wpa.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251
  1. /*
  2. * Copyright 2002-2004, Instant802 Networks, Inc.
  3. * Copyright 2008, Jouni Malinen <j@w1.fi>
  4. * Copyright (C) 2016 Intel Deutschland GmbH
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/netdevice.h>
  11. #include <linux/types.h>
  12. #include <linux/skbuff.h>
  13. #include <linux/compiler.h>
  14. #include <linux/ieee80211.h>
  15. #include <linux/gfp.h>
  16. #include <asm/unaligned.h>
  17. #include <net/mac80211.h>
  18. #include <crypto/aes.h>
  19. #include "ieee80211_i.h"
  20. #include "michael.h"
  21. #include "tkip.h"
  22. #include "aes_ccm.h"
  23. #include "aes_cmac.h"
  24. #include "aes_gmac.h"
  25. #include "aes_gcm.h"
  26. #include "wpa.h"
  27. ieee80211_tx_result
  28. ieee80211_tx_h_michael_mic_add(struct ieee80211_tx_data *tx)
  29. {
  30. u8 *data, *key, *mic;
  31. size_t data_len;
  32. unsigned int hdrlen;
  33. struct ieee80211_hdr *hdr;
  34. struct sk_buff *skb = tx->skb;
  35. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  36. int tail;
  37. hdr = (struct ieee80211_hdr *)skb->data;
  38. if (!tx->key || tx->key->conf.cipher != WLAN_CIPHER_SUITE_TKIP ||
  39. skb->len < 24 || !ieee80211_is_data_present(hdr->frame_control))
  40. return TX_CONTINUE;
  41. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  42. if (skb->len < hdrlen)
  43. return TX_DROP;
  44. data = skb->data + hdrlen;
  45. data_len = skb->len - hdrlen;
  46. if (unlikely(info->flags & IEEE80211_TX_INTFL_TKIP_MIC_FAILURE)) {
  47. /* Need to use software crypto for the test */
  48. info->control.hw_key = NULL;
  49. }
  50. if (info->control.hw_key &&
  51. (info->flags & IEEE80211_TX_CTL_DONTFRAG ||
  52. ieee80211_hw_check(&tx->local->hw, SUPPORTS_TX_FRAG)) &&
  53. !(tx->key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC)) {
  54. /* hwaccel - with no need for SW-generated MMIC */
  55. return TX_CONTINUE;
  56. }
  57. tail = MICHAEL_MIC_LEN;
  58. if (!info->control.hw_key)
  59. tail += IEEE80211_TKIP_ICV_LEN;
  60. if (WARN(skb_tailroom(skb) < tail ||
  61. skb_headroom(skb) < IEEE80211_TKIP_IV_LEN,
  62. "mmic: not enough head/tail (%d/%d,%d/%d)\n",
  63. skb_headroom(skb), IEEE80211_TKIP_IV_LEN,
  64. skb_tailroom(skb), tail))
  65. return TX_DROP;
  66. key = &tx->key->conf.key[NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY];
  67. mic = skb_put(skb, MICHAEL_MIC_LEN);
  68. michael_mic(key, hdr, data, data_len, mic);
  69. if (unlikely(info->flags & IEEE80211_TX_INTFL_TKIP_MIC_FAILURE))
  70. mic[0]++;
  71. return TX_CONTINUE;
  72. }
  73. ieee80211_rx_result
  74. ieee80211_rx_h_michael_mic_verify(struct ieee80211_rx_data *rx)
  75. {
  76. u8 *data, *key = NULL;
  77. size_t data_len;
  78. unsigned int hdrlen;
  79. u8 mic[MICHAEL_MIC_LEN];
  80. struct sk_buff *skb = rx->skb;
  81. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  82. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  83. /*
  84. * it makes no sense to check for MIC errors on anything other
  85. * than data frames.
  86. */
  87. if (!ieee80211_is_data_present(hdr->frame_control))
  88. return RX_CONTINUE;
  89. /*
  90. * No way to verify the MIC if the hardware stripped it or
  91. * the IV with the key index. In this case we have solely rely
  92. * on the driver to set RX_FLAG_MMIC_ERROR in the event of a
  93. * MIC failure report.
  94. */
  95. if (status->flag & (RX_FLAG_MMIC_STRIPPED | RX_FLAG_IV_STRIPPED)) {
  96. if (status->flag & RX_FLAG_MMIC_ERROR)
  97. goto mic_fail_no_key;
  98. if (!(status->flag & RX_FLAG_IV_STRIPPED) && rx->key &&
  99. rx->key->conf.cipher == WLAN_CIPHER_SUITE_TKIP)
  100. goto update_iv;
  101. return RX_CONTINUE;
  102. }
  103. /*
  104. * Some hardware seems to generate Michael MIC failure reports; even
  105. * though, the frame was not encrypted with TKIP and therefore has no
  106. * MIC. Ignore the flag them to avoid triggering countermeasures.
  107. */
  108. if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_TKIP ||
  109. !(status->flag & RX_FLAG_DECRYPTED))
  110. return RX_CONTINUE;
  111. if (rx->sdata->vif.type == NL80211_IFTYPE_AP && rx->key->conf.keyidx) {
  112. /*
  113. * APs with pairwise keys should never receive Michael MIC
  114. * errors for non-zero keyidx because these are reserved for
  115. * group keys and only the AP is sending real multicast
  116. * frames in the BSS.
