atmel-sha.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for ATMEL SHA1/SHA256 HW acceleration.
  5. *
  6. * Copyright (c) 2012 Eukréa Electromatique - ATMEL
  7. * Author: Nicolas Royer <nicolas@eukrea.com>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as published
  11. * by the Free Software Foundation.
  12. *
  13. * Some ideas are from omap-sham.c drivers.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/slab.h>
  18. #include <linux/err.h>
  19. #include <linux/clk.h>
  20. #include <linux/io.h>
  21. #include <linux/hw_random.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/device.h>
  24. #include <linux/init.h>
  25. #include <linux/errno.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/irq.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/of_device.h>
  31. #include <linux/delay.h>
  32. #include <linux/crypto.h>
  33. #include <linux/cryptohash.h>
  34. #include <crypto/scatterwalk.h>
  35. #include <crypto/algapi.h>
  36. #include <crypto/sha.h>
  37. #include <crypto/hash.h>
  38. #include <crypto/internal/hash.h>
  39. #include <linux/platform_data/crypto-atmel.h>
  40. #include "atmel-sha-regs.h"
  41. /* SHA flags */
  42. #define SHA_FLAGS_BUSY BIT(0)
  43. #define SHA_FLAGS_FINAL BIT(1)
  44. #define SHA_FLAGS_DMA_ACTIVE BIT(2)
  45. #define SHA_FLAGS_OUTPUT_READY BIT(3)
  46. #define SHA_FLAGS_INIT BIT(4)
  47. #define SHA_FLAGS_CPU BIT(5)
  48. #define SHA_FLAGS_DMA_READY BIT(6)
  49. #define SHA_FLAGS_FINUP BIT(16)
  50. #define SHA_FLAGS_SG BIT(17)
  51. #define SHA_FLAGS_SHA1 BIT(18)
  52. #define SHA_FLAGS_SHA224 BIT(19)
  53. #define SHA_FLAGS_SHA256 BIT(20)
  54. #define SHA_FLAGS_SHA384 BIT(21)
  55. #define SHA_FLAGS_SHA512 BIT(22)
  56. #define SHA_FLAGS_ERROR BIT(23)
  57. #define SHA_FLAGS_PAD BIT(24)
  58. #define SHA_OP_UPDATE 1
  59. #define SHA_OP_FINAL 2
  60. #define SHA_BUFFER_LEN PAGE_SIZE
  61. #define ATMEL_SHA_DMA_THRESHOLD 56
  62. struct atmel_sha_caps {
  63. bool has_dma;
  64. bool has_dualbuff;
  65. bool has_sha224;
  66. bool has_sha_384_512;
  67. };
  68. struct atmel_sha_dev;
  69. struct atmel_sha_reqctx {
  70. struct atmel_sha_dev *dd;
  71. unsigned long flags;
  72. unsigned long op;
  73. u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
  74. u64 digcnt[2];
  75. size_t bufcnt;
  76. size_t buflen;
  77. dma_addr_t dma_addr;
  78. /* walk state */
  79. struct scatterlist *sg;
  80. unsigned int offset; /* offset in current sg */
  81. unsigned int total; /* total request */
  82. size_t block_size;
  83. u8 buffer[0] __aligned(sizeof(u32));
  84. };
  85. struct atmel_sha_ctx {
  86. struct atmel_sha_dev *dd;
  87. unsigned long flags;
  88. };
  89. #define ATMEL_SHA_QUEUE_LENGTH 50
  90. struct atmel_sha_dma {
  91. struct dma_chan *chan;
  92. struct dma_slave_config dma_conf;
  93. };
  94. struct atmel_sha_dev {
  95. struct list_head list;
  96. unsigned long phys_base;
  97. struct device *dev;
  98. struct clk *iclk;
  99. int irq;
  100. void __iomem *io_base;
  101. spinlock_t lock;
  102. int err;
  103. struct tasklet_struct done_task;
  104. unsigned long flags;
  105. struct crypto_queue queue;
  106. struct ahash_request *req;
  107. struct atmel_sha_dma dma_lch_in;
  108. struct atmel_sha_caps caps;
  109. u32 hw_version;
  110. };
  111. struct atmel_sha_drv {
  112. struct list_head dev_list;
  113. spinlock_t lock;
  114. };
  115. static struct atmel_sha_drv atmel_sha = {
  116. .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
  117. .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
  118. };
  119. static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
  120. {
  121. return readl_relaxed(dd->io_base + offset);
  122. }
  123. static inline void atmel_sha_write(struct atmel_sha_dev *dd,
  124. u32 offset, u32 value)
  125. {
  126. writel_relaxed(value, dd->io_base + offset);
  127. }
  128. static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
  129. {
  130. size_t count;
  131. while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
  132. count = min(ctx->sg->length - ctx->offset, ctx->total);
  133. count = min(count, ctx->buflen - ctx->bufcnt);
  134. if (count <= 0)
  135. break;
  136. scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
  137. ctx->offset, count, 0);
  138. ctx->bufcnt += count;
  139. ctx->offset += count;
  140. ctx->total -= count;
  141. if (ctx->offset == ctx->sg->length) {
  142. ctx->sg = sg_next(ctx->sg);
  143. if (ctx->sg)
  144. ctx->offset = 0;
  145. else
  146. ctx->total = 0;
  147. }
  148. }
  149. return 0;
  150. }
  151. /*
  152. * The purpose of this padding is to ensure that the padded message is a
  153. * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
  154. * The bit "1" is appended at the end of the message followed by
  155. * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
  156. * 128 bits block (SHA384/SHA512) equals to the message length in bits
  157. * is appended.
