af_iucv.c 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520
  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <linux/security.h>
  24. #include <net/sock.h>
  25. #include <asm/ebcdic.h>
  26. #include <asm/cpcmd.h>
  27. #include <linux/kmod.h>
  28. #include <net/iucv/af_iucv.h>
  29. #define VERSION "1.2"
  30. static char iucv_userid[80];
  31. static const struct proto_ops iucv_sock_ops;
  32. static struct proto iucv_proto = {
  33. .name = "AF_IUCV",
  34. .owner = THIS_MODULE,
  35. .obj_size = sizeof(struct iucv_sock),
  36. };
  37. static struct iucv_interface *pr_iucv;
  38. /* special AF_IUCV IPRM messages */
  39. static const u8 iprm_shutdown[8] =
  40. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  41. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  42. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  43. do { \
  44. DEFINE_WAIT(__wait); \
  45. long __timeo = timeo; \
  46. ret = 0; \
  47. prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
  48. while (!(condition)) { \
  49. if (!__timeo) { \
  50. ret = -EAGAIN; \
  51. break; \
  52. } \
  53. if (signal_pending(current)) { \
  54. ret = sock_intr_errno(__timeo); \
  55. break; \
  56. } \
  57. release_sock(sk); \
  58. __timeo = schedule_timeout(__timeo); \
  59. lock_sock(sk); \
  60. ret = sock_error(sk); \
  61. if (ret) \
  62. break; \
  63. } \
  64. finish_wait(sk_sleep(sk), &__wait); \
  65. } while (0)
  66. #define iucv_sock_wait(sk, condition, timeo) \
  67. ({ \
  68. int __ret = 0; \
  69. if (!(condition)) \
  70. __iucv_sock_wait(sk, condition, timeo, __ret); \
  71. __ret; \
  72. })
  73. static void iucv_sock_kill(struct sock *sk);
  74. static void iucv_sock_close(struct sock *sk);
  75. static void iucv_sever_path(struct sock *, int);
  76. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  77. struct packet_type *pt, struct net_device *orig_dev);
  78. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  79. struct sk_buff *skb, u8 flags);
  80. static void afiucv_hs_callback_txnotify(struct sk_buff *, enum iucv_tx_notify);
  81. /* Call Back functions */
  82. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  83. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  84. static void iucv_callback_connack(struct iucv_path *, u8 *);
  85. static int iucv_callback_connreq(struct iucv_path *, u8 *, u8 *);
  86. static void iucv_callback_connrej(struct iucv_path *, u8 *);
  87. static void iucv_callback_shutdown(struct iucv_path *, u8 *);
  88. static struct iucv_sock_list iucv_sk_list = {
  89. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  90. .autobind_name = ATOMIC_INIT(0)
  91. };
  92. static struct iucv_handler af_iucv_handler = {
  93. .path_pending = iucv_callback_connreq,
  94. .path_complete = iucv_callback_connack,
  95. .path_severed = iucv_callback_connrej,
  96. .message_pending = iucv_callback_rx,
  97. .message_complete = iucv_callback_txdone,
  98. .path_quiesced = iucv_callback_shutdown,
  99. };
  100. static inline void high_nmcpy(unsigned char *dst, char *src)
  101. {
  102. memcpy(dst, src, 8);
  103. }
  104. static inline void low_nmcpy(unsigned char *dst, char *src)
  105. {
  106. memcpy(&dst[8], src, 8);
  107. }
  108. static int afiucv_pm_prepare(struct device *dev)
  109. {
  110. #ifdef CONFIG_PM_DEBUG
  111. printk(KERN_WARNING "afiucv_pm_prepare\n");
  112. #endif
  113. return 0;
  114. }
  115. static void afiucv_pm_complete(struct device *dev)
  116. {
  117. #ifdef CONFIG_PM_DEBUG
  118. printk(KERN_WARNING "afiucv_pm_complete\n");
  119. #endif
  120. }
  121. /**
  122. * afiucv_pm_freeze() - Freeze PM callback
  123. * @dev: AFIUCV dummy device
  124. *
  125. * Sever all established IUCV communication pathes
  126. */
  127. static int afiucv_pm_freeze(struct device *dev)
  128. {
  129. struct iucv_sock *iucv;
  130. struct sock *sk;
  131. int err = 0;
  132. #ifdef CONFIG_PM_DEBUG
  133. printk(KERN_WARNING "afiucv_pm_freeze\n");
  134. #endif
  135. read_lock(&iucv_sk_list.lock);
  136. sk_for_each(sk, &iucv_sk_list.head) {
  137. iucv = iucv_sk(sk);
  138. switch (sk->sk_state) {
  139. case IUCV_DISCONN:
  140. case IUCV_CLOSING:
  141. case IUCV_CONNECTED:
  142. iucv_sever_path(sk, 0);
  143. break;
  144. case IUCV_OPEN:
  145. case IUCV_BOUND:
  146. case IUCV_LISTEN:
  147. case IUCV_CLOSED:
  148. default:
  149. break;
  150. }
  151. skb_queue_purge(&iucv->send_skb_q);
  152. skb_queue_purge(&iucv->backlog_skb_q);
  153. }
  154. read_unlock(&iucv_sk_list.lock);
  155. return err;
  156. }
  157. /**
  158. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  159. * @dev: AFIUCV dummy device
  160. *
  161. * socket clean up after freeze
  162. */
  163. static int afiucv_pm_restore_thaw(struct device *dev)
  164. {
  165. struct sock *sk;
  166. #ifdef CONFIG_PM_DEBUG
  167. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  168. #endif
  169. read_lock(&iucv_sk_list.lock);
  170. sk_for_each(sk, &iucv_sk_list.head) {
  171. switch (sk->sk_state) {
  172. case IUCV_CONNECTED:
  173. sk->sk_err = EPIPE;
  174. sk->sk_state = IUCV_DISCONN;
  175. sk->sk_state_change(sk);
  176. break;
  177. case IUCV_DISCONN:
  178. case IUCV_CLOSING:
  179. case IUCV_LISTEN:
  180. case IUCV_BOUND:
  181. case IUCV_OPEN:
  182. default:
  183. break;
  184. }
  185. }
  186. read_unlock(&iucv_sk_list.lock);
  187. return 0;
  188. }
  189. static const struct dev_pm_ops afiucv_pm_ops = {
  190. .prepare = afiucv_pm_prepare,
  191. .complete = afiucv_pm_complete,
  192. .freeze = afiucv_pm_freeze,
  193. .thaw = afiucv_pm_restore_thaw,
  194. .restore = afiucv_pm_restore_thaw,
  195. };
  196. static struct device_driver af_iucv_driver = {
  197. .owner = THIS_MODULE,
  198. .name = "afiucv",
  199. .bus = NULL,
  200. .pm = &afiucv_pm_ops,
  201. };
  202. /* dummy device used as trigger for PM functions */
  203. static struct device *af_iucv_dev;
  204. /**
  205. * iucv_msg_length() - Returns the length of an iucv message.
  206. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  207. *
  208. * The function returns the length of the specified iucv message @msg of data
  209. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  210. *
  211. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  212. * data:
  213. * PRMDATA[0..6] socket data (max 7 bytes);
  214. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  215. *
  216. * The socket data length is computed by subtracting the socket data length
  217. * value from 0xFF.
  218. * If the socket data len is greater 7, then PRMDATA can be used for special
  219. * notifications (see iucv_sock_shutdown); and further,
  220. * if the socket data len is > 7, the function returns 8.
  221. *
  222. * Use this function to allocate socket buffers to store iucv message data.
  223. */
  224. static inline size_t iucv_msg_length(struct iucv_message *msg)
  225. {
  226. size_t datalen;
  227. if (msg->flags & IUCV_IPRMDATA) {
  228. datalen = 0xff - msg->rmmsg[7];
  229. return (datalen < 8) ? datalen : 8;
  230. }
  231. return msg->length;
  232. }
  233. /**
  234. * iucv_sock_in_state() - check for specific states
  235. * @sk: sock structure
  236. * @state: first iucv sk state
  237. * @state: second iucv sk state
  238. *
  239. * Returns true if the socket in either in the first or second state.
