process.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/errno.h>
  3. #include <linux/kernel.h>
  4. #include <linux/mm.h>
  5. #include <linux/smp.h>
  6. #include <linux/prctl.h>
  7. #include <linux/slab.h>
  8. #include <linux/sched.h>
  9. #include <linux/init.h>
  10. #include <linux/export.h>
  11. #include <linux/pm.h>
  12. #include <linux/tick.h>
  13. #include <linux/random.h>
  14. #include <linux/user-return-notifier.h>
  15. #include <linux/dmi.h>
  16. #include <linux/utsname.h>
  17. #include <linux/stackprotector.h>
  18. #include <linux/tick.h>
  19. #include <linux/cpuidle.h>
  20. #include <trace/events/power.h>
  21. #include <linux/hw_breakpoint.h>
  22. #include <asm/cpu.h>
  23. #include <asm/apic.h>
  24. #include <asm/syscalls.h>
  25. #include <asm/idle.h>
  26. #include <asm/uaccess.h>
  27. #include <asm/mwait.h>
  28. #include <asm/fpu/internal.h>
  29. #include <asm/debugreg.h>
  30. #include <asm/nmi.h>
  31. #include <asm/tlbflush.h>
  32. #include <asm/mce.h>
  33. #include <asm/vm86.h>
  34. /*
  35. * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  36. * no more per-task TSS's. The TSS size is kept cacheline-aligned
  37. * so they are allowed to end up in the .data..cacheline_aligned
  38. * section. Since TSS's are completely CPU-local, we want them
  39. * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  40. */
  41. __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
  42. .x86_tss = {
  43. .sp0 = TOP_OF_INIT_STACK,
  44. #ifdef CONFIG_X86_32
  45. .ss0 = __KERNEL_DS,
  46. .ss1 = __KERNEL_CS,
  47. .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
  48. #endif
  49. },
  50. #ifdef CONFIG_X86_32
  51. /*
  52. * Note that the .io_bitmap member must be extra-big. This is because
  53. * the CPU will access an additional byte beyond the end of the IO
  54. * permission bitmap. The extra byte must be all 1 bits, and must
  55. * be within the limit.
  56. */
  57. .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
  58. #endif
  59. #ifdef CONFIG_X86_32
  60. .SYSENTER_stack_canary = STACK_END_MAGIC,
  61. #endif
  62. };
  63. EXPORT_PER_CPU_SYMBOL(cpu_tss);
  64. #ifdef CONFIG_X86_64
  65. static DEFINE_PER_CPU(unsigned char, is_idle);
  66. static ATOMIC_NOTIFIER_HEAD(idle_notifier);
  67. void idle_notifier_register(struct notifier_block *n)
  68. {
  69. atomic_notifier_chain_register(&idle_notifier, n);
  70. }
  71. EXPORT_SYMBOL_GPL(idle_notifier_register);
  72. void idle_notifier_unregister(struct notifier_block *n)
  73. {
  74. atomic_notifier_chain_unregister(&idle_notifier, n);
  75. }
  76. EXPORT_SYMBOL_GPL(idle_notifier_unregister);
  77. #endif
  78. /*
  79. * this gets called so that we can store lazy state into memory and copy the
  80. * current task into the new thread.
  81. */
  82. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  83. {
  84. memcpy(dst, src, arch_task_struct_size);
  85. #ifdef CONFIG_VM86
  86. dst->thread.vm86 = NULL;
  87. #endif
  88. return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
  89. }
  90. /*
  91. * Free current thread data structures etc..
