common.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621
  1. #include <linux/bootmem.h>
  2. #include <linux/linkage.h>
  3. #include <linux/bitops.h>
  4. #include <linux/kernel.h>
  5. #include <linux/export.h>
  6. #include <linux/percpu.h>
  7. #include <linux/string.h>
  8. #include <linux/ctype.h>
  9. #include <linux/delay.h>
  10. #include <linux/sched.h>
  11. #include <linux/init.h>
  12. #include <linux/kprobes.h>
  13. #include <linux/kgdb.h>
  14. #include <linux/smp.h>
  15. #include <linux/io.h>
  16. #include <linux/syscore_ops.h>
  17. #include <asm/stackprotector.h>
  18. #include <asm/perf_event.h>
  19. #include <asm/mmu_context.h>
  20. #include <asm/archrandom.h>
  21. #include <asm/hypervisor.h>
  22. #include <asm/processor.h>
  23. #include <asm/tlbflush.h>
  24. #include <asm/debugreg.h>
  25. #include <asm/sections.h>
  26. #include <asm/vsyscall.h>
  27. #include <linux/topology.h>
  28. #include <linux/cpumask.h>
  29. #include <asm/pgtable.h>
  30. #include <linux/atomic.h>
  31. #include <asm/proto.h>
  32. #include <asm/setup.h>
  33. #include <asm/apic.h>
  34. #include <asm/desc.h>
  35. #include <asm/fpu/internal.h>
  36. #include <asm/mtrr.h>
  37. #include <linux/numa.h>
  38. #include <asm/asm.h>
  39. #include <asm/bugs.h>
  40. #include <asm/cpu.h>
  41. #include <asm/mce.h>
  42. #include <asm/msr.h>
  43. #include <asm/pat.h>
  44. #include <asm/microcode.h>
  45. #include <asm/microcode_intel.h>
  46. #ifdef CONFIG_X86_LOCAL_APIC
  47. #include <asm/uv/uv.h>
  48. #endif
  49. #include "cpu.h"
  50. /* all of these masks are initialized in setup_cpu_local_masks() */
  51. cpumask_var_t cpu_initialized_mask;
  52. cpumask_var_t cpu_callout_mask;
  53. cpumask_var_t cpu_callin_mask;
  54. /* representing cpus for which sibling maps can be computed */
  55. cpumask_var_t cpu_sibling_setup_mask;
  56. /* correctly size the local cpu masks */
  57. void __init setup_cpu_local_masks(void)
  58. {
  59. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  60. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  61. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  62. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  63. }
  64. static void default_init(struct cpuinfo_x86 *c)
  65. {
  66. #ifdef CONFIG_X86_64
  67. cpu_detect_cache_sizes(c);
  68. #else
  69. /* Not much we can do here... */
  70. /* Check if at least it has cpuid */
  71. if (c->cpuid_level == -1) {
  72. /* No cpuid. It must be an ancient CPU */
  73. if (c->x86 == 4)
  74. strcpy(c->x86_model_id, "486");
  75. else if (c->x86 == 3)
  76. strcpy(c->x86_model_id, "386");
  77. }
  78. #endif
  79. }
  80. static const struct cpu_dev default_cpu = {
  81. .c_init = default_init,
  82. .c_vendor = "Unknown",
  83. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  84. };
  85. static const struct cpu_dev *this_cpu = &default_cpu;
  86. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  87. #ifdef CONFIG_X86_64
  88. /*
  89. * We need valid kernel segments for data and code in long mode too
  90. * IRET will check the segment types kkeil 2000/10/28
  91. * Also sysret mandates a special GDT layout
  92. *
  93. * TLS descriptors are currently at a different place compared to i386.
  94. * Hopefully nobody expects them at a fixed place (Wine?)
  95. */
  96. [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
  97. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
  98. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
  99. [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
  100. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
  101. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
  102. #else
  103. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
  104. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  105. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
  106. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
  107. /*
  108. * Segments used for calling PnP BIOS have byte granularity.
  109. * They code segments and data segments have fixed 64k limits,
  110. * the transfer segment sizes are set at run time.
  111. */
  112. /* 32-bit code */
  113. [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  114. /* 16-bit code */
  115. [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  116. /* 16-bit data */
  117. [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
  118. /* 16-bit data */
  119. [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
  120. /* 16-bit data */
  121. [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
  122. /*
  123. * The APM segments have byte granularity and their bases
  124. * are set at run time. All have 64k limits.
  125. */
  126. /* 32-bit code */
  127. [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  128. /* 16-bit code */
  129. [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  130. /* data */
  131. [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
  132. [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  133. [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  134. GDT_STACK_CANARY_INIT
  135. #endif
  136. } };
  137. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  138. static int __init x86_mpx_setup(char *s)
  139. {
  140. /* require an exact match without trailing characters */
  141. if (strlen(s))
  142. return 0;
  143. /* do not emit a message if the feature is not present */
  144. if (!boot_cpu_has(X86_FEATURE_MPX))
  145. return 1;
  146. setup_clear_cpu_cap(X86_FEATURE_MPX);
  147. pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
  148. return 1;
  149. }
  150. __setup("nompx", x86_mpx_setup);
  151. static int __init x86_noinvpcid_setup(char *s)
  152. {
  153. /* noinvpcid doesn't accept parameters */
  154. if (s)
  155. return -EINVAL;
  156. /* do not emit a message if the feature is not present */
  157. if (!boot_cpu_has(X86_FEATURE_INVPCID))
  158. return 0;
  159. setup_clear_cpu_cap(X86_FEATURE_INVPCID);
  160. pr_info("noinvpcid: INVPCID feature disabled\n");
  161. return 0;
  162. }
  163. early_param("noinvpcid", x86_noinvpcid_setup);
  164. #ifdef CONFIG_X86_32
  165. static int cachesize_override = -1;
  166. static int disable_x86_serial_nr = 1;
  167. static int __init cachesize_setup(char *str)
  168. {
  169. get_option(&str, &cachesize_override);
  170. return 1;
  171. }
  172. __setup("cachesize=", cachesize_setup);
  173. static int __init x86_sep_setup(char *s)
  174. {
  175. setup_clear_cpu_cap(X86_FEATURE_SEP);
  176. return 1;
  177. }
  178. __setup("nosep", x86_sep_setup);
  179. /* Standard macro to see if a specific flag is changeable */
  180. static inline int flag_is_changeable_p(u32 flag)
  181. {
  182. u32 f1, f2;
  183. /*
  184. * Cyrix and IDT cpus allow disabling of CPUID
  185. * so the code below may return different results
  186. * when it is executed before and after enabling
  187. * the CPUID. Add "volatile" to not allow gcc to
  188. * optimize the subsequent calls to this function.
