encrypted.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065
  1. /*
  2. * Copyright (C) 2010 IBM Corporation
  3. * Copyright (C) 2010 Politecnico di Torino, Italy
  4. * TORSEC group -- http://security.polito.it
  5. *
  6. * Authors:
  7. * Mimi Zohar <zohar@us.ibm.com>
  8. * Roberto Sassu <roberto.sassu@polito.it>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation, version 2 of the License.
  13. *
  14. * See Documentation/security/keys-trusted-encrypted.txt
  15. */
  16. #include <linux/uaccess.h>
  17. #include <linux/module.h>
  18. #include <linux/init.h>
  19. #include <linux/slab.h>
  20. #include <linux/parser.h>
  21. #include <linux/string.h>
  22. #include <linux/err.h>
  23. #include <keys/user-type.h>
  24. #include <keys/trusted-type.h>
  25. #include <keys/encrypted-type.h>
  26. #include <linux/key-type.h>
  27. #include <linux/random.h>
  28. #include <linux/rcupdate.h>
  29. #include <linux/scatterlist.h>
  30. #include <linux/ctype.h>
  31. #include <crypto/aes.h>
  32. #include <crypto/hash.h>
  33. #include <crypto/sha.h>
  34. #include <crypto/skcipher.h>
  35. #include "encrypted.h"
  36. #include "ecryptfs_format.h"
  37. static const char KEY_TRUSTED_PREFIX[] = "trusted:";
  38. static const char KEY_USER_PREFIX[] = "user:";
  39. static const char hash_alg[] = "sha256";
  40. static const char hmac_alg[] = "hmac(sha256)";
  41. static const char blkcipher_alg[] = "cbc(aes)";
  42. static const char key_format_default[] = "default";
  43. static const char key_format_ecryptfs[] = "ecryptfs";
  44. static unsigned int ivsize;
  45. static int blksize;
  46. #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
  47. #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
  48. #define KEY_ECRYPTFS_DESC_LEN 16
  49. #define HASH_SIZE SHA256_DIGEST_SIZE
  50. #define MAX_DATA_SIZE 4096
  51. #define MIN_DATA_SIZE 20
  52. struct sdesc {
  53. struct shash_desc shash;
  54. char ctx[];
  55. };
  56. static struct crypto_shash *hashalg;
  57. static struct crypto_shash *hmacalg;
  58. enum {
  59. Opt_err = -1, Opt_new, Opt_load, Opt_update
  60. };
  61. enum {
  62. Opt_error = -1, Opt_default, Opt_ecryptfs
  63. };
  64. static const match_table_t key_format_tokens = {
  65. {Opt_default, "default"},
  66. {Opt_ecryptfs, "ecryptfs"},
  67. {Opt_error, NULL}
  68. };
  69. static const match_table_t key_tokens = {
  70. {Opt_new, "new"},
  71. {Opt_load, "load"},
  72. {Opt_update, "update"},
  73. {Opt_err, NULL}
  74. };
  75. static int aes_get_sizes(void)
  76. {
  77. struct crypto_skcipher *tfm;
  78. tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  79. if (IS_ERR(tfm)) {
  80. pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
  81. PTR_ERR(tfm));
  82. return PTR_ERR(tfm);
  83. }
  84. ivsize = crypto_skcipher_ivsize(tfm);
  85. blksize = crypto_skcipher_blocksize(tfm);
  86. crypto_free_skcipher(tfm);
  87. return 0;
  88. }
  89. /*
  90. * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
  91. *
  92. * The description of a encrypted key with format 'ecryptfs' must contain
  93. * exactly 16 hexadecimal characters.
  94. *
  95. */
  96. static int valid_ecryptfs_desc(const char *ecryptfs_desc)
  97. {
  98. int i;
  99. if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
  100. pr_err("encrypted_key: key description must be %d hexadecimal "
  101. "characters long\n", KEY_ECRYPTFS_DESC_LEN);
  102. return -EINVAL;
  103. }
  104. for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
  105. if (!isxdigit(ecryptfs_desc[i])) {
  106. pr_err("encrypted_key: key description must contain "
  107. "only hexadecimal characters\n");
  108. return -EINVAL;
  109. }
  110. }
  111. return 0;
  112. }
  113. /*
  114. * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
  115. *
  116. * key-type:= "trusted:" | "user:"
  117. * desc:= master-key description
  118. *
  119. * Verify that 'key-type' is valid and that 'desc' exists. On key update,
  120. * only the master key description is permitted to change, not the key-type.