  92. */
  93. void exit_thread(struct task_struct *tsk)
  94. {
  95. struct thread_struct *t = &tsk->thread;
  96. unsigned long *bp = t->io_bitmap_ptr;
  97. struct fpu *fpu = &t->fpu;
  98. if (bp) {
  99. struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
  100. t->io_bitmap_ptr = NULL;
  101. clear_thread_flag(TIF_IO_BITMAP);
  102. /*
  103. * Careful, clear this in the TSS too:
  104. */
  105. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  106. t->io_bitmap_max = 0;
  107. put_cpu();
  108. kfree(bp);
  109. }
  110. free_vm86(t);
  111. fpu__drop(fpu);
  112. }
  113. void flush_thread(void)
  114. {
  115. struct task_struct *tsk = current;
  116. flush_ptrace_hw_breakpoint(tsk);
  117. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  118. fpu__clear(&tsk->thread.fpu);
  119. }
  120. static void hard_disable_TSC(void)
  121. {
  122. cr4_set_bits(X86_CR4_TSD);
  123. }
  124. void disable_TSC(void)
  125. {
  126. preempt_disable();
  127. if (!test_and_set_thread_flag(TIF_NOTSC))
  128. /*
  129. * Must flip the CPU state synchronously with
  130. * TIF_NOTSC in the current running context.
  131. */
  132. hard_disable_TSC();
  133. preempt_enable();
  134. }
  135. static void hard_enable_TSC(void)
  136. {
  137. cr4_clear_bits(X86_CR4_TSD);
  138. }
  139. static void enable_TSC(void)
  140. {
  141. preempt_disable();
  142. if (test_and_clear_thread_flag(TIF_NOTSC))
  143. /*
  144. * Must flip the CPU state synchronously with
  145. * TIF_NOTSC in the current running context.
  146. */
  147. hard_enable_TSC();
  148. preempt_enable();
  149. }
  150. int get_tsc_mode(unsigned long adr)
  151. {
  152. unsigned int val;
  153. if (test_thread_flag(TIF_NOTSC))
  154. val = PR_TSC_SIGSEGV;
  155. else
  156. val = PR_TSC_ENABLE;
  157. return put_user(val, (unsigned int __user *)adr);
  158. }
  159. int set_tsc_mode(unsigned int val)
  160. {
  161. if (val == PR_TSC_SIGSEGV)
  162. disable_TSC();
  163. else if (val == PR_TSC_ENABLE)
  164. enable_TSC();
  165. else
  166. return -EINVAL;
  167. return 0;
  168. }
  169. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  170. struct tss_struct *tss)
  171. {
  172. struct thread_struct *prev, *next;
  173. prev = &prev_p->thread;
  174. next = &next_p->thread;
  175. if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
  176. test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
  177. unsigned long debugctl = get_debugctlmsr();
  178. debugctl &= ~DEBUGCTLMSR_BTF;
  179. if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
  180. debugctl |= DEBUGCTLMSR_BTF;
  181. update_debugctlmsr(debugctl);
  182. }
  183. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  184. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  185. /* prev and next are different */
  186. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  187. hard_disable_TSC();
  188. else
  189. hard_enable_TSC();
  190. }
  191. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  192. /*
  193. * Copy the relevant range of the IO bitmap.
  194. * Normally this is 128 bytes or less:
  195. */
  196. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  197. max(prev->io_bitmap_max, next->io_bitmap_max));
  198. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  199. /*
  200. * Clear any possible leftover bits:
  201. */
  202. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  203. }
  204. propagate_user_return_notify(prev_p, next_p);
  205. }
  206. /*
  207. * Idle related variables and functions
  208. */
  209. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  210. EXPORT_SYMBOL(boot_option_idle_override);
  211. static void (*x86_idle)(void);
  212. #ifndef CONFIG_SMP
  213. static inline void play_dead(void)
  214. {
  215. BUG();
  216. }
  217. #endif
  218. #ifdef CONFIG_X86_64
  219. void enter_idle(void)
  220. {
  221. this_cpu_write(is_idle, 1);
  222. atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
  223. }
  224. static void __exit_idle(void)
  225. {
  226. if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
  227. return;
  228. atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
  229. }
  230. /* Called from interrupts to signify idle end */
  231. void exit_idle(void)
  232. {
  233. /* idle loop has pid 0 */
  234. if (current->pid)
  235. return;
  236. __exit_idle();
  237. }
  238. #endif
  239. void arch_cpu_idle_enter(void)
  240. {
  241. local_touch_nmi();
  242. enter_idle();
  243. }
  244. void arch_cpu_idle_exit(void)
  245. {
  246. __exit_idle();
  247. }
  248. void arch_cpu_idle_dead(void)
  249. {
  250. play_dead();
  251. }
  252. /*
  253. * Called from the generic idle code.