  158. *
  159. * For SHA1/SHA224/SHA256, padlen is calculated as followed:
  160. * - if message length < 56 bytes then padlen = 56 - message length
  161. * - else padlen = 64 + 56 - message length
  162. *
  163. * For SHA384/SHA512, padlen is calculated as followed:
  164. * - if message length < 112 bytes then padlen = 112 - message length
  165. * - else padlen = 128 + 112 - message length
  166. */
  167. static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
  168. {
  169. unsigned int index, padlen;
  170. u64 bits[2];
  171. u64 size[2];
  172. size[0] = ctx->digcnt[0];
  173. size[1] = ctx->digcnt[1];
  174. size[0] += ctx->bufcnt;
  175. if (size[0] < ctx->bufcnt)
  176. size[1]++;
  177. size[0] += length;
  178. if (size[0] < length)
  179. size[1]++;
  180. bits[1] = cpu_to_be64(size[0] << 3);
  181. bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
  182. if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
  183. index = ctx->bufcnt & 0x7f;
  184. padlen = (index < 112) ? (112 - index) : ((128+112) - index);
  185. *(ctx->buffer + ctx->bufcnt) = 0x80;
  186. memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
  187. memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
  188. ctx->bufcnt += padlen + 16;
  189. ctx->flags |= SHA_FLAGS_PAD;
  190. } else {
  191. index = ctx->bufcnt & 0x3f;
  192. padlen = (index < 56) ? (56 - index) : ((64+56) - index);
  193. *(ctx->buffer + ctx->bufcnt) = 0x80;
  194. memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
  195. memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
  196. ctx->bufcnt += padlen + 8;
  197. ctx->flags |= SHA_FLAGS_PAD;
  198. }
  199. }
  200. static int atmel_sha_init(struct ahash_request *req)
  201. {
  202. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  203. struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
  204. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  205. struct atmel_sha_dev *dd = NULL;
  206. struct atmel_sha_dev *tmp;
  207. spin_lock_bh(&atmel_sha.lock);
  208. if (!tctx->dd) {
  209. list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
  210. dd = tmp;
  211. break;
  212. }
  213. tctx->dd = dd;
  214. } else {
  215. dd = tctx->dd;
  216. }
  217. spin_unlock_bh(&atmel_sha.lock);
  218. ctx->dd = dd;
  219. ctx->flags = 0;
  220. dev_dbg(dd->dev, "init: digest size: %d\n",
  221. crypto_ahash_digestsize(tfm));
  222. switch (crypto_ahash_digestsize(tfm)) {
  223. case SHA1_DIGEST_SIZE:
  224. ctx->flags |= SHA_FLAGS_SHA1;
  225. ctx->block_size = SHA1_BLOCK_SIZE;
  226. break;
  227. case SHA224_DIGEST_SIZE:
  228. ctx->flags |= SHA_FLAGS_SHA224;
  229. ctx->block_size = SHA224_BLOCK_SIZE;
  230. break;
  231. case SHA256_DIGEST_SIZE:
  232. ctx->flags |= SHA_FLAGS_SHA256;
  233. ctx->block_size = SHA256_BLOCK_SIZE;
  234. break;
  235. case SHA384_DIGEST_SIZE:
  236. ctx->flags |= SHA_FLAGS_SHA384;
  237. ctx->block_size = SHA384_BLOCK_SIZE;
  238. break;
  239. case SHA512_DIGEST_SIZE:
  240. ctx->flags |= SHA_FLAGS_SHA512;
  241. ctx->block_size = SHA512_BLOCK_SIZE;
  242. break;
  243. default:
  244. return -EINVAL;
  245. break;
  246. }
  247. ctx->bufcnt = 0;
  248. ctx->digcnt[0] = 0;
  249. ctx->digcnt[1] = 0;
  250. ctx->buflen = SHA_BUFFER_LEN;
  251. return 0;
  252. }
  253. static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
  254. {
  255. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  256. u32 valcr = 0, valmr = SHA_MR_MODE_AUTO;
  257. if (likely(dma)) {
  258. if (!dd->caps.has_dma)
  259. atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
  260. valmr = SHA_MR_MODE_PDC;
  261. if (dd->caps.has_dualbuff)
  262. valmr |= SHA_MR_DUALBUFF;
  263. } else {
  264. atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
  265. }
  266. if (ctx->flags & SHA_FLAGS_SHA1)
  267. valmr |= SHA_MR_ALGO_SHA1;
  268. else if (ctx->flags & SHA_FLAGS_SHA224)
  269. valmr |= SHA_MR_ALGO_SHA224;
  270. else if (ctx->flags & SHA_FLAGS_SHA256)
  271. valmr |= SHA_MR_ALGO_SHA256;
  272. else if (ctx->flags & SHA_FLAGS_SHA384)
  273. valmr |= SHA_MR_ALGO_SHA384;
  274. else if (ctx->flags & SHA_FLAGS_SHA512)
  275. valmr |= SHA_MR_ALGO_SHA512;
  276. /* Setting CR_FIRST only for the first iteration */
  277. if (!(ctx->digcnt[0] || ctx->digcnt[1]))
  278. valcr = SHA_CR_FIRST;
  279. atmel_sha_write(dd, SHA_CR, valcr);
  280. atmel_sha_write(dd, SHA_MR, valmr);
  281. }
  282. static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
  283. size_t length, int final)
  284. {
  285. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  286. int count, len32;
  287. const u32 *buffer = (const u32 *)buf;
  288. dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
  289. ctx->digcnt[1], ctx->digcnt[0], length, final);
  290. atmel_sha_write_ctrl(dd, 0);
  291. /* should be non-zero before next lines to disable clocks later */
  292. ctx->digcnt[0] += length;
  293. if (ctx->digcnt[0] < length)
  294. ctx->digcnt[1]++;
  295. if (final)
  296. dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
  297. len32 = DIV_ROUND_UP(length, sizeof(u32));
  298. dd->flags |= SHA_FLAGS_CPU;
  299. for (count = 0; count < len32; count++)
  300. atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
  301. return -EINPROGRESS;
  302. }
  303. static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
  304. size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
  305. {