  240. */
  241. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  242. {
  243. return (sk->sk_state == state || sk->sk_state == state2);
  244. }
  245. /**
  246. * iucv_below_msglim() - function to check if messages can be sent
  247. * @sk: sock structure
  248. *
  249. * Returns true if the send queue length is lower than the message limit.
  250. * Always returns true if the socket is not connected (no iucv path for
  251. * checking the message limit).
  252. */
  253. static inline int iucv_below_msglim(struct sock *sk)
  254. {
  255. struct iucv_sock *iucv = iucv_sk(sk);
  256. if (sk->sk_state != IUCV_CONNECTED)
  257. return 1;
  258. if (iucv->transport == AF_IUCV_TRANS_IUCV)
  259. return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
  260. else
  261. return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) &&
  262. (atomic_read(&iucv->pendings) <= 0));
  263. }
  264. /**
  265. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  266. */
  267. static void iucv_sock_wake_msglim(struct sock *sk)
  268. {
  269. struct socket_wq *wq;
  270. rcu_read_lock();
  271. wq = rcu_dereference(sk->sk_wq);
  272. if (skwq_has_sleeper(wq))
  273. wake_up_interruptible_all(&wq->wait);
  274. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  275. rcu_read_unlock();
  276. }
  277. /**
  278. * afiucv_hs_send() - send a message through HiperSockets transport
  279. */
  280. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  281. struct sk_buff *skb, u8 flags)
  282. {
  283. struct iucv_sock *iucv = iucv_sk(sock);
  284. struct af_iucv_trans_hdr *phs_hdr;
  285. struct sk_buff *nskb;
  286. int err, confirm_recv = 0;
  287. memset(skb->head, 0, ETH_HLEN);
  288. phs_hdr = (struct af_iucv_trans_hdr *)skb_push(skb,
  289. sizeof(struct af_iucv_trans_hdr));
  290. skb_reset_mac_header(skb);
  291. skb_reset_network_header(skb);
  292. skb_push(skb, ETH_HLEN);
  293. skb_reset_mac_header(skb);
  294. memset(phs_hdr, 0, sizeof(struct af_iucv_trans_hdr));
  295. phs_hdr->magic = ETH_P_AF_IUCV;
  296. phs_hdr->version = 1;
  297. phs_hdr->flags = flags;
  298. if (flags == AF_IUCV_FLAG_SYN)
  299. phs_hdr->window = iucv->msglimit;
  300. else if ((flags == AF_IUCV_FLAG_WIN) || !flags) {
  301. confirm_recv = atomic_read(&iucv->msg_recv);
  302. phs_hdr->window = confirm_recv;
  303. if (confirm_recv)
  304. phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN;
  305. }
  306. memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8);
  307. memcpy(phs_hdr->destAppName, iucv->dst_name, 8);
  308. memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8);
  309. memcpy(phs_hdr->srcAppName, iucv->src_name, 8);
  310. ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID));
  311. ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName));
  312. ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID));
  313. ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName));
  314. if (imsg)
  315. memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message));
  316. skb->dev = iucv->hs_dev;
  317. if (!skb->dev)
  318. return -ENODEV;
  319. if (!(skb->dev->flags & IFF_UP) || !netif_carrier_ok(skb->dev))
  320. return -ENETDOWN;
  321. if (skb->len > skb->dev->mtu) {
  322. if (sock->sk_type == SOCK_SEQPACKET)
  323. return -EMSGSIZE;
  324. else
  325. skb_trim(skb, skb->dev->mtu);
  326. }
  327. skb->protocol = ETH_P_AF_IUCV;
  328. nskb = skb_clone(skb, GFP_ATOMIC);
  329. if (!nskb)
  330. return -ENOMEM;
  331. skb_queue_tail(&iucv->send_skb_q, nskb);
  332. err = dev_queue_xmit(skb);
  333. if (net_xmit_eval(err)) {
  334. skb_unlink(nskb, &iucv->send_skb_q);
  335. kfree_skb(nskb);
  336. } else {
  337. atomic_sub(confirm_recv, &iucv->msg_recv);
  338. WARN_ON(atomic_read(&iucv->msg_recv) < 0);
  339. }
  340. return net_xmit_eval(err);
  341. }
  342. static struct sock *__iucv_get_sock_by_name(char *nm)
  343. {
  344. struct sock *sk;
  345. sk_for_each(sk, &iucv_sk_list.head)
  346. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  347. return sk;
  348. return NULL;
  349. }
  350. static void iucv_sock_destruct(struct sock *sk)
  351. {
  352. skb_queue_purge(&sk->sk_receive_queue);
  353. skb_queue_purge(&sk->sk_error_queue);
  354. sk_mem_reclaim(sk);
  355. if (!sock_flag(sk, SOCK_DEAD)) {
  356. pr_err("Attempt to release alive iucv socket %p\n", sk);
  357. return;
  358. }
  359. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  360. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  361. WARN_ON(sk->sk_wmem_queued);
  362. WARN_ON(sk->sk_forward_alloc);
  363. }
  364. /* Cleanup Listen */
  365. static void iucv_sock_cleanup_listen(struct sock *parent)
  366. {
  367. struct sock *sk;
  368. /* Close non-accepted connections */
  369. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  370. iucv_sock_close(sk);
  371. iucv_sock_kill(sk);
  372. }
  373. parent->sk_state = IUCV_CLOSED;
  374. }
  375. /* Kill socket (only if zapped and orphaned) */
  376. static void iucv_sock_kill(struct sock *sk)
  377. {
  378. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  379. return;
  380. iucv_sock_unlink(&iucv_sk_list, sk);
  381. sock_set_flag(sk, SOCK_DEAD);
  382. sock_put(sk);
  383. }
  384. /* Terminate an IUCV path */
  385. static void iucv_sever_path(struct sock *sk, int with_user_data)
  386. {
  387. unsigned char user_data[16];
  388. struct iucv_sock *iucv = iucv_sk(sk);
  389. struct iucv_path *path = iucv->path;
  390. if (iucv->path) {
  391. iucv->path = NULL;
  392. if (with_user_data) {
  393. low_nmcpy(user_data, iucv->src_name);
  394. high_nmcpy(user_data, iucv->dst_name);
  395. ASCEBC(user_data, sizeof(user_data));
  396. pr_iucv->path_sever(path, user_data);
  397. } else
  398. pr_iucv->path_sever(path, NULL);
  399. iucv_path_free(path);
  400. }
  401. }
  402. /* Send controlling flags through an IUCV socket for HIPER transport */
  403. static int iucv_send_ctrl(struct sock *sk, u8 flags)
  404. {
  405. int err = 0;
  406. int blen;
  407. struct sk_buff *skb;
  408. u8 shutdown = 0;
  409. blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  410. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  411. /* controlling flags should be sent anyway */
  412. shutdown = sk->sk_shutdown;
  413. sk->sk_shutdown &= RCV_SHUTDOWN;
  414. }
  415. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  416. if (skb) {
  417. skb_reserve(skb, blen);
  418. err = afiucv_hs_send(NULL, sk, skb, flags);
  419. }
  420. if (shutdown)
  421. sk->sk_shutdown = shutdown;
  422. return err;
  423. }
  424. /* Close an IUCV socket */
  425. static void iucv_sock_close(struct sock *sk)
  426. {
  427. struct iucv_sock *iucv = iucv_sk(sk);
  428. unsigned long timeo;
  429. int err = 0;
  430. lock_sock(sk);
  431. switch (sk->sk_state) {
  432. case IUCV_LISTEN:
  433. iucv_sock_cleanup_listen(sk);
  434. break;
  435. case IUCV_CONNECTED:
  436. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  437. err = iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
  438. sk->sk_state = IUCV_DISCONN;
  439. sk->sk_state_change(sk);
  440. }
  441. case IUCV_DISCONN: /* fall through */