  121. * The key-type remains constant.
  122. *
  123. * On success returns 0, otherwise -EINVAL.
  124. */
  125. static int valid_master_desc(const char *new_desc, const char *orig_desc)
  126. {
  127. if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) {
  128. if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN)
  129. goto out;
  130. if (orig_desc)
  131. if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN))
  132. goto out;
  133. } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) {
  134. if (strlen(new_desc) == KEY_USER_PREFIX_LEN)
  135. goto out;
  136. if (orig_desc)
  137. if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN))
  138. goto out;
  139. } else
  140. goto out;
  141. return 0;
  142. out:
  143. return -EINVAL;
  144. }
  145. /*
  146. * datablob_parse - parse the keyctl data
  147. *
  148. * datablob format:
  149. * new [<format>] <master-key name> <decrypted data length>
  150. * load [<format>] <master-key name> <decrypted data length>
  151. * <encrypted iv + data>
  152. * update <new-master-key name>
  153. *
  154. * Tokenizes a copy of the keyctl data, returning a pointer to each token,
  155. * which is null terminated.
  156. *
  157. * On success returns 0, otherwise -EINVAL.
  158. */
  159. static int datablob_parse(char *datablob, const char **format,
  160. char **master_desc, char **decrypted_datalen,
  161. char **hex_encoded_iv)
  162. {
  163. substring_t args[MAX_OPT_ARGS];
  164. int ret = -EINVAL;
  165. int key_cmd;
  166. int key_format;
  167. char *p, *keyword;
  168. keyword = strsep(&datablob, " \t");
  169. if (!keyword) {
  170. pr_info("encrypted_key: insufficient parameters specified\n");
  171. return ret;
  172. }
  173. key_cmd = match_token(keyword, key_tokens, args);
  174. /* Get optional format: default | ecryptfs */
  175. p = strsep(&datablob, " \t");
  176. if (!p) {
  177. pr_err("encrypted_key: insufficient parameters specified\n");
  178. return ret;
  179. }
  180. key_format = match_token(p, key_format_tokens, args);
  181. switch (key_format) {
  182. case Opt_ecryptfs:
  183. case Opt_default:
  184. *format = p;
  185. *master_desc = strsep(&datablob, " \t");
  186. break;
  187. case Opt_error:
  188. *master_desc = p;
  189. break;
  190. }
  191. if (!*master_desc) {
  192. pr_info("encrypted_key: master key parameter is missing\n");
  193. goto out;
  194. }
  195. if (valid_master_desc(*master_desc, NULL) < 0) {
  196. pr_info("encrypted_key: master key parameter \'%s\' "
  197. "is invalid\n", *master_desc);
  198. goto out;
  199. }
  200. if (decrypted_datalen) {
  201. *decrypted_datalen = strsep(&datablob, " \t");
  202. if (!*decrypted_datalen) {
  203. pr_info("encrypted_key: keylen parameter is missing\n");
  204. goto out;
  205. }
  206. }
  207. switch (key_cmd) {
  208. case Opt_new:
  209. if (!decrypted_datalen) {
  210. pr_info("encrypted_key: keyword \'%s\' not allowed "
  211. "when called from .update method\n", keyword);
  212. break;
  213. }
  214. ret = 0;
  215. break;
  216. case Opt_load:
  217. if (!decrypted_datalen) {
  218. pr_info("encrypted_key: keyword \'%s\' not allowed "
  219. "when called from .update method\n", keyword);
  220. break;
  221. }
  222. *hex_encoded_iv = strsep(&datablob, " \t");
  223. if (!*hex_encoded_iv) {
  224. pr_info("encrypted_key: hex blob is missing\n");
  225. break;
  226. }
  227. ret = 0;
  228. break;
  229. case Opt_update:
  230. if (decrypted_datalen) {
  231. pr_info("encrypted_key: keyword \'%s\' not allowed "
  232. "when called from .instantiate method\n",
  233. keyword);
  234. break;
  235. }
  236. ret = 0;
  237. break;
  238. case Opt_err:
  239. pr_info("encrypted_key: keyword \'%s\' not recognized\n",
  240. keyword);
  241. break;
  242. }
  243. out:
  244. return ret;
  245. }
  246. /*
  247. * datablob_format - format as an ascii string, before copying to userspace
  248. */
  249. static char *datablob_format(struct encrypted_key_payload *epayload,
  250. size_t asciiblob_len)
  251. {
  252. char *ascii_buf, *bufp;
  253. u8 *iv = epayload->iv;
  254. int len;
  255. int i;
  256. ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
  257. if (!ascii_buf)
  258. goto out;
  259. ascii_buf[asciiblob_len] = '\0';
  260. /* copy datablob master_desc and datalen strings */
  261. len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
  262. epayload->master_desc, epayload->datalen);
  263. /* convert the hex encoded iv, encrypted-data and HMAC to ascii */
  264. bufp = &ascii_buf[len];
  265. for (i = 0; i < (asciiblob_len - len) / 2; i++)
  266. bufp = hex_byte_pack(bufp, iv[i]);
  267. out:
  268. return ascii_buf;
  269. }
  270. /*
  271. * request_user_key - request the user key
  272. *
  273. * Use a user provided key to encrypt/decrypt an encrypted-key.