  306. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  307. int len32;
  308. dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
  309. ctx->digcnt[1], ctx->digcnt[0], length1, final);
  310. len32 = DIV_ROUND_UP(length1, sizeof(u32));
  311. atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
  312. atmel_sha_write(dd, SHA_TPR, dma_addr1);
  313. atmel_sha_write(dd, SHA_TCR, len32);
  314. len32 = DIV_ROUND_UP(length2, sizeof(u32));
  315. atmel_sha_write(dd, SHA_TNPR, dma_addr2);
  316. atmel_sha_write(dd, SHA_TNCR, len32);
  317. atmel_sha_write_ctrl(dd, 1);
  318. /* should be non-zero before next lines to disable clocks later */
  319. ctx->digcnt[0] += length1;
  320. if (ctx->digcnt[0] < length1)
  321. ctx->digcnt[1]++;
  322. if (final)
  323. dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
  324. dd->flags |= SHA_FLAGS_DMA_ACTIVE;
  325. /* Start DMA transfer */
  326. atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
  327. return -EINPROGRESS;
  328. }
  329. static void atmel_sha_dma_callback(void *data)
  330. {
  331. struct atmel_sha_dev *dd = data;
  332. /* dma_lch_in - completed - wait DATRDY */
  333. atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
  334. }
  335. static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
  336. size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
  337. {
  338. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  339. struct dma_async_tx_descriptor *in_desc;
  340. struct scatterlist sg[2];
  341. dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
  342. ctx->digcnt[1], ctx->digcnt[0], length1, final);
  343. if (ctx->flags & (SHA_FLAGS_SHA1 | SHA_FLAGS_SHA224 |
  344. SHA_FLAGS_SHA256)) {
  345. dd->dma_lch_in.dma_conf.src_maxburst = 16;
  346. dd->dma_lch_in.dma_conf.dst_maxburst = 16;
  347. } else {
  348. dd->dma_lch_in.dma_conf.src_maxburst = 32;
  349. dd->dma_lch_in.dma_conf.dst_maxburst = 32;
  350. }
  351. dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
  352. if (length2) {
  353. sg_init_table(sg, 2);
  354. sg_dma_address(&sg[0]) = dma_addr1;
  355. sg_dma_len(&sg[0]) = length1;
  356. sg_dma_address(&sg[1]) = dma_addr2;
  357. sg_dma_len(&sg[1]) = length2;
  358. in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
  359. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  360. } else {
  361. sg_init_table(sg, 1);
  362. sg_dma_address(&sg[0]) = dma_addr1;
  363. sg_dma_len(&sg[0]) = length1;
  364. in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
  365. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  366. }
  367. if (!in_desc)
  368. return -EINVAL;
  369. in_desc->callback = atmel_sha_dma_callback;
  370. in_desc->callback_param = dd;
  371. atmel_sha_write_ctrl(dd, 1);
  372. /* should be non-zero before next lines to disable clocks later */
  373. ctx->digcnt[0] += length1;
  374. if (ctx->digcnt[0] < length1)
  375. ctx->digcnt[1]++;
  376. if (final)
  377. dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
  378. dd->flags |= SHA_FLAGS_DMA_ACTIVE;
  379. /* Start DMA transfer */
  380. dmaengine_submit(in_desc);
  381. dma_async_issue_pending(dd->dma_lch_in.chan);
  382. return -EINPROGRESS;
  383. }
  384. static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
  385. size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
  386. {
  387. if (dd->caps.has_dma)
  388. return atmel_sha_xmit_dma(dd, dma_addr1, length1,
  389. dma_addr2, length2, final);
  390. else
  391. return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
  392. dma_addr2, length2, final);
  393. }
  394. static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
  395. {
  396. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  397. int bufcnt;
  398. atmel_sha_append_sg(ctx);
  399. atmel_sha_fill_padding(ctx, 0);
  400. bufcnt = ctx->bufcnt;
  401. ctx->bufcnt = 0;
  402. return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
  403. }
  404. static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
  405. struct atmel_sha_reqctx *ctx,
  406. size_t length, int final)
  407. {
  408. ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
  409. ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
  410. if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
  411. dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
  412. ctx->block_size);
  413. return -EINVAL;
  414. }
  415. ctx->flags &= ~SHA_FLAGS_SG;
  416. /* next call does not fail... so no unmap in the case of error */
  417. return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
  418. }
  419. static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
  420. {
  421. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  422. unsigned int final;
  423. size_t count;
  424. atmel_sha_append_sg(ctx);
  425. final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
  426. dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: 0x%llx 0x%llx, final: %d\n",
  427. ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
  428. if (final)
  429. atmel_sha_fill_padding(ctx, 0);
  430. if (final || (ctx->bufcnt == ctx->buflen && ctx->total)) {
  431. count = ctx->bufcnt;
  432. ctx->bufcnt = 0;
  433. return atmel_sha_xmit_dma_map(dd, ctx, count, final);
  434. }
  435. return 0;
  436. }
  437. static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
  438. {
  439. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  440. unsigned int length, final, tail;
  441. struct scatterlist *sg;
  442. unsigned int count;