  442. sk->sk_state = IUCV_CLOSING;
  443. sk->sk_state_change(sk);
  444. if (!err && !skb_queue_empty(&iucv->send_skb_q)) {
  445. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  446. timeo = sk->sk_lingertime;
  447. else
  448. timeo = IUCV_DISCONN_TIMEOUT;
  449. iucv_sock_wait(sk,
  450. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  451. timeo);
  452. }
  453. case IUCV_CLOSING: /* fall through */
  454. sk->sk_state = IUCV_CLOSED;
  455. sk->sk_state_change(sk);
  456. sk->sk_err = ECONNRESET;
  457. sk->sk_state_change(sk);
  458. skb_queue_purge(&iucv->send_skb_q);
  459. skb_queue_purge(&iucv->backlog_skb_q);
  460. default: /* fall through */
  461. iucv_sever_path(sk, 1);
  462. }
  463. if (iucv->hs_dev) {
  464. dev_put(iucv->hs_dev);
  465. iucv->hs_dev = NULL;
  466. sk->sk_bound_dev_if = 0;
  467. }
  468. /* mark socket for deletion by iucv_sock_kill() */
  469. sock_set_flag(sk, SOCK_ZAPPED);
  470. release_sock(sk);
  471. }
  472. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  473. {
  474. if (parent) {
  475. sk->sk_type = parent->sk_type;
  476. security_sk_clone(parent, sk);
  477. }
  478. }
  479. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio, int kern)
  480. {
  481. struct sock *sk;
  482. struct iucv_sock *iucv;
  483. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto, kern);
  484. if (!sk)
  485. return NULL;
  486. iucv = iucv_sk(sk);
  487. sock_init_data(sock, sk);
  488. INIT_LIST_HEAD(&iucv->accept_q);
  489. spin_lock_init(&iucv->accept_q_lock);
  490. skb_queue_head_init(&iucv->send_skb_q);
  491. INIT_LIST_HEAD(&iucv->message_q.list);
  492. spin_lock_init(&iucv->message_q.lock);
  493. skb_queue_head_init(&iucv->backlog_skb_q);
  494. iucv->send_tag = 0;
  495. atomic_set(&iucv->pendings, 0);
  496. iucv->flags = 0;
  497. iucv->msglimit = 0;
  498. atomic_set(&iucv->msg_sent, 0);
  499. atomic_set(&iucv->msg_recv, 0);
  500. iucv->path = NULL;
  501. iucv->sk_txnotify = afiucv_hs_callback_txnotify;
  502. memset(&iucv->src_user_id , 0, 32);
  503. if (pr_iucv)
  504. iucv->transport = AF_IUCV_TRANS_IUCV;
  505. else
  506. iucv->transport = AF_IUCV_TRANS_HIPER;
  507. sk->sk_destruct = iucv_sock_destruct;
  508. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  509. sk->sk_allocation = GFP_DMA;
  510. sock_reset_flag(sk, SOCK_ZAPPED);
  511. sk->sk_protocol = proto;
  512. sk->sk_state = IUCV_OPEN;
  513. iucv_sock_link(&iucv_sk_list, sk);
  514. return sk;
  515. }
  516. /* Create an IUCV socket */
  517. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
  518. int kern)
  519. {
  520. struct sock *sk;
  521. if (protocol && protocol != PF_IUCV)
  522. return -EPROTONOSUPPORT;
  523. sock->state = SS_UNCONNECTED;
  524. switch (sock->type) {
  525. case SOCK_STREAM:
  526. sock->ops = &iucv_sock_ops;
  527. break;
  528. case SOCK_SEQPACKET:
  529. /* currently, proto ops can handle both sk types */
  530. sock->ops = &iucv_sock_ops;
  531. break;
  532. default:
  533. return -ESOCKTNOSUPPORT;
  534. }
  535. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL, kern);
  536. if (!sk)
  537. return -ENOMEM;
  538. iucv_sock_init(sk, NULL);
  539. return 0;
  540. }
  541. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  542. {
  543. write_lock_bh(&l->lock);
  544. sk_add_node(sk, &l->head);
  545. write_unlock_bh(&l->lock);
  546. }
  547. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  548. {
  549. write_lock_bh(&l->lock);
  550. sk_del_node_init(sk);
  551. write_unlock_bh(&l->lock);
  552. }
  553. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  554. {
  555. unsigned long flags;
  556. struct iucv_sock *par = iucv_sk(parent);
  557. sock_hold(sk);
  558. spin_lock_irqsave(&par->accept_q_lock, flags);
  559. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  560. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  561. iucv_sk(sk)->parent = parent;
  562. sk_acceptq_added(parent);
  563. }
  564. void iucv_accept_unlink(struct sock *sk)
  565. {
  566. unsigned long flags;
  567. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  568. spin_lock_irqsave(&par->accept_q_lock, flags);
  569. list_del_init(&iucv_sk(sk)->accept_q);
  570. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  571. sk_acceptq_removed(iucv_sk(sk)->parent);
  572. iucv_sk(sk)->parent = NULL;
  573. sock_put(sk);
  574. }
  575. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  576. {
  577. struct iucv_sock *isk, *n;
  578. struct sock *sk;
  579. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  580. sk = (struct sock *) isk;
  581. lock_sock(sk);
  582. if (sk->sk_state == IUCV_CLOSED) {
  583. iucv_accept_unlink(sk);
  584. release_sock(sk);
  585. continue;
  586. }
  587. if (sk->sk_state == IUCV_CONNECTED ||
  588. sk->sk_state == IUCV_DISCONN ||
  589. !newsock) {
  590. iucv_accept_unlink(sk);
  591. if (newsock)
  592. sock_graft(sk, newsock);
  593. release_sock(sk);
  594. return sk;
  595. }
  596. release_sock(sk);
  597. }
  598. return NULL;
  599. }
  600. static void __iucv_auto_name(struct iucv_sock *iucv)
  601. {
  602. char name[12];
  603. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  604. while (__iucv_get_sock_by_name(name)) {
  605. sprintf(name, "%08x",
  606. atomic_inc_return(&iucv_sk_list.autobind_name));
  607. }
  608. memcpy(iucv->src_name, name, 8);
  609. }
  610. /* Bind an unbound socket */
  611. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  612. int addr_len)
  613. {
  614. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  615. struct sock *sk = sock->sk;
  616. struct iucv_sock *iucv;
  617. int err = 0;
  618. struct net_device *dev;
  619. char uid[9];
  620. /* Verify the input sockaddr */
  621. if (!addr || addr->sa_family != AF_IUCV)
  622. return -EINVAL;
  623. if (addr_len < sizeof(struct sockaddr_iucv))
  624. return -EINVAL;
  625. lock_sock(sk);
  626. if (sk->sk_state != IUCV_OPEN) {
  627. err = -EBADFD;
  628. goto done;
  629. }
  630. write_lock_bh(&iucv_sk_list.lock);
  631. iucv = iucv_sk(sk);
  632. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  633. err = -EADDRINUSE;
  634. goto done_unlock;
  635. }
  636. if (iucv->path)
  637. goto done_unlock;
  638. /* Bind the socket */
  639. if (pr_iucv)
  640. if (!memcmp(sa->siucv_user_id, iucv_userid, 8))
  641. goto vm_bind; /* VM IUCV transport */
  642. /* try hiper transport */
  643. memcpy(uid, sa->siucv_user_id, sizeof(uid));
  644. ASCEBC(uid, 8);
  645. rcu_read_lock();
  646. for_each_netdev_rcu(&init_net, dev) {
  647. if (!memcmp(dev->perm_addr, uid, 8)) {
  648. memcpy(iucv->src_user_id, sa->siucv_user_id, 8);
  649. /* Check for unitialized siucv_name */
  650. if (strncmp(sa->siucv_name, " ", 8) == 0)
  651. __iucv_auto_name(iucv);
  652. else
  653. memcpy(iucv->src_name, sa->siucv_name, 8);
  654. sk->sk_bound_dev_if = dev->ifindex;
  655. iucv->hs_dev = dev;
  656. dev_hold(dev);
  657. sk->sk_state = IUCV_BOUND;
  658. iucv->transport = AF_IUCV_TRANS_HIPER;
  659. if (!iucv->msglimit)
  660. iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT;
  661. rcu_read_unlock();
  662. goto done_unlock;
  663. }