  117. */
  118. return RX_DROP_UNUSABLE;
  119. }
  120. if (status->flag & RX_FLAG_MMIC_ERROR)
  121. goto mic_fail;
  122. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  123. if (skb->len < hdrlen + MICHAEL_MIC_LEN)
  124. return RX_DROP_UNUSABLE;
  125. if (skb_linearize(rx->skb))
  126. return RX_DROP_UNUSABLE;
  127. hdr = (void *)skb->data;
  128. data = skb->data + hdrlen;
  129. data_len = skb->len - hdrlen - MICHAEL_MIC_LEN;
  130. key = &rx->key->conf.key[NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY];
  131. michael_mic(key, hdr, data, data_len, mic);
  132. if (memcmp(mic, data + data_len, MICHAEL_MIC_LEN) != 0)
  133. goto mic_fail;
  134. /* remove Michael MIC from payload */
  135. skb_trim(skb, skb->len - MICHAEL_MIC_LEN);
  136. update_iv:
  137. /* update IV in key information to be able to detect replays */
  138. rx->key->u.tkip.rx[rx->security_idx].iv32 = rx->tkip_iv32;
  139. rx->key->u.tkip.rx[rx->security_idx].iv16 = rx->tkip_iv16;
  140. return RX_CONTINUE;
  141. mic_fail:
  142. rx->key->u.tkip.mic_failures++;
  143. mic_fail_no_key:
  144. /*
  145. * In some cases the key can be unset - e.g. a multicast packet, in
  146. * a driver that supports HW encryption. Send up the key idx only if
  147. * the key is set.
  148. */
  149. cfg80211_michael_mic_failure(rx->sdata->dev, hdr->addr2,
  150. is_multicast_ether_addr(hdr->addr1) ?
  151. NL80211_KEYTYPE_GROUP :
  152. NL80211_KEYTYPE_PAIRWISE,
  153. rx->key ? rx->key->conf.keyidx : -1,
  154. NULL, GFP_ATOMIC);
  155. return RX_DROP_UNUSABLE;
  156. }
  157. static int tkip_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb)
  158. {
  159. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  160. struct ieee80211_key *key = tx->key;
  161. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  162. unsigned int hdrlen;
  163. int len, tail;
  164. u64 pn;
  165. u8 *pos;
  166. if (info->control.hw_key &&
  167. !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) &&
  168. !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) {
  169. /* hwaccel - with no need for software-generated IV */
  170. return 0;
  171. }
  172. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  173. len = skb->len - hdrlen;
  174. if (info->control.hw_key)
  175. tail = 0;
  176. else
  177. tail = IEEE80211_TKIP_ICV_LEN;
  178. if (WARN_ON(skb_tailroom(skb) < tail ||
  179. skb_headroom(skb) < IEEE80211_TKIP_IV_LEN))
  180. return -1;
  181. pos = skb_push(skb, IEEE80211_TKIP_IV_LEN);
  182. memmove(pos, pos + IEEE80211_TKIP_IV_LEN, hdrlen);
  183. pos += hdrlen;
  184. /* the HW only needs room for the IV, but not the actual IV */
  185. if (info->control.hw_key &&
  186. (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE))
  187. return 0;
  188. /* Increase IV for the frame */
  189. pn = atomic64_inc_return(&key->conf.tx_pn);
  190. pos = ieee80211_tkip_add_iv(pos, &key->conf, pn);
  191. /* hwaccel - with software IV */
  192. if (info->control.hw_key)
  193. return 0;
  194. /* Add room for ICV */
  195. skb_put(skb, IEEE80211_TKIP_ICV_LEN);
  196. return ieee80211_tkip_encrypt_data(tx->local->wep_tx_tfm,
  197. key, skb, pos, len);
  198. }
  199. ieee80211_tx_result
  200. ieee80211_crypto_tkip_encrypt(struct ieee80211_tx_data *tx)
  201. {
  202. struct sk_buff *skb;
  203. ieee80211_tx_set_protected(tx);
  204. skb_queue_walk(&tx->skbs, skb) {
  205. if (tkip_encrypt_skb(tx, skb) < 0)
  206. return TX_DROP;
  207. }
  208. return TX_CONTINUE;
  209. }
  210. ieee80211_rx_result
  211. ieee80211_crypto_tkip_decrypt(struct ieee80211_rx_data *rx)
  212. {
  213. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  214. int hdrlen, res, hwaccel = 0;
  215. struct ieee80211_key *key = rx->key;
  216. struct sk_buff *skb = rx->skb;
  217. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  218. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  219. if (!ieee80211_is_data(hdr->frame_control))
  220. return RX_CONTINUE;
  221. if (!rx->sta || skb->len - hdrlen < 12)
  222. return RX_DROP_UNUSABLE;
  223. /* it may be possible to optimize this a bit more */
  224. if (skb_linearize(rx->skb))
  225. return RX_DROP_UNUSABLE;
  226. hdr = (void *)skb->data;
  227. /*
  228. * Let TKIP code verify IV, but skip decryption.
  229. * In the case where hardware checks the IV as well,
  230. * we don't even get here, see ieee80211_rx_h_decrypt()
  231. */
  232. if (status->flag & RX_FLAG_DECRYPTED)
  233. hwaccel = 1;
  234. res = ieee80211_tkip_decrypt_data(rx->local->wep_rx_tfm,
  235. key, skb->data + hdrlen,
  236. skb->len - hdrlen, rx->sta->sta.addr,
  237. hdr->addr1, hwaccel, rx->security_idx,
  238. &rx->tkip_iv32,
  239. &rx->tkip_iv16);
  240. if (res != TKIP_DECRYPT_OK)
  241. return RX_DROP_UNUSABLE;
  242. /* Trim ICV */
  243. skb_trim(skb, skb->len - IEEE80211_TKIP_ICV_LEN);
  244. /* Remove IV */
  245. memmove(skb->data + IEEE80211_TKIP_IV_LEN, skb->data, hdrlen);
  246. skb_pull(skb, IEEE80211_TKIP_IV_LEN);
  247. return RX_CONTINUE;
  248. }
  249. static void ccmp_special_blocks(struct sk_buff *skb, u8 *pn, u8 *b_0, u8 *aad)
  250. {
  251. __le16 mask_fc;
  252. int a4_included, mgmt;
  253. u8 qos_tid;
  254. u16 len_a;
  255. unsigned int hdrlen;
  256. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  257. /*
  258. * Mask FC: zero subtype b4 b5 b6 (if not mgmt)
  259. * Retry, PwrMgt, MoreData; set Protected
  260. */
  261. mgmt = ieee80211_is_mgmt(hdr->frame_control);
  262. mask_fc = hdr->frame_control;
  263. mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY |
  264. IEEE80211_FCTL_PM | IEEE80211_FCTL_MOREDATA);
  265. if (!mgmt)
  266. mask_fc &= ~cpu_to_le16(0x0070);
  267. mask_fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  268. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  269. len_a = hdrlen - 2;
  270. a4_included = ieee80211_has_a4(hdr->frame_control);
  271. if (ieee80211_is_data_qos(hdr->frame_control))
  272. qos_tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
  273. else
  274. qos_tid = 0;
  275. /* In CCM, the initial vectors (IV) used for CTR mode encryption and CBC
  276. * mode authentication are not allowed to collide, yet both are derived
  277. * from this vector b_0. We only set L := 1 here to indicate that the
  278. * data size can be represented in (L+1) bytes. The CCM layer will take
  279. * care of storing the data length in the top (L+1) bytes and setting
  280. * and clearing the other bits as is required to derive the two IVs.
