intel_ringbuffer.h 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640
  1. #ifndef _INTEL_RINGBUFFER_H_
  2. #define _INTEL_RINGBUFFER_H_
  3. #include <linux/hashtable.h>
  4. #include "i915_gem_batch_pool.h"
  5. #include "i915_gem_request.h"
  6. #include "i915_gem_timeline.h"
  7. #define I915_CMD_HASH_ORDER 9
  8. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  9. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  10. * to give some inclination as to some of the magic values used in the various
  11. * workarounds!
  12. */
  13. #define CACHELINE_BYTES 64
  14. #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
  15. /*
  16. * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
  17. * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
  18. * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
  19. *
  20. * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
  21. * cacheline, the Head Pointer must not be greater than the Tail
  22. * Pointer."
  23. */
  24. #define I915_RING_FREE_SPACE 64
  25. struct intel_hw_status_page {
  26. struct i915_vma *vma;
  27. u32 *page_addr;
  28. u32 ggtt_offset;
  29. };
  30. #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
  31. #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
  32. #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
  33. #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
  34. #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
  35. #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
  36. #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
  37. #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
  38. #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
  39. #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
  40. #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
  41. #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
  42. /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  43. * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  44. */
  45. #define gen8_semaphore_seqno_size sizeof(uint64_t)
  46. #define GEN8_SEMAPHORE_OFFSET(__from, __to) \
  47. (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
  48. #define GEN8_SIGNAL_OFFSET(__ring, to) \
  49. (dev_priv->semaphore->node.start + \
  50. GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
  51. #define GEN8_WAIT_OFFSET(__ring, from) \
  52. (dev_priv->semaphore->node.start + \
  53. GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
  54. enum intel_engine_hangcheck_action {
  55. ENGINE_IDLE = 0,
  56. ENGINE_WAIT,
  57. ENGINE_ACTIVE_SEQNO,
  58. ENGINE_ACTIVE_HEAD,
  59. ENGINE_ACTIVE_SUBUNITS,
  60. ENGINE_WAIT_KICK,
  61. ENGINE_DEAD,
  62. };
  63. static inline const char *
  64. hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
  65. {
  66. switch (a) {
  67. case ENGINE_IDLE:
  68. return "idle";
  69. case ENGINE_WAIT:
  70. return "wait";
  71. case ENGINE_ACTIVE_SEQNO:
  72. return "active seqno";
  73. case ENGINE_ACTIVE_HEAD:
  74. return "active head";
  75. case ENGINE_ACTIVE_SUBUNITS:
  76. return "active subunits";
  77. case ENGINE_WAIT_KICK:
  78. return "wait kick";
  79. case ENGINE_DEAD:
  80. return "dead";
  81. }
  82. return "unknown";
  83. }
  84. #define I915_MAX_SLICES 3
  85. #define I915_MAX_SUBSLICES 3
  86. #define instdone_slice_mask(dev_priv__) \
  87. (INTEL_GEN(dev_priv__) == 7 ? \
  88. 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
  89. #define instdone_subslice_mask(dev_priv__) \
  90. (INTEL_GEN(dev_priv__) == 7 ? \
  91. 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
  92. #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
  93. for ((slice__) = 0, (subslice__) = 0; \
  94. (slice__) < I915_MAX_SLICES; \
  95. (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
  96. (slice__) += ((subslice__) == 0)) \
  97. for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
  98. (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
  99. struct intel_instdone {
  100. u32 instdone;
  101. /* The following exist only in the RCS engine */
  102. u32 slice_common;
  103. u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
  104. u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
  105. };
  106. struct intel_engine_hangcheck {
  107. u64 acthd;
  108. u32 seqno;
  109. enum intel_engine_hangcheck_action action;
  110. unsigned long action_timestamp;
  111. int deadlock;
  112. struct intel_instdone instdone;
  113. bool stalled;
  114. };
  115. struct intel_ring {
  116. struct i915_vma *vma;
  117. void *vaddr;
  118. struct intel_engine_cs *engine;
  119. struct list_head request_list;
  120. u32 head;
  121. u32 tail;
  122. GEM_DEBUG_DECL(u32 advance);
  123. int space;
  124. int size;
  125. int effective_size;
  126. /** We track the position of the requests in the ring buffer, and
  127. * when each is retired we increment last_retired_head as the GPU
  128. * must have finished processing the request and so we know we
  129. * can advance the ringbuffer up to that position.