  664. }
  665. rcu_read_unlock();
  666. vm_bind:
  667. if (pr_iucv) {
  668. /* use local userid for backward compat */
  669. memcpy(iucv->src_name, sa->siucv_name, 8);
  670. memcpy(iucv->src_user_id, iucv_userid, 8);
  671. sk->sk_state = IUCV_BOUND;
  672. iucv->transport = AF_IUCV_TRANS_IUCV;
  673. if (!iucv->msglimit)
  674. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  675. goto done_unlock;
  676. }
  677. /* found no dev to bind */
  678. err = -ENODEV;
  679. done_unlock:
  680. /* Release the socket list lock */
  681. write_unlock_bh(&iucv_sk_list.lock);
  682. done:
  683. release_sock(sk);
  684. return err;
  685. }
  686. /* Automatically bind an unbound socket */
  687. static int iucv_sock_autobind(struct sock *sk)
  688. {
  689. struct iucv_sock *iucv = iucv_sk(sk);
  690. int err = 0;
  691. if (unlikely(!pr_iucv))
  692. return -EPROTO;
  693. memcpy(iucv->src_user_id, iucv_userid, 8);
  694. write_lock_bh(&iucv_sk_list.lock);
  695. __iucv_auto_name(iucv);
  696. write_unlock_bh(&iucv_sk_list.lock);
  697. if (!iucv->msglimit)
  698. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  699. return err;
  700. }
  701. static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr)
  702. {
  703. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  704. struct sock *sk = sock->sk;
  705. struct iucv_sock *iucv = iucv_sk(sk);
  706. unsigned char user_data[16];
  707. int err;
  708. high_nmcpy(user_data, sa->siucv_name);
  709. low_nmcpy(user_data, iucv->src_name);
  710. ASCEBC(user_data, sizeof(user_data));
  711. /* Create path. */
  712. iucv->path = iucv_path_alloc(iucv->msglimit,
  713. IUCV_IPRMDATA, GFP_KERNEL);
  714. if (!iucv->path) {
  715. err = -ENOMEM;
  716. goto done;
  717. }
  718. err = pr_iucv->path_connect(iucv->path, &af_iucv_handler,
  719. sa->siucv_user_id, NULL, user_data,
  720. sk);
  721. if (err) {
  722. iucv_path_free(iucv->path);
  723. iucv->path = NULL;
  724. switch (err) {
  725. case 0x0b: /* Target communicator is not logged on */
  726. err = -ENETUNREACH;
  727. break;
  728. case 0x0d: /* Max connections for this guest exceeded */
  729. case 0x0e: /* Max connections for target guest exceeded */
  730. err = -EAGAIN;
  731. break;
  732. case 0x0f: /* Missing IUCV authorization */
  733. err = -EACCES;
  734. break;
  735. default:
  736. err = -ECONNREFUSED;
  737. break;
  738. }
  739. }
  740. done:
  741. return err;
  742. }
  743. /* Connect an unconnected socket */
  744. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  745. int alen, int flags)
  746. {
  747. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  748. struct sock *sk = sock->sk;
  749. struct iucv_sock *iucv = iucv_sk(sk);
  750. int err;
  751. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  752. return -EINVAL;
  753. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  754. return -EBADFD;
  755. if (sk->sk_state == IUCV_OPEN &&
  756. iucv->transport == AF_IUCV_TRANS_HIPER)
  757. return -EBADFD; /* explicit bind required */
  758. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  759. return -EINVAL;
  760. if (sk->sk_state == IUCV_OPEN) {
  761. err = iucv_sock_autobind(sk);
  762. if (unlikely(err))
  763. return err;
  764. }
  765. lock_sock(sk);
  766. /* Set the destination information */
  767. memcpy(iucv->dst_user_id, sa->siucv_user_id, 8);
  768. memcpy(iucv->dst_name, sa->siucv_name, 8);
  769. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  770. err = iucv_send_ctrl(sock->sk, AF_IUCV_FLAG_SYN);
  771. else
  772. err = afiucv_path_connect(sock, addr);
  773. if (err)
  774. goto done;
  775. if (sk->sk_state != IUCV_CONNECTED)
  776. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  777. IUCV_DISCONN),
  778. sock_sndtimeo(sk, flags & O_NONBLOCK));
  779. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED)
  780. err = -ECONNREFUSED;
  781. if (err && iucv->transport == AF_IUCV_TRANS_IUCV)
  782. iucv_sever_path(sk, 0);
  783. done:
  784. release_sock(sk);
  785. return err;
  786. }
  787. /* Move a socket into listening state. */
  788. static int iucv_sock_listen(struct socket *sock, int backlog)
  789. {
  790. struct sock *sk = sock->sk;
  791. int err;
  792. lock_sock(sk);
  793. err = -EINVAL;
  794. if (sk->sk_state != IUCV_BOUND)
  795. goto done;
  796. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  797. goto done;
  798. sk->sk_max_ack_backlog = backlog;
  799. sk->sk_ack_backlog = 0;
  800. sk->sk_state = IUCV_LISTEN;
  801. err = 0;
  802. done:
  803. release_sock(sk);
  804. return err;
  805. }
  806. /* Accept a pending connection */
  807. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  808. int flags)
  809. {
  810. DECLARE_WAITQUEUE(wait, current);
  811. struct sock *sk = sock->sk, *nsk;
  812. long timeo;
  813. int err = 0;
  814. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  815. if (sk->sk_state != IUCV_LISTEN) {
  816. err = -EBADFD;
  817. goto done;
  818. }
  819. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  820. /* Wait for an incoming connection */
  821. add_wait_queue_exclusive(sk_sleep(sk), &wait);
  822. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  823. set_current_state(TASK_INTERRUPTIBLE);
  824. if (!timeo) {
  825. err = -EAGAIN;
  826. break;
  827. }
  828. release_sock(sk);
  829. timeo = schedule_timeout(timeo);
  830. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  831. if (sk->sk_state != IUCV_LISTEN) {
  832. err = -EBADFD;
  833. break;
  834. }
  835. if (signal_pending(current)) {
  836. err = sock_intr_errno(timeo);
  837. break;
  838. }
  839. }
  840. set_current_state(TASK_RUNNING);
  841. remove_wait_queue(sk_sleep(sk), &wait);
  842. if (err)
  843. goto done;
  844. newsock->state = SS_CONNECTED;
  845. done:
  846. release_sock(sk);
  847. return err;
  848. }
  849. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  850. int *len, int peer)
  851. {
  852. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  853. struct sock *sk = sock->sk;
  854. struct iucv_sock *iucv = iucv_sk(sk);
  855. addr->sa_family = AF_IUCV;
  856. *len = sizeof(struct sockaddr_iucv);
  857. if (peer) {
  858. memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8);
  859. memcpy(siucv->siucv_name, iucv->dst_name, 8);
  860. } else {
  861. memcpy(siucv->siucv_user_id, iucv->src_user_id, 8);
  862. memcpy(siucv->siucv_name, iucv->src_name, 8);
  863. }
  864. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  865. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  866. memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  867. return 0;
  868. }
  869. /**
  870. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  871. * @path: IUCV path
  872. * @msg: Pointer to a struct iucv_message
  873. * @skb: The socket data to send, skb->len MUST BE <= 7
  874. *
  875. * Send the socket data in the parameter list in the iucv message
  876. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  877. * list and the socket data len at index 7 (last byte).
  878. * See also iucv_msg_length().
  879. *
  880. * Returns the error code from the iucv_message_send() call.