  281. */
  282. b_0[0] = 0x1;
  283. /* Nonce: Nonce Flags | A2 | PN
  284. * Nonce Flags: Priority (b0..b3) | Management (b4) | Reserved (b5..b7)
  285. */
  286. b_0[1] = qos_tid | (mgmt << 4);
  287. memcpy(&b_0[2], hdr->addr2, ETH_ALEN);
  288. memcpy(&b_0[8], pn, IEEE80211_CCMP_PN_LEN);
  289. /* AAD (extra authenticate-only data) / masked 802.11 header
  290. * FC | A1 | A2 | A3 | SC | [A4] | [QC] */
  291. put_unaligned_be16(len_a, &aad[0]);
  292. put_unaligned(mask_fc, (__le16 *)&aad[2]);
  293. memcpy(&aad[4], &hdr->addr1, 3 * ETH_ALEN);
  294. /* Mask Seq#, leave Frag# */
  295. aad[22] = *((u8 *) &hdr->seq_ctrl) & 0x0f;
  296. aad[23] = 0;
  297. if (a4_included) {
  298. memcpy(&aad[24], hdr->addr4, ETH_ALEN);
  299. aad[30] = qos_tid;
  300. aad[31] = 0;
  301. } else {
  302. memset(&aad[24], 0, ETH_ALEN + IEEE80211_QOS_CTL_LEN);
  303. aad[24] = qos_tid;
  304. }
  305. }
  306. static inline void ccmp_pn2hdr(u8 *hdr, u8 *pn, int key_id)
  307. {
  308. hdr[0] = pn[5];
  309. hdr[1] = pn[4];
  310. hdr[2] = 0;
  311. hdr[3] = 0x20 | (key_id << 6);
  312. hdr[4] = pn[3];
  313. hdr[5] = pn[2];
  314. hdr[6] = pn[1];
  315. hdr[7] = pn[0];
  316. }
  317. static inline void ccmp_hdr2pn(u8 *pn, u8 *hdr)
  318. {
  319. pn[0] = hdr[7];
  320. pn[1] = hdr[6];
  321. pn[2] = hdr[5];
  322. pn[3] = hdr[4];
  323. pn[4] = hdr[1];
  324. pn[5] = hdr[0];
  325. }
  326. static int ccmp_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb,
  327. unsigned int mic_len)
  328. {
  329. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  330. struct ieee80211_key *key = tx->key;
  331. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  332. int hdrlen, len, tail;
  333. u8 *pos;
  334. u8 pn[6];
  335. u64 pn64;
  336. u8 aad[CCM_AAD_LEN];
  337. u8 b_0[AES_BLOCK_SIZE];
  338. if (info->control.hw_key &&
  339. !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) &&
  340. !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
  341. !((info->control.hw_key->flags &
  342. IEEE80211_KEY_FLAG_GENERATE_IV_MGMT) &&
  343. ieee80211_is_mgmt(hdr->frame_control))) {
  344. /*
  345. * hwaccel has no need for preallocated room for CCMP
  346. * header or MIC fields
  347. */
  348. return 0;
  349. }
  350. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  351. len = skb->len - hdrlen;
  352. if (info->control.hw_key)
  353. tail = 0;
  354. else
  355. tail = mic_len;
  356. if (WARN_ON(skb_tailroom(skb) < tail ||
  357. skb_headroom(skb) < IEEE80211_CCMP_HDR_LEN))
  358. return -1;
  359. pos = skb_push(skb, IEEE80211_CCMP_HDR_LEN);
  360. memmove(pos, pos + IEEE80211_CCMP_HDR_LEN, hdrlen);
  361. /* the HW only needs room for the IV, but not the actual IV */
  362. if (info->control.hw_key &&
  363. (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE))
  364. return 0;
  365. hdr = (struct ieee80211_hdr *) pos;
  366. pos += hdrlen;
  367. pn64 = atomic64_inc_return(&key->conf.tx_pn);
  368. pn[5] = pn64;
  369. pn[4] = pn64 >> 8;
  370. pn[3] = pn64 >> 16;
  371. pn[2] = pn64 >> 24;
  372. pn[1] = pn64 >> 32;
  373. pn[0] = pn64 >> 40;
  374. ccmp_pn2hdr(pos, pn, key->conf.keyidx);
  375. /* hwaccel - with software CCMP header */
  376. if (info->control.hw_key)
  377. return 0;
  378. pos += IEEE80211_CCMP_HDR_LEN;
  379. ccmp_special_blocks(skb, pn, b_0, aad);
  380. return ieee80211_aes_ccm_encrypt(key->u.ccmp.tfm, b_0, aad, pos, len,
  381. skb_put(skb, mic_len), mic_len);
  382. }
  383. ieee80211_tx_result
  384. ieee80211_crypto_ccmp_encrypt(struct ieee80211_tx_data *tx,
  385. unsigned int mic_len)
  386. {
  387. struct sk_buff *skb;
  388. ieee80211_tx_set_protected(tx);
  389. skb_queue_walk(&tx->skbs, skb) {
  390. if (ccmp_encrypt_skb(tx, skb, mic_len) < 0)
  391. return TX_DROP;
  392. }
  393. return TX_CONTINUE;
  394. }
  395. ieee80211_rx_result
  396. ieee80211_crypto_ccmp_decrypt(struct ieee80211_rx_data *rx,
  397. unsigned int mic_len)
  398. {
  399. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
  400. int hdrlen;
  401. struct ieee80211_key *key = rx->key;
  402. struct sk_buff *skb = rx->skb;
  403. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  404. u8 pn[IEEE80211_CCMP_PN_LEN];
  405. int data_len;
  406. int queue;
  407. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  408. if (!ieee80211_is_data(hdr->frame_control) &&
