qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
  4003. ? adapter->params.sge.eq_qpp
  4004. : adapter->params.sge.iq_qpp);
  4005. qpp_mask = (1 << qpp_shift) - 1;
  4006. /* Calculate the basics of the BAR2 SGE Queue register area:
  4007. * o The BAR2 page the Queue registers will be in.
  4008. * o The BAR2 Queue ID.
  4009. * o The BAR2 Queue ID Offset into the BAR2 page.
  4010. */
  4011. bar2_page_offset = ((qid >> qpp_shift) << page_shift);
  4012. bar2_qid = qid & qpp_mask;
  4013. bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
  4014. /* If the BAR2 Queue ID Offset is less than the Page Size, then the
  4015. * hardware will infer the Absolute Queue ID simply from the writes to
  4016. * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
  4017. * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
  4018. * write to the first BAR2 SGE Queue Area within the BAR2 Page with
  4019. * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
  4020. * from the BAR2 Page and BAR2 Queue ID.
  4021. *
  4022. * One important censequence of this is that some BAR2 SGE registers
  4023. * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
  4024. * there. But other registers synthesize the SGE Queue ID purely
  4025. * from the writes to the registers -- the Write Combined Doorbell
  4026. * Buffer is a good example. These BAR2 SGE Registers are only
  4027. * available for those BAR2 SGE Register areas where the SGE Absolute
  4028. * Queue ID can be inferred from simple writes.
  4029. */
  4030. bar2_qoffset = bar2_page_offset;
  4031. bar2_qinferred = (bar2_qid_offset < page_size);
  4032. if (bar2_qinferred) {
  4033. bar2_qoffset += bar2_qid_offset;
  4034. bar2_qid = 0;
  4035. }
  4036. *pbar2_qoffset = bar2_qoffset;
  4037. *pbar2_qid = bar2_qid;
  4038. return 0;
  4039. }
  4040. /**
  4041. * t4_init_sge_params - initialize adap->params.sge
  4042. * @adapter: the adapter
  4043. *
  4044. * Initialize various fields of the adapter's SGE Parameters structure.
  4045. */
  4046. int t4_init_sge_params(struct adapter *adapter)
  4047. {
  4048. struct sge_params *sge_params = &adapter->params.sge;
  4049. u32 hps, qpp;
  4050. unsigned int s_hps, s_qpp;
  4051. /* Extract the SGE Page Size for our PF.
  4052. */
  4053. hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
  4054. s_hps = (HOSTPAGESIZEPF0_S +
  4055. (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->fn);
  4056. sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
  4057. /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
  4058. */
  4059. s_qpp = (QUEUESPERPAGEPF0_S +
  4060. (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->fn);
  4061. qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
  4062. sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
  4063. qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
  4064. sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
  4065. return 0;
  4066. }
  4067. /**
  4068. * t4_init_tp_params - initialize adap->params.tp
  4069. * @adap: the adapter
  4070. *
  4071. * Initialize various fields of the adapter's TP Parameters structure.
  4072. */
  4073. int t4_init_tp_params(struct adapter *adap)
  4074. {
  4075. int chan;
  4076. u32 v;
  4077. v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
  4078. adap->params.tp.tre = TIMERRESOLUTION_G(v);
  4079. adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
  4080. /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
  4081. for (chan = 0; chan < NCHAN; chan++)
  4082. adap->params.tp.tx_modq[chan] = chan;
  4083. /* Cache the adapter's Compressed Filter Mode and global Incress
  4084. * Configuration.
  4085. */
  4086. t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
  4087. &adap->params.tp.vlan_pri_map, 1,
  4088. TP_VLAN_PRI_MAP_A);
  4089. t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
  4090. &adap->params.tp.ingress_config, 1,
  4091. TP_INGRESS_CONFIG_A);
  4092. /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
  4093. * shift positions of several elements of the Compressed Filter Tuple
  4094. * for this adapter which we need frequently ...
  4095. */
  4096. adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
  4097. adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
  4098. adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
  4099. adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
  4100. PROTOCOL_F);
  4101. /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
  4102. * represents the presence of an Outer VLAN instead of a VNIC ID.