  274. */
  275. static struct key *request_user_key(const char *master_desc, const u8 **master_key,
  276. size_t *master_keylen)
  277. {
  278. const struct user_key_payload *upayload;
  279. struct key *ukey;
  280. ukey = request_key(&key_type_user, master_desc, NULL);
  281. if (IS_ERR(ukey))
  282. goto error;
  283. down_read(&ukey->sem);
  284. upayload = user_key_payload(ukey);
  285. *master_key = upayload->data;
  286. *master_keylen = upayload->datalen;
  287. error:
  288. return ukey;
  289. }
  290. static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
  291. {
  292. struct sdesc *sdesc;
  293. int size;
  294. size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
  295. sdesc = kmalloc(size, GFP_KERNEL);
  296. if (!sdesc)
  297. return ERR_PTR(-ENOMEM);
  298. sdesc->shash.tfm = alg;
  299. sdesc->shash.flags = 0x0;
  300. return sdesc;
  301. }
  302. static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
  303. const u8 *buf, unsigned int buflen)
  304. {
  305. struct sdesc *sdesc;
  306. int ret;
  307. sdesc = alloc_sdesc(hmacalg);
  308. if (IS_ERR(sdesc)) {
  309. pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
  310. return PTR_ERR(sdesc);
  311. }
  312. ret = crypto_shash_setkey(hmacalg, key, keylen);
  313. if (!ret)
  314. ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
  315. kfree(sdesc);
  316. return ret;
  317. }
  318. static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
  319. {
  320. struct sdesc *sdesc;
  321. int ret;
  322. sdesc = alloc_sdesc(hashalg);
  323. if (IS_ERR(sdesc)) {
  324. pr_info("encrypted_key: can't alloc %s\n", hash_alg);
  325. return PTR_ERR(sdesc);
  326. }
  327. ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
  328. kfree(sdesc);
  329. return ret;
  330. }
  331. enum derived_key_type { ENC_KEY, AUTH_KEY };
  332. /* Derive authentication/encryption key from trusted key */
  333. static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
  334. const u8 *master_key, size_t master_keylen)
  335. {
  336. u8 *derived_buf;
  337. unsigned int derived_buf_len;
  338. int ret;
  339. derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
  340. if (derived_buf_len < HASH_SIZE)
  341. derived_buf_len = HASH_SIZE;
  342. derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
  343. if (!derived_buf) {
  344. pr_err("encrypted_key: out of memory\n");
  345. return -ENOMEM;
  346. }
  347. if (key_type)
  348. strcpy(derived_buf, "AUTH_KEY");
  349. else
  350. strcpy(derived_buf, "ENC_KEY");
  351. memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
  352. master_keylen);
  353. ret = calc_hash(derived_key, derived_buf, derived_buf_len);
  354. kfree(derived_buf);
  355. return ret;
  356. }
  357. static struct skcipher_request *init_skcipher_req(const u8 *key,
  358. unsigned int key_len)
  359. {
  360. struct skcipher_request *req;
  361. struct crypto_skcipher *tfm;
  362. int ret;
  363. tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  364. if (IS_ERR(tfm)) {
  365. pr_err("encrypted_key: failed to load %s transform (%ld)\n",
  366. blkcipher_alg, PTR_ERR(tfm));
  367. return ERR_CAST(tfm);
  368. }
  369. ret = crypto_skcipher_setkey(tfm, key, key_len);
  370. if (ret < 0) {
  371. pr_err("encrypted_key: failed to setkey (%d)\n", ret);
  372. crypto_free_skcipher(tfm);
  373. return ERR_PTR(ret);
  374. }
  375. req = skcipher_request_alloc(tfm, GFP_KERNEL);
  376. if (!req) {
  377. pr_err("encrypted_key: failed to allocate request for %s\n",
  378. blkcipher_alg);
  379. crypto_free_skcipher(tfm);
  380. return ERR_PTR(-ENOMEM);
  381. }
  382. skcipher_request_set_callback(req, 0, NULL, NULL);
  383. return req;
  384. }
  385. static struct key *request_master_key(struct encrypted_key_payload *epayload,