  881. */
  882. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  883. struct sk_buff *skb)
  884. {
  885. u8 prmdata[8];
  886. memcpy(prmdata, (void *) skb->data, skb->len);
  887. prmdata[7] = 0xff - (u8) skb->len;
  888. return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0,
  889. (void *) prmdata, 8);
  890. }
  891. static int iucv_sock_sendmsg(struct socket *sock, struct msghdr *msg,
  892. size_t len)
  893. {
  894. struct sock *sk = sock->sk;
  895. struct iucv_sock *iucv = iucv_sk(sk);
  896. size_t headroom = 0;
  897. size_t linear;
  898. struct sk_buff *skb;
  899. struct iucv_message txmsg = {0};
  900. struct cmsghdr *cmsg;
  901. int cmsg_done;
  902. long timeo;
  903. char user_id[9];
  904. char appl_id[9];
  905. int err;
  906. int noblock = msg->msg_flags & MSG_DONTWAIT;
  907. err = sock_error(sk);
  908. if (err)
  909. return err;
  910. if (msg->msg_flags & MSG_OOB)
  911. return -EOPNOTSUPP;
  912. /* SOCK_SEQPACKET: we do not support segmented records */
  913. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  914. return -EOPNOTSUPP;
  915. lock_sock(sk);
  916. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  917. err = -EPIPE;
  918. goto out;
  919. }
  920. /* Return if the socket is not in connected state */
  921. if (sk->sk_state != IUCV_CONNECTED) {
  922. err = -ENOTCONN;
  923. goto out;
  924. }
  925. /* initialize defaults */
  926. cmsg_done = 0; /* check for duplicate headers */
  927. txmsg.class = 0;
  928. /* iterate over control messages */
  929. for_each_cmsghdr(cmsg, msg) {
  930. if (!CMSG_OK(msg, cmsg)) {
  931. err = -EINVAL;
  932. goto out;
  933. }
  934. if (cmsg->cmsg_level != SOL_IUCV)
  935. continue;
  936. if (cmsg->cmsg_type & cmsg_done) {
  937. err = -EINVAL;
  938. goto out;
  939. }
  940. cmsg_done |= cmsg->cmsg_type;
  941. switch (cmsg->cmsg_type) {
  942. case SCM_IUCV_TRGCLS:
  943. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  944. err = -EINVAL;
  945. goto out;
  946. }
  947. /* set iucv message target class */
  948. memcpy(&txmsg.class,
  949. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  950. break;
  951. default:
  952. err = -EINVAL;
  953. goto out;
  954. }
  955. }
  956. /* allocate one skb for each iucv message:
  957. * this is fine for SOCK_SEQPACKET (unless we want to support
  958. * segmented records using the MSG_EOR flag), but
  959. * for SOCK_STREAM we might want to improve it in future */
  960. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  961. headroom = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  962. linear = len;
  963. } else {
  964. if (len < PAGE_SIZE) {
  965. linear = len;
  966. } else {
  967. /* In nonlinear "classic" iucv skb,
  968. * reserve space for iucv_array
  969. */
  970. headroom = sizeof(struct iucv_array) *
  971. (MAX_SKB_FRAGS + 1);
  972. linear = PAGE_SIZE - headroom;
  973. }
  974. }
  975. skb = sock_alloc_send_pskb(sk, headroom + linear, len - linear,
  976. noblock, &err, 0);
  977. if (!skb)
  978. goto out;
  979. if (headroom)
  980. skb_reserve(skb, headroom);
  981. skb_put(skb, linear);
  982. skb->len = len;
  983. skb->data_len = len - linear;
  984. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len);
  985. if (err)
  986. goto fail;
  987. /* wait if outstanding messages for iucv path has reached */
  988. timeo = sock_sndtimeo(sk, noblock);
  989. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  990. if (err)
  991. goto fail;
  992. /* return -ECONNRESET if the socket is no longer connected */
  993. if (sk->sk_state != IUCV_CONNECTED) {
  994. err = -ECONNRESET;
  995. goto fail;
  996. }
  997. /* increment and save iucv message tag for msg_completion cbk */
  998. txmsg.tag = iucv->send_tag++;
  999. IUCV_SKB_CB(skb)->tag = txmsg.tag;
  1000. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  1001. atomic_inc(&iucv->msg_sent);
  1002. err = afiucv_hs_send(&txmsg, sk, skb, 0);
  1003. if (err) {
  1004. atomic_dec(&iucv->msg_sent);
  1005. goto fail;
  1006. }
  1007. } else { /* Classic VM IUCV transport */
  1008. skb_queue_tail(&iucv->send_skb_q, skb);
  1009. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags) &&
  1010. skb->len <= 7) {
  1011. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  1012. /* on success: there is no message_complete callback */
  1013. /* for an IPRMDATA msg; remove skb from send queue */
  1014. if (err == 0) {
  1015. skb_unlink(skb, &iucv->send_skb_q);
  1016. kfree_skb(skb);
  1017. }
  1018. /* this error should never happen since the */
  1019. /* IUCV_IPRMDATA path flag is set... sever path */
  1020. if (err == 0x15) {
  1021. pr_iucv->path_sever(iucv->path, NULL);
  1022. skb_unlink(skb, &iucv->send_skb_q);
  1023. err = -EPIPE;
  1024. goto fail;
  1025. }
  1026. } else if (skb_is_nonlinear(skb)) {
  1027. struct iucv_array *iba = (struct iucv_array *)skb->head;
  1028. int i;
  1029. /* skip iucv_array lying in the headroom */
  1030. iba[0].address = (u32)(addr_t)skb->data;
  1031. iba[0].length = (u32)skb_headlen(skb);
  1032. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1033. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1034. iba[i + 1].address =
  1035. (u32)(addr_t)skb_frag_address(frag);
  1036. iba[i + 1].length = (u32)skb_frag_size(frag);
  1037. }
  1038. err = pr_iucv->message_send(iucv->path, &txmsg,
  1039. IUCV_IPBUFLST, 0,
  1040. (void *)iba, skb->len);
  1041. } else { /* non-IPRM Linear skb */
  1042. err = pr_iucv->message_send(iucv->path, &txmsg,
  1043. 0, 0, (void *)skb->data, skb->len);
  1044. }
  1045. if (err) {
  1046. if (err == 3) {
  1047. user_id[8] = 0;
  1048. memcpy(user_id, iucv->dst_user_id, 8);
  1049. appl_id[8] = 0;
  1050. memcpy(appl_id, iucv->dst_name, 8);
  1051. pr_err(
  1052. "Application %s on z/VM guest %s exceeds message limit\n",
  1053. appl_id, user_id);
  1054. err = -EAGAIN;
  1055. } else {
  1056. err = -EPIPE;
  1057. }
  1058. skb_unlink(skb, &iucv->send_skb_q);
  1059. goto fail;
  1060. }
  1061. }
  1062. release_sock(sk);
  1063. return len;
  1064. fail:
  1065. kfree_skb(skb);
  1066. out:
  1067. release_sock(sk);
  1068. return err;
  1069. }
  1070. static struct sk_buff *alloc_iucv_recv_skb(unsigned long len)
  1071. {
  1072. size_t headroom, linear;
  1073. struct sk_buff *skb;
  1074. int err;
  1075. if (len < PAGE_SIZE) {
  1076. headroom = 0;
  1077. linear = len;
  1078. } else {
  1079. headroom = sizeof(struct iucv_array) * (MAX_SKB_FRAGS + 1);
  1080. linear = PAGE_SIZE - headroom;
  1081. }
  1082. skb = alloc_skb_with_frags(headroom + linear, len - linear,
  1083. 0, &err, GFP_ATOMIC | GFP_DMA);
  1084. WARN_ONCE(!skb,
  1085. "alloc of recv iucv skb len=%lu failed with errcode=%d\n",
  1086. len, err);
  1087. if (skb) {
  1088. if (headroom)
  1089. skb_reserve(skb, headroom);
  1090. skb_put(skb, linear);
  1091. skb->len = len;
  1092. skb->data_len = len - linear;
  1093. }
  1094. return skb;
  1095. }
  1096. /* iucv_process_message() - Receive a single outstanding IUCV message
  1097. *
  1098. * Locking: must be called with message_q.lock held
  1099. */
  1100. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  1101. struct iucv_path *path,
  1102. struct iucv_message *msg)
  1103. {
  1104. int rc;
  1105. unsigned int len;
