amdgpu_amdkfd_gfx_v8.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/fdtable.h>
  24. #include <linux/uaccess.h>
  25. #include <linux/firmware.h>
  26. #include <drm/drmP.h>
  27. #include "amdgpu.h"
  28. #include "amdgpu_amdkfd.h"
  29. #include "amdgpu_ucode.h"
  30. #include "gfx_v8_0.h"
  31. #include "gca/gfx_8_0_sh_mask.h"
  32. #include "gca/gfx_8_0_d.h"
  33. #include "gca/gfx_8_0_enum.h"
  34. #include "oss/oss_3_0_sh_mask.h"
  35. #include "oss/oss_3_0_d.h"
  36. #include "gmc/gmc_8_1_sh_mask.h"
  37. #include "gmc/gmc_8_1_d.h"
  38. #include "vi_structs.h"
  39. #include "vid.h"
  40. struct cik_sdma_rlc_registers;
  41. /*
  42. * Register access functions
  43. */
  44. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  45. uint32_t sh_mem_config,
  46. uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
  47. uint32_t sh_mem_bases);
  48. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  49. unsigned int vmid);
  50. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  51. uint32_t hpd_size, uint64_t hpd_gpu_addr);
  52. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  53. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  54. uint32_t queue_id, uint32_t __user *wptr);
  55. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
  56. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  57. uint32_t pipe_id, uint32_t queue_id);
  58. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  59. static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
  60. unsigned int utimeout, uint32_t pipe_id,
  61. uint32_t queue_id);
  62. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  63. unsigned int utimeout);
  64. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
  65. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  66. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  67. unsigned int watch_point_id,
  68. uint32_t cntl_val,
  69. uint32_t addr_hi,
  70. uint32_t addr_lo);
  71. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  72. uint32_t gfx_index_val,
  73. uint32_t sq_cmd);
  74. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  75. unsigned int watch_point_id,
  76. unsigned int reg_offset);
  77. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  78. uint8_t vmid);
  79. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  80. uint8_t vmid);
  81. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
  82. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  83. static const struct kfd2kgd_calls kfd2kgd = {
  84. .init_gtt_mem_allocation = alloc_gtt_mem,
  85. .free_gtt_mem = free_gtt_mem,
  86. .get_vmem_size = get_vmem_size,
  87. .get_gpu_clock_counter = get_gpu_clock_counter,
  88. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  89. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  90. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  91. .init_pipeline = kgd_init_pipeline,
  92. .init_interrupts = kgd_init_interrupts,
  93. .hqd_load = kgd_hqd_load,
  94. .hqd_sdma_load = kgd_hqd_sdma_load,
  95. .hqd_is_occupied = kgd_hqd_is_occupied,
  96. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  97. .hqd_destroy = kgd_hqd_destroy,
  98. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  99. .address_watch_disable = kgd_address_watch_disable,
  100. .address_watch_execute = kgd_address_watch_execute,
  101. .wave_control_execute = kgd_wave_control_execute,
  102. .address_watch_get_offset = kgd_address_watch_get_offset,
  103. .get_atc_vmid_pasid_mapping_pasid =
  104. get_atc_vmid_pasid_mapping_pasid,
  105. .get_atc_vmid_pasid_mapping_valid =
  106. get_atc_vmid_pasid_mapping_valid,
  107. .write_vmid_invalidate_request = write_vmid_invalidate_request,
  108. .get_fw_version = get_fw_version
  109. };
  110. struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
  111. {
  112. return (struct kfd2kgd_calls *)&kfd2kgd;
  113. }
  114. static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  115. {
  116. return (struct amdgpu_device *)kgd;
  117. }
  118. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  119. uint32_t queue, uint32_t vmid)
  120. {
  121. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  122. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  123. mutex_lock(&adev->srbm_mutex);
  124. WREG32(mmSRBM_GFX_CNTL, value);
  125. }
  126. static void unlock_srbm(struct kgd_dev *kgd)
  127. {
  128. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  129. WREG32(mmSRBM_GFX_CNTL, 0);
  130. mutex_unlock(&adev->srbm_mutex);
  131. }
  132. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  133. uint32_t queue_id)
  134. {
  135. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  136. uint32_t mec = (++pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  137. uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  138. lock_srbm(kgd, mec, pipe, queue_id, 0);
  139. }
  140. static void release_queue(struct kgd_dev *kgd)
  141. {
  142. unlock_srbm(kgd);
  143. }
  144. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  145. uint32_t sh_mem_config,
  146. uint32_t sh_mem_ape1_base,
  147. uint32_t sh_mem_ape1_limit,
  148. uint32_t sh_mem_bases)
  149. {
  150. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  151. lock_srbm(kgd, 0, 0, 0, vmid);
  152. WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  153. WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  154. WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  155. WREG32(mmSH_MEM_BASES, sh_mem_bases);
  156. unlock_srbm(kgd);
  157. }
  158. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  159. unsigned int vmid)
  160. {
  161. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  162. /*
  163. * We have to assume that there is no outstanding mapping.