  4103. */
  4104. if ((adap->params.tp.ingress_config & VNIC_F) == 0)
  4105. adap->params.tp.vnic_shift = -1;
  4106. return 0;
  4107. }
  4108. /**
  4109. * t4_filter_field_shift - calculate filter field shift
  4110. * @adap: the adapter
  4111. * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
  4112. *
  4113. * Return the shift position of a filter field within the Compressed
  4114. * Filter Tuple. The filter field is specified via its selection bit
  4115. * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
  4116. */
  4117. int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
  4118. {
  4119. unsigned int filter_mode = adap->params.tp.vlan_pri_map;
  4120. unsigned int sel;
  4121. int field_shift;
  4122. if ((filter_mode & filter_sel) == 0)
  4123. return -1;
  4124. for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
  4125. switch (filter_mode & sel) {
  4126. case FCOE_F:
  4127. field_shift += FT_FCOE_W;
  4128. break;
  4129. case PORT_F:
  4130. field_shift += FT_PORT_W;
  4131. break;
  4132. case VNIC_ID_F:
  4133. field_shift += FT_VNIC_ID_W;
  4134. break;
  4135. case VLAN_F:
  4136. field_shift += FT_VLAN_W;
  4137. break;
  4138. case TOS_F:
  4139. field_shift += FT_TOS_W;
  4140. break;
  4141. case PROTOCOL_F:
  4142. field_shift += FT_PROTOCOL_W;
  4143. break;
  4144. case ETHERTYPE_F:
  4145. field_shift += FT_ETHERTYPE_W;
  4146. break;
  4147. case MACMATCH_F:
  4148. field_shift += FT_MACMATCH_W;
  4149. break;
  4150. case MPSHITTYPE_F:
  4151. field_shift += FT_MPSHITTYPE_W;
  4152. break;
  4153. case FRAGMENTATION_F:
  4154. field_shift += FT_FRAGMENTATION_W;
  4155. break;
  4156. }
  4157. }
  4158. return field_shift;
  4159. }
  4160. int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
  4161. {
  4162. u8 addr[6];
  4163. int ret, i, j = 0;
  4164. struct fw_port_cmd c;
  4165. struct fw_rss_vi_config_cmd rvc;
  4166. memset(&c, 0, sizeof(c));
  4167. memset(&rvc, 0, sizeof(rvc));
  4168. for_each_port(adap, i) {
  4169. unsigned int rss_size;
  4170. struct port_info *p = adap2pinfo(adap, i);
  4171. while ((adap->params.portvec & (1 << j)) == 0)
  4172. j++;
  4173. c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) |
  4174. FW_CMD_REQUEST_F | FW_CMD_READ_F |
  4175. FW_PORT_CMD_PORTID_V(j));
  4176. c.action_to_len16 = htonl(
  4177. FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
  4178. FW_LEN16(c));
  4179. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  4180. if (ret)
  4181. return ret;
  4182. ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
  4183. if (ret < 0)
  4184. return ret;
  4185. p->viid = ret;
  4186. p->tx_chan = j;
  4187. p->lport = j;
  4188. p->rss_size = rss_size;
  4189. memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
  4190. adap->port[i]->dev_port = j;
  4191. ret = ntohl(c.u.info.lstatus_to_modtype);
  4192. p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
  4193. FW_PORT_CMD_MDIOADDR_G(ret) : -1;
  4194. p->port_type = FW_PORT_CMD_PTYPE_G(ret);
  4195. p->mod_type = FW_PORT_MOD_TYPE_NA;
  4196. rvc.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
  4197. FW_CMD_REQUEST_F | FW_CMD_READ_F |
  4198. FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
  4199. rvc.retval_len16 = htonl(FW_LEN16(rvc));
  4200. ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
  4201. if (ret)
  4202. return ret;
  4203. p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
  4204. init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
  4205. j++;
  4206. }
  4207. return 0;
  4208. }
  4209. /**
  4210. * t4_read_cimq_cfg - read CIM queue configuration
  4211. * @adap: the adapter
  4212. * @base: holds the queue base addresses in bytes
  4213. * @size: holds the queue sizes in bytes
  4214. * @thres: holds the queue full thresholds in bytes
  4215. *
  4216. * Returns the current configuration of the CIM queues, starting with
  4217. * the IBQs, then the OBQs.