  409. !ieee80211_is_robust_mgmt_frame(skb))
  410. return RX_CONTINUE;
  411. if (status->flag & RX_FLAG_DECRYPTED) {
  412. if (!pskb_may_pull(rx->skb, hdrlen + IEEE80211_CCMP_HDR_LEN))
  413. return RX_DROP_UNUSABLE;
  414. if (status->flag & RX_FLAG_MIC_STRIPPED)
  415. mic_len = 0;
  416. } else {
  417. if (skb_linearize(rx->skb))
  418. return RX_DROP_UNUSABLE;
  419. }
  420. data_len = skb->len - hdrlen - IEEE80211_CCMP_HDR_LEN - mic_len;
  421. if (!rx->sta || data_len < 0)
  422. return RX_DROP_UNUSABLE;
  423. if (!(status->flag & RX_FLAG_PN_VALIDATED)) {
  424. int res;
  425. ccmp_hdr2pn(pn, skb->data + hdrlen);
  426. queue = rx->security_idx;
  427. res = memcmp(pn, key->u.ccmp.rx_pn[queue],
  428. IEEE80211_CCMP_PN_LEN);
  429. if (res < 0 ||
  430. (!res && !(status->flag & RX_FLAG_ALLOW_SAME_PN))) {
  431. key->u.ccmp.replays++;
  432. return RX_DROP_UNUSABLE;
  433. }
  434. if (!(status->flag & RX_FLAG_DECRYPTED)) {
  435. u8 aad[2 * AES_BLOCK_SIZE];
  436. u8 b_0[AES_BLOCK_SIZE];
  437. /* hardware didn't decrypt/verify MIC */
  438. ccmp_special_blocks(skb, pn, b_0, aad);
  439. if (ieee80211_aes_ccm_decrypt(
  440. key->u.ccmp.tfm, b_0, aad,
  441. skb->data + hdrlen + IEEE80211_CCMP_HDR_LEN,
  442. data_len,
  443. skb->data + skb->len - mic_len, mic_len))
  444. return RX_DROP_UNUSABLE;
  445. }
  446. memcpy(key->u.ccmp.rx_pn[queue], pn, IEEE80211_CCMP_PN_LEN);
  447. }
  448. /* Remove CCMP header and MIC */
  449. if (pskb_trim(skb, skb->len - mic_len))
  450. return RX_DROP_UNUSABLE;
  451. memmove(skb->data + IEEE80211_CCMP_HDR_LEN, skb->data, hdrlen);
  452. skb_pull(skb, IEEE80211_CCMP_HDR_LEN);
  453. return RX_CONTINUE;
  454. }
  455. static void gcmp_special_blocks(struct sk_buff *skb, u8 *pn, u8 *j_0, u8 *aad)
  456. {
  457. __le16 mask_fc;
  458. u8 qos_tid;
  459. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  460. memcpy(j_0, hdr->addr2, ETH_ALEN);
  461. memcpy(&j_0[ETH_ALEN], pn, IEEE80211_GCMP_PN_LEN);
  462. j_0[13] = 0;
  463. j_0[14] = 0;
  464. j_0[AES_BLOCK_SIZE - 1] = 0x01;
  465. /* AAD (extra authenticate-only data) / masked 802.11 header
  466. * FC | A1 | A2 | A3 | SC | [A4] | [QC]
  467. */
  468. put_unaligned_be16(ieee80211_hdrlen(hdr->frame_control) - 2, &aad[0]);
  469. /* Mask FC: zero subtype b4 b5 b6 (if not mgmt)
  470. * Retry, PwrMgt, MoreData; set Protected
  471. */
  472. mask_fc = hdr->frame_control;
  473. mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY |
  474. IEEE80211_FCTL_PM | IEEE80211_FCTL_MOREDATA);
  475. if (!ieee80211_is_mgmt(hdr->frame_control))
  476. mask_fc &= ~cpu_to_le16(0x0070);
  477. mask_fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  478. put_unaligned(mask_fc, (__le16 *)&aad[2]);
  479. memcpy(&aad[4], &hdr->addr1, 3 * ETH_ALEN);
  480. /* Mask Seq#, leave Frag# */
  481. aad[22] = *((u8 *)&hdr->seq_ctrl) & 0x0f;
  482. aad[23] = 0;
  483. if (ieee80211_is_data_qos(hdr->frame_control))
  484. qos_tid = *ieee80211_get_qos_ctl(hdr) &
  485. IEEE80211_QOS_CTL_TID_MASK;
  486. else
  487. qos_tid = 0;
  488. if (ieee80211_has_a4(hdr->frame_control)) {
  489. memcpy(&aad[24], hdr->addr4, ETH_ALEN);
  490. aad[30] = qos_tid;
  491. aad[31] = 0;
  492. } else {
  493. memset(&aad[24], 0, ETH_ALEN + IEEE80211_QOS_CTL_LEN);
  494. aad[24] = qos_tid;
  495. }
  496. }
  497. static inline void gcmp_pn2hdr(u8 *hdr, const u8 *pn, int key_id)
  498. {
  499. hdr[0] = pn[5];
  500. hdr[1] = pn[4];
  501. hdr[2] = 0;
  502. hdr[3] = 0x20 | (key_id << 6);
  503. hdr[4] = pn[3];
  504. hdr[5] = pn[2];
  505. hdr[6] = pn[1];
  506. hdr[7] = pn[0];
  507. }
  508. static inline void gcmp_hdr2pn(u8 *pn, const u8 *hdr)
  509. {
  510. pn[0] = hdr[7];
  511. pn[1] = hdr[6];
  512. pn[2] = hdr[5];
  513. pn[3] = hdr[4];
  514. pn[4] = hdr[1];
  515. pn[5] = hdr[0];
  516. }
  517. static int gcmp_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb)
  518. {
  519. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  520. struct ieee80211_key *key = tx->key;
  521. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  522. int hdrlen, len, tail;
  523. u8 *pos;
  524. u8 pn[6];
  525. u64 pn64;
  526. u8 aad[GCM_AAD_LEN];
  527. u8 j_0[AES_BLOCK_SIZE];
  528. if (info->control.hw_key &&
  529. !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) &&