  443. if (!ctx->total)
  444. return 0;
  445. if (ctx->bufcnt || ctx->offset)
  446. return atmel_sha_update_dma_slow(dd);
  447. dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %u, total: %u\n",
  448. ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
  449. sg = ctx->sg;
  450. if (!IS_ALIGNED(sg->offset, sizeof(u32)))
  451. return atmel_sha_update_dma_slow(dd);
  452. if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
  453. /* size is not ctx->block_size aligned */
  454. return atmel_sha_update_dma_slow(dd);
  455. length = min(ctx->total, sg->length);
  456. if (sg_is_last(sg)) {
  457. if (!(ctx->flags & SHA_FLAGS_FINUP)) {
  458. /* not last sg must be ctx->block_size aligned */
  459. tail = length & (ctx->block_size - 1);
  460. length -= tail;
  461. }
  462. }
  463. ctx->total -= length;
  464. ctx->offset = length; /* offset where to start slow */
  465. final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
  466. /* Add padding */
  467. if (final) {
  468. tail = length & (ctx->block_size - 1);
  469. length -= tail;
  470. ctx->total += tail;
  471. ctx->offset = length; /* offset where to start slow */
  472. sg = ctx->sg;
  473. atmel_sha_append_sg(ctx);
  474. atmel_sha_fill_padding(ctx, length);
  475. ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
  476. ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
  477. if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
  478. dev_err(dd->dev, "dma %u bytes error\n",
  479. ctx->buflen + ctx->block_size);
  480. return -EINVAL;
  481. }
  482. if (length == 0) {
  483. ctx->flags &= ~SHA_FLAGS_SG;
  484. count = ctx->bufcnt;
  485. ctx->bufcnt = 0;
  486. return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
  487. 0, final);
  488. } else {
  489. ctx->sg = sg;
  490. if (!dma_map_sg(dd->dev, ctx->sg, 1,
  491. DMA_TO_DEVICE)) {
  492. dev_err(dd->dev, "dma_map_sg error\n");
  493. return -EINVAL;
  494. }
  495. ctx->flags |= SHA_FLAGS_SG;
  496. count = ctx->bufcnt;
  497. ctx->bufcnt = 0;
  498. return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
  499. length, ctx->dma_addr, count, final);
  500. }
  501. }
  502. if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
  503. dev_err(dd->dev, "dma_map_sg error\n");
  504. return -EINVAL;
  505. }
  506. ctx->flags |= SHA_FLAGS_SG;
  507. /* next call does not fail... so no unmap in the case of error */
  508. return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
  509. 0, final);
  510. }
  511. static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
  512. {
  513. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  514. if (ctx->flags & SHA_FLAGS_SG) {
  515. dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
  516. if (ctx->sg->length == ctx->offset) {
  517. ctx->sg = sg_next(ctx->sg);
  518. if (ctx->sg)
  519. ctx->offset = 0;
  520. }
  521. if (ctx->flags & SHA_FLAGS_PAD) {
  522. dma_unmap_single(dd->dev, ctx->dma_addr,
  523. ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
  524. }
  525. } else {
  526. dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
  527. ctx->block_size, DMA_TO_DEVICE);
  528. }
  529. return 0;
  530. }
  531. static int atmel_sha_update_req(struct atmel_sha_dev *dd)
  532. {
  533. struct ahash_request *req = dd->req;
  534. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  535. int err;
  536. dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
  537. ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
  538. if (ctx->flags & SHA_FLAGS_CPU)
  539. err = atmel_sha_update_cpu(dd);
  540. else
  541. err = atmel_sha_update_dma_start(dd);
  542. /* wait for dma completion before can take more data */
  543. dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
  544. err, ctx->digcnt[1], ctx->digcnt[0]);
  545. return err;
  546. }
  547. static int atmel_sha_final_req(struct atmel_sha_dev *dd)
  548. {
  549. struct ahash_request *req = dd->req;
  550. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  551. int err = 0;
  552. int count;
  553. if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
  554. atmel_sha_fill_padding(ctx, 0);
  555. count = ctx->bufcnt;
  556. ctx->bufcnt = 0;
  557. err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
  558. }
  559. /* faster to handle last block with cpu */
  560. else {
  561. atmel_sha_fill_padding(ctx, 0);
  562. count = ctx->bufcnt;
  563. ctx->bufcnt = 0;
  564. err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
  565. }
  566. dev_dbg(dd->dev, "final_req: err: %d\n", err);
  567. return err;
  568. }
  569. static void atmel_sha_copy_hash(struct ahash_request *req)
  570. {
  571. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  572. u32 *hash = (u32 *)ctx->digest;
  573. int i;
  574. if (ctx->flags & SHA_FLAGS_SHA1)
  575. for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++)
  576. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  577. else if (ctx->flags & SHA_FLAGS_SHA224)
  578. for (i = 0; i < SHA224_DIGEST_SIZE / sizeof(u32); i++)
  579. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  580. else if (ctx->flags & SHA_FLAGS_SHA256)
  581. for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(u32); i++)
  582. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  583. else if (ctx->flags & SHA_FLAGS_SHA384)
  584. for (i = 0; i < SHA384_DIGEST_SIZE / sizeof(u32); i++)
  585. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  586. else