  386. const u8 **master_key, size_t *master_keylen)
  387. {
  388. struct key *mkey = NULL;
  389. if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
  390. KEY_TRUSTED_PREFIX_LEN)) {
  391. mkey = request_trusted_key(epayload->master_desc +
  392. KEY_TRUSTED_PREFIX_LEN,
  393. master_key, master_keylen);
  394. } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
  395. KEY_USER_PREFIX_LEN)) {
  396. mkey = request_user_key(epayload->master_desc +
  397. KEY_USER_PREFIX_LEN,
  398. master_key, master_keylen);
  399. } else
  400. goto out;
  401. if (IS_ERR(mkey)) {
  402. int ret = PTR_ERR(mkey);
  403. if (ret == -ENOTSUPP)
  404. pr_info("encrypted_key: key %s not supported",
  405. epayload->master_desc);
  406. else
  407. pr_info("encrypted_key: key %s not found",
  408. epayload->master_desc);
  409. goto out;
  410. }
  411. dump_master_key(*master_key, *master_keylen);
  412. out:
  413. return mkey;
  414. }
  415. /* Before returning data to userspace, encrypt decrypted data. */
  416. static int derived_key_encrypt(struct encrypted_key_payload *epayload,
  417. const u8 *derived_key,
  418. unsigned int derived_keylen)
  419. {
  420. struct scatterlist sg_in[2];
  421. struct scatterlist sg_out[1];
  422. struct crypto_skcipher *tfm;
  423. struct skcipher_request *req;
  424. unsigned int encrypted_datalen;
  425. u8 iv[AES_BLOCK_SIZE];
  426. unsigned int padlen;
  427. char pad[16];
  428. int ret;
  429. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  430. padlen = encrypted_datalen - epayload->decrypted_datalen;
  431. req = init_skcipher_req(derived_key, derived_keylen);
  432. ret = PTR_ERR(req);
  433. if (IS_ERR(req))
  434. goto out;
  435. dump_decrypted_data(epayload);
  436. memset(pad, 0, sizeof pad);
  437. sg_init_table(sg_in, 2);
  438. sg_set_buf(&sg_in[0], epayload->decrypted_data,
  439. epayload->decrypted_datalen);
  440. sg_set_buf(&sg_in[1], pad, padlen);
  441. sg_init_table(sg_out, 1);
  442. sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
  443. memcpy(iv, epayload->iv, sizeof(iv));
  444. skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
  445. ret = crypto_skcipher_encrypt(req);
  446. tfm = crypto_skcipher_reqtfm(req);
  447. skcipher_request_free(req);
  448. crypto_free_skcipher(tfm);
  449. if (ret < 0)
  450. pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
  451. else
  452. dump_encrypted_data(epayload, encrypted_datalen);
  453. out:
  454. return ret;
  455. }
  456. static int datablob_hmac_append(struct encrypted_key_payload *epayload,
  457. const u8 *master_key, size_t master_keylen)
  458. {
  459. u8 derived_key[HASH_SIZE];
  460. u8 *digest;
  461. int ret;
  462. ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
  463. if (ret < 0)
  464. goto out;
  465. digest = epayload->format + epayload->datablob_len;
  466. ret = calc_hmac(digest, derived_key, sizeof derived_key,
  467. epayload->format, epayload->datablob_len);
  468. if (!ret)
  469. dump_hmac(NULL, digest, HASH_SIZE);
  470. out:
  471. return ret;
  472. }
  473. /* verify HMAC before decrypting encrypted key */
  474. static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
  475. const u8 *format, const u8 *master_key,
  476. size_t master_keylen)
  477. {
  478. u8 derived_key[HASH_SIZE];
  479. u8 digest[HASH_SIZE];
  480. int ret;
  481. char *p;
  482. unsigned short len;
  483. ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
  484. if (ret < 0)
  485. goto out;
  486. len = epayload->datablob_len;
  487. if (!format) {
  488. p = epayload->master_desc;
  489. len -= strlen(epayload->format) + 1;
  490. } else
  491. p = epayload->format;
  492. ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
  493. if (ret < 0)