  189. */
  190. asm volatile ("pushfl \n\t"
  191. "pushfl \n\t"
  192. "popl %0 \n\t"
  193. "movl %0, %1 \n\t"
  194. "xorl %2, %0 \n\t"
  195. "pushl %0 \n\t"
  196. "popfl \n\t"
  197. "pushfl \n\t"
  198. "popl %0 \n\t"
  199. "popfl \n\t"
  200. : "=&r" (f1), "=&r" (f2)
  201. : "ir" (flag));
  202. return ((f1^f2) & flag) != 0;
  203. }
  204. /* Probe for the CPUID instruction */
  205. int have_cpuid_p(void)
  206. {
  207. return flag_is_changeable_p(X86_EFLAGS_ID);
  208. }
  209. static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  210. {
  211. unsigned long lo, hi;
  212. if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
  213. return;
  214. /* Disable processor serial number: */
  215. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  216. lo |= 0x200000;
  217. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  218. pr_notice("CPU serial number disabled.\n");
  219. clear_cpu_cap(c, X86_FEATURE_PN);
  220. /* Disabling the serial number may affect the cpuid level */
  221. c->cpuid_level = cpuid_eax(0);
  222. }
  223. static int __init x86_serial_nr_setup(char *s)
  224. {
  225. disable_x86_serial_nr = 0;
  226. return 1;
  227. }
  228. __setup("serialnumber", x86_serial_nr_setup);
  229. #else
  230. static inline int flag_is_changeable_p(u32 flag)
  231. {
  232. return 1;
  233. }
  234. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  235. {
  236. }
  237. #endif
  238. static __init int setup_disable_smep(char *arg)
  239. {
  240. setup_clear_cpu_cap(X86_FEATURE_SMEP);
  241. /* Check for things that depend on SMEP being enabled: */
  242. check_mpx_erratum(&boot_cpu_data);
  243. return 1;
  244. }
  245. __setup("nosmep", setup_disable_smep);
  246. static __always_inline void setup_smep(struct cpuinfo_x86 *c)
  247. {
  248. if (cpu_has(c, X86_FEATURE_SMEP))
  249. cr4_set_bits(X86_CR4_SMEP);
  250. }
  251. static __init int setup_disable_smap(char *arg)
  252. {
  253. setup_clear_cpu_cap(X86_FEATURE_SMAP);
  254. return 1;
  255. }
  256. __setup("nosmap", setup_disable_smap);
  257. static __always_inline void setup_smap(struct cpuinfo_x86 *c)
  258. {
  259. unsigned long eflags = native_save_fl();
  260. /* This should have been cleared long ago */
  261. BUG_ON(eflags & X86_EFLAGS_AC);
  262. if (cpu_has(c, X86_FEATURE_SMAP)) {
  263. #ifdef CONFIG_X86_SMAP
  264. cr4_set_bits(X86_CR4_SMAP);
  265. #else
  266. cr4_clear_bits(X86_CR4_SMAP);
  267. #endif
  268. }
  269. }
  270. /*
  271. * Protection Keys are not available in 32-bit mode.
  272. */
  273. static bool pku_disabled;
  274. static __always_inline void setup_pku(struct cpuinfo_x86 *c)
  275. {
  276. /* check the boot processor, plus compile options for PKU: */
  277. if (!cpu_feature_enabled(X86_FEATURE_PKU))
  278. return;
  279. /* checks the actual processor's cpuid bits: */
  280. if (!cpu_has(c, X86_FEATURE_PKU))
  281. return;
  282. if (pku_disabled)
  283. return;
  284. cr4_set_bits(X86_CR4_PKE);
  285. /*
  286. * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
  287. * cpuid bit to be set. We need to ensure that we
  288. * update that bit in this CPU's "cpu_info".
  289. */
  290. get_cpu_cap(c);
  291. }
  292. #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
  293. static __init int setup_disable_pku(char *arg)
  294. {
  295. /*
  296. * Do not clear the X86_FEATURE_PKU bit. All of the
  297. * runtime checks are against OSPKE so clearing the
  298. * bit does nothing.
  299. *
  300. * This way, we will see "pku" in cpuinfo, but not
  301. * "ospke", which is exactly what we want. It shows
  302. * that the CPU has PKU, but the OS has not enabled it.
  303. * This happens to be exactly how a system would look
  304. * if we disabled the config option.
  305. */
  306. pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
  307. pku_disabled = true;
  308. return 1;
  309. }
  310. __setup("nopku", setup_disable_pku);
  311. #endif /* CONFIG_X86_64 */
  312. /*
  313. * Some CPU features depend on higher CPUID levels, which may not always
  314. * be available due to CPUID level capping or broken virtualization
  315. * software. Add those features to this table to auto-disable them.
  316. */
  317. struct cpuid_dependent_feature {
  318. u32 feature;
  319. u32 level;
  320. };
  321. static const struct cpuid_dependent_feature
  322. cpuid_dependent_features[] = {
  323. { X86_FEATURE_MWAIT, 0x00000005 },
  324. { X86_FEATURE_DCA, 0x00000009 },
  325. { X86_FEATURE_XSAVE, 0x0000000d },
  326. { 0, 0 }
  327. };
  328. static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  329. {
  330. const struct cpuid_dependent_feature *df;
  331. for (df = cpuid_dependent_features; df->feature; df++) {
  332. if (!cpu_has(c, df->feature))
  333. continue;
  334. /*
  335. * Note: cpuid_level is set to -1 if unavailable, but
  336. * extended_extended_level is set to 0 if unavailable
  337. * and the legitimate extended levels are all negative
  338. * when signed; hence the weird messing around with
  339. * signs here...
  340. */
  341. if (!((s32)df->level < 0 ?