  587. for (i = 0; i < SHA512_DIGEST_SIZE / sizeof(u32); i++)
  588. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  589. }
  590. static void atmel_sha_copy_ready_hash(struct ahash_request *req)
  591. {
  592. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  593. if (!req->result)
  594. return;
  595. if (ctx->flags & SHA_FLAGS_SHA1)
  596. memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
  597. else if (ctx->flags & SHA_FLAGS_SHA224)
  598. memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
  599. else if (ctx->flags & SHA_FLAGS_SHA256)
  600. memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
  601. else if (ctx->flags & SHA_FLAGS_SHA384)
  602. memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
  603. else
  604. memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
  605. }
  606. static int atmel_sha_finish(struct ahash_request *req)
  607. {
  608. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  609. struct atmel_sha_dev *dd = ctx->dd;
  610. int err = 0;
  611. if (ctx->digcnt[0] || ctx->digcnt[1])
  612. atmel_sha_copy_ready_hash(req);
  613. dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %d\n", ctx->digcnt[1],
  614. ctx->digcnt[0], ctx->bufcnt);
  615. return err;
  616. }
  617. static void atmel_sha_finish_req(struct ahash_request *req, int err)
  618. {
  619. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  620. struct atmel_sha_dev *dd = ctx->dd;
  621. if (!err) {
  622. atmel_sha_copy_hash(req);
  623. if (SHA_FLAGS_FINAL & dd->flags)
  624. err = atmel_sha_finish(req);
  625. } else {
  626. ctx->flags |= SHA_FLAGS_ERROR;
  627. }
  628. /* atomic operation is not needed here */
  629. dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
  630. SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY);
  631. clk_disable_unprepare(dd->iclk);
  632. if (req->base.complete)
  633. req->base.complete(&req->base, err);
  634. /* handle new request */
  635. tasklet_schedule(&dd->done_task);
  636. }
  637. static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
  638. {
  639. clk_prepare_enable(dd->iclk);
  640. if (!(SHA_FLAGS_INIT & dd->flags)) {
  641. atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
  642. dd->flags |= SHA_FLAGS_INIT;
  643. dd->err = 0;
  644. }
  645. return 0;
  646. }
  647. static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
  648. {
  649. return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
  650. }
  651. static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
  652. {
  653. atmel_sha_hw_init(dd);
  654. dd->hw_version = atmel_sha_get_version(dd);
  655. dev_info(dd->dev,
  656. "version: 0x%x\n", dd->hw_version);
  657. clk_disable_unprepare(dd->iclk);
  658. }
  659. static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
  660. struct ahash_request *req)
  661. {
  662. struct crypto_async_request *async_req, *backlog;
  663. struct atmel_sha_reqctx *ctx;
  664. unsigned long flags;
  665. int err = 0, ret = 0;
  666. spin_lock_irqsave(&dd->lock, flags);
  667. if (req)
  668. ret = ahash_enqueue_request(&dd->queue, req);
  669. if (SHA_FLAGS_BUSY & dd->flags) {
  670. spin_unlock_irqrestore(&dd->lock, flags);
  671. return ret;
  672. }
  673. backlog = crypto_get_backlog(&dd->queue);
  674. async_req = crypto_dequeue_request(&dd->queue);
  675. if (async_req)
  676. dd->flags |= SHA_FLAGS_BUSY;
  677. spin_unlock_irqrestore(&dd->lock, flags);
  678. if (!async_req)
  679. return ret;
  680. if (backlog)
  681. backlog->complete(backlog, -EINPROGRESS);
  682. req = ahash_request_cast(async_req);
  683. dd->req = req;
  684. ctx = ahash_request_ctx(req);
  685. dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
  686. ctx->op, req->nbytes);
  687. err = atmel_sha_hw_init(dd);
  688. if (err)
  689. goto err1;
  690. if (ctx->op == SHA_OP_UPDATE) {
  691. err = atmel_sha_update_req(dd);
  692. if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
  693. /* no final() after finup() */
  694. err = atmel_sha_final_req(dd);
  695. } else if (ctx->op == SHA_OP_FINAL) {
  696. err = atmel_sha_final_req(dd);
  697. }
  698. err1:
  699. if (err != -EINPROGRESS)
  700. /* done_task will not finish it, so do it here */
  701. atmel_sha_finish_req(req, err);
  702. dev_dbg(dd->dev, "exit, err: %d\n", err);
  703. return ret;
  704. }
  705. static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
  706. {
  707. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  708. struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  709. struct atmel_sha_dev *dd = tctx->dd;
  710. ctx->op = op;
  711. return atmel_sha_handle_queue(dd, req);
  712. }
  713. static int atmel_sha_update(struct ahash_request *req)
  714. {
  715. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  716. if (!req->nbytes)
  717. return 0;
  718. ctx->total = req->nbytes;
  719. ctx->sg = req->src;
  720. ctx->offset = 0;
  721. if (ctx->flags & SHA_FLAGS_FINUP) {
  722. if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
  723. /* faster to use CPU for short transfers */
  724. ctx->flags |= SHA_FLAGS_CPU;
  725. } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
  726. atmel_sha_append_sg(ctx);
  727. return 0;
  728. }
  729. return atmel_sha_enqueue(req, SHA_OP_UPDATE);
  730. }
  731. static int atmel_sha_final(struct ahash_request *req)
  732. {
  733. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  734. struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  735. struct atmel_sha_dev *dd = tctx->dd;