  130. *
  131. * last_retired_head is set to -1 after the value is consumed so
  132. * we can detect new retirements.
  133. */
  134. u32 last_retired_head;
  135. };
  136. struct i915_gem_context;
  137. struct drm_i915_reg_table;
  138. /*
  139. * we use a single page to load ctx workarounds so all of these
  140. * values are referred in terms of dwords
  141. *
  142. * struct i915_wa_ctx_bb:
  143. * offset: specifies batch starting position, also helpful in case
  144. * if we want to have multiple batches at different offsets based on
  145. * some criteria. It is not a requirement at the moment but provides
  146. * an option for future use.
  147. * size: size of the batch in DWORDS
  148. */
  149. struct i915_ctx_workarounds {
  150. struct i915_wa_ctx_bb {
  151. u32 offset;
  152. u32 size;
  153. } indirect_ctx, per_ctx;
  154. struct i915_vma *vma;
  155. };
  156. struct drm_i915_gem_request;
  157. struct intel_render_state;
  158. struct intel_engine_cs {
  159. struct drm_i915_private *i915;
  160. const char *name;
  161. enum intel_engine_id {
  162. RCS = 0,
  163. BCS,
  164. VCS,
  165. VCS2, /* Keep instances of the same type engine together. */
  166. VECS
  167. } id;
  168. #define _VCS(n) (VCS + (n))
  169. unsigned int exec_id;
  170. enum intel_engine_hw_id {
  171. RCS_HW = 0,
  172. VCS_HW,
  173. BCS_HW,
  174. VECS_HW,
  175. VCS2_HW
  176. } hw_id;
  177. enum intel_engine_hw_id guc_id; /* XXX same as hw_id? */
  178. u32 mmio_base;
  179. unsigned int irq_shift;
  180. struct intel_ring *buffer;
  181. struct intel_timeline *timeline;
  182. struct intel_render_state *render_state;
  183. unsigned long irq_posted;
  184. #define ENGINE_IRQ_BREADCRUMB 0
  185. #define ENGINE_IRQ_EXECLIST 1
  186. /* Rather than have every client wait upon all user interrupts,
  187. * with the herd waking after every interrupt and each doing the
  188. * heavyweight seqno dance, we delegate the task (of being the
  189. * bottom-half of the user interrupt) to the first client. After
  190. * every interrupt, we wake up one client, who does the heavyweight
  191. * coherent seqno read and either goes back to sleep (if incomplete),
  192. * or wakes up all the completed clients in parallel, before then
  193. * transferring the bottom-half status to the next client in the queue.
  194. *
  195. * Compared to walking the entire list of waiters in a single dedicated
  196. * bottom-half, we reduce the latency of the first waiter by avoiding
  197. * a context switch, but incur additional coherent seqno reads when
  198. * following the chain of request breadcrumbs. Since it is most likely
  199. * that we have a single client waiting on each seqno, then reducing
  200. * the overhead of waking that client is much preferred.
  201. */
  202. struct intel_breadcrumbs {
  203. struct task_struct __rcu *irq_seqno_bh; /* bh for interrupts */
  204. spinlock_t lock; /* protects the lists of requests; irqsafe */
  205. struct rb_root waiters; /* sorted by retirement, priority */
  206. struct rb_root signals; /* sorted by retirement */
  207. struct intel_wait *first_wait; /* oldest waiter by retirement */
  208. struct task_struct *signaler; /* used for fence signalling */
  209. struct drm_i915_gem_request *first_signal;
  210. struct timer_list fake_irq; /* used after a missed interrupt */
  211. struct timer_list hangcheck; /* detect missed interrupts */
  212. unsigned long timeout;
  213. bool irq_enabled : 1;
  214. bool rpm_wakelock : 1;
  215. } breadcrumbs;
  216. /*
  217. * A pool of objects to use as shadow copies of client batch buffers
  218. * when the command parser is enabled. Prevents the client from
  219. * modifying the batch contents after software parsing.