  342. (u32)df->level > (u32)c->extended_cpuid_level :
  343. (s32)df->level > (s32)c->cpuid_level))
  344. continue;
  345. clear_cpu_cap(c, df->feature);
  346. if (!warn)
  347. continue;
  348. pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
  349. x86_cap_flag(df->feature), df->level);
  350. }
  351. }
  352. /*
  353. * Naming convention should be: <Name> [(<Codename>)]
  354. * This table only is used unless init_<vendor>() below doesn't set it;
  355. * in particular, if CPUID levels 0x80000002..4 are supported, this
  356. * isn't used
  357. */
  358. /* Look up CPU names by table lookup. */
  359. static const char *table_lookup_model(struct cpuinfo_x86 *c)
  360. {
  361. #ifdef CONFIG_X86_32
  362. const struct legacy_cpu_model_info *info;
  363. if (c->x86_model >= 16)
  364. return NULL; /* Range check */
  365. if (!this_cpu)
  366. return NULL;
  367. info = this_cpu->legacy_models;
  368. while (info->family) {
  369. if (info->family == c->x86)
  370. return info->model_names[c->x86_model];
  371. info++;
  372. }
  373. #endif
  374. return NULL; /* Not found */
  375. }
  376. __u32 cpu_caps_cleared[NCAPINTS];
  377. __u32 cpu_caps_set[NCAPINTS];
  378. void load_percpu_segment(int cpu)
  379. {
  380. #ifdef CONFIG_X86_32
  381. loadsegment(fs, __KERNEL_PERCPU);
  382. #else
  383. __loadsegment_simple(gs, 0);
  384. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  385. #endif
  386. load_stack_canary_segment();
  387. }
  388. /*
  389. * Current gdt points %fs at the "master" per-cpu area: after this,
  390. * it's on the real one.
  391. */
  392. void switch_to_new_gdt(int cpu)
  393. {
  394. struct desc_ptr gdt_descr;
  395. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  396. gdt_descr.size = GDT_SIZE - 1;
  397. load_gdt(&gdt_descr);
  398. /* Reload the per-cpu base */
  399. load_percpu_segment(cpu);
  400. }
  401. static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
  402. static void get_model_name(struct cpuinfo_x86 *c)
  403. {
  404. unsigned int *v;
  405. char *p, *q, *s;
  406. if (c->extended_cpuid_level < 0x80000004)
  407. return;
  408. v = (unsigned int *)c->x86_model_id;
  409. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  410. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  411. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  412. c->x86_model_id[48] = 0;
  413. /* Trim whitespace */
  414. p = q = s = &c->x86_model_id[0];
  415. while (*p == ' ')
  416. p++;
  417. while (*p) {
  418. /* Note the last non-whitespace index */
  419. if (!isspace(*p))
  420. s = q;
  421. *q++ = *p++;
  422. }
  423. *(s + 1) = '\0';
  424. }
  425. void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
  426. {
  427. unsigned int n, dummy, ebx, ecx, edx, l2size;
  428. n = c->extended_cpuid_level;
  429. if (n >= 0x80000005) {
  430. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  431. c->x86_cache_size = (ecx>>24) + (edx>>24);
  432. #ifdef CONFIG_X86_64
  433. /* On K8 L1 TLB is inclusive, so don't count it */
  434. c->x86_tlbsize = 0;
  435. #endif
  436. }
  437. if (n < 0x80000006) /* Some chips just has a large L1. */
  438. return;
  439. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  440. l2size = ecx >> 16;
  441. #ifdef CONFIG_X86_64
  442. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  443. #else
  444. /* do processor-specific cache resizing */
  445. if (this_cpu->legacy_cache_size)
  446. l2size = this_cpu->legacy_cache_size(c, l2size);
  447. /* Allow user to override all this if necessary. */
  448. if (cachesize_override != -1)
  449. l2size = cachesize_override;
  450. if (l2size == 0)
  451. return; /* Again, no L2 cache is possible */
  452. #endif
  453. c->x86_cache_size = l2size;
  454. }
  455. u16 __read_mostly tlb_lli_4k[NR_INFO];
  456. u16 __read_mostly tlb_lli_2m[NR_INFO];
  457. u16 __read_mostly tlb_lli_4m[NR_INFO];
  458. u16 __read_mostly tlb_lld_4k[NR_INFO];
  459. u16 __read_mostly tlb_lld_2m[NR_INFO];
  460. u16 __read_mostly tlb_lld_4m[NR_INFO];
  461. u16 __read_mostly tlb_lld_1g[NR_INFO];
  462. static void cpu_detect_tlb(struct cpuinfo_x86 *c)
  463. {
  464. if (this_cpu->c_detect_tlb)
  465. this_cpu->c_detect_tlb(c);
  466. pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
  467. tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
  468. tlb_lli_4m[ENTRIES]);
  469. pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
  470. tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
  471. tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
  472. }
  473. void detect_ht(struct cpuinfo_x86 *c)
  474. {
  475. #ifdef CONFIG_SMP
  476. u32 eax, ebx, ecx, edx;
  477. int index_msb, core_bits;
  478. static bool printed;
  479. if (!cpu_has(c, X86_FEATURE_HT))
  480. return;
  481. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  482. goto out;
  483. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  484. return;
  485. cpuid(1, &eax, &ebx, &ecx, &edx);
  486. smp_num_siblings = (ebx & 0xff0000) >> 16;
  487. if (smp_num_siblings == 1) {
  488. pr_info_once("CPU0: Hyper-Threading is disabled\n");
  489. goto out;
  490. }
  491. if (smp_num_siblings <= 1)
  492. goto out;
  493. index_msb = get_count_order(smp_num_siblings);
  494. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  495. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  496. index_msb = get_count_order(smp_num_siblings);
  497. core_bits = get_count_order(c->x86_max_cores);
  498. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  499. ((1 << core_bits) - 1);
  500. out:
