amdgpu_amdkfd_gfx_v7.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/fdtable.h>
  23. #include <linux/uaccess.h>
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_amdkfd.h"
  28. #include "cikd.h"
  29. #include "cik_sdma.h"
  30. #include "amdgpu_ucode.h"
  31. #include "gfx_v7_0.h"
  32. #include "gca/gfx_7_2_d.h"
  33. #include "gca/gfx_7_2_enum.h"
  34. #include "gca/gfx_7_2_sh_mask.h"
  35. #include "oss/oss_2_0_d.h"
  36. #include "oss/oss_2_0_sh_mask.h"
  37. #include "gmc/gmc_7_1_d.h"
  38. #include "gmc/gmc_7_1_sh_mask.h"
  39. #include "cik_structs.h"
  40. enum {
  41. MAX_TRAPID = 8, /* 3 bits in the bitfield. */
  42. MAX_WATCH_ADDRESSES = 4
  43. };
  44. enum {
  45. ADDRESS_WATCH_REG_ADDR_HI = 0,
  46. ADDRESS_WATCH_REG_ADDR_LO,
  47. ADDRESS_WATCH_REG_CNTL,
  48. ADDRESS_WATCH_REG_MAX
  49. };
  50. /* not defined in the CI/KV reg file */
  51. enum {
  52. ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
  53. ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
  54. ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
  55. /* extend the mask to 26 bits to match the low address field */
  56. ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
  57. ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
  58. };
  59. static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
  60. mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
  61. mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
  62. mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
  63. mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
  64. };
  65. union TCP_WATCH_CNTL_BITS {
  66. struct {
  67. uint32_t mask:24;
  68. uint32_t vmid:4;
  69. uint32_t atc:1;
  70. uint32_t mode:2;
  71. uint32_t valid:1;
  72. } bitfields, bits;
  73. uint32_t u32All;
  74. signed int i32All;
  75. float f32All;
  76. };
  77. /*
  78. * Register access functions
  79. */
  80. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  81. uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
  82. uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
  83. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  84. unsigned int vmid);
  85. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  86. uint32_t hpd_size, uint64_t hpd_gpu_addr);
  87. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  88. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  89. uint32_t queue_id, uint32_t __user *wptr);
  90. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
  91. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  92. uint32_t pipe_id, uint32_t queue_id);
  93. static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
  94. unsigned int utimeout, uint32_t pipe_id,
  95. uint32_t queue_id);
  96. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  97. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  98. unsigned int utimeout);
  99. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  100. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  101. unsigned int watch_point_id,
  102. uint32_t cntl_val,
  103. uint32_t addr_hi,
  104. uint32_t addr_lo);
  105. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  106. uint32_t gfx_index_val,
  107. uint32_t sq_cmd);
  108. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  109. unsigned int watch_point_id,
  110. unsigned int reg_offset);
  111. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
  112. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  113. uint8_t vmid);
  114. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
  115. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  116. static const struct kfd2kgd_calls kfd2kgd = {
  117. .init_gtt_mem_allocation = alloc_gtt_mem,
  118. .free_gtt_mem = free_gtt_mem,
  119. .get_vmem_size = get_vmem_size,
  120. .get_gpu_clock_counter = get_gpu_clock_counter,
  121. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  122. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  123. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  124. .init_pipeline = kgd_init_pipeline,
  125. .init_interrupts = kgd_init_interrupts,
  126. .hqd_load = kgd_hqd_load,
  127. .hqd_sdma_load = kgd_hqd_sdma_load,
  128. .hqd_is_occupied = kgd_hqd_is_occupied,
  129. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  130. .hqd_destroy = kgd_hqd_destroy,
  131. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  132. .address_watch_disable = kgd_address_watch_disable,
  133. .address_watch_execute = kgd_address_watch_execute,
  134. .wave_control_execute = kgd_wave_control_execute,
  135. .address_watch_get_offset = kgd_address_watch_get_offset,
  136. .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
  137. .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
  138. .write_vmid_invalidate_request = write_vmid_invalidate_request,
  139. .get_fw_version = get_fw_version
  140. };
  141. struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
  142. {
  143. return (struct kfd2kgd_calls *)&kfd2kgd;
  144. }
  145. static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  146. {
  147. return (struct amdgpu_device *)kgd;
  148. }
  149. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  150. uint32_t queue, uint32_t vmid)
  151. {
  152. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  153. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  154. mutex_lock(&adev->srbm_mutex);
  155. WREG32(mmSRBM_GFX_CNTL, value);
  156. }
  157. static void unlock_srbm(struct kgd_dev *kgd)
  158. {
  159. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  160. WREG32(mmSRBM_GFX_CNTL, 0);
  161. mutex_unlock(&adev->srbm_mutex);
  162. }
  163. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  164. uint32_t queue_id)
  165. {
  166. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  167. uint32_t mec = (++pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  168. uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  169. lock_srbm(kgd, mec, pipe, queue_id, 0);
  170. }
  171. static void release_queue(struct kgd_dev *kgd)
  172. {
  173. unlock_srbm(kgd);
  174. }
  175. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  176. uint32_t sh_mem_config,
  177. uint32_t sh_mem_ape1_base,
  178. uint32_t sh_mem_ape1_limit,
  179. uint32_t sh_mem_bases)
  180. {
  181. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  182. lock_srbm(kgd, 0, 0, 0, vmid);
  183. WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  184. WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  185. WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  186. WREG32(mmSH_MEM_BASES, sh_mem_bases);
  187. unlock_srbm(kgd);
  188. }
  189. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  190. unsigned int vmid)
  191. {
  192. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  193. /*
  194. * We have to assume that there is no outstanding mapping.