  1106. len = iucv_msg_length(msg);
  1107. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  1108. /* Note: the first 4 bytes are reserved for msg tag */
  1109. IUCV_SKB_CB(skb)->class = msg->class;
  1110. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  1111. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  1112. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  1113. skb->data = NULL;
  1114. skb->len = 0;
  1115. }
  1116. } else {
  1117. if (skb_is_nonlinear(skb)) {
  1118. struct iucv_array *iba = (struct iucv_array *)skb->head;
  1119. int i;
  1120. iba[0].address = (u32)(addr_t)skb->data;
  1121. iba[0].length = (u32)skb_headlen(skb);
  1122. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1123. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1124. iba[i + 1].address =
  1125. (u32)(addr_t)skb_frag_address(frag);
  1126. iba[i + 1].length = (u32)skb_frag_size(frag);
  1127. }
  1128. rc = pr_iucv->message_receive(path, msg,
  1129. IUCV_IPBUFLST,
  1130. (void *)iba, len, NULL);
  1131. } else {
  1132. rc = pr_iucv->message_receive(path, msg,
  1133. msg->flags & IUCV_IPRMDATA,
  1134. skb->data, len, NULL);
  1135. }
  1136. if (rc) {
  1137. kfree_skb(skb);
  1138. return;
  1139. }
  1140. WARN_ON_ONCE(skb->len != len);
  1141. }
  1142. IUCV_SKB_CB(skb)->offset = 0;
  1143. if (sk_filter(sk, skb)) {
  1144. atomic_inc(&sk->sk_drops); /* skb rejected by filter */
  1145. kfree_skb(skb);
  1146. return;
  1147. }
  1148. if (__sock_queue_rcv_skb(sk, skb)) /* handle rcv queue full */
  1149. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1150. }
  1151. /* iucv_process_message_q() - Process outstanding IUCV messages
  1152. *
  1153. * Locking: must be called with message_q.lock held
  1154. */
  1155. static void iucv_process_message_q(struct sock *sk)
  1156. {
  1157. struct iucv_sock *iucv = iucv_sk(sk);
  1158. struct sk_buff *skb;
  1159. struct sock_msg_q *p, *n;
  1160. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  1161. skb = alloc_iucv_recv_skb(iucv_msg_length(&p->msg));
  1162. if (!skb)
  1163. break;
  1164. iucv_process_message(sk, skb, p->path, &p->msg);
  1165. list_del(&p->list);
  1166. kfree(p);
  1167. if (!skb_queue_empty(&iucv->backlog_skb_q))
  1168. break;
  1169. }
  1170. }
  1171. static int iucv_sock_recvmsg(struct socket *sock, struct msghdr *msg,
  1172. size_t len, int flags)
  1173. {
  1174. int noblock = flags & MSG_DONTWAIT;
  1175. struct sock *sk = sock->sk;
  1176. struct iucv_sock *iucv = iucv_sk(sk);
  1177. unsigned int copied, rlen;
  1178. struct sk_buff *skb, *rskb, *cskb;
  1179. int err = 0;
  1180. u32 offset;
  1181. if ((sk->sk_state == IUCV_DISCONN) &&
  1182. skb_queue_empty(&iucv->backlog_skb_q) &&
  1183. skb_queue_empty(&sk->sk_receive_queue) &&
  1184. list_empty(&iucv->message_q.list))
  1185. return 0;
  1186. if (flags & (MSG_OOB))
  1187. return -EOPNOTSUPP;
  1188. /* receive/dequeue next skb:
  1189. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  1190. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1191. if (!skb) {
  1192. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1193. return 0;
  1194. return err;
  1195. }
  1196. offset = IUCV_SKB_CB(skb)->offset;
  1197. rlen = skb->len - offset; /* real length of skb */
  1198. copied = min_t(unsigned int, rlen, len);
  1199. if (!rlen)
  1200. sk->sk_shutdown = sk->sk_shutdown | RCV_SHUTDOWN;
  1201. cskb = skb;
  1202. if (skb_copy_datagram_msg(cskb, offset, msg, copied)) {
  1203. if (!(flags & MSG_PEEK))
  1204. skb_queue_head(&sk->sk_receive_queue, skb);
  1205. return -EFAULT;
  1206. }
  1207. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  1208. if (sk->sk_type == SOCK_SEQPACKET) {
  1209. if (copied < rlen)
  1210. msg->msg_flags |= MSG_TRUNC;
  1211. /* each iucv message contains a complete record */
  1212. msg->msg_flags |= MSG_EOR;
  1213. }
  1214. /* create control message to store iucv msg target class:
  1215. * get the trgcls from the control buffer of the skb due to
  1216. * fragmentation of original iucv message. */
  1217. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1218. sizeof(IUCV_SKB_CB(skb)->class),
  1219. (void *)&IUCV_SKB_CB(skb)->class);
  1220. if (err) {
  1221. if (!(flags & MSG_PEEK))
  1222. skb_queue_head(&sk->sk_receive_queue, skb);
  1223. return err;
  1224. }
  1225. /* Mark read part of skb as used */
  1226. if (!(flags & MSG_PEEK)) {
  1227. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1228. if (sk->sk_type == SOCK_STREAM) {
  1229. if (copied < rlen) {
  1230. IUCV_SKB_CB(skb)->offset = offset + copied;
  1231. skb_queue_head(&sk->sk_receive_queue, skb);
  1232. goto done;
  1233. }
  1234. }
  1235. kfree_skb(skb);
  1236. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  1237. atomic_inc(&iucv->msg_recv);
  1238. if (atomic_read(&iucv->msg_recv) > iucv->msglimit) {
  1239. WARN_ON(1);
  1240. iucv_sock_close(sk);
  1241. return -EFAULT;
  1242. }
  1243. }
  1244. /* Queue backlog skbs */
  1245. spin_lock_bh(&iucv->message_q.lock);
  1246. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1247. while (rskb) {
  1248. IUCV_SKB_CB(rskb)->offset = 0;
  1249. if (__sock_queue_rcv_skb(sk, rskb)) {
  1250. /* handle rcv queue full */
  1251. skb_queue_head(&iucv->backlog_skb_q,
  1252. rskb);
  1253. break;
  1254. }
  1255. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1256. }
  1257. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1258. if (!list_empty(&iucv->message_q.list))
  1259. iucv_process_message_q(sk);
  1260. if (atomic_read(&iucv->msg_recv) >=
  1261. iucv->msglimit / 2) {
  1262. err = iucv_send_ctrl(sk, AF_IUCV_FLAG_WIN);
  1263. if (err) {
  1264. sk->sk_state = IUCV_DISCONN;
  1265. sk->sk_state_change(sk);
  1266. }
  1267. }
  1268. }
  1269. spin_unlock_bh(&iucv->message_q.lock);
  1270. }
  1271. done:
  1272. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1273. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1274. copied = rlen;
  1275. return copied;
  1276. }
  1277. static inline unsigned int iucv_accept_poll(struct sock *parent)
  1278. {
  1279. struct iucv_sock *isk, *n;
  1280. struct sock *sk;
  1281. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1282. sk = (struct sock *) isk;
  1283. if (sk->sk_state == IUCV_CONNECTED)
  1284. return POLLIN | POLLRDNORM;
  1285. }
  1286. return 0;
  1287. }
  1288. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  1289. poll_table *wait)
  1290. {
  1291. struct sock *sk = sock->sk;
  1292. unsigned int mask = 0;
  1293. sock_poll_wait(file, sk_sleep(sk), wait);
  1294. if (sk->sk_state == IUCV_LISTEN)
  1295. return iucv_accept_poll(sk);
  1296. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1297. mask |= POLLERR |
  1298. (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
  1299. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1300. mask |= POLLRDHUP;
  1301. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1302. mask |= POLLHUP;
  1303. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1304. (sk->sk_shutdown & RCV_SHUTDOWN))
  1305. mask |= POLLIN | POLLRDNORM;
  1306. if (sk->sk_state == IUCV_CLOSED)
  1307. mask |= POLLHUP;
  1308. if (sk->sk_state == IUCV_DISCONN)
  1309. mask |= POLLIN;
  1310. if (sock_writeable(sk) && iucv_below_msglim(sk))