  494. goto out;
  495. ret = memcmp(digest, epayload->format + epayload->datablob_len,
  496. sizeof digest);
  497. if (ret) {
  498. ret = -EINVAL;
  499. dump_hmac("datablob",
  500. epayload->format + epayload->datablob_len,
  501. HASH_SIZE);
  502. dump_hmac("calc", digest, HASH_SIZE);
  503. }
  504. out:
  505. return ret;
  506. }
  507. static int derived_key_decrypt(struct encrypted_key_payload *epayload,
  508. const u8 *derived_key,
  509. unsigned int derived_keylen)
  510. {
  511. struct scatterlist sg_in[1];
  512. struct scatterlist sg_out[2];
  513. struct crypto_skcipher *tfm;
  514. struct skcipher_request *req;
  515. unsigned int encrypted_datalen;
  516. u8 iv[AES_BLOCK_SIZE];
  517. char pad[16];
  518. int ret;
  519. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  520. req = init_skcipher_req(derived_key, derived_keylen);
  521. ret = PTR_ERR(req);
  522. if (IS_ERR(req))
  523. goto out;
  524. dump_encrypted_data(epayload, encrypted_datalen);
  525. memset(pad, 0, sizeof pad);
  526. sg_init_table(sg_in, 1);
  527. sg_init_table(sg_out, 2);
  528. sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
  529. sg_set_buf(&sg_out[0], epayload->decrypted_data,
  530. epayload->decrypted_datalen);
  531. sg_set_buf(&sg_out[1], pad, sizeof pad);
  532. memcpy(iv, epayload->iv, sizeof(iv));
  533. skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
  534. ret = crypto_skcipher_decrypt(req);
  535. tfm = crypto_skcipher_reqtfm(req);
  536. skcipher_request_free(req);
  537. crypto_free_skcipher(tfm);
  538. if (ret < 0)
  539. goto out;
  540. dump_decrypted_data(epayload);
  541. out:
  542. return ret;
  543. }
  544. /* Allocate memory for decrypted key and datablob. */
  545. static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
  546. const char *format,
  547. const char *master_desc,
  548. const char *datalen)
  549. {
  550. struct encrypted_key_payload *epayload = NULL;
  551. unsigned short datablob_len;
  552. unsigned short decrypted_datalen;
  553. unsigned short payload_datalen;
  554. unsigned int encrypted_datalen;
  555. unsigned int format_len;
  556. long dlen;
  557. int ret;
  558. ret = kstrtol(datalen, 10, &dlen);
  559. if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
  560. return ERR_PTR(-EINVAL);
  561. format_len = (!format) ? strlen(key_format_default) : strlen(format);
  562. decrypted_datalen = dlen;
  563. payload_datalen = decrypted_datalen;
  564. if (format && !strcmp(format, key_format_ecryptfs)) {
  565. if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
  566. pr_err("encrypted_key: keylen for the ecryptfs format "
  567. "must be equal to %d bytes\n",
  568. ECRYPTFS_MAX_KEY_BYTES);
  569. return ERR_PTR(-EINVAL);
  570. }
  571. decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
  572. payload_datalen = sizeof(struct ecryptfs_auth_tok);
  573. }
  574. encrypted_datalen = roundup(decrypted_datalen, blksize);
  575. datablob_len = format_len + 1 + strlen(master_desc) + 1
  576. + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
  577. ret = key_payload_reserve(key, payload_datalen + datablob_len
  578. + HASH_SIZE + 1);
  579. if (ret < 0)
  580. return ERR_PTR(ret);
  581. epayload = kzalloc(sizeof(*epayload) + payload_datalen +
  582. datablob_len + HASH_SIZE + 1, GFP_KERNEL);
  583. if (!epayload)
  584. return ERR_PTR(-ENOMEM);
  585. epayload->payload_datalen = payload_datalen;
  586. epayload->decrypted_datalen = decrypted_datalen;
  587. epayload->datablob_len = datablob_len;
  588. return epayload;
  589. }
  590. static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
  591. const char *format, const char *hex_encoded_iv)
  592. {
  593. struct key *mkey;
  594. u8 derived_key[HASH_SIZE];
  595. const u8 *master_key;