  501. if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
  502. pr_info("CPU: Physical Processor ID: %d\n",
  503. c->phys_proc_id);
  504. pr_info("CPU: Processor Core ID: %d\n",
  505. c->cpu_core_id);
  506. printed = 1;
  507. }
  508. #endif
  509. }
  510. static void get_cpu_vendor(struct cpuinfo_x86 *c)
  511. {
  512. char *v = c->x86_vendor_id;
  513. int i;
  514. for (i = 0; i < X86_VENDOR_NUM; i++) {
  515. if (!cpu_devs[i])
  516. break;
  517. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  518. (cpu_devs[i]->c_ident[1] &&
  519. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  520. this_cpu = cpu_devs[i];
  521. c->x86_vendor = this_cpu->c_x86_vendor;
  522. return;
  523. }
  524. }
  525. pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
  526. "CPU: Your system may be unstable.\n", v);
  527. c->x86_vendor = X86_VENDOR_UNKNOWN;
  528. this_cpu = &default_cpu;
  529. }
  530. void cpu_detect(struct cpuinfo_x86 *c)
  531. {
  532. /* Get vendor name */
  533. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  534. (unsigned int *)&c->x86_vendor_id[0],
  535. (unsigned int *)&c->x86_vendor_id[8],
  536. (unsigned int *)&c->x86_vendor_id[4]);
  537. c->x86 = 4;
  538. /* Intel-defined flags: level 0x00000001 */
  539. if (c->cpuid_level >= 0x00000001) {
  540. u32 junk, tfms, cap0, misc;
  541. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  542. c->x86 = x86_family(tfms);
  543. c->x86_model = x86_model(tfms);
  544. c->x86_mask = x86_stepping(tfms);
  545. if (cap0 & (1<<19)) {
  546. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  547. c->x86_cache_alignment = c->x86_clflush_size;
  548. }
  549. }
  550. }
  551. void get_cpu_cap(struct cpuinfo_x86 *c)
  552. {
  553. u32 eax, ebx, ecx, edx;
  554. /* Intel-defined flags: level 0x00000001 */
  555. if (c->cpuid_level >= 0x00000001) {
  556. cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
  557. c->x86_capability[CPUID_1_ECX] = ecx;
  558. c->x86_capability[CPUID_1_EDX] = edx;
  559. }
  560. /* Additional Intel-defined flags: level 0x00000007 */
  561. if (c->cpuid_level >= 0x00000007) {
  562. cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
  563. c->x86_capability[CPUID_7_0_EBX] = ebx;
  564. c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
  565. c->x86_capability[CPUID_7_ECX] = ecx;
  566. }
  567. /* Extended state features: level 0x0000000d */
  568. if (c->cpuid_level >= 0x0000000d) {
  569. cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
  570. c->x86_capability[CPUID_D_1_EAX] = eax;
  571. }
  572. /* Additional Intel-defined flags: level 0x0000000F */
  573. if (c->cpuid_level >= 0x0000000F) {
  574. /* QoS sub-leaf, EAX=0Fh, ECX=0 */
  575. cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
  576. c->x86_capability[CPUID_F_0_EDX] = edx;
  577. if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
  578. /* will be overridden if occupancy monitoring exists */
  579. c->x86_cache_max_rmid = ebx;
  580. /* QoS sub-leaf, EAX=0Fh, ECX=1 */
  581. cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
  582. c->x86_capability[CPUID_F_1_EDX] = edx;
  583. if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
  584. ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
  585. (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
  586. c->x86_cache_max_rmid = ecx;
  587. c->x86_cache_occ_scale = ebx;
  588. }
  589. } else {
  590. c->x86_cache_max_rmid = -1;
  591. c->x86_cache_occ_scale = -1;
  592. }
  593. }
  594. /* AMD-defined flags: level 0x80000001 */
  595. eax = cpuid_eax(0x80000000);
  596. c->extended_cpuid_level = eax;
  597. if ((eax & 0xffff0000) == 0x80000000) {
  598. if (eax >= 0x80000001) {
  599. cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
  600. c->x86_capability[CPUID_8000_0001_ECX] = ecx;
  601. c->x86_capability[CPUID_8000_0001_EDX] = edx;
  602. }
  603. }
  604. if (c->extended_cpuid_level >= 0x80000007) {
  605. cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
  606. c->x86_capability[CPUID_8000_0007_EBX] = ebx;
  607. c->x86_power = edx;
  608. }
  609. if (c->extended_cpuid_level >= 0x80000008) {
  610. cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
  611. c->x86_virt_bits = (eax >> 8) & 0xff;
  612. c->x86_phys_bits = eax & 0xff;
  613. c->x86_capability[CPUID_8000_0008_EBX] = ebx;
  614. }
  615. #ifdef CONFIG_X86_32
  616. else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
  617. c->x86_phys_bits = 36;
  618. #endif
  619. if (c->extended_cpuid_level >= 0x8000000a)
  620. c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
  621. init_scattered_cpuid_features(c);
  622. }
  623. static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  624. {
  625. #ifdef CONFIG_X86_32
  626. int i;
  627. /*
  628. * First of all, decide if this is a 486 or higher
  629. * It's a 486 if we can modify the AC flag
  630. */
  631. if (flag_is_changeable_p(X86_EFLAGS_AC))
  632. c->x86 = 4;
  633. else
  634. c->x86 = 3;
  635. for (i = 0; i < X86_VENDOR_NUM; i++)
  636. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  637. c->x86_vendor_id[0] = 0;
  638. cpu_devs[i]->c_identify(c);
  639. if (c->x86_vendor_id[0]) {
  640. get_cpu_vendor(c);
  641. break;
  642. }
  643. }
  644. #endif
  645. }
  646. /*
  647. * Do minimum CPU detection early.
  648. * Fields really needed: vendor, cpuid_level, family, model, mask,
  649. * cache alignment.
  650. * The others are not touched to avoid unwanted side effects.
  651. *
  652. * WARNING: this function is only called on the BP. Don't add code here
  653. * that is supposed to run on all CPUs.