  254. */
  255. void arch_cpu_idle(void)
  256. {
  257. x86_idle();
  258. }
  259. /*
  260. * We use this if we don't have any better idle routine..
  261. */
  262. void default_idle(void)
  263. {
  264. trace_cpu_idle_rcuidle(1, smp_processor_id());
  265. safe_halt();
  266. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  267. }
  268. #ifdef CONFIG_APM_MODULE
  269. EXPORT_SYMBOL(default_idle);
  270. #endif
  271. #ifdef CONFIG_XEN
  272. bool xen_set_default_idle(void)
  273. {
  274. bool ret = !!x86_idle;
  275. x86_idle = default_idle;
  276. return ret;
  277. }
  278. #endif
  279. void stop_this_cpu(void *dummy)
  280. {
  281. local_irq_disable();
  282. /*
  283. * Remove this CPU:
  284. */
  285. set_cpu_online(smp_processor_id(), false);
  286. disable_local_APIC();
  287. mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
  288. for (;;)
  289. halt();
  290. }
  291. bool amd_e400_c1e_detected;
  292. EXPORT_SYMBOL(amd_e400_c1e_detected);
  293. static cpumask_var_t amd_e400_c1e_mask;
  294. void amd_e400_remove_cpu(int cpu)
  295. {
  296. if (amd_e400_c1e_mask != NULL)
  297. cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
  298. }
  299. /*
  300. * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
  301. * pending message MSR. If we detect C1E, then we handle it the same
  302. * way as C3 power states (local apic timer and TSC stop)
  303. */
  304. static void amd_e400_idle(void)
  305. {
  306. if (!amd_e400_c1e_detected) {
  307. u32 lo, hi;
  308. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  309. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  310. amd_e400_c1e_detected = true;
  311. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  312. mark_tsc_unstable("TSC halt in AMD C1E");
  313. pr_info("System has AMD C1E enabled\n");
  314. }
  315. }
  316. if (amd_e400_c1e_detected) {
  317. int cpu = smp_processor_id();
  318. if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
  319. cpumask_set_cpu(cpu, amd_e400_c1e_mask);
  320. /* Force broadcast so ACPI can not interfere. */
  321. tick_broadcast_force();
  322. pr_info("Switch to broadcast mode on CPU%d\n", cpu);
  323. }
  324. tick_broadcast_enter();
  325. default_idle();
  326. /*
  327. * The switch back from broadcast mode needs to be
  328. * called with interrupts disabled.
  329. */
  330. local_irq_disable();
  331. tick_broadcast_exit();
  332. local_irq_enable();
  333. } else
  334. default_idle();
  335. }
  336. /*
  337. * Intel Core2 and older machines prefer MWAIT over HALT for C1.
  338. * We can't rely on cpuidle installing MWAIT, because it will not load
  339. * on systems that support only C1 -- so the boot default must be MWAIT.
  340. *
  341. * Some AMD machines are the opposite, they depend on using HALT.
  342. *
  343. * So for default C1, which is used during boot until cpuidle loads,
  344. * use MWAIT-C1 on Intel HW that has it, else use HALT.
  345. */
  346. static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
  347. {
  348. if (c->x86_vendor != X86_VENDOR_INTEL)
  349. return 0;
  350. if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
  351. return 0;
  352. return 1;
  353. }
  354. /*
  355. * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
  356. * with interrupts enabled and no flags, which is backwards compatible with the
  357. * original MWAIT implementation.