  220. */
  221. struct i915_gem_batch_pool batch_pool;
  222. struct intel_hw_status_page status_page;
  223. struct i915_ctx_workarounds wa_ctx;
  224. struct i915_vma *scratch;
  225. u32 irq_keep_mask; /* always keep these interrupts */
  226. u32 irq_enable_mask; /* bitmask to enable ring interrupt */
  227. void (*irq_enable)(struct intel_engine_cs *engine);
  228. void (*irq_disable)(struct intel_engine_cs *engine);
  229. int (*init_hw)(struct intel_engine_cs *engine);
  230. void (*reset_hw)(struct intel_engine_cs *engine,
  231. struct drm_i915_gem_request *req);
  232. int (*context_pin)(struct intel_engine_cs *engine,
  233. struct i915_gem_context *ctx);
  234. void (*context_unpin)(struct intel_engine_cs *engine,
  235. struct i915_gem_context *ctx);
  236. int (*request_alloc)(struct drm_i915_gem_request *req);
  237. int (*init_context)(struct drm_i915_gem_request *req);
  238. int (*emit_flush)(struct drm_i915_gem_request *request,
  239. u32 mode);
  240. #define EMIT_INVALIDATE BIT(0)
  241. #define EMIT_FLUSH BIT(1)
  242. #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
  243. int (*emit_bb_start)(struct drm_i915_gem_request *req,
  244. u64 offset, u32 length,
  245. unsigned int dispatch_flags);
  246. #define I915_DISPATCH_SECURE BIT(0)
  247. #define I915_DISPATCH_PINNED BIT(1)
  248. #define I915_DISPATCH_RS BIT(2)
  249. void (*emit_breadcrumb)(struct drm_i915_gem_request *req,
  250. u32 *out);
  251. int emit_breadcrumb_sz;
  252. /* Pass the request to the hardware queue (e.g. directly into
  253. * the legacy ringbuffer or to the end of an execlist).
  254. *
  255. * This is called from an atomic context with irqs disabled; must
  256. * be irq safe.
  257. */
  258. void (*submit_request)(struct drm_i915_gem_request *req);
  259. /* Call when the priority on a request has changed and it and its
  260. * dependencies may need rescheduling. Note the request itself may
  261. * not be ready to run!
  262. *
  263. * Called under the struct_mutex.
  264. */
  265. void (*schedule)(struct drm_i915_gem_request *request,
  266. int priority);
  267. /* Some chipsets are not quite as coherent as advertised and need
  268. * an expensive kick to force a true read of the up-to-date seqno.
  269. * However, the up-to-date seqno is not always required and the last
  270. * seen value is good enough. Note that the seqno will always be
  271. * monotonic, even if not coherent.
  272. */
  273. void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
  274. void (*cleanup)(struct intel_engine_cs *engine);
  275. /* GEN8 signal/wait table - never trust comments!
  276. * signal to signal to signal to signal to signal to
  277. * RCS VCS BCS VECS VCS2
  278. * --------------------------------------------------------------------
  279. * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
  280. * |-------------------------------------------------------------------
  281. * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
  282. * |-------------------------------------------------------------------
  283. * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
  284. * |-------------------------------------------------------------------
  285. * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
  286. * |-------------------------------------------------------------------
  287. * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
  288. * |-------------------------------------------------------------------
  289. *
  290. * Generalization:
  291. * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
  292. * ie. transpose of g(x, y)
  293. *
  294. * sync from sync from sync from sync from sync from
  295. * RCS VCS BCS VECS VCS2
  296. * --------------------------------------------------------------------
  297. * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
  298. * |-------------------------------------------------------------------
  299. * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
  300. * |-------------------------------------------------------------------
  301. * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
  302. * |-------------------------------------------------------------------
  303. * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
  304. * |-------------------------------------------------------------------
  305. * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
  306. * |-------------------------------------------------------------------
  307. *
  308. * Generalization:
  309. * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
  310. * ie. transpose of f(x, y)
  311. */
  312. struct {
  313. union {
  314. #define GEN6_SEMAPHORE_LAST VECS_HW
  315. #define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
  316. #define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
  317. struct {
  318. /* our mbox written by others */
  319. u32 wait[GEN6_NUM_SEMAPHORES];
  320. /* mboxes this ring signals to */
  321. i915_reg_t signal[GEN6_NUM_SEMAPHORES];
  322. } mbox;
  323. u64 signal_ggtt[I915_NUM_ENGINES];
  324. };
  325. /* AKA wait() */
  326. int (*sync_to)(struct drm_i915_gem_request *req,
  327. struct drm_i915_gem_request *signal);
  328. u32 *(*signal)(struct drm_i915_gem_request *req, u32 *out);
  329. } semaphore;
  330. /* Execlists */
  331. struct tasklet_struct irq_tasklet;
  332. struct execlist_port {
  333. struct drm_i915_gem_request *request;
  334. unsigned int count;
  335. GEM_DEBUG_DECL(u32 context_id);
  336. } execlist_port[2];
  337. struct rb_root execlist_queue;
  338. struct rb_node *execlist_first;
  339. unsigned int fw_domains;
  340. /* Contexts are pinned whilst they are active on the GPU. The last
  341. * context executed remains active whilst the GPU is idle - the
  342. * switch away and write to the context object only occurs on the
  343. * next execution. Contexts are only unpinned on retirement of the
  344. * following request ensuring that we can always write to the object
  345. * on the context switch even after idling. Across suspend, we switch
  346. * to the kernel context and trash it as the save may not happen
  347. * before the hardware is powered down.