  596. u8 *hmac;
  597. const char *hex_encoded_data;
  598. unsigned int encrypted_datalen;
  599. size_t master_keylen;
  600. size_t asciilen;
  601. int ret;
  602. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  603. asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
  604. if (strlen(hex_encoded_iv) != asciilen)
  605. return -EINVAL;
  606. hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
  607. ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
  608. if (ret < 0)
  609. return -EINVAL;
  610. ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
  611. encrypted_datalen);
  612. if (ret < 0)
  613. return -EINVAL;
  614. hmac = epayload->format + epayload->datablob_len;
  615. ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
  616. HASH_SIZE);
  617. if (ret < 0)
  618. return -EINVAL;
  619. mkey = request_master_key(epayload, &master_key, &master_keylen);
  620. if (IS_ERR(mkey))
  621. return PTR_ERR(mkey);
  622. ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
  623. if (ret < 0) {
  624. pr_err("encrypted_key: bad hmac (%d)\n", ret);
  625. goto out;
  626. }
  627. ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
  628. if (ret < 0)
  629. goto out;
  630. ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
  631. if (ret < 0)
  632. pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
  633. out:
  634. up_read(&mkey->sem);
  635. key_put(mkey);
  636. return ret;
  637. }
  638. static void __ekey_init(struct encrypted_key_payload *epayload,
  639. const char *format, const char *master_desc,
  640. const char *datalen)
  641. {
  642. unsigned int format_len;
  643. format_len = (!format) ? strlen(key_format_default) : strlen(format);
  644. epayload->format = epayload->payload_data + epayload->payload_datalen;
  645. epayload->master_desc = epayload->format + format_len + 1;
  646. epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
  647. epayload->iv = epayload->datalen + strlen(datalen) + 1;
  648. epayload->encrypted_data = epayload->iv + ivsize + 1;
  649. epayload->decrypted_data = epayload->payload_data;
  650. if (!format)
  651. memcpy(epayload->format, key_format_default, format_len);
  652. else {
  653. if (!strcmp(format, key_format_ecryptfs))
  654. epayload->decrypted_data =
  655. ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
  656. memcpy(epayload->format, format, format_len);
  657. }
  658. memcpy(epayload->master_desc, master_desc, strlen(master_desc));
  659. memcpy(epayload->datalen, datalen, strlen(datalen));
  660. }
  661. /*
  662. * encrypted_init - initialize an encrypted key
  663. *
  664. * For a new key, use a random number for both the iv and data
  665. * itself. For an old key, decrypt the hex encoded data.
  666. */
  667. static int encrypted_init(struct encrypted_key_payload *epayload,
  668. const char *key_desc, const char *format,
  669. const char *master_desc, const char *datalen,
  670. const char *hex_encoded_iv)
  671. {
  672. int ret = 0;
  673. if (format && !strcmp(format, key_format_ecryptfs)) {
  674. ret = valid_ecryptfs_desc(key_desc);
  675. if (ret < 0)
  676. return ret;
  677. ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
  678. key_desc);
  679. }
  680. __ekey_init(epayload, format, master_desc, datalen);
  681. if (!hex_encoded_iv) {
  682. get_random_bytes(epayload->iv, ivsize);
  683. get_random_bytes(epayload->decrypted_data,
  684. epayload->decrypted_datalen);
  685. } else
  686. ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
  687. return ret;
  688. }
  689. /*
  690. * encrypted_instantiate - instantiate an encrypted key
  691. *
  692. * Decrypt an existing encrypted datablob or create a new encrypted key
  693. * based on a kernel random number.