  530. !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
  531. !((info->control.hw_key->flags &
  532. IEEE80211_KEY_FLAG_GENERATE_IV_MGMT) &&
  533. ieee80211_is_mgmt(hdr->frame_control))) {
  534. /* hwaccel has no need for preallocated room for GCMP
  535. * header or MIC fields
  536. */
  537. return 0;
  538. }
  539. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  540. len = skb->len - hdrlen;
  541. if (info->control.hw_key)
  542. tail = 0;
  543. else
  544. tail = IEEE80211_GCMP_MIC_LEN;
  545. if (WARN_ON(skb_tailroom(skb) < tail ||
  546. skb_headroom(skb) < IEEE80211_GCMP_HDR_LEN))
  547. return -1;
  548. pos = skb_push(skb, IEEE80211_GCMP_HDR_LEN);
  549. memmove(pos, pos + IEEE80211_GCMP_HDR_LEN, hdrlen);
  550. skb_set_network_header(skb, skb_network_offset(skb) +
  551. IEEE80211_GCMP_HDR_LEN);
  552. /* the HW only needs room for the IV, but not the actual IV */
  553. if (info->control.hw_key &&
  554. (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE))
  555. return 0;
  556. hdr = (struct ieee80211_hdr *)pos;
  557. pos += hdrlen;
  558. pn64 = atomic64_inc_return(&key->conf.tx_pn);
  559. pn[5] = pn64;
  560. pn[4] = pn64 >> 8;
  561. pn[3] = pn64 >> 16;
  562. pn[2] = pn64 >> 24;
  563. pn[1] = pn64 >> 32;
  564. pn[0] = pn64 >> 40;
  565. gcmp_pn2hdr(pos, pn, key->conf.keyidx);
  566. /* hwaccel - with software GCMP header */
  567. if (info->control.hw_key)
  568. return 0;
  569. pos += IEEE80211_GCMP_HDR_LEN;
  570. gcmp_special_blocks(skb, pn, j_0, aad);
  571. return ieee80211_aes_gcm_encrypt(key->u.gcmp.tfm, j_0, aad, pos, len,
  572. skb_put(skb, IEEE80211_GCMP_MIC_LEN));
  573. }
  574. ieee80211_tx_result
  575. ieee80211_crypto_gcmp_encrypt(struct ieee80211_tx_data *tx)
  576. {
  577. struct sk_buff *skb;
  578. ieee80211_tx_set_protected(tx);
  579. skb_queue_walk(&tx->skbs, skb) {
  580. if (gcmp_encrypt_skb(tx, skb) < 0)
  581. return TX_DROP;
  582. }
  583. return TX_CONTINUE;
  584. }
  585. ieee80211_rx_result
  586. ieee80211_crypto_gcmp_decrypt(struct ieee80211_rx_data *rx)
  587. {
  588. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
  589. int hdrlen;
  590. struct ieee80211_key *key = rx->key;
  591. struct sk_buff *skb = rx->skb;
  592. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  593. u8 pn[IEEE80211_GCMP_PN_LEN];
  594. int data_len, queue, mic_len = IEEE80211_GCMP_MIC_LEN;
  595. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  596. if (!ieee80211_is_data(hdr->frame_control) &&
  597. !ieee80211_is_robust_mgmt_frame(skb))
  598. return RX_CONTINUE;
  599. if (status->flag & RX_FLAG_DECRYPTED) {
  600. if (!pskb_may_pull(rx->skb, hdrlen + IEEE80211_GCMP_HDR_LEN))
  601. return RX_DROP_UNUSABLE;
  602. if (status->flag & RX_FLAG_MIC_STRIPPED)
  603. mic_len = 0;
  604. } else {
  605. if (skb_linearize(rx->skb))
  606. return RX_DROP_UNUSABLE;
  607. }
  608. data_len = skb->len - hdrlen - IEEE80211_GCMP_HDR_LEN - mic_len;
  609. if (!rx->sta || data_len < 0)
  610. return RX_DROP_UNUSABLE;
  611. if (!(status->flag & RX_FLAG_PN_VALIDATED)) {
  612. int res;
  613. gcmp_hdr2pn(pn, skb->data + hdrlen);
  614. queue = rx->security_idx;
  615. res = memcmp(pn, key->u.gcmp.rx_pn[queue],
  616. IEEE80211_GCMP_PN_LEN);
  617. if (res < 0 ||
  618. (!res && !(status->flag & RX_FLAG_ALLOW_SAME_PN))) {
  619. key->u.gcmp.replays++;
  620. return RX_DROP_UNUSABLE;
  621. }
  622. if (!(status->flag & RX_FLAG_DECRYPTED)) {
  623. u8 aad[2 * AES_BLOCK_SIZE];
  624. u8 j_0[AES_BLOCK_SIZE];
  625. /* hardware didn't decrypt/verify MIC */
  626. gcmp_special_blocks(skb, pn, j_0, aad);
  627. if (ieee80211_aes_gcm_decrypt(
  628. key->u.gcmp.tfm, j_0, aad,
  629. skb->data + hdrlen + IEEE80211_GCMP_HDR_LEN,
  630. data_len,
  631. skb->data + skb->len -
  632. IEEE80211_GCMP_MIC_LEN))
  633. return RX_DROP_UNUSABLE;
  634. }
  635. memcpy(key->u.gcmp.rx_pn[queue], pn, IEEE80211_GCMP_PN_LEN);
  636. }
  637. /* Remove GCMP header and MIC */
  638. if (pskb_trim(skb, skb->len - mic_len))
  639. return RX_DROP_UNUSABLE;
  640. memmove(skb->data + IEEE80211_GCMP_HDR_LEN, skb->data, hdrlen);
  641. skb_pull(skb, IEEE80211_GCMP_HDR_LEN);
  642. return RX_CONTINUE;
  643. }
  644. static ieee80211_tx_result
  645. ieee80211_crypto_cs_encrypt(struct ieee80211_tx_data *tx,