  1311. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  1312. else
  1313. sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
  1314. return mask;
  1315. }
  1316. static int iucv_sock_shutdown(struct socket *sock, int how)
  1317. {
  1318. struct sock *sk = sock->sk;
  1319. struct iucv_sock *iucv = iucv_sk(sk);
  1320. struct iucv_message txmsg;
  1321. int err = 0;
  1322. how++;
  1323. if ((how & ~SHUTDOWN_MASK) || !how)
  1324. return -EINVAL;
  1325. lock_sock(sk);
  1326. switch (sk->sk_state) {
  1327. case IUCV_LISTEN:
  1328. case IUCV_DISCONN:
  1329. case IUCV_CLOSING:
  1330. case IUCV_CLOSED:
  1331. err = -ENOTCONN;
  1332. goto fail;
  1333. default:
  1334. break;
  1335. }
  1336. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1337. if (iucv->transport == AF_IUCV_TRANS_IUCV) {
  1338. txmsg.class = 0;
  1339. txmsg.tag = 0;
  1340. err = pr_iucv->message_send(iucv->path, &txmsg,
  1341. IUCV_IPRMDATA, 0, (void *) iprm_shutdown, 8);
  1342. if (err) {
  1343. switch (err) {
  1344. case 1:
  1345. err = -ENOTCONN;
  1346. break;
  1347. case 2:
  1348. err = -ECONNRESET;
  1349. break;
  1350. default:
  1351. err = -ENOTCONN;
  1352. break;
  1353. }
  1354. }
  1355. } else
  1356. iucv_send_ctrl(sk, AF_IUCV_FLAG_SHT);
  1357. }
  1358. sk->sk_shutdown |= how;
  1359. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1360. if ((iucv->transport == AF_IUCV_TRANS_IUCV) &&
  1361. iucv->path) {
  1362. err = pr_iucv->path_quiesce(iucv->path, NULL);
  1363. if (err)
  1364. err = -ENOTCONN;
  1365. /* skb_queue_purge(&sk->sk_receive_queue); */
  1366. }
  1367. skb_queue_purge(&sk->sk_receive_queue);
  1368. }
  1369. /* Wake up anyone sleeping in poll */
  1370. sk->sk_state_change(sk);
  1371. fail:
  1372. release_sock(sk);
  1373. return err;
  1374. }
  1375. static int iucv_sock_release(struct socket *sock)
  1376. {
  1377. struct sock *sk = sock->sk;
  1378. int err = 0;
  1379. if (!sk)
  1380. return 0;
  1381. iucv_sock_close(sk);
  1382. sock_orphan(sk);
  1383. iucv_sock_kill(sk);
  1384. return err;
  1385. }
  1386. /* getsockopt and setsockopt */
  1387. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1388. char __user *optval, unsigned int optlen)
  1389. {
  1390. struct sock *sk = sock->sk;
  1391. struct iucv_sock *iucv = iucv_sk(sk);
  1392. int val;
  1393. int rc;
  1394. if (level != SOL_IUCV)
  1395. return -ENOPROTOOPT;
  1396. if (optlen < sizeof(int))
  1397. return -EINVAL;
  1398. if (get_user(val, (int __user *) optval))
  1399. return -EFAULT;
  1400. rc = 0;
  1401. lock_sock(sk);
  1402. switch (optname) {
  1403. case SO_IPRMDATA_MSG:
  1404. if (val)
  1405. iucv->flags |= IUCV_IPRMDATA;
  1406. else
  1407. iucv->flags &= ~IUCV_IPRMDATA;
  1408. break;
  1409. case SO_MSGLIMIT:
  1410. switch (sk->sk_state) {
  1411. case IUCV_OPEN:
  1412. case IUCV_BOUND:
  1413. if (val < 1 || val > (u16)(~0))
  1414. rc = -EINVAL;
  1415. else
  1416. iucv->msglimit = val;
  1417. break;
  1418. default:
  1419. rc = -EINVAL;
  1420. break;
  1421. }
  1422. break;
  1423. default:
  1424. rc = -ENOPROTOOPT;
  1425. break;
  1426. }
  1427. release_sock(sk);
  1428. return rc;
  1429. }
  1430. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1431. char __user *optval, int __user *optlen)
  1432. {
  1433. struct sock *sk = sock->sk;
  1434. struct iucv_sock *iucv = iucv_sk(sk);
  1435. unsigned int val;
  1436. int len;
  1437. if (level != SOL_IUCV)
  1438. return -ENOPROTOOPT;
  1439. if (get_user(len, optlen))
  1440. return -EFAULT;
  1441. if (len < 0)
  1442. return -EINVAL;
  1443. len = min_t(unsigned int, len, sizeof(int));
  1444. switch (optname) {
  1445. case SO_IPRMDATA_MSG:
  1446. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1447. break;
  1448. case SO_MSGLIMIT:
  1449. lock_sock(sk);
  1450. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1451. : iucv->msglimit; /* default */
  1452. release_sock(sk);
  1453. break;
  1454. case SO_MSGSIZE:
  1455. if (sk->sk_state == IUCV_OPEN)
  1456. return -EBADFD;
  1457. val = (iucv->hs_dev) ? iucv->hs_dev->mtu -
  1458. sizeof(struct af_iucv_trans_hdr) - ETH_HLEN :
  1459. 0x7fffffff;
  1460. break;
  1461. default:
  1462. return -ENOPROTOOPT;
  1463. }
  1464. if (put_user(len, optlen))
  1465. return -EFAULT;
  1466. if (copy_to_user(optval, &val, len))
  1467. return -EFAULT;
  1468. return 0;
  1469. }
  1470. /* Callback wrappers - called from iucv base support */
  1471. static int iucv_callback_connreq(struct iucv_path *path,
  1472. u8 ipvmid[8], u8 ipuser[16])
  1473. {
  1474. unsigned char user_data[16];
  1475. unsigned char nuser_data[16];
  1476. unsigned char src_name[8];
  1477. struct sock *sk, *nsk;
  1478. struct iucv_sock *iucv, *niucv;
  1479. int err;
  1480. memcpy(src_name, ipuser, 8);
  1481. EBCASC(src_name, 8);
  1482. /* Find out if this path belongs to af_iucv. */
  1483. read_lock(&iucv_sk_list.lock);
  1484. iucv = NULL;
  1485. sk = NULL;
  1486. sk_for_each(sk, &iucv_sk_list.head)
  1487. if (sk->sk_state == IUCV_LISTEN &&
  1488. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1489. /*
  1490. * Found a listening socket with
  1491. * src_name == ipuser[0-7].
  1492. */
  1493. iucv = iucv_sk(sk);
  1494. break;
  1495. }
  1496. read_unlock(&iucv_sk_list.lock);
  1497. if (!iucv)
  1498. /* No socket found, not one of our paths. */
  1499. return -EINVAL;
  1500. bh_lock_sock(sk);
  1501. /* Check if parent socket is listening */
  1502. low_nmcpy(user_data, iucv->src_name);
  1503. high_nmcpy(user_data, iucv->dst_name);
  1504. ASCEBC(user_data, sizeof(user_data));
  1505. if (sk->sk_state != IUCV_LISTEN) {
  1506. err = pr_iucv->path_sever(path, user_data);
  1507. iucv_path_free(path);
  1508. goto fail;
  1509. }
  1510. /* Check for backlog size */
  1511. if (sk_acceptq_is_full(sk)) {
  1512. err = pr_iucv->path_sever(path, user_data);
  1513. iucv_path_free(path);
  1514. goto fail;
  1515. }
  1516. /* Create the new socket */
  1517. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC, 0);
  1518. if (!nsk) {
  1519. err = pr_iucv->path_sever(path, user_data);
  1520. iucv_path_free(path);
  1521. goto fail;
  1522. }
  1523. niucv = iucv_sk(nsk);
  1524. iucv_sock_init(nsk, sk);
  1525. /* Set the new iucv_sock */
  1526. memcpy(niucv->dst_name, ipuser + 8, 8);
  1527. EBCASC(niucv->dst_name, 8);
  1528. memcpy(niucv->dst_user_id, ipvmid, 8);
  1529. memcpy(niucv->src_name, iucv->src_name, 8);
  1530. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1531. niucv->path = path;
  1532. /* Call iucv_accept */
  1533. high_nmcpy(nuser_data, ipuser + 8);
  1534. memcpy(nuser_data + 8, niucv->src_name, 8);
  1535. ASCEBC(nuser_data + 8, 8);
  1536. /* set message limit for path based on msglimit of accepting socket */
  1537. niucv->msglimit = iucv->msglimit;
  1538. path->msglim = iucv->msglimit;
  1539. err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1540. if (err) {
  1541. iucv_sever_path(nsk, 1);
  1542. iucv_sock_kill(nsk);
  1543. goto fail;
  1544. }
  1545. iucv_accept_enqueue(sk, nsk);
  1546. /* Wake up accept */
  1547. nsk->sk_state = IUCV_CONNECTED;
  1548. sk->sk_data_ready(sk);
  1549. err = 0;
  1550. fail:
  1551. bh_unlock_sock(sk);
  1552. return 0;