  654. */
  655. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  656. {
  657. #ifdef CONFIG_X86_64
  658. c->x86_clflush_size = 64;
  659. c->x86_phys_bits = 36;
  660. c->x86_virt_bits = 48;
  661. #else
  662. c->x86_clflush_size = 32;
  663. c->x86_phys_bits = 32;
  664. c->x86_virt_bits = 32;
  665. #endif
  666. c->x86_cache_alignment = c->x86_clflush_size;
  667. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  668. c->extended_cpuid_level = 0;
  669. if (!have_cpuid_p())
  670. identify_cpu_without_cpuid(c);
  671. /* cyrix could have cpuid enabled via c_identify()*/
  672. if (!have_cpuid_p())
  673. return;
  674. cpu_detect(c);
  675. get_cpu_vendor(c);
  676. get_cpu_cap(c);
  677. if (this_cpu->c_early_init)
  678. this_cpu->c_early_init(c);
  679. c->cpu_index = 0;
  680. filter_cpuid_features(c, false);
  681. if (this_cpu->c_bsp_init)
  682. this_cpu->c_bsp_init(c);
  683. setup_force_cpu_cap(X86_FEATURE_ALWAYS);
  684. fpu__init_system(c);
  685. }
  686. void __init early_cpu_init(void)
  687. {
  688. const struct cpu_dev *const *cdev;
  689. int count = 0;
  690. #ifdef CONFIG_PROCESSOR_SELECT
  691. pr_info("KERNEL supported cpus:\n");
  692. #endif
  693. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  694. const struct cpu_dev *cpudev = *cdev;
  695. if (count >= X86_VENDOR_NUM)
  696. break;
  697. cpu_devs[count] = cpudev;
  698. count++;
  699. #ifdef CONFIG_PROCESSOR_SELECT
  700. {
  701. unsigned int j;
  702. for (j = 0; j < 2; j++) {
  703. if (!cpudev->c_ident[j])
  704. continue;
  705. pr_info(" %s %s\n", cpudev->c_vendor,
  706. cpudev->c_ident[j]);
  707. }
  708. }
  709. #endif
  710. }
  711. early_identify_cpu(&boot_cpu_data);
  712. }
  713. /*
  714. * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
  715. * unfortunately, that's not true in practice because of early VIA
  716. * chips and (more importantly) broken virtualizers that are not easy
  717. * to detect. In the latter case it doesn't even *fail* reliably, so
  718. * probing for it doesn't even work. Disable it completely on 32-bit
  719. * unless we can find a reliable way to detect all the broken cases.
  720. * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
  721. */
  722. static void detect_nopl(struct cpuinfo_x86 *c)
  723. {
  724. #ifdef CONFIG_X86_32
  725. clear_cpu_cap(c, X86_FEATURE_NOPL);
  726. #else
  727. set_cpu_cap(c, X86_FEATURE_NOPL);
  728. #endif
  729. }
  730. static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
  731. {
  732. #ifdef CONFIG_X86_64
  733. /*
  734. * Empirically, writing zero to a segment selector on AMD does
  735. * not clear the base, whereas writing zero to a segment
  736. * selector on Intel does clear the base. Intel's behavior
  737. * allows slightly faster context switches in the common case
  738. * where GS is unused by the prev and next threads.
  739. *
  740. * Since neither vendor documents this anywhere that I can see,
  741. * detect it directly instead of hardcoding the choice by
  742. * vendor.
  743. *
  744. * I've designated AMD's behavior as the "bug" because it's
  745. * counterintuitive and less friendly.
  746. */
  747. unsigned long old_base, tmp;
  748. rdmsrl(MSR_FS_BASE, old_base);
  749. wrmsrl(MSR_FS_BASE, 1);
  750. loadsegment(fs, 0);
  751. rdmsrl(MSR_FS_BASE, tmp);
  752. if (tmp != 0)
  753. set_cpu_bug(c, X86_BUG_NULL_SEG);
  754. wrmsrl(MSR_FS_BASE, old_base);
  755. #endif
  756. }
  757. static void generic_identify(struct cpuinfo_x86 *c)
  758. {
  759. c->extended_cpuid_level = 0;
  760. if (!have_cpuid_p())
  761. identify_cpu_without_cpuid(c);
  762. /* cyrix could have cpuid enabled via c_identify()*/
  763. if (!have_cpuid_p())
  764. return;
  765. cpu_detect(c);
  766. get_cpu_vendor(c);
  767. get_cpu_cap(c);
  768. if (c->cpuid_level >= 0x00000001) {
  769. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  770. #ifdef CONFIG_X86_32
  771. # ifdef CONFIG_SMP
  772. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  773. # else
  774. c->apicid = c->initial_apicid;
  775. # endif
  776. #endif
  777. c->phys_proc_id = c->initial_apicid;
  778. }
  779. get_model_name(c); /* Default name */
  780. detect_nopl(c);
  781. detect_null_seg_behavior(c);
  782. /*
  783. * ESPFIX is a strange bug. All real CPUs have it. Paravirt
  784. * systems that run Linux at CPL > 0 may or may not have the
  785. * issue, but, even if they have the issue, there's absolutely
  786. * nothing we can do about it because we can't use the real IRET
  787. * instruction.
  788. *
  789. * NB: For the time being, only 32-bit kernels support
  790. * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
  791. * whether to apply espfix using paravirt hooks. If any
  792. * non-paravirt system ever shows up that does *not* have the
  793. * ESPFIX issue, we can change this.
  794. */
  795. #ifdef CONFIG_X86_32
  796. # ifdef CONFIG_PARAVIRT
  797. do {
  798. extern void native_iret(void);
  799. if (pv_cpu_ops.iret == native_iret)
  800. set_cpu_bug(c, X86_BUG_ESPFIX);
  801. } while (0);
  802. # else
  803. set_cpu_bug(c, X86_BUG_ESPFIX);
  804. # endif
  805. #endif
  806. }
  807. static void x86_init_cache_qos(struct cpuinfo_x86 *c)
  808. {
  809. /*
  810. * The heavy lifting of max_rmid and cache_occ_scale are handled
  811. * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
  812. * in case CQM bits really aren't there in this CPU.
  813. */
  814. if (c != &boot_cpu_data) {
  815. boot_cpu_data.x86_cache_max_rmid =
  816. min(boot_cpu_data.x86_cache_max_rmid,
  817. c->x86_cache_max_rmid);
  818. }
  819. }
  820. /*
  821. * This does the hard work of actually picking apart the CPU stuff...