  646. struct sk_buff *skb)
  647. {
  648. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  649. struct ieee80211_key *key = tx->key;
  650. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  651. int hdrlen;
  652. u8 *pos, iv_len = key->conf.iv_len;
  653. if (info->control.hw_key &&
  654. !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) {
  655. /* hwaccel has no need for preallocated head room */
  656. return TX_CONTINUE;
  657. }
  658. if (unlikely(skb_headroom(skb) < iv_len &&
  659. pskb_expand_head(skb, iv_len, 0, GFP_ATOMIC)))
  660. return TX_DROP;
  661. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  662. pos = skb_push(skb, iv_len);
  663. memmove(pos, pos + iv_len, hdrlen);
  664. return TX_CONTINUE;
  665. }
  666. static inline int ieee80211_crypto_cs_pn_compare(u8 *pn1, u8 *pn2, int len)
  667. {
  668. int i;
  669. /* pn is little endian */
  670. for (i = len - 1; i >= 0; i--) {
  671. if (pn1[i] < pn2[i])
  672. return -1;
  673. else if (pn1[i] > pn2[i])
  674. return 1;
  675. }
  676. return 0;
  677. }
  678. static ieee80211_rx_result
  679. ieee80211_crypto_cs_decrypt(struct ieee80211_rx_data *rx)
  680. {
  681. struct ieee80211_key *key = rx->key;
  682. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
  683. const struct ieee80211_cipher_scheme *cs = NULL;
  684. int hdrlen = ieee80211_hdrlen(hdr->frame_control);
  685. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
  686. int data_len;
  687. u8 *rx_pn;
  688. u8 *skb_pn;
  689. u8 qos_tid;
  690. if (!rx->sta || !rx->sta->cipher_scheme ||
  691. !(status->flag & RX_FLAG_DECRYPTED))
  692. return RX_DROP_UNUSABLE;
  693. if (!ieee80211_is_data(hdr->frame_control))
  694. return RX_CONTINUE;
  695. cs = rx->sta->cipher_scheme;
  696. data_len = rx->skb->len - hdrlen - cs->hdr_len;
  697. if (data_len < 0)
  698. return RX_DROP_UNUSABLE;
  699. if (ieee80211_is_data_qos(hdr->frame_control))
  700. qos_tid = *ieee80211_get_qos_ctl(hdr) &
  701. IEEE80211_QOS_CTL_TID_MASK;
  702. else
  703. qos_tid = 0;
  704. if (skb_linearize(rx->skb))
  705. return RX_DROP_UNUSABLE;
  706. hdr = (struct ieee80211_hdr *)rx->skb->data;
  707. rx_pn = key->u.gen.rx_pn[qos_tid];
  708. skb_pn = rx->skb->data + hdrlen + cs->pn_off;
  709. if (ieee80211_crypto_cs_pn_compare(skb_pn, rx_pn, cs->pn_len) <= 0)
  710. return RX_DROP_UNUSABLE;
  711. memcpy(rx_pn, skb_pn, cs->pn_len);
  712. /* remove security header and MIC */
  713. if (pskb_trim(rx->skb, rx->skb->len - cs->mic_len))
  714. return RX_DROP_UNUSABLE;
  715. memmove(rx->skb->data + cs->hdr_len, rx->skb->data, hdrlen);
  716. skb_pull(rx->skb, cs->hdr_len);
  717. return RX_CONTINUE;
  718. }
  719. static void bip_aad(struct sk_buff *skb, u8 *aad)
  720. {
  721. __le16 mask_fc;
  722. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  723. /* BIP AAD: FC(masked) || A1 || A2 || A3 */
  724. /* FC type/subtype */
  725. /* Mask FC Retry, PwrMgt, MoreData flags to zero */
  726. mask_fc = hdr->frame_control;
  727. mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY | IEEE80211_FCTL_PM |
  728. IEEE80211_FCTL_MOREDATA);
  729. put_unaligned(mask_fc, (__le16 *) &aad[0]);
  730. /* A1 || A2 || A3 */
  731. memcpy(aad + 2, &hdr->addr1, 3 * ETH_ALEN);
  732. }
  733. static inline void bip_ipn_set64(u8 *d, u64 pn)
  734. {
  735. *d++ = pn;
  736. *d++ = pn >> 8;
  737. *d++ = pn >> 16;
  738. *d++ = pn >> 24;
  739. *d++ = pn >> 32;
  740. *d = pn >> 40;
  741. }
  742. static inline void bip_ipn_swap(u8 *d, const u8 *s)
  743. {
  744. *d++ = s[5];
  745. *d++ = s[4];
  746. *d++ = s[3];
  747. *d++ = s[2];
  748. *d++ = s[1];
  749. *d = s[0];
  750. }
  751. ieee80211_tx_result
  752. ieee80211_crypto_aes_cmac_encrypt(struct ieee80211_tx_data *tx)
  753. {
  754. struct sk_buff *skb;
  755. struct ieee80211_tx_info *info;
  756. struct ieee80211_key *key = tx->key;
  757. struct ieee80211_mmie *mmie;
  758. u8 aad[20];
  759. u64 pn64;
  760. if (WARN_ON(skb_queue_len(&tx->skbs) != 1))
  761. return TX_DROP;
  762. skb = skb_peek(&tx->skbs);
  763. info = IEEE80211_SKB_CB(skb);
  764. if (info->control.hw_key)
  765. return TX_CONTINUE;
  766. if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie)))
  767. return TX_DROP;
  768. mmie = (struct ieee80211_mmie *) skb_put(skb, sizeof(*mmie));
  769. mmie->element_id = WLAN_EID_MMIE;