  736. int err = 0;
  737. ctx->flags |= SHA_FLAGS_FINUP;
  738. if (ctx->flags & SHA_FLAGS_ERROR)
  739. return 0; /* uncompleted hash is not needed */
  740. if (ctx->bufcnt) {
  741. return atmel_sha_enqueue(req, SHA_OP_FINAL);
  742. } else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */
  743. err = atmel_sha_hw_init(dd);
  744. if (err)
  745. goto err1;
  746. dd->flags |= SHA_FLAGS_BUSY;
  747. err = atmel_sha_final_req(dd);
  748. } else {
  749. /* copy ready hash (+ finalize hmac) */
  750. return atmel_sha_finish(req);
  751. }
  752. err1:
  753. if (err != -EINPROGRESS)
  754. /* done_task will not finish it, so do it here */
  755. atmel_sha_finish_req(req, err);
  756. return err;
  757. }
  758. static int atmel_sha_finup(struct ahash_request *req)
  759. {
  760. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  761. int err1, err2;
  762. ctx->flags |= SHA_FLAGS_FINUP;
  763. err1 = atmel_sha_update(req);
  764. if (err1 == -EINPROGRESS || err1 == -EBUSY)
  765. return err1;
  766. /*
  767. * final() has to be always called to cleanup resources
  768. * even if udpate() failed, except EINPROGRESS
  769. */
  770. err2 = atmel_sha_final(req);
  771. return err1 ?: err2;
  772. }
  773. static int atmel_sha_digest(struct ahash_request *req)
  774. {
  775. return atmel_sha_init(req) ?: atmel_sha_finup(req);
  776. }
  777. static int atmel_sha_cra_init(struct crypto_tfm *tfm)
  778. {
  779. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  780. sizeof(struct atmel_sha_reqctx) +
  781. SHA_BUFFER_LEN + SHA512_BLOCK_SIZE);
  782. return 0;
  783. }
  784. static struct ahash_alg sha_1_256_algs[] = {
  785. {
  786. .init = atmel_sha_init,
  787. .update = atmel_sha_update,
  788. .final = atmel_sha_final,
  789. .finup = atmel_sha_finup,
  790. .digest = atmel_sha_digest,
  791. .halg = {
  792. .digestsize = SHA1_DIGEST_SIZE,
  793. .base = {
  794. .cra_name = "sha1",
  795. .cra_driver_name = "atmel-sha1",
  796. .cra_priority = 100,
  797. .cra_flags = CRYPTO_ALG_ASYNC,
  798. .cra_blocksize = SHA1_BLOCK_SIZE,
  799. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  800. .cra_alignmask = 0,
  801. .cra_module = THIS_MODULE,
  802. .cra_init = atmel_sha_cra_init,
  803. }
  804. }
  805. },
  806. {
  807. .init = atmel_sha_init,
  808. .update = atmel_sha_update,
  809. .final = atmel_sha_final,
  810. .finup = atmel_sha_finup,
  811. .digest = atmel_sha_digest,
  812. .halg = {
  813. .digestsize = SHA256_DIGEST_SIZE,
  814. .base = {
  815. .cra_name = "sha256",
  816. .cra_driver_name = "atmel-sha256",
  817. .cra_priority = 100,
  818. .cra_flags = CRYPTO_ALG_ASYNC,
  819. .cra_blocksize = SHA256_BLOCK_SIZE,
  820. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  821. .cra_alignmask = 0,
  822. .cra_module = THIS_MODULE,
  823. .cra_init = atmel_sha_cra_init,
  824. }
  825. }
  826. },
  827. };
  828. static struct ahash_alg sha_224_alg = {
  829. .init = atmel_sha_init,
  830. .update = atmel_sha_update,
  831. .final = atmel_sha_final,
  832. .finup = atmel_sha_finup,
  833. .digest = atmel_sha_digest,
  834. .halg = {
  835. .digestsize = SHA224_DIGEST_SIZE,
  836. .base = {
  837. .cra_name = "sha224",
  838. .cra_driver_name = "atmel-sha224",
  839. .cra_priority = 100,
  840. .cra_flags = CRYPTO_ALG_ASYNC,
  841. .cra_blocksize = SHA224_BLOCK_SIZE,
  842. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  843. .cra_alignmask = 0,
  844. .cra_module = THIS_MODULE,
  845. .cra_init = atmel_sha_cra_init,
  846. }
  847. }
  848. };
  849. static struct ahash_alg sha_384_512_algs[] = {
  850. {
  851. .init = atmel_sha_init,
  852. .update = atmel_sha_update,
  853. .final = atmel_sha_final,
  854. .finup = atmel_sha_finup,
  855. .digest = atmel_sha_digest,
  856. .halg = {
  857. .digestsize = SHA384_DIGEST_SIZE,
  858. .base = {
  859. .cra_name = "sha384",
  860. .cra_driver_name = "atmel-sha384",
  861. .cra_priority = 100,
  862. .cra_flags = CRYPTO_ALG_ASYNC,
  863. .cra_blocksize = SHA384_BLOCK_SIZE,
  864. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  865. .cra_alignmask = 0x3,
  866. .cra_module = THIS_MODULE,
  867. .cra_init = atmel_sha_cra_init,
  868. }
  869. }
  870. },
  871. {
  872. .init = atmel_sha_init,
  873. .update = atmel_sha_update,
  874. .final = atmel_sha_final,
  875. .finup = atmel_sha_finup,
  876. .digest = atmel_sha_digest,
  877. .halg = {
  878. .digestsize = SHA512_DIGEST_SIZE,
  879. .base = {
  880. .cra_name = "sha512",
  881. .cra_driver_name = "atmel-sha512",
  882. .cra_priority = 100,
  883. .cra_flags = CRYPTO_ALG_ASYNC,
  884. .cra_blocksize = SHA512_BLOCK_SIZE,
  885. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  886. .cra_alignmask = 0x3,
  887. .cra_module = THIS_MODULE,
  888. .cra_init = atmel_sha_cra_init,
  889. }
  890. }
  891. },
  892. };
  893. static void atmel_sha_done_task(unsigned long data)
  894. {
  895. struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
  896. int err = 0;
  897. if (!(SHA_FLAGS_BUSY & dd->flags)) {
  898. atmel_sha_handle_queue(dd, NULL);
  899. return;
  900. }
  901. if (SHA_FLAGS_CPU & dd->flags) {
  902. if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
  903. dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
  904. goto finish;
  905. }
  906. } else if (SHA_FLAGS_DMA_READY & dd->flags) {