  348. */
  349. struct i915_gem_context *last_retired_context;
  350. /* We track the current MI_SET_CONTEXT in order to eliminate
  351. * redudant context switches. This presumes that requests are not
  352. * reordered! Or when they are the tracking is updated along with
  353. * the emission of individual requests into the legacy command
  354. * stream (ring).
  355. */
  356. struct i915_gem_context *legacy_active_context;
  357. struct intel_engine_hangcheck hangcheck;
  358. bool needs_cmd_parser;
  359. /*
  360. * Table of commands the command parser needs to know about
  361. * for this engine.
  362. */
  363. DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
  364. /*
  365. * Table of registers allowed in commands that read/write registers.
  366. */
  367. const struct drm_i915_reg_table *reg_tables;
  368. int reg_table_count;
  369. /*
  370. * Returns the bitmask for the length field of the specified command.
  371. * Return 0 for an unrecognized/invalid command.
  372. *
  373. * If the command parser finds an entry for a command in the engine's
  374. * cmd_tables, it gets the command's length based on the table entry.
  375. * If not, it calls this function to determine the per-engine length
  376. * field encoding for the command (i.e. different opcode ranges use
  377. * certain bits to encode the command length in the header).
  378. */
  379. u32 (*get_cmd_length_mask)(u32 cmd_header);
  380. };
  381. static inline unsigned
  382. intel_engine_flag(const struct intel_engine_cs *engine)
  383. {
  384. return 1 << engine->id;
  385. }
  386. static inline void
  387. intel_flush_status_page(struct intel_engine_cs *engine, int reg)
  388. {
  389. mb();
  390. clflush(&engine->status_page.page_addr[reg]);
  391. mb();
  392. }
  393. static inline u32
  394. intel_read_status_page(struct intel_engine_cs *engine, int reg)
  395. {
  396. /* Ensure that the compiler doesn't optimize away the load. */
  397. return READ_ONCE(engine->status_page.page_addr[reg]);
  398. }
  399. static inline void
  400. intel_write_status_page(struct intel_engine_cs *engine,
  401. int reg, u32 value)
  402. {
  403. engine->status_page.page_addr[reg] = value;
  404. }
  405. /*
  406. * Reads a dword out of the status page, which is written to from the command
  407. * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
  408. * MI_STORE_DATA_IMM.
  409. *
  410. * The following dwords have a reserved meaning:
  411. * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
  412. * 0x04: ring 0 head pointer
  413. * 0x05: ring 1 head pointer (915-class)
  414. * 0x06: ring 2 head pointer (915-class)
  415. * 0x10-0x1b: Context status DWords (GM45)
  416. * 0x1f: Last written status offset. (GM45)
  417. * 0x20-0x2f: Reserved (Gen6+)
  418. *
  419. * The area from dword 0x30 to 0x3ff is available for driver usage.