  358. */
  359. static void mwait_idle(void)
  360. {
  361. if (!current_set_polling_and_test()) {
  362. trace_cpu_idle_rcuidle(1, smp_processor_id());
  363. if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
  364. mb(); /* quirk */
  365. clflush((void *)&current_thread_info()->flags);
  366. mb(); /* quirk */
  367. }
  368. __monitor((void *)&current_thread_info()->flags, 0, 0);
  369. if (!need_resched())
  370. __sti_mwait(0, 0);
  371. else
  372. local_irq_enable();
  373. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  374. } else {
  375. local_irq_enable();
  376. }
  377. __current_clr_polling();
  378. }
  379. void select_idle_routine(const struct cpuinfo_x86 *c)
  380. {
  381. #ifdef CONFIG_SMP
  382. if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
  383. pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
  384. #endif
  385. if (x86_idle || boot_option_idle_override == IDLE_POLL)
  386. return;
  387. if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
  388. /* E400: APIC timer interrupt does not wake up CPU from C1e */
  389. pr_info("using AMD E400 aware idle routine\n");
  390. x86_idle = amd_e400_idle;
  391. } else if (prefer_mwait_c1_over_halt(c)) {
  392. pr_info("using mwait in idle threads\n");
  393. x86_idle = mwait_idle;
  394. } else
  395. x86_idle = default_idle;
  396. }
  397. void __init init_amd_e400_c1e_mask(void)
  398. {
  399. /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
  400. if (x86_idle == amd_e400_idle)
  401. zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
  402. }
  403. static int __init idle_setup(char *str)
  404. {
  405. if (!str)
  406. return -EINVAL;
  407. if (!strcmp(str, "poll")) {
  408. pr_info("using polling idle threads\n");
  409. boot_option_idle_override = IDLE_POLL;
  410. cpu_idle_poll_ctrl(true);
  411. } else if (!strcmp(str, "halt")) {
  412. /*
  413. * When the boot option of idle=halt is added, halt is
  414. * forced to be used for CPU idle. In such case CPU C2/C3
  415. * won't be used again.
  416. * To continue to load the CPU idle driver, don't touch
  417. * the boot_option_idle_override.
  418. */
  419. x86_idle = default_idle;
  420. boot_option_idle_override = IDLE_HALT;
  421. } else if (!strcmp(str, "nomwait")) {
  422. /*
  423. * If the boot option of "idle=nomwait" is added,
  424. * it means that mwait will be disabled for CPU C2/C3
  425. * states. In such case it won't touch the variable
  426. * of boot_option_idle_override.
  427. */
  428. boot_option_idle_override = IDLE_NOMWAIT;
  429. } else
  430. return -1;
  431. return 0;
  432. }
  433. early_param("idle", idle_setup);
  434. unsigned long arch_align_stack(unsigned long sp)
  435. {
  436. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  437. sp -= get_random_int() % 8192;
  438. return sp & ~0xf;
  439. }
  440. unsigned long arch_randomize_brk(struct mm_struct *mm)
  441. {
  442. unsigned long range_end = mm->brk + 0x02000000;
  443. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  444. }
  445. /*
  446. * Called from fs/proc with a reference on @p to find the function
  447. * which called into schedule(). This needs to be done carefully
  448. * because the task might wake up and we might look at a stack
  449. * changing under us.
  450. */
  451. unsigned long get_wchan(struct task_struct *p)
  452. {
  453. unsigned long start, bottom, top, sp, fp, ip;
  454. int count = 0;
  455. if (!p || p == current || p->state == TASK_RUNNING)
  456. return 0;
  457. start = (unsigned long)task_stack_page(p);
  458. if (!start)
  459. return 0;
  460. /*
  461. * Layout of the stack page:
  462. *
  463. * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
  464. * PADDING
  465. * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
  466. * stack
  467. * ----------- bottom = start + sizeof(thread_info)
  468. * thread_info
  469. * ----------- start
  470. *
  471. * The tasks stack pointer points at the location where the
  472. * framepointer is stored. The data on the stack is:
  473. * ... IP FP ... IP FP
  474. *
  475. * We need to read FP and IP, so we need to adjust the upper
  476. * bound by another unsigned long.
  477. */
  478. top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
  479. top -= 2 * sizeof(unsigned long);
  480. bottom = start + sizeof(struct thread_info);
  481. sp = READ_ONCE(p->thread.sp);
  482. if (sp < bottom || sp > top)
  483. return 0;
  484. fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
  485. do {
  486. if (fp < bottom || fp > top)
  487. return 0;
  488. ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
  489. if (!in_sched_functions(ip))
  490. return ip;
  491. fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
  492. } while (count++ < 16 && p->state != TASK_RUNNING);
  493. return 0;
  494. }