  822. */
  823. static void identify_cpu(struct cpuinfo_x86 *c)
  824. {
  825. int i;
  826. c->loops_per_jiffy = loops_per_jiffy;
  827. c->x86_cache_size = -1;
  828. c->x86_vendor = X86_VENDOR_UNKNOWN;
  829. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  830. c->x86_vendor_id[0] = '\0'; /* Unset */
  831. c->x86_model_id[0] = '\0'; /* Unset */
  832. c->x86_max_cores = 1;
  833. c->x86_coreid_bits = 0;
  834. #ifdef CONFIG_X86_64
  835. c->x86_clflush_size = 64;
  836. c->x86_phys_bits = 36;
  837. c->x86_virt_bits = 48;
  838. #else
  839. c->cpuid_level = -1; /* CPUID not detected */
  840. c->x86_clflush_size = 32;
  841. c->x86_phys_bits = 32;
  842. c->x86_virt_bits = 32;
  843. #endif
  844. c->x86_cache_alignment = c->x86_clflush_size;
  845. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  846. generic_identify(c);
  847. if (this_cpu->c_identify)
  848. this_cpu->c_identify(c);
  849. /* Clear/Set all flags overridden by options, after probe */
  850. for (i = 0; i < NCAPINTS; i++) {
  851. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  852. c->x86_capability[i] |= cpu_caps_set[i];
  853. }
  854. #ifdef CONFIG_X86_64
  855. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  856. #endif
  857. /*
  858. * Vendor-specific initialization. In this section we
  859. * canonicalize the feature flags, meaning if there are
  860. * features a certain CPU supports which CPUID doesn't
  861. * tell us, CPUID claiming incorrect flags, or other bugs,
  862. * we handle them here.
  863. *
  864. * At the end of this section, c->x86_capability better
  865. * indicate the features this CPU genuinely supports!
  866. */
  867. if (this_cpu->c_init)
  868. this_cpu->c_init(c);
  869. /* Disable the PN if appropriate */
  870. squash_the_stupid_serial_number(c);
  871. /* Set up SMEP/SMAP */
  872. setup_smep(c);
  873. setup_smap(c);
  874. /*
  875. * The vendor-specific functions might have changed features.
  876. * Now we do "generic changes."
  877. */
  878. /* Filter out anything that depends on CPUID levels we don't have */
  879. filter_cpuid_features(c, true);
  880. /* If the model name is still unset, do table lookup. */
  881. if (!c->x86_model_id[0]) {
  882. const char *p;
  883. p = table_lookup_model(c);
  884. if (p)
  885. strcpy(c->x86_model_id, p);
  886. else
  887. /* Last resort... */
  888. sprintf(c->x86_model_id, "%02x/%02x",
  889. c->x86, c->x86_model);
  890. }
  891. #ifdef CONFIG_X86_64
  892. detect_ht(c);
  893. #endif
  894. init_hypervisor(c);
  895. x86_init_rdrand(c);
  896. x86_init_cache_qos(c);
  897. setup_pku(c);
  898. /*
  899. * Clear/Set all flags overridden by options, need do it
  900. * before following smp all cpus cap AND.
  901. */
  902. for (i = 0; i < NCAPINTS; i++) {
  903. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  904. c->x86_capability[i] |= cpu_caps_set[i];
  905. }
  906. /*
  907. * On SMP, boot_cpu_data holds the common feature set between
  908. * all CPUs; so make sure that we indicate which features are
  909. * common between the CPUs. The first time this routine gets
  910. * executed, c == &boot_cpu_data.
  911. */
  912. if (c != &boot_cpu_data) {
  913. /* AND the already accumulated flags with these */
  914. for (i = 0; i < NCAPINTS; i++)
  915. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  916. /* OR, i.e. replicate the bug flags */
  917. for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
  918. c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
  919. }
  920. /* Init Machine Check Exception if available. */
  921. mcheck_cpu_init(c);
  922. select_idle_routine(c);
  923. #ifdef CONFIG_NUMA
  924. numa_add_cpu(smp_processor_id());
  925. #endif
  926. /* The boot/hotplug time assigment got cleared, restore it */
  927. c->logical_proc_id = topology_phys_to_logical_pkg(c->phys_proc_id);
  928. }
  929. /*
  930. * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
  931. * on 32-bit kernels:
  932. */
  933. #ifdef CONFIG_X86_32
  934. void enable_sep_cpu(void)
  935. {
  936. struct tss_struct *tss;
  937. int cpu;
  938. if (!boot_cpu_has(X86_FEATURE_SEP))
  939. return;
  940. cpu = get_cpu();
  941. tss = &per_cpu(cpu_tss, cpu);
  942. /*
  943. * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
  944. * see the big comment in struct x86_hw_tss's definition.
  945. */
  946. tss->x86_tss.ss1 = __KERNEL_CS;
  947. wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
  948. wrmsr(MSR_IA32_SYSENTER_ESP,
  949. (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
  950. 0);
  951. wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
  952. put_cpu();
  953. }
  954. #endif
  955. void __init identify_boot_cpu(void)
  956. {
  957. identify_cpu(&boot_cpu_data);
  958. init_amd_e400_c1e_mask();
  959. #ifdef CONFIG_X86_32
  960. sysenter_setup();
  961. enable_sep_cpu();
  962. #endif
  963. cpu_detect_tlb(&boot_cpu_data);
  964. }
  965. void identify_secondary_cpu(struct cpuinfo_x86 *c)
  966. {
  967. BUG_ON(c == &boot_cpu_data);
  968. identify_cpu(c);
  969. #ifdef CONFIG_X86_32
  970. enable_sep_cpu();
  971. #endif
  972. mtrr_ap_init();
  973. }
  974. struct msr_range {
  975. unsigned min;
  976. unsigned max;
  977. };
  978. static const struct msr_range msr_range_array[] = {
  979. { 0x00000000, 0x00000418},
  980. { 0xc0000000, 0xc000040b},
  981. { 0xc0010000, 0xc0010142},
  982. { 0xc0011000, 0xc001103b},
  983. };
  984. static void __print_cpu_msr(void)
  985. {
  986. unsigned index_min, index_max;
  987. unsigned index;
  988. u64 val;
  989. int i;
  990. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  991. index_min = msr_range_array[i].min;
  992. index_max = msr_range_array[i].max;
  993. for (index = index_min; index < index_max; index++) {
  994. if (rdmsrl_safe(index, &val))
  995. continue;
  996. pr_info(" MSR%08x: %016llx\n", index, val);
  997. }
  998. }
  999. }
  1000. static int show_msr;
  1001. static __init int setup_show_msr(char *arg)
  1002. {
  1003. int num;
  1004. get_option(&arg, &num);
  1005. if (num > 0)
  1006. show_msr = num;
  1007. return 1;
  1008. }
  1009. __setup("show_msr=", setup_show_msr);
  1010. static __init int setup_noclflush(char *arg)
  1011. {
  1012. setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
  1013. setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
  1014. return 1;
  1015. }