  195. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
  196. * a mapping is in progress or because a mapping finished and the
  197. * SW cleared it. So the protocol is to always wait & clear.
  198. */
  199. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  200. ATC_VMID0_PASID_MAPPING__VALID_MASK;
  201. WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
  202. while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
  203. cpu_relax();
  204. WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  205. /* Mapping vmid to pasid also for IH block */
  206. WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
  207. return 0;
  208. }
  209. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  210. uint32_t hpd_size, uint64_t hpd_gpu_addr)
  211. {
  212. /* amdgpu owns the per-pipe state */
  213. return 0;
  214. }
  215. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  216. {
  217. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  218. uint32_t mec;
  219. uint32_t pipe;
  220. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  221. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  222. lock_srbm(kgd, mec, pipe, 0, 0);
  223. WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
  224. CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
  225. unlock_srbm(kgd);
  226. return 0;
  227. }
  228. static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
  229. {
  230. uint32_t retval;
  231. retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
  232. m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
  233. pr_debug("kfd: sdma base address: 0x%x\n", retval);
  234. return retval;
  235. }
  236. static inline struct cik_mqd *get_mqd(void *mqd)
  237. {
  238. return (struct cik_mqd *)mqd;
  239. }
  240. static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
  241. {
  242. return (struct cik_sdma_rlc_registers *)mqd;
  243. }
  244. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  245. uint32_t queue_id, uint32_t __user *wptr)
  246. {
  247. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  248. uint32_t wptr_shadow, is_wptr_shadow_valid;
  249. struct cik_mqd *m;
  250. m = get_mqd(mqd);
  251. is_wptr_shadow_valid = !get_user(wptr_shadow, wptr);
  252. if (is_wptr_shadow_valid)
  253. m->cp_hqd_pq_wptr = wptr_shadow;
  254. acquire_queue(kgd, pipe_id, queue_id);
  255. gfx_v7_0_mqd_commit(adev, m);
  256. release_queue(kgd);
  257. return 0;
  258. }
  259. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
  260. {
  261. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  262. struct cik_sdma_rlc_registers *m;
  263. uint32_t sdma_base_addr;
  264. m = get_sdma_mqd(mqd);
  265. sdma_base_addr = get_sdma_base_addr(m);
  266. WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
  267. m->sdma_rlc_virtual_addr);
  268. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE,
  269. m->sdma_rlc_rb_base);
  270. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
  271. m->sdma_rlc_rb_base_hi);
  272. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
  273. m->sdma_rlc_rb_rptr_addr_lo);
  274. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
  275. m->sdma_rlc_rb_rptr_addr_hi);
  276. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL,
  277. m->sdma_rlc_doorbell);
  278. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  279. m->sdma_rlc_rb_cntl);
  280. return 0;
  281. }
  282. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  283. uint32_t pipe_id, uint32_t queue_id)
  284. {
  285. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  286. uint32_t act;
  287. bool retval = false;
  288. uint32_t low, high;
  289. acquire_queue(kgd, pipe_id, queue_id);
  290. act = RREG32(mmCP_HQD_ACTIVE);
  291. if (act) {
  292. low = lower_32_bits(queue_address >> 8);
  293. high = upper_32_bits(queue_address >> 8);
  294. if (low == RREG32(mmCP_HQD_PQ_BASE) &&
  295. high == RREG32(mmCP_HQD_PQ_BASE_HI))
  296. retval = true;
  297. }
  298. release_queue(kgd);
  299. return retval;
  300. }
  301. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  302. {
  303. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  304. struct cik_sdma_rlc_registers *m;
  305. uint32_t sdma_base_addr;
  306. uint32_t sdma_rlc_rb_cntl;
  307. m = get_sdma_mqd(mqd);
  308. sdma_base_addr = get_sdma_base_addr(m);
  309. sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  310. if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
  311. return true;
  312. return false;
  313. }
  314. static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
  315. unsigned int utimeout, uint32_t pipe_id,
  316. uint32_t queue_id)
  317. {
  318. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  319. uint32_t temp;
  320. int timeout = utimeout;
  321. acquire_queue(kgd, pipe_id, queue_id);
  322. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
  323. WREG32(mmCP_HQD_DEQUEUE_REQUEST, reset_type);
  324. while (true) {
  325. temp = RREG32(mmCP_HQD_ACTIVE);
  326. if (temp & CP_HQD_ACTIVE__ACTIVE_MASK)
  327. break;
  328. if (timeout <= 0) {
  329. pr_err("kfd: cp queue preemption time out.\n");
  330. release_queue(kgd);
  331. return -ETIME;
  332. }
  333. msleep(20);
  334. timeout -= 20;
  335. }
  336. release_queue(kgd);
  337. return 0;
  338. }
  339. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  340. unsigned int utimeout)
  341. {
  342. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  343. struct cik_sdma_rlc_registers *m;
  344. uint32_t sdma_base_addr;