  4218. */
  4219. void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
  4220. {
  4221. unsigned int i, v;
  4222. int cim_num_obq = is_t4(adap->params.chip) ?
  4223. CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
  4224. for (i = 0; i < CIM_NUM_IBQ; i++) {
  4225. t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
  4226. QUENUMSELECT_V(i));
  4227. v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
  4228. /* value is in 256-byte units */
  4229. *base++ = CIMQBASE_G(v) * 256;
  4230. *size++ = CIMQSIZE_G(v) * 256;
  4231. *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
  4232. }
  4233. for (i = 0; i < cim_num_obq; i++) {
  4234. t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
  4235. QUENUMSELECT_V(i));
  4236. v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
  4237. /* value is in 256-byte units */
  4238. *base++ = CIMQBASE_G(v) * 256;
  4239. *size++ = CIMQSIZE_G(v) * 256;
  4240. }
  4241. }
  4242. /**
  4243. * t4_read_cim_ibq - read the contents of a CIM inbound queue
  4244. * @adap: the adapter
  4245. * @qid: the queue index
  4246. * @data: where to store the queue contents
  4247. * @n: capacity of @data in 32-bit words
  4248. *
  4249. * Reads the contents of the selected CIM queue starting at address 0 up
  4250. * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
  4251. * error and the number of 32-bit words actually read on success.
  4252. */
  4253. int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
  4254. {
  4255. int i, err, attempts;
  4256. unsigned int addr;
  4257. const unsigned int nwords = CIM_IBQ_SIZE * 4;
  4258. if (qid > 5 || (n & 3))
  4259. return -EINVAL;
  4260. addr = qid * nwords;
  4261. if (n > nwords)
  4262. n = nwords;
  4263. /* It might take 3-10ms before the IBQ debug read access is allowed.
  4264. * Wait for 1 Sec with a delay of 1 usec.
  4265. */
  4266. attempts = 1000000;
  4267. for (i = 0; i < n; i++, addr++) {
  4268. t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
  4269. IBQDBGEN_F);
  4270. err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
  4271. attempts, 1);
  4272. if (err)
  4273. return err;
  4274. *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
  4275. }
  4276. t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
  4277. return i;
  4278. }
  4279. /**
  4280. * t4_read_cim_obq - read the contents of a CIM outbound queue
  4281. * @adap: the adapter
  4282. * @qid: the queue index
  4283. * @data: where to store the queue contents
  4284. * @n: capacity of @data in 32-bit words
  4285. *
  4286. * Reads the contents of the selected CIM queue starting at address 0 up
  4287. * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
  4288. * error and the number of 32-bit words actually read on success.
  4289. */
  4290. int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
  4291. {
  4292. int i, err;
  4293. unsigned int addr, v, nwords;
  4294. int cim_num_obq = is_t4(adap->params.chip) ?
  4295. CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
  4296. if ((qid > (cim_num_obq - 1)) || (n & 3))
  4297. return -EINVAL;
  4298. t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
  4299. QUENUMSELECT_V(qid));
  4300. v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
  4301. addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */
  4302. nwords = CIMQSIZE_G(v) * 64; /* same */
  4303. if (n > nwords)
  4304. n = nwords;
  4305. for (i = 0; i < n; i++, addr++) {
  4306. t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
  4307. OBQDBGEN_F);
  4308. err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
  4309. 2, 1);
  4310. if (err)
  4311. return err;
  4312. *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
  4313. }
  4314. t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
  4315. return i;
  4316. }
  4317. /**
  4318. * t4_cim_read - read a block from CIM internal address space
  4319. * @adap: the adapter
  4320. * @addr: the start address within the CIM address space
  4321. * @n: number of words to read
  4322. * @valp: where to store the result
  4323. *
  4324. * Reads a block of 4-byte words from the CIM intenal address space.
  4325. */
  4326. int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
  4327. unsigned int *valp)
  4328. {
  4329. int ret = 0;
  4330. if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
  4331. return -EBUSY;
  4332. for ( ; !ret && n--; addr += 4) {
  4333. t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
  4334. ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
  4335. 0, 5, 2);
  4336. if (!ret)
  4337. *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
  4338. }
  4339. return ret;
  4340. }
  4341. /**
  4342. * t4_cim_write - write a block into CIM internal address space
  4343. * @adap: the adapter
  4344. * @addr: the start address within the CIM address space
  4345. * @n: number of words to write
  4346. * @valp: set of values to write
  4347. *
  4348. * Writes a block of 4-byte words into the CIM intenal address space.