  1016. __setup("noclflush", setup_noclflush);
  1017. void print_cpu_info(struct cpuinfo_x86 *c)
  1018. {
  1019. const char *vendor = NULL;
  1020. if (c->x86_vendor < X86_VENDOR_NUM) {
  1021. vendor = this_cpu->c_vendor;
  1022. } else {
  1023. if (c->cpuid_level >= 0)
  1024. vendor = c->x86_vendor_id;
  1025. }
  1026. if (vendor && !strstr(c->x86_model_id, vendor))
  1027. pr_cont("%s ", vendor);
  1028. if (c->x86_model_id[0])
  1029. pr_cont("%s", c->x86_model_id);
  1030. else
  1031. pr_cont("%d86", c->x86);
  1032. pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
  1033. if (c->x86_mask || c->cpuid_level >= 0)
  1034. pr_cont(", stepping: 0x%x)\n", c->x86_mask);
  1035. else
  1036. pr_cont(")\n");
  1037. print_cpu_msr(c);
  1038. }
  1039. void print_cpu_msr(struct cpuinfo_x86 *c)
  1040. {
  1041. if (c->cpu_index < show_msr)
  1042. __print_cpu_msr();
  1043. }
  1044. static __init int setup_disablecpuid(char *arg)
  1045. {
  1046. int bit;
  1047. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  1048. setup_clear_cpu_cap(bit);
  1049. else
  1050. return 0;
  1051. return 1;
  1052. }
  1053. __setup("clearcpuid=", setup_disablecpuid);
  1054. #ifdef CONFIG_X86_64
  1055. struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
  1056. struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
  1057. (unsigned long) debug_idt_table };
  1058. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  1059. irq_stack_union) __aligned(PAGE_SIZE) __visible;
  1060. /*
  1061. * The following percpu variables are hot. Align current_task to
  1062. * cacheline size such that they fall in the same cacheline.
  1063. */
  1064. DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
  1065. &init_task;
  1066. EXPORT_PER_CPU_SYMBOL(current_task);
  1067. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  1068. init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  1069. DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
  1070. DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
  1071. EXPORT_PER_CPU_SYMBOL(__preempt_count);
  1072. /*
  1073. * Special IST stacks which the CPU switches to when it calls
  1074. * an IST-marked descriptor entry. Up to 7 stacks (hardware
  1075. * limit), all of them are 4K, except the debug stack which
  1076. * is 8K.
  1077. */
  1078. static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
  1079. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  1080. [DEBUG_STACK - 1] = DEBUG_STKSZ
  1081. };
  1082. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  1083. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
  1084. /* May not be marked __init: used by software suspend */
  1085. void syscall_init(void)
  1086. {
  1087. /*
  1088. * LSTAR and STAR live in a bit strange symbiosis.
  1089. * They both write to the same internal register. STAR allows to
  1090. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  1091. */
  1092. wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
  1093. wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
  1094. #ifdef CONFIG_IA32_EMULATION
  1095. wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
  1096. /*
  1097. * This only works on Intel CPUs.
  1098. * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
  1099. * This does not cause SYSENTER to jump to the wrong location, because
  1100. * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
  1101. */
  1102. wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
  1103. wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
  1104. wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
  1105. #else
  1106. wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
  1107. wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
  1108. wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
  1109. wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
  1110. #endif
  1111. /* Flags to clear on syscall */
  1112. wrmsrl(MSR_SYSCALL_MASK,
  1113. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
  1114. X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
  1115. }
  1116. /*
  1117. * Copies of the original ist values from the tss are only accessed during
  1118. * debugging, no special alignment required.
  1119. */
  1120. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  1121. static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
  1122. DEFINE_PER_CPU(int, debug_stack_usage);
  1123. int is_debug_stack(unsigned long addr)
  1124. {
  1125. return __this_cpu_read(debug_stack_usage) ||
  1126. (addr <= __this_cpu_read(debug_stack_addr) &&
  1127. addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
  1128. }
  1129. NOKPROBE_SYMBOL(is_debug_stack);
  1130. DEFINE_PER_CPU(u32, debug_idt_ctr);
  1131. void debug_stack_set_zero(void)
  1132. {
  1133. this_cpu_inc(debug_idt_ctr);
  1134. load_current_idt();
  1135. }
  1136. NOKPROBE_SYMBOL(debug_stack_set_zero);
  1137. void debug_stack_reset(void)
  1138. {
  1139. if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
  1140. return;
  1141. if (this_cpu_dec_return(debug_idt_ctr) == 0)
  1142. load_current_idt();
  1143. }
  1144. NOKPROBE_SYMBOL(debug_stack_reset);
  1145. #else /* CONFIG_X86_64 */
  1146. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  1147. EXPORT_PER_CPU_SYMBOL(current_task);
  1148. DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
  1149. EXPORT_PER_CPU_SYMBOL(__preempt_count);
  1150. /*
  1151. * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
  1152. * the top of the kernel stack. Use an extra percpu variable to track the
  1153. * top of the kernel stack directly.
  1154. */
  1155. DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
  1156. (unsigned long)&init_thread_union + THREAD_SIZE;
  1157. EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
  1158. #ifdef CONFIG_CC_STACKPROTECTOR
  1159. DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
  1160. #endif
  1161. #endif /* CONFIG_X86_64 */
  1162. /*
  1163. * Clear all 6 debug registers:
  1164. */
  1165. static void clear_all_debug_regs(void)
  1166. {
  1167. int i;
  1168. for (i = 0; i < 8; i++) {
  1169. /* Ignore db4, db5 */
  1170. if ((i == 4) || (i == 5))
  1171. continue;
  1172. set_debugreg(0, i);
  1173. }
  1174. }
  1175. #ifdef CONFIG_KGDB
  1176. /*
  1177. * Restore debug regs if using kgdbwait and you have a kernel debugger
  1178. * connection established.