  345. uint32_t temp;
  346. int timeout = utimeout;
  347. m = get_sdma_mqd(mqd);
  348. sdma_base_addr = get_sdma_base_addr(m);
  349. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  350. temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
  351. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
  352. while (true) {
  353. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  354. if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
  355. break;
  356. if (timeout <= 0)
  357. return -ETIME;
  358. msleep(20);
  359. timeout -= 20;
  360. }
  361. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
  362. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0);
  363. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0);
  364. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, 0);
  365. return 0;
  366. }
  367. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  368. {
  369. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  370. union TCP_WATCH_CNTL_BITS cntl;
  371. unsigned int i;
  372. cntl.u32All = 0;
  373. cntl.bitfields.valid = 0;
  374. cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
  375. cntl.bitfields.atc = 1;
  376. /* Turning off this address until we set all the registers */
  377. for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
  378. WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
  379. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  380. return 0;
  381. }
  382. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  383. unsigned int watch_point_id,
  384. uint32_t cntl_val,
  385. uint32_t addr_hi,
  386. uint32_t addr_lo)
  387. {
  388. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  389. union TCP_WATCH_CNTL_BITS cntl;
  390. cntl.u32All = cntl_val;
  391. /* Turning off this watch point until we set all the registers */
  392. cntl.bitfields.valid = 0;
  393. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  394. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  395. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  396. ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
  397. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  398. ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
  399. /* Enable the watch point */
  400. cntl.bitfields.valid = 1;
  401. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  402. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  403. return 0;
  404. }
  405. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  406. uint32_t gfx_index_val,
  407. uint32_t sq_cmd)
  408. {
  409. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  410. uint32_t data;
  411. mutex_lock(&adev->grbm_idx_mutex);
  412. WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
  413. WREG32(mmSQ_CMD, sq_cmd);
  414. /* Restore the GRBM_GFX_INDEX register */
  415. data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
  416. GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
  417. GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
  418. WREG32(mmGRBM_GFX_INDEX, data);
  419. mutex_unlock(&adev->grbm_idx_mutex);
  420. return 0;
  421. }
  422. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  423. unsigned int watch_point_id,
  424. unsigned int reg_offset)
  425. {
  426. return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
  427. }
  428. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  429. uint8_t vmid)
  430. {
  431. uint32_t reg;
  432. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  433. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  434. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  435. }
  436. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  437. uint8_t vmid)
  438. {
  439. uint32_t reg;
  440. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  441. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  442. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  443. }
  444. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
  445. {
  446. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  447. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  448. }
  449. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  450. {
  451. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  452. const union amdgpu_firmware_header *hdr;
  453. BUG_ON(kgd == NULL);
  454. switch (type) {
  455. case KGD_ENGINE_PFP:
  456. hdr = (const union amdgpu_firmware_header *)
  457. adev->gfx.pfp_fw->data;
  458. break;
  459. case KGD_ENGINE_ME:
  460. hdr = (const union amdgpu_firmware_header *)
  461. adev->gfx.me_fw->data;
  462. break;
  463. case KGD_ENGINE_CE:
  464. hdr = (const union amdgpu_firmware_header *)
  465. adev->gfx.ce_fw->data;
  466. break;
  467. case KGD_ENGINE_MEC1:
  468. hdr = (const union amdgpu_firmware_header *)
  469. adev->gfx.mec_fw->data;
  470. break;
  471. case KGD_ENGINE_MEC2:
  472. hdr = (const union amdgpu_firmware_header *)
  473. adev->gfx.mec2_fw->data;
  474. break;
  475. case KGD_ENGINE_RLC:
  476. hdr = (const union amdgpu_firmware_header *)
  477. adev->gfx.rlc_fw->data;
  478. break;
  479. case KGD_ENGINE_SDMA1:
  480. hdr = (const union amdgpu_firmware_header *)
  481. adev->sdma.instance[0].fw->data;
  482. break;
  483. case KGD_ENGINE_SDMA2:
  484. hdr = (const union amdgpu_firmware_header *)
  485. adev->sdma.instance[1].fw->data;
  486. break;
  487. default:
  488. return 0;
  489. }
  490. if (hdr == NULL)
  491. return 0;
  492. /* Only 12 bit in use*/
  493. return hdr->common.ucode_version;
  494. }