  907. if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
  908. dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
  909. atmel_sha_update_dma_stop(dd);
  910. if (dd->err) {
  911. err = dd->err;
  912. goto finish;
  913. }
  914. }
  915. if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
  916. /* hash or semi-hash ready */
  917. dd->flags &= ~(SHA_FLAGS_DMA_READY |
  918. SHA_FLAGS_OUTPUT_READY);
  919. err = atmel_sha_update_dma_start(dd);
  920. if (err != -EINPROGRESS)
  921. goto finish;
  922. }
  923. }
  924. return;
  925. finish:
  926. /* finish curent request */
  927. atmel_sha_finish_req(dd->req, err);
  928. }
  929. static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
  930. {
  931. struct atmel_sha_dev *sha_dd = dev_id;
  932. u32 reg;
  933. reg = atmel_sha_read(sha_dd, SHA_ISR);
  934. if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
  935. atmel_sha_write(sha_dd, SHA_IDR, reg);
  936. if (SHA_FLAGS_BUSY & sha_dd->flags) {
  937. sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
  938. if (!(SHA_FLAGS_CPU & sha_dd->flags))
  939. sha_dd->flags |= SHA_FLAGS_DMA_READY;
  940. tasklet_schedule(&sha_dd->done_task);
  941. } else {
  942. dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
  943. }
  944. return IRQ_HANDLED;
  945. }
  946. return IRQ_NONE;
  947. }
  948. static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
  949. {
  950. int i;
  951. for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
  952. crypto_unregister_ahash(&sha_1_256_algs[i]);
  953. if (dd->caps.has_sha224)
  954. crypto_unregister_ahash(&sha_224_alg);
  955. if (dd->caps.has_sha_384_512) {
  956. for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
  957. crypto_unregister_ahash(&sha_384_512_algs[i]);
  958. }
  959. }
  960. static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
  961. {
  962. int err, i, j;
  963. for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
  964. err = crypto_register_ahash(&sha_1_256_algs[i]);
  965. if (err)
  966. goto err_sha_1_256_algs;
  967. }
  968. if (dd->caps.has_sha224) {
  969. err = crypto_register_ahash(&sha_224_alg);
  970. if (err)
  971. goto err_sha_224_algs;
  972. }
  973. if (dd->caps.has_sha_384_512) {
  974. for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
  975. err = crypto_register_ahash(&sha_384_512_algs[i]);
  976. if (err)
  977. goto err_sha_384_512_algs;
  978. }
  979. }
  980. return 0;
  981. err_sha_384_512_algs:
  982. for (j = 0; j < i; j++)
  983. crypto_unregister_ahash(&sha_384_512_algs[j]);
  984. crypto_unregister_ahash(&sha_224_alg);
  985. err_sha_224_algs:
  986. i = ARRAY_SIZE(sha_1_256_algs);
  987. err_sha_1_256_algs:
  988. for (j = 0; j < i; j++)
  989. crypto_unregister_ahash(&sha_1_256_algs[j]);
  990. return err;
  991. }
  992. static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
  993. {
  994. struct at_dma_slave *sl = slave;
  995. if (sl && sl->dma_dev == chan->device->dev) {
  996. chan->private = sl;
  997. return true;
  998. } else {
  999. return false;
  1000. }
  1001. }
  1002. static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
  1003. struct crypto_platform_data *pdata)
  1004. {
  1005. int err = -ENOMEM;
  1006. dma_cap_mask_t mask_in;
  1007. /* Try to grab DMA channel */
  1008. dma_cap_zero(mask_in);
  1009. dma_cap_set(DMA_SLAVE, mask_in);
  1010. dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
  1011. atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
  1012. if (!dd->dma_lch_in.chan) {
  1013. dev_warn(dd->dev, "no DMA channel available\n");
  1014. return err;
  1015. }
  1016. dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
  1017. dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
  1018. SHA_REG_DIN(0);
  1019. dd->dma_lch_in.dma_conf.src_maxburst = 1;
  1020. dd->dma_lch_in.dma_conf.src_addr_width =
  1021. DMA_SLAVE_BUSWIDTH_4_BYTES;
  1022. dd->dma_lch_in.dma_conf.dst_maxburst = 1;
  1023. dd->dma_lch_in.dma_conf.dst_addr_width =
  1024. DMA_SLAVE_BUSWIDTH_4_BYTES;
  1025. dd->dma_lch_in.dma_conf.device_fc = false;
  1026. return 0;
  1027. }
  1028. static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
  1029. {
  1030. dma_release_channel(dd->dma_lch_in.chan);
  1031. }
  1032. static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
  1033. {
  1034. dd->caps.has_dma = 0;
  1035. dd->caps.has_dualbuff = 0;
  1036. dd->caps.has_sha224 = 0;
  1037. dd->caps.has_sha_384_512 = 0;
  1038. /* keep only major version number */
  1039. switch (dd->hw_version & 0xff0) {
  1040. case 0x410:
  1041. dd->caps.has_dma = 1;
  1042. dd->caps.has_dualbuff = 1;
  1043. dd->caps.has_sha224 = 1;
  1044. dd->caps.has_sha_384_512 = 1;
  1045. break;
  1046. case 0x400:
  1047. dd->caps.has_dma = 1;
  1048. dd->caps.has_dualbuff = 1;
  1049. dd->caps.has_sha224 = 1;
  1050. break;
  1051. case 0x320:
  1052. break;
  1053. default:
  1054. dev_warn(dd->dev,
  1055. "Unmanaged sha version, set minimum capabilities\n");
  1056. break;
  1057. }
  1058. }
  1059. #if defined(CONFIG_OF)
  1060. static const struct of_device_id atmel_sha_dt_ids[] = {
  1061. { .compatible = "atmel,at91sam9g46-sha" },
  1062. { /* sentinel */ }
  1063. };
  1064. MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
  1065. static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
  1066. {
  1067. struct device_node *np = pdev->dev.of_node;
  1068. struct crypto_platform_data *pdata;
  1069. if (!np) {