  1179. */
  1180. static void dbg_restore_debug_regs(void)
  1181. {
  1182. if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
  1183. arch_kgdb_ops.correct_hw_break();
  1184. }
  1185. #else /* ! CONFIG_KGDB */
  1186. #define dbg_restore_debug_regs()
  1187. #endif /* ! CONFIG_KGDB */
  1188. static void wait_for_master_cpu(int cpu)
  1189. {
  1190. #ifdef CONFIG_SMP
  1191. /*
  1192. * wait for ACK from master CPU before continuing
  1193. * with AP initialization
  1194. */
  1195. WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
  1196. while (!cpumask_test_cpu(cpu, cpu_callout_mask))
  1197. cpu_relax();
  1198. #endif
  1199. }
  1200. /*
  1201. * cpu_init() initializes state that is per-CPU. Some data is already
  1202. * initialized (naturally) in the bootstrap process, such as the GDT
  1203. * and IDT. We reload them nevertheless, this function acts as a
  1204. * 'CPU state barrier', nothing should get across.
  1205. * A lot of state is already set up in PDA init for 64 bit
  1206. */
  1207. #ifdef CONFIG_X86_64
  1208. void cpu_init(void)
  1209. {
  1210. struct orig_ist *oist;
  1211. struct task_struct *me;
  1212. struct tss_struct *t;
  1213. unsigned long v;
  1214. int cpu = raw_smp_processor_id();
  1215. int i;
  1216. wait_for_master_cpu(cpu);
  1217. /*
  1218. * Initialize the CR4 shadow before doing anything that could
  1219. * try to read it.
  1220. */
  1221. cr4_init_shadow();
  1222. /*
  1223. * Load microcode on this cpu if a valid microcode is available.
  1224. * This is early microcode loading procedure.
  1225. */
  1226. load_ucode_ap();
  1227. t = &per_cpu(cpu_tss, cpu);
  1228. oist = &per_cpu(orig_ist, cpu);
  1229. #ifdef CONFIG_NUMA
  1230. if (this_cpu_read(numa_node) == 0 &&
  1231. early_cpu_to_node(cpu) != NUMA_NO_NODE)
  1232. set_numa_node(early_cpu_to_node(cpu));
  1233. #endif
  1234. me = current;
  1235. pr_debug("Initializing CPU#%d\n", cpu);
  1236. cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1237. /*
  1238. * Initialize the per-CPU GDT with the boot GDT,
  1239. * and set up the GDT descriptor:
  1240. */
  1241. switch_to_new_gdt(cpu);
  1242. loadsegment(fs, 0);
  1243. load_current_idt();
  1244. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  1245. syscall_init();
  1246. wrmsrl(MSR_FS_BASE, 0);
  1247. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  1248. barrier();
  1249. x86_configure_nx();
  1250. x2apic_setup();
  1251. /*
  1252. * set up and load the per-CPU TSS
  1253. */
  1254. if (!oist->ist[0]) {
  1255. char *estacks = per_cpu(exception_stacks, cpu);
  1256. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  1257. estacks += exception_stack_sizes[v];
  1258. oist->ist[v] = t->x86_tss.ist[v] =
  1259. (unsigned long)estacks;
  1260. if (v == DEBUG_STACK-1)
  1261. per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
  1262. }
  1263. }
  1264. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1265. /*
  1266. * <= is required because the CPU will access up to
  1267. * 8 bits beyond the end of the IO permission bitmap.
  1268. */
  1269. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  1270. t->io_bitmap[i] = ~0UL;
  1271. atomic_inc(&init_mm.mm_count);
  1272. me->active_mm = &init_mm;
  1273. BUG_ON(me->mm);
  1274. enter_lazy_tlb(&init_mm, me);
  1275. load_sp0(t, &current->thread);
  1276. set_tss_desc(cpu, t);
  1277. load_TR_desc();
  1278. load_mm_ldt(&init_mm);
  1279. clear_all_debug_regs();
  1280. dbg_restore_debug_regs();
  1281. fpu__init_cpu();
  1282. if (is_uv_system())
  1283. uv_cpu_init();
  1284. }
  1285. #else
  1286. void cpu_init(void)
  1287. {
  1288. int cpu = smp_processor_id();
  1289. struct task_struct *curr = current;
  1290. struct tss_struct *t = &per_cpu(cpu_tss, cpu);
  1291. struct thread_struct *thread = &curr->thread;
  1292. wait_for_master_cpu(cpu);
  1293. /*
  1294. * Initialize the CR4 shadow before doing anything that could
  1295. * try to read it.
  1296. */
  1297. cr4_init_shadow();
  1298. show_ucode_info_early();
  1299. pr_info("Initializing CPU#%d\n", cpu);
  1300. if (cpu_feature_enabled(X86_FEATURE_VME) ||
  1301. boot_cpu_has(X86_FEATURE_TSC) ||
  1302. boot_cpu_has(X86_FEATURE_DE))
  1303. cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1304. load_current_idt();
  1305. switch_to_new_gdt(cpu);
  1306. /*
  1307. * Set up and load the per-CPU TSS and LDT
  1308. */
  1309. atomic_inc(&init_mm.mm_count);
  1310. curr->active_mm = &init_mm;
  1311. BUG_ON(curr->mm);
  1312. enter_lazy_tlb(&init_mm, curr);
  1313. load_sp0(t, thread);
  1314. set_tss_desc(cpu, t);
  1315. load_TR_desc();
  1316. load_mm_ldt(&init_mm);
  1317. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1318. #ifdef CONFIG_DOUBLEFAULT
  1319. /* Set up doublefault TSS pointer in the GDT */
  1320. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  1321. #endif
  1322. clear_all_debug_regs();
  1323. dbg_restore_debug_regs();
  1324. fpu__init_cpu();
  1325. }
  1326. #endif
  1327. static void bsp_resume(void)
  1328. {
  1329. if (this_cpu->c_bsp_resume)
  1330. this_cpu->c_bsp_resume(&boot_cpu_data);
  1331. }
  1332. static struct syscore_ops cpu_syscore_ops = {
  1333. .resume = bsp_resume,
  1334. };
  1335. static int __init init_cpu_syscore(void)
  1336. {
  1337. register_syscore_ops(&cpu_syscore_ops);
  1338. return 0;
  1339. }
  1340. core_initcall(init_cpu_syscore);