  164. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
  165. * a mapping is in progress or because a mapping finished
  166. * and the SW cleared it.
  167. * So the protocol is to always wait & clear.
  168. */
  169. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  170. ATC_VMID0_PASID_MAPPING__VALID_MASK;
  171. WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
  172. while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
  173. cpu_relax();
  174. WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  175. /* Mapping vmid to pasid also for IH block */
  176. WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
  177. return 0;
  178. }
  179. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  180. uint32_t hpd_size, uint64_t hpd_gpu_addr)
  181. {
  182. /* amdgpu owns the per-pipe state */
  183. return 0;
  184. }
  185. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  186. {
  187. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  188. uint32_t mec;
  189. uint32_t pipe;
  190. mec = (++pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  191. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  192. lock_srbm(kgd, mec, pipe, 0, 0);
  193. WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK);
  194. unlock_srbm(kgd);
  195. return 0;
  196. }
  197. static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
  198. {
  199. return 0;
  200. }
  201. static inline struct vi_mqd *get_mqd(void *mqd)
  202. {
  203. return (struct vi_mqd *)mqd;
  204. }
  205. static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
  206. {
  207. return (struct cik_sdma_rlc_registers *)mqd;
  208. }
  209. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  210. uint32_t queue_id, uint32_t __user *wptr)
  211. {
  212. struct vi_mqd *m;
  213. uint32_t shadow_wptr, valid_wptr;
  214. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  215. m = get_mqd(mqd);
  216. valid_wptr = copy_from_user(&shadow_wptr, wptr, sizeof(shadow_wptr));
  217. if (valid_wptr == 0)
  218. m->cp_hqd_pq_wptr = shadow_wptr;
  219. acquire_queue(kgd, pipe_id, queue_id);
  220. gfx_v8_0_mqd_commit(adev, mqd);
  221. release_queue(kgd);
  222. return 0;
  223. }
  224. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
  225. {
  226. return 0;
  227. }
  228. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  229. uint32_t pipe_id, uint32_t queue_id)
  230. {
  231. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  232. uint32_t act;
  233. bool retval = false;
  234. uint32_t low, high;
  235. acquire_queue(kgd, pipe_id, queue_id);
  236. act = RREG32(mmCP_HQD_ACTIVE);
  237. if (act) {
  238. low = lower_32_bits(queue_address >> 8);
  239. high = upper_32_bits(queue_address >> 8);
  240. if (low == RREG32(mmCP_HQD_PQ_BASE) &&
  241. high == RREG32(mmCP_HQD_PQ_BASE_HI))
  242. retval = true;
  243. }
  244. release_queue(kgd);
  245. return retval;
  246. }
  247. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  248. {
  249. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  250. struct cik_sdma_rlc_registers *m;
  251. uint32_t sdma_base_addr;
  252. uint32_t sdma_rlc_rb_cntl;
  253. m = get_sdma_mqd(mqd);
  254. sdma_base_addr = get_sdma_base_addr(m);
  255. sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  256. if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
  257. return true;
  258. return false;
  259. }
  260. static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
  261. unsigned int utimeout, uint32_t pipe_id,
  262. uint32_t queue_id)
  263. {
  264. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  265. uint32_t temp;
  266. int timeout = utimeout;
  267. acquire_queue(kgd, pipe_id, queue_id);
  268. WREG32(mmCP_HQD_DEQUEUE_REQUEST, reset_type);
  269. while (true) {
  270. temp = RREG32(mmCP_HQD_ACTIVE);
  271. if (temp & CP_HQD_ACTIVE__ACTIVE_MASK)
  272. break;
  273. if (timeout <= 0) {
  274. pr_err("kfd: cp queue preemption time out.\n");
  275. release_queue(kgd);
  276. return -ETIME;
  277. }
  278. msleep(20);
  279. timeout -= 20;
  280. }
  281. release_queue(kgd);
  282. return 0;
  283. }
  284. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  285. unsigned int utimeout)
  286. {
  287. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  288. struct cik_sdma_rlc_registers *m;