  770. mmie->length = sizeof(*mmie) - 2;
  771. mmie->key_id = cpu_to_le16(key->conf.keyidx);
  772. /* PN = PN + 1 */
  773. pn64 = atomic64_inc_return(&key->conf.tx_pn);
  774. bip_ipn_set64(mmie->sequence_number, pn64);
  775. bip_aad(skb, aad);
  776. /*
  777. * MIC = AES-128-CMAC(IGTK, AAD || Management Frame Body || MMIE, 64)
  778. */
  779. ieee80211_aes_cmac(key->u.aes_cmac.tfm, aad,
  780. skb->data + 24, skb->len - 24, mmie->mic);
  781. return TX_CONTINUE;
  782. }
  783. ieee80211_tx_result
  784. ieee80211_crypto_aes_cmac_256_encrypt(struct ieee80211_tx_data *tx)
  785. {
  786. struct sk_buff *skb;
  787. struct ieee80211_tx_info *info;
  788. struct ieee80211_key *key = tx->key;
  789. struct ieee80211_mmie_16 *mmie;
  790. u8 aad[20];
  791. u64 pn64;
  792. if (WARN_ON(skb_queue_len(&tx->skbs) != 1))
  793. return TX_DROP;
  794. skb = skb_peek(&tx->skbs);
  795. info = IEEE80211_SKB_CB(skb);
  796. if (info->control.hw_key)
  797. return TX_CONTINUE;
  798. if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie)))
  799. return TX_DROP;
  800. mmie = (struct ieee80211_mmie_16 *)skb_put(skb, sizeof(*mmie));
  801. mmie->element_id = WLAN_EID_MMIE;
  802. mmie->length = sizeof(*mmie) - 2;
  803. mmie->key_id = cpu_to_le16(key->conf.keyidx);
  804. /* PN = PN + 1 */
  805. pn64 = atomic64_inc_return(&key->conf.tx_pn);
  806. bip_ipn_set64(mmie->sequence_number, pn64);
  807. bip_aad(skb, aad);
  808. /* MIC = AES-256-CMAC(IGTK, AAD || Management Frame Body || MMIE, 128)
  809. */
  810. ieee80211_aes_cmac_256(key->u.aes_cmac.tfm, aad,
  811. skb->data + 24, skb->len - 24, mmie->mic);
  812. return TX_CONTINUE;
  813. }
  814. ieee80211_rx_result
  815. ieee80211_crypto_aes_cmac_decrypt(struct ieee80211_rx_data *rx)
  816. {
  817. struct sk_buff *skb = rx->skb;
  818. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  819. struct ieee80211_key *key = rx->key;
  820. struct ieee80211_mmie *mmie;
  821. u8 aad[20], mic[8], ipn[6];
  822. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  823. if (!ieee80211_is_mgmt(hdr->frame_control))
  824. return RX_CONTINUE;
  825. /* management frames are already linear */
  826. if (skb->len < 24 + sizeof(*mmie))
  827. return RX_DROP_UNUSABLE;
  828. mmie = (struct ieee80211_mmie *)
  829. (skb->data + skb->len - sizeof(*mmie));
  830. if (mmie->element_id != WLAN_EID_MMIE ||
  831. mmie->length != sizeof(*mmie) - 2)
  832. return RX_DROP_UNUSABLE; /* Invalid MMIE */
  833. bip_ipn_swap(ipn, mmie->sequence_number);
  834. if (memcmp(ipn, key->u.aes_cmac.rx_pn, 6) <= 0) {
  835. key->u.aes_cmac.replays++;
  836. return RX_DROP_UNUSABLE;
  837. }
  838. if (!(status->flag & RX_FLAG_DECRYPTED)) {
  839. /* hardware didn't decrypt/verify MIC */
  840. bip_aad(skb, aad);
  841. ieee80211_aes_cmac(key->u.aes_cmac.tfm, aad,
  842. skb->data + 24, skb->len - 24, mic);
  843. if (memcmp(mic, mmie->mic, sizeof(mmie->mic)) != 0) {
  844. key->u.aes_cmac.icverrors++;
  845. return RX_DROP_UNUSABLE;
  846. }
  847. }
  848. memcpy(key->u.aes_cmac.rx_pn, ipn, 6);
  849. /* Remove MMIE */
  850. skb_trim(skb, skb->len - sizeof(*mmie));
  851. return RX_CONTINUE;
  852. }
  853. ieee80211_rx_result
  854. ieee80211_crypto_aes_cmac_256_decrypt(struct ieee80211_rx_data *rx)
  855. {
  856. struct sk_buff *skb = rx->skb;
  857. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  858. struct ieee80211_key *key = rx->key;
  859. struct ieee80211_mmie_16 *mmie;
  860. u8 aad[20], mic[16], ipn[6];
  861. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  862. if (!ieee80211_is_mgmt(hdr->frame_control))
  863. return RX_CONTINUE;
  864. /* management frames are already linear */
  865. if (skb->len < 24 + sizeof(*mmie))
  866. return RX_DROP_UNUSABLE;
  867. mmie = (struct ieee80211_mmie_16 *)
  868. (skb->data + skb->len - sizeof(*mmie));
  869. if (mmie->element_id != WLAN_EID_MMIE ||
  870. mmie->length != sizeof(*mmie) - 2)
  871. return RX_DROP_UNUSABLE; /* Invalid MMIE */
  872. bip_ipn_swap(ipn, mmie->sequence_number);
  873. if (memcmp(ipn, key->u.aes_cmac.rx_pn, 6) <= 0) {
  874. key->u.aes_cmac.replays++;
  875. return RX_DROP_UNUSABLE;
  876. }
  877. if (!(status->flag & RX_FLAG_DECRYPTED)) {
  878. /* hardware didn't decrypt/verify MIC */
  879. bip_aad(skb, aad);