  694. *
  695. * On success, return 0. Otherwise return errno.
  696. */
  697. static int encrypted_instantiate(struct key *key,
  698. struct key_preparsed_payload *prep)
  699. {
  700. struct encrypted_key_payload *epayload = NULL;
  701. char *datablob = NULL;
  702. const char *format = NULL;
  703. char *master_desc = NULL;
  704. char *decrypted_datalen = NULL;
  705. char *hex_encoded_iv = NULL;
  706. size_t datalen = prep->datalen;
  707. int ret;
  708. if (datalen <= 0 || datalen > 32767 || !prep->data)
  709. return -EINVAL;
  710. datablob = kmalloc(datalen + 1, GFP_KERNEL);
  711. if (!datablob)
  712. return -ENOMEM;
  713. datablob[datalen] = 0;
  714. memcpy(datablob, prep->data, datalen);
  715. ret = datablob_parse(datablob, &format, &master_desc,
  716. &decrypted_datalen, &hex_encoded_iv);
  717. if (ret < 0)
  718. goto out;
  719. epayload = encrypted_key_alloc(key, format, master_desc,
  720. decrypted_datalen);
  721. if (IS_ERR(epayload)) {
  722. ret = PTR_ERR(epayload);
  723. goto out;
  724. }
  725. ret = encrypted_init(epayload, key->description, format, master_desc,
  726. decrypted_datalen, hex_encoded_iv);
  727. if (ret < 0) {
  728. kfree(epayload);
  729. goto out;
  730. }
  731. rcu_assign_keypointer(key, epayload);
  732. out:
  733. kfree(datablob);
  734. return ret;
  735. }
  736. static void encrypted_rcu_free(struct rcu_head *rcu)
  737. {
  738. struct encrypted_key_payload *epayload;
  739. epayload = container_of(rcu, struct encrypted_key_payload, rcu);
  740. memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
  741. kfree(epayload);
  742. }
  743. /*
  744. * encrypted_update - update the master key description
  745. *
  746. * Change the master key description for an existing encrypted key.
  747. * The next read will return an encrypted datablob using the new
  748. * master key description.
  749. *
  750. * On success, return 0. Otherwise return errno.
  751. */
  752. static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
  753. {
  754. struct encrypted_key_payload *epayload = key->payload.data[0];
  755. struct encrypted_key_payload *new_epayload;
  756. char *buf;
  757. char *new_master_desc = NULL;
  758. const char *format = NULL;
  759. size_t datalen = prep->datalen;
  760. int ret = 0;
  761. if (test_bit(KEY_FLAG_NEGATIVE, &key->flags))
  762. return -ENOKEY;
  763. if (datalen <= 0 || datalen > 32767 || !prep->data)
  764. return -EINVAL;
  765. buf = kmalloc(datalen + 1, GFP_KERNEL);
  766. if (!buf)
  767. return -ENOMEM;
  768. buf[datalen] = 0;
  769. memcpy(buf, prep->data, datalen);
  770. ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
  771. if (ret < 0)
  772. goto out;
  773. ret = valid_master_desc(new_master_desc, epayload->master_desc);
  774. if (ret < 0)
  775. goto out;
  776. new_epayload = encrypted_key_alloc(key, epayload->format,
  777. new_master_desc, epayload->datalen);
  778. if (IS_ERR(new_epayload)) {
  779. ret = PTR_ERR(new_epayload);
  780. goto out;
  781. }
  782. __ekey_init(new_epayload, epayload->format, new_master_desc,
  783. epayload->datalen);
  784. memcpy(new_epayload->iv, epayload->iv, ivsize);
  785. memcpy(new_epayload->payload_data, epayload->payload_data,
  786. epayload->payload_datalen);
  787. rcu_assign_keypointer(key, new_epayload);
  788. call_rcu(&epayload->rcu, encrypted_rcu_free);
  789. out:
  790. kfree(buf);
  791. return ret;
  792. }
  793. /*
  794. * encrypted_read - format and copy the encrypted data to userspace
  795. *
  796. * The resulting datablob format is:
  797. * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
  798. *
  799. * On success, return to userspace the encrypted key datablob size.