  289. uint32_t sdma_base_addr;
  290. uint32_t temp;
  291. int timeout = utimeout;
  292. m = get_sdma_mqd(mqd);
  293. sdma_base_addr = get_sdma_base_addr(m);
  294. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  295. temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
  296. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
  297. while (true) {
  298. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  299. if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
  300. break;
  301. if (timeout <= 0)
  302. return -ETIME;
  303. msleep(20);
  304. timeout -= 20;
  305. }
  306. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
  307. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0);
  308. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0);
  309. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, 0);
  310. return 0;
  311. }
  312. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  313. uint8_t vmid)
  314. {
  315. uint32_t reg;
  316. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  317. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  318. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  319. }
  320. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  321. uint8_t vmid)
  322. {
  323. uint32_t reg;
  324. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  325. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  326. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  327. }
  328. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
  329. {
  330. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  331. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  332. }
  333. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  334. {
  335. return 0;
  336. }
  337. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  338. unsigned int watch_point_id,
  339. uint32_t cntl_val,
  340. uint32_t addr_hi,
  341. uint32_t addr_lo)
  342. {
  343. return 0;
  344. }
  345. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  346. uint32_t gfx_index_val,
  347. uint32_t sq_cmd)
  348. {
  349. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  350. uint32_t data = 0;
  351. mutex_lock(&adev->grbm_idx_mutex);
  352. WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
  353. WREG32(mmSQ_CMD, sq_cmd);
  354. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  355. INSTANCE_BROADCAST_WRITES, 1);
  356. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  357. SH_BROADCAST_WRITES, 1);
  358. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  359. SE_BROADCAST_WRITES, 1);
  360. WREG32(mmGRBM_GFX_INDEX, data);
  361. mutex_unlock(&adev->grbm_idx_mutex);
  362. return 0;
  363. }
  364. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  365. unsigned int watch_point_id,
  366. unsigned int reg_offset)
  367. {
  368. return 0;
  369. }
  370. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  371. {
  372. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  373. const union amdgpu_firmware_header *hdr;
  374. BUG_ON(kgd == NULL);
  375. switch (type) {
  376. case KGD_ENGINE_PFP:
  377. hdr = (const union amdgpu_firmware_header *)
  378. adev->gfx.pfp_fw->data;
  379. break;
  380. case KGD_ENGINE_ME:
  381. hdr = (const union amdgpu_firmware_header *)
  382. adev->gfx.me_fw->data;
  383. break;
  384. case KGD_ENGINE_CE:
  385. hdr = (const union amdgpu_firmware_header *)
  386. adev->gfx.ce_fw->data;
  387. break;
  388. case KGD_ENGINE_MEC1:
  389. hdr = (const union amdgpu_firmware_header *)
  390. adev->gfx.mec_fw->data;
  391. break;
  392. case KGD_ENGINE_MEC2:
  393. hdr = (const union amdgpu_firmware_header *)
  394. adev->gfx.mec2_fw->data;
  395. break;
  396. case KGD_ENGINE_RLC:
  397. hdr = (const union amdgpu_firmware_header *)
  398. adev->gfx.rlc_fw->data;
  399. break;
  400. case KGD_ENGINE_SDMA1:
  401. hdr = (const union amdgpu_firmware_header *)
  402. adev->sdma.instance[0].fw->data;
  403. break;
  404. case KGD_ENGINE_SDMA2:
  405. hdr = (const union amdgpu_firmware_header *)
  406. adev->sdma.instance[1].fw->data;
  407. break;
  408. default:
  409. return 0;
  410. }
  411. if (hdr == NULL)
  412. return 0;
  413. /* Only 12 bit in use*/
  414. return hdr->common.ucode_version;
  415. }