  420. */
  421. #define I915_GEM_HWS_INDEX 0x30
  422. #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  423. #define I915_GEM_HWS_SCRATCH_INDEX 0x40
  424. #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  425. struct intel_ring *
  426. intel_engine_create_ring(struct intel_engine_cs *engine, int size);
  427. int intel_ring_pin(struct intel_ring *ring, unsigned int offset_bias);
  428. void intel_ring_unpin(struct intel_ring *ring);
  429. void intel_ring_free(struct intel_ring *ring);
  430. void intel_engine_stop(struct intel_engine_cs *engine);
  431. void intel_engine_cleanup(struct intel_engine_cs *engine);
  432. void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
  433. int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
  434. int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
  435. static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
  436. {
  437. *(uint32_t *)(ring->vaddr + ring->tail) = data;
  438. ring->tail += 4;
  439. }
  440. static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
  441. {
  442. intel_ring_emit(ring, i915_mmio_reg_offset(reg));
  443. }
  444. static inline void intel_ring_advance(struct intel_ring *ring)
  445. {
  446. /* Dummy function.
  447. *
  448. * This serves as a placeholder in the code so that the reader
  449. * can compare against the preceding intel_ring_begin() and
  450. * check that the number of dwords emitted matches the space
  451. * reserved for the command packet (i.e. the value passed to
  452. * intel_ring_begin()).
  453. */
  454. GEM_DEBUG_BUG_ON(ring->tail != ring->advance);
  455. }
  456. static inline u32 intel_ring_offset(struct intel_ring *ring, void *addr)
  457. {
  458. /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
  459. u32 offset = addr - ring->vaddr;
  460. return offset & (ring->size - 1);
  461. }
  462. int __intel_ring_space(int head, int tail, int size);
  463. void intel_ring_update_space(struct intel_ring *ring);
  464. void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
  465. void intel_engine_setup_common(struct intel_engine_cs *engine);
  466. int intel_engine_init_common(struct intel_engine_cs *engine);
  467. int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
  468. void intel_engine_cleanup_common(struct intel_engine_cs *engine);
  469. int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
  470. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
  471. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
  472. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
  473. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
  474. u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
  475. u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
  476. static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
  477. {
  478. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  479. }
  480. static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
  481. {
  482. /* We are only peeking at the tail of the submit queue (and not the
  483. * queue itself) in order to gain a hint as to the current active
  484. * state of the engine. Callers are not expected to be taking
  485. * engine->timeline->lock, nor are they expected to be concerned
  486. * wtih serialising this hint with anything, so document it as
  487. * a hint and nothing more.
  488. */
  489. return READ_ONCE(engine->timeline->last_submitted_seqno);
  490. }
  491. int init_workarounds_ring(struct intel_engine_cs *engine);
  492. void intel_engine_get_instdone(struct intel_engine_cs *engine,
  493. struct intel_instdone *instdone);
  494. /*
  495. * Arbitrary size for largest possible 'add request' sequence. The code paths
  496. * are complex and variable. Empirical measurement shows that the worst case
  497. * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
  498. * we need to allocate double the largest single packet within that emission
  499. * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
  500. */
  501. #define MIN_SPACE_FOR_ADD_REQUEST 336
  502. static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
  503. {
  504. return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
  505. }
  506. /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
  507. int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
  508. static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
  509. {
  510. wait->tsk = current;
  511. wait->seqno = seqno;
  512. }
  513. static inline bool intel_wait_complete(const struct intel_wait *wait)
  514. {
  515. return RB_EMPTY_NODE(&wait->node);
  516. }
  517. bool intel_engine_add_wait(struct intel_engine_cs *engine,
  518. struct intel_wait *wait);
  519. void intel_engine_remove_wait(struct intel_engine_cs *engine,
  520. struct intel_wait *wait);
  521. void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
  522. static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
  523. {
  524. return rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh);
  525. }
  526. static inline bool intel_engine_wakeup(const struct intel_engine_cs *engine)
  527. {
  528. bool wakeup = false;
  529. /* Note that for this not to dangerously chase a dangling pointer,
  530. * we must hold the rcu_read_lock here.
  531. *
  532. * Also note that tsk is likely to be in !TASK_RUNNING state so an
  533. * early test for tsk->state != TASK_RUNNING before wake_up_process()
  534. * is unlikely to be beneficial.
  535. */
  536. if (intel_engine_has_waiter(engine)) {
  537. struct task_struct *tsk;
  538. rcu_read_lock();
  539. tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
  540. if (tsk)
  541. wakeup = wake_up_process(tsk);
  542. rcu_read_unlock();
  543. }
  544. return wakeup;
  545. }
  546. void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
  547. void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
  548. unsigned int intel_breadcrumbs_busy(struct drm_i915_private *i915);
  549. #endif /* _INTEL_RINGBUFFER_H_ */