  880. ieee80211_aes_cmac_256(key->u.aes_cmac.tfm, aad,
  881. skb->data + 24, skb->len - 24, mic);
  882. if (memcmp(mic, mmie->mic, sizeof(mmie->mic)) != 0) {
  883. key->u.aes_cmac.icverrors++;
  884. return RX_DROP_UNUSABLE;
  885. }
  886. }
  887. memcpy(key->u.aes_cmac.rx_pn, ipn, 6);
  888. /* Remove MMIE */
  889. skb_trim(skb, skb->len - sizeof(*mmie));
  890. return RX_CONTINUE;
  891. }
  892. ieee80211_tx_result
  893. ieee80211_crypto_aes_gmac_encrypt(struct ieee80211_tx_data *tx)
  894. {
  895. struct sk_buff *skb;
  896. struct ieee80211_tx_info *info;
  897. struct ieee80211_key *key = tx->key;
  898. struct ieee80211_mmie_16 *mmie;
  899. struct ieee80211_hdr *hdr;
  900. u8 aad[GMAC_AAD_LEN];
  901. u64 pn64;
  902. u8 nonce[GMAC_NONCE_LEN];
  903. if (WARN_ON(skb_queue_len(&tx->skbs) != 1))
  904. return TX_DROP;
  905. skb = skb_peek(&tx->skbs);
  906. info = IEEE80211_SKB_CB(skb);
  907. if (info->control.hw_key)
  908. return TX_CONTINUE;
  909. if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie)))
  910. return TX_DROP;
  911. mmie = (struct ieee80211_mmie_16 *)skb_put(skb, sizeof(*mmie));
  912. mmie->element_id = WLAN_EID_MMIE;
  913. mmie->length = sizeof(*mmie) - 2;
  914. mmie->key_id = cpu_to_le16(key->conf.keyidx);
  915. /* PN = PN + 1 */
  916. pn64 = atomic64_inc_return(&key->conf.tx_pn);
  917. bip_ipn_set64(mmie->sequence_number, pn64);
  918. bip_aad(skb, aad);
  919. hdr = (struct ieee80211_hdr *)skb->data;
  920. memcpy(nonce, hdr->addr2, ETH_ALEN);
  921. bip_ipn_swap(nonce + ETH_ALEN, mmie->sequence_number);
  922. /* MIC = AES-GMAC(IGTK, AAD || Management Frame Body || MMIE, 128) */
  923. if (ieee80211_aes_gmac(key->u.aes_gmac.tfm, aad, nonce,
  924. skb->data + 24, skb->len - 24, mmie->mic) < 0)
  925. return TX_DROP;
  926. return TX_CONTINUE;
  927. }
  928. ieee80211_rx_result
  929. ieee80211_crypto_aes_gmac_decrypt(struct ieee80211_rx_data *rx)
  930. {
  931. struct sk_buff *skb = rx->skb;
  932. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  933. struct ieee80211_key *key = rx->key;
  934. struct ieee80211_mmie_16 *mmie;
  935. u8 aad[GMAC_AAD_LEN], mic[GMAC_MIC_LEN], ipn[6], nonce[GMAC_NONCE_LEN];
  936. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  937. if (!ieee80211_is_mgmt(hdr->frame_control))
  938. return RX_CONTINUE;
  939. /* management frames are already linear */
  940. if (skb->len < 24 + sizeof(*mmie))
  941. return RX_DROP_UNUSABLE;
  942. mmie = (struct ieee80211_mmie_16 *)
  943. (skb->data + skb->len - sizeof(*mmie));
  944. if (mmie->element_id != WLAN_EID_MMIE ||
  945. mmie->length != sizeof(*mmie) - 2)
  946. return RX_DROP_UNUSABLE; /* Invalid MMIE */
  947. bip_ipn_swap(ipn, mmie->sequence_number);
  948. if (memcmp(ipn, key->u.aes_gmac.rx_pn, 6) <= 0) {
  949. key->u.aes_gmac.replays++;
  950. return RX_DROP_UNUSABLE;
  951. }
  952. if (!(status->flag & RX_FLAG_DECRYPTED)) {
  953. /* hardware didn't decrypt/verify MIC */
  954. bip_aad(skb, aad);
  955. memcpy(nonce, hdr->addr2, ETH_ALEN);
  956. memcpy(nonce + ETH_ALEN, ipn, 6);
  957. if (ieee80211_aes_gmac(key->u.aes_gmac.tfm, aad, nonce,
  958. skb->data + 24, skb->len - 24,
  959. mic) < 0 ||
  960. memcmp(mic, mmie->mic, sizeof(mmie->mic)) != 0) {
  961. key->u.aes_gmac.icverrors++;
  962. return RX_DROP_UNUSABLE;
  963. }
  964. }
  965. memcpy(key->u.aes_gmac.rx_pn, ipn, 6);
  966. /* Remove MMIE */
  967. skb_trim(skb, skb->len - sizeof(*mmie));
  968. return RX_CONTINUE;
  969. }
  970. ieee80211_tx_result
  971. ieee80211_crypto_hw_encrypt(struct ieee80211_tx_data *tx)
  972. {
  973. struct sk_buff *skb;
  974. struct ieee80211_tx_info *info = NULL;
  975. ieee80211_tx_result res;
  976. skb_queue_walk(&tx->skbs, skb) {
  977. info = IEEE80211_SKB_CB(skb);
  978. /* handle hw-only algorithm */
  979. if (!info->control.hw_key)
  980. return TX_DROP;
  981. if (tx->key->flags & KEY_FLAG_CIPHER_SCHEME) {
  982. res = ieee80211_crypto_cs_encrypt(tx, skb);
  983. if (res != TX_CONTINUE)
  984. return res;
  985. }
  986. }
  987. ieee80211_tx_set_protected(tx);
  988. return TX_CONTINUE;
  989. }
  990. ieee80211_rx_result
  991. ieee80211_crypto_hw_decrypt(struct ieee80211_rx_data *rx)
  992. {
  993. if (rx->sta && rx->sta->cipher_scheme)
  994. return ieee80211_crypto_cs_decrypt(rx);
  995. return RX_DROP_UNUSABLE;
  996. }