  1070. dev_err(&pdev->dev, "device node not found\n");
  1071. return ERR_PTR(-EINVAL);
  1072. }
  1073. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  1074. if (!pdata) {
  1075. dev_err(&pdev->dev, "could not allocate memory for pdata\n");
  1076. return ERR_PTR(-ENOMEM);
  1077. }
  1078. pdata->dma_slave = devm_kzalloc(&pdev->dev,
  1079. sizeof(*(pdata->dma_slave)),
  1080. GFP_KERNEL);
  1081. if (!pdata->dma_slave) {
  1082. dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
  1083. return ERR_PTR(-ENOMEM);
  1084. }
  1085. return pdata;
  1086. }
  1087. #else /* CONFIG_OF */
  1088. static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
  1089. {
  1090. return ERR_PTR(-EINVAL);
  1091. }
  1092. #endif
  1093. static int atmel_sha_probe(struct platform_device *pdev)
  1094. {
  1095. struct atmel_sha_dev *sha_dd;
  1096. struct crypto_platform_data *pdata;
  1097. struct device *dev = &pdev->dev;
  1098. struct resource *sha_res;
  1099. unsigned long sha_phys_size;
  1100. int err;
  1101. sha_dd = devm_kzalloc(&pdev->dev, sizeof(struct atmel_sha_dev),
  1102. GFP_KERNEL);
  1103. if (sha_dd == NULL) {
  1104. dev_err(dev, "unable to alloc data struct.\n");
  1105. err = -ENOMEM;
  1106. goto sha_dd_err;
  1107. }
  1108. sha_dd->dev = dev;
  1109. platform_set_drvdata(pdev, sha_dd);
  1110. INIT_LIST_HEAD(&sha_dd->list);
  1111. tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
  1112. (unsigned long)sha_dd);
  1113. crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
  1114. sha_dd->irq = -1;
  1115. /* Get the base address */
  1116. sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1117. if (!sha_res) {
  1118. dev_err(dev, "no MEM resource info\n");
  1119. err = -ENODEV;
  1120. goto res_err;
  1121. }
  1122. sha_dd->phys_base = sha_res->start;
  1123. sha_phys_size = resource_size(sha_res);
  1124. /* Get the IRQ */
  1125. sha_dd->irq = platform_get_irq(pdev, 0);
  1126. if (sha_dd->irq < 0) {
  1127. dev_err(dev, "no IRQ resource info\n");
  1128. err = sha_dd->irq;
  1129. goto res_err;
  1130. }
  1131. err = request_irq(sha_dd->irq, atmel_sha_irq, IRQF_SHARED, "atmel-sha",
  1132. sha_dd);
  1133. if (err) {
  1134. dev_err(dev, "unable to request sha irq.\n");
  1135. goto res_err;
  1136. }
  1137. /* Initializing the clock */
  1138. sha_dd->iclk = clk_get(&pdev->dev, "sha_clk");
  1139. if (IS_ERR(sha_dd->iclk)) {
  1140. dev_err(dev, "clock intialization failed.\n");
  1141. err = PTR_ERR(sha_dd->iclk);
  1142. goto clk_err;
  1143. }
  1144. sha_dd->io_base = ioremap(sha_dd->phys_base, sha_phys_size);
  1145. if (!sha_dd->io_base) {
  1146. dev_err(dev, "can't ioremap\n");
  1147. err = -ENOMEM;
  1148. goto sha_io_err;
  1149. }
  1150. atmel_sha_hw_version_init(sha_dd);
  1151. atmel_sha_get_cap(sha_dd);
  1152. if (sha_dd->caps.has_dma) {
  1153. pdata = pdev->dev.platform_data;
  1154. if (!pdata) {
  1155. pdata = atmel_sha_of_init(pdev);
  1156. if (IS_ERR(pdata)) {
  1157. dev_err(&pdev->dev, "platform data not available\n");
  1158. err = PTR_ERR(pdata);
  1159. goto err_pdata;
  1160. }
  1161. }
  1162. if (!pdata->dma_slave) {
  1163. err = -ENXIO;
  1164. goto err_pdata;
  1165. }
  1166. err = atmel_sha_dma_init(sha_dd, pdata);
  1167. if (err)
  1168. goto err_sha_dma;
  1169. dev_info(dev, "using %s for DMA transfers\n",
  1170. dma_chan_name(sha_dd->dma_lch_in.chan));
  1171. }
  1172. spin_lock(&atmel_sha.lock);
  1173. list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
  1174. spin_unlock(&atmel_sha.lock);
  1175. err = atmel_sha_register_algs(sha_dd);
  1176. if (err)
  1177. goto err_algs;
  1178. dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
  1179. sha_dd->caps.has_sha224 ? "/SHA224" : "",
  1180. sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
  1181. return 0;
  1182. err_algs:
  1183. spin_lock(&atmel_sha.lock);
  1184. list_del(&sha_dd->list);
  1185. spin_unlock(&atmel_sha.lock);
  1186. if (sha_dd->caps.has_dma)
  1187. atmel_sha_dma_cleanup(sha_dd);
  1188. err_sha_dma:
  1189. err_pdata:
  1190. iounmap(sha_dd->io_base);
  1191. sha_io_err:
  1192. clk_put(sha_dd->iclk);
  1193. clk_err:
  1194. free_irq(sha_dd->irq, sha_dd);
  1195. res_err:
  1196. tasklet_kill(&sha_dd->done_task);
  1197. sha_dd_err:
  1198. dev_err(dev, "initialization failed.\n");
  1199. return err;
  1200. }
  1201. static int atmel_sha_remove(struct platform_device *pdev)
  1202. {
  1203. static struct atmel_sha_dev *sha_dd;
  1204. sha_dd = platform_get_drvdata(pdev);
  1205. if (!sha_dd)
  1206. return -ENODEV;
  1207. spin_lock(&atmel_sha.lock);
  1208. list_del(&sha_dd->list);
  1209. spin_unlock(&atmel_sha.lock);
  1210. atmel_sha_unregister_algs(sha_dd);
  1211. tasklet_kill(&sha_dd->done_task);
  1212. if (sha_dd->caps.has_dma)
  1213. atmel_sha_dma_cleanup(sha_dd);
  1214. iounmap(sha_dd->io_base);
  1215. clk_put(sha_dd->iclk);
  1216. if (sha_dd->irq >= 0)
  1217. free_irq(sha_dd->irq, sha_dd);
  1218. return 0;
  1219. }
  1220. static struct platform_driver atmel_sha_driver = {
  1221. .probe = atmel_sha_probe,
  1222. .remove = atmel_sha_remove,
  1223. .driver = {
  1224. .name = "atmel_sha",
  1225. .of_match_table = of_match_ptr(atmel_sha_dt_ids),
  1226. },
  1227. };
  1228. module_platform_driver(atmel_sha_driver);
  1229. MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
  1230. MODULE_LICENSE("GPL v2");
  1231. MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");