  4349. */
  4350. int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
  4351. const unsigned int *valp)
  4352. {
  4353. int ret = 0;
  4354. if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
  4355. return -EBUSY;
  4356. for ( ; !ret && n--; addr += 4) {
  4357. t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
  4358. t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
  4359. ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
  4360. 0, 5, 2);
  4361. }
  4362. return ret;
  4363. }
  4364. static int t4_cim_write1(struct adapter *adap, unsigned int addr,
  4365. unsigned int val)
  4366. {
  4367. return t4_cim_write(adap, addr, 1, &val);
  4368. }
  4369. /**
  4370. * t4_cim_read_la - read CIM LA capture buffer
  4371. * @adap: the adapter
  4372. * @la_buf: where to store the LA data
  4373. * @wrptr: the HW write pointer within the capture buffer
  4374. *
  4375. * Reads the contents of the CIM LA buffer with the most recent entry at
  4376. * the end of the returned data and with the entry at @wrptr first.
  4377. * We try to leave the LA in the running state we find it in.
  4378. */
  4379. int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
  4380. {
  4381. int i, ret;
  4382. unsigned int cfg, val, idx;
  4383. ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
  4384. if (ret)
  4385. return ret;
  4386. if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */
  4387. ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
  4388. if (ret)
  4389. return ret;
  4390. }
  4391. ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
  4392. if (ret)
  4393. goto restart;
  4394. idx = UPDBGLAWRPTR_G(val);
  4395. if (wrptr)
  4396. *wrptr = idx;
  4397. for (i = 0; i < adap->params.cim_la_size; i++) {
  4398. ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
  4399. UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
  4400. if (ret)
  4401. break;
  4402. ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
  4403. if (ret)
  4404. break;
  4405. if (val & UPDBGLARDEN_F) {
  4406. ret = -ETIMEDOUT;
  4407. break;
  4408. }
  4409. ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
  4410. if (ret)
  4411. break;
  4412. idx = (idx + 1) & UPDBGLARDPTR_M;
  4413. }
  4414. restart:
  4415. if (cfg & UPDBGLAEN_F) {
  4416. int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
  4417. cfg & ~UPDBGLARDEN_F);
  4418. if (!ret)
  4419. ret = r;
  4420. }
  4421. return ret;
  4422. }
  4423. /**
  4424. * t4_tp_read_la - read TP LA capture buffer
  4425. * @adap: the adapter
  4426. * @la_buf: where to store the LA data
  4427. * @wrptr: the HW write pointer within the capture buffer
  4428. *
  4429. * Reads the contents of the TP LA buffer with the most recent entry at
  4430. * the end of the returned data and with the entry at @wrptr first.
  4431. * We leave the LA in the running state we find it in.
  4432. */
  4433. void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
  4434. {
  4435. bool last_incomplete;
  4436. unsigned int i, cfg, val, idx;
  4437. cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
  4438. if (cfg & DBGLAENABLE_F) /* freeze LA */
  4439. t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
  4440. adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
  4441. val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
  4442. idx = DBGLAWPTR_G(val);
  4443. last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
  4444. if (last_incomplete)
  4445. idx = (idx + 1) & DBGLARPTR_M;
  4446. if (wrptr)
  4447. *wrptr = idx;
  4448. val &= 0xffff;
  4449. val &= ~DBGLARPTR_V(DBGLARPTR_M);
  4450. val |= adap->params.tp.la_mask;
  4451. for (i = 0; i < TPLA_SIZE; i++) {
  4452. t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
  4453. la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
  4454. idx = (idx + 1) & DBGLARPTR_M;
  4455. }
  4456. /* Wipe out last entry if it isn't valid */
  4457. if (last_incomplete)
  4458. la_buf[TPLA_SIZE - 1] = ~0ULL;
  4459. if (cfg & DBGLAENABLE_F) /* restore running state */
  4460. t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
  4461. cfg | adap->params.tp.la_mask);
  4462. }