  800. */
  801. static long encrypted_read(const struct key *key, char __user *buffer,
  802. size_t buflen)
  803. {
  804. struct encrypted_key_payload *epayload;
  805. struct key *mkey;
  806. const u8 *master_key;
  807. size_t master_keylen;
  808. char derived_key[HASH_SIZE];
  809. char *ascii_buf;
  810. size_t asciiblob_len;
  811. int ret;
  812. epayload = rcu_dereference_key(key);
  813. /* returns the hex encoded iv, encrypted-data, and hmac as ascii */
  814. asciiblob_len = epayload->datablob_len + ivsize + 1
  815. + roundup(epayload->decrypted_datalen, blksize)
  816. + (HASH_SIZE * 2);
  817. if (!buffer || buflen < asciiblob_len)
  818. return asciiblob_len;
  819. mkey = request_master_key(epayload, &master_key, &master_keylen);
  820. if (IS_ERR(mkey))
  821. return PTR_ERR(mkey);
  822. ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
  823. if (ret < 0)
  824. goto out;
  825. ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
  826. if (ret < 0)
  827. goto out;
  828. ret = datablob_hmac_append(epayload, master_key, master_keylen);
  829. if (ret < 0)
  830. goto out;
  831. ascii_buf = datablob_format(epayload, asciiblob_len);
  832. if (!ascii_buf) {
  833. ret = -ENOMEM;
  834. goto out;
  835. }
  836. up_read(&mkey->sem);
  837. key_put(mkey);
  838. if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
  839. ret = -EFAULT;
  840. kfree(ascii_buf);
  841. return asciiblob_len;
  842. out:
  843. up_read(&mkey->sem);
  844. key_put(mkey);
  845. return ret;
  846. }
  847. /*
  848. * encrypted_destroy - before freeing the key, clear the decrypted data
  849. *
  850. * Before freeing the key, clear the memory containing the decrypted
  851. * key data.
  852. */
  853. static void encrypted_destroy(struct key *key)
  854. {
  855. struct encrypted_key_payload *epayload = key->payload.data[0];
  856. if (!epayload)
  857. return;
  858. memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
  859. kfree(key->payload.data[0]);
  860. }
  861. struct key_type key_type_encrypted = {
  862. .name = "encrypted",
  863. .instantiate = encrypted_instantiate,
  864. .update = encrypted_update,
  865. .destroy = encrypted_destroy,
  866. .describe = user_describe,
  867. .read = encrypted_read,
  868. };
  869. EXPORT_SYMBOL_GPL(key_type_encrypted);
  870. static void encrypted_shash_release(void)
  871. {
  872. if (hashalg)
  873. crypto_free_shash(hashalg);
  874. if (hmacalg)
  875. crypto_free_shash(hmacalg);
  876. }
  877. static int __init encrypted_shash_alloc(void)
  878. {
  879. int ret;
  880. hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
  881. if (IS_ERR(hmacalg)) {
  882. pr_info("encrypted_key: could not allocate crypto %s\n",
  883. hmac_alg);
  884. return PTR_ERR(hmacalg);
  885. }
  886. hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
  887. if (IS_ERR(hashalg)) {
  888. pr_info("encrypted_key: could not allocate crypto %s\n",
  889. hash_alg);
  890. ret = PTR_ERR(hashalg);
  891. goto hashalg_fail;
  892. }
  893. return 0;
  894. hashalg_fail:
  895. crypto_free_shash(hmacalg);
  896. return ret;
  897. }
  898. static int __init init_encrypted(void)
  899. {
  900. int ret;
  901. ret = encrypted_shash_alloc();
  902. if (ret < 0)
  903. return ret;
  904. ret = aes_get_sizes();
  905. if (ret < 0)
  906. goto out;
  907. ret = register_key_type(&key_type_encrypted);
  908. if (ret < 0)
  909. goto out;
  910. return 0;
  911. out:
  912. encrypted_shash_release();
  913. return ret;
  914. }
  915. static void __exit cleanup_encrypted(void)
  916. {
  917. encrypted_shash_release();
  918. unregister_key_type(&key_type_encrypted);
  919. }
  920. late_initcall(init_encrypted);
  921. module_exit(cleanup_encrypted);
  922. MODULE_LICENSE("GPL");