  1553. }
  1554. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1555. {
  1556. struct sock *sk = path->private;
  1557. sk->sk_state = IUCV_CONNECTED;
  1558. sk->sk_state_change(sk);
  1559. }
  1560. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1561. {
  1562. struct sock *sk = path->private;
  1563. struct iucv_sock *iucv = iucv_sk(sk);
  1564. struct sk_buff *skb;
  1565. struct sock_msg_q *save_msg;
  1566. int len;
  1567. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1568. pr_iucv->message_reject(path, msg);
  1569. return;
  1570. }
  1571. spin_lock(&iucv->message_q.lock);
  1572. if (!list_empty(&iucv->message_q.list) ||
  1573. !skb_queue_empty(&iucv->backlog_skb_q))
  1574. goto save_message;
  1575. len = atomic_read(&sk->sk_rmem_alloc);
  1576. len += SKB_TRUESIZE(iucv_msg_length(msg));
  1577. if (len > sk->sk_rcvbuf)
  1578. goto save_message;
  1579. skb = alloc_iucv_recv_skb(iucv_msg_length(msg));
  1580. if (!skb)
  1581. goto save_message;
  1582. iucv_process_message(sk, skb, path, msg);
  1583. goto out_unlock;
  1584. save_message:
  1585. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1586. if (!save_msg)
  1587. goto out_unlock;
  1588. save_msg->path = path;
  1589. save_msg->msg = *msg;
  1590. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1591. out_unlock:
  1592. spin_unlock(&iucv->message_q.lock);
  1593. }
  1594. static void iucv_callback_txdone(struct iucv_path *path,
  1595. struct iucv_message *msg)
  1596. {
  1597. struct sock *sk = path->private;
  1598. struct sk_buff *this = NULL;
  1599. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1600. struct sk_buff *list_skb = list->next;
  1601. unsigned long flags;
  1602. bh_lock_sock(sk);
  1603. if (!skb_queue_empty(list)) {
  1604. spin_lock_irqsave(&list->lock, flags);
  1605. while (list_skb != (struct sk_buff *)list) {
  1606. if (msg->tag == IUCV_SKB_CB(list_skb)->tag) {
  1607. this = list_skb;
  1608. break;
  1609. }
  1610. list_skb = list_skb->next;
  1611. }
  1612. if (this)
  1613. __skb_unlink(this, list);
  1614. spin_unlock_irqrestore(&list->lock, flags);
  1615. if (this) {
  1616. kfree_skb(this);
  1617. /* wake up any process waiting for sending */
  1618. iucv_sock_wake_msglim(sk);
  1619. }
  1620. }
  1621. if (sk->sk_state == IUCV_CLOSING) {
  1622. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1623. sk->sk_state = IUCV_CLOSED;
  1624. sk->sk_state_change(sk);
  1625. }
  1626. }
  1627. bh_unlock_sock(sk);
  1628. }
  1629. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1630. {
  1631. struct sock *sk = path->private;
  1632. if (sk->sk_state == IUCV_CLOSED)
  1633. return;
  1634. bh_lock_sock(sk);
  1635. iucv_sever_path(sk, 1);
  1636. sk->sk_state = IUCV_DISCONN;
  1637. sk->sk_state_change(sk);
  1638. bh_unlock_sock(sk);
  1639. }
  1640. /* called if the other communication side shuts down its RECV direction;
  1641. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1642. */
  1643. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1644. {
  1645. struct sock *sk = path->private;
  1646. bh_lock_sock(sk);
  1647. if (sk->sk_state != IUCV_CLOSED) {
  1648. sk->sk_shutdown |= SEND_SHUTDOWN;
  1649. sk->sk_state_change(sk);
  1650. }
  1651. bh_unlock_sock(sk);
  1652. }
  1653. /***************** HiperSockets transport callbacks ********************/
  1654. static void afiucv_swap_src_dest(struct sk_buff *skb)
  1655. {
  1656. struct af_iucv_trans_hdr *trans_hdr =
  1657. (struct af_iucv_trans_hdr *)skb->data;
  1658. char tmpID[8];
  1659. char tmpName[8];
  1660. ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1661. ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1662. ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1663. ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1664. memcpy(tmpID, trans_hdr->srcUserID, 8);
  1665. memcpy(tmpName, trans_hdr->srcAppName, 8);
  1666. memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8);
  1667. memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8);
  1668. memcpy(trans_hdr->destUserID, tmpID, 8);
  1669. memcpy(trans_hdr->destAppName, tmpName, 8);
  1670. skb_push(skb, ETH_HLEN);
  1671. memset(skb->data, 0, ETH_HLEN);
  1672. }
  1673. /**
  1674. * afiucv_hs_callback_syn - react on received SYN
  1675. **/
  1676. static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb)
  1677. {
  1678. struct sock *nsk;
  1679. struct iucv_sock *iucv, *niucv;
  1680. struct af_iucv_trans_hdr *trans_hdr;
  1681. int err;
  1682. iucv = iucv_sk(sk);
  1683. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1684. if (!iucv) {
  1685. /* no sock - connection refused */
  1686. afiucv_swap_src_dest(skb);
  1687. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1688. err = dev_queue_xmit(skb);
  1689. goto out;
  1690. }
  1691. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC, 0);
  1692. bh_lock_sock(sk);
  1693. if ((sk->sk_state != IUCV_LISTEN) ||
  1694. sk_acceptq_is_full(sk) ||
  1695. !nsk) {
  1696. /* error on server socket - connection refused */
  1697. afiucv_swap_src_dest(skb);
  1698. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1699. err = dev_queue_xmit(skb);
  1700. iucv_sock_kill(nsk);
  1701. bh_unlock_sock(sk);
  1702. goto out;
  1703. }
  1704. niucv = iucv_sk(nsk);
  1705. iucv_sock_init(nsk, sk);
  1706. niucv->transport = AF_IUCV_TRANS_HIPER;
  1707. niucv->msglimit = iucv->msglimit;
  1708. if (!trans_hdr->window)
  1709. niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT;
  1710. else
  1711. niucv->msglimit_peer = trans_hdr->window;
  1712. memcpy(niucv->dst_name, trans_hdr->srcAppName, 8);
  1713. memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8);
  1714. memcpy(niucv->src_name, iucv->src_name, 8);
  1715. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1716. nsk->sk_bound_dev_if = sk->sk_bound_dev_if;
  1717. niucv->hs_dev = iucv->hs_dev;
  1718. dev_hold(niucv->hs_dev);
  1719. afiucv_swap_src_dest(skb);
  1720. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK;
  1721. trans_hdr->window = niucv->msglimit;
  1722. /* if receiver acks the xmit connection is established */
  1723. err = dev_queue_xmit(skb);
  1724. if (!err) {
  1725. iucv_accept_enqueue(sk, nsk);
  1726. nsk->sk_state = IUCV_CONNECTED;
  1727. sk->sk_data_ready(sk);
  1728. } else
  1729. iucv_sock_kill(nsk);
  1730. bh_unlock_sock(sk);
  1731. out:
  1732. return NET_RX_SUCCESS;
  1733. }
  1734. /**
  1735. * afiucv_hs_callback_synack() - react on received SYN-ACK
  1736. **/
  1737. static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb)
  1738. {
  1739. struct iucv_sock *iucv = iucv_sk(sk);
  1740. struct af_iucv_trans_hdr *trans_hdr =
  1741. (struct af_iucv_trans_hdr *)skb->data;
  1742. if (!iucv)
  1743. goto out;
  1744. if (sk->sk_state != IUCV_BOUND)
  1745. goto out;
  1746. bh_lock_sock(sk);
  1747. iucv->msglimit_peer = trans_hdr->window;
  1748. sk->sk_state = IUCV_CONNECTED;
  1749. sk->sk_state_change(sk);
  1750. bh_unlock_sock(sk);
  1751. out:
  1752. kfree_skb(skb);
  1753. return NET_RX_SUCCESS;
  1754. }
  1755. /**
  1756. * afiucv_hs_callback_synfin() - react on received SYN_FIN
  1757. **/
  1758. static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb)
  1759. {
  1760. struct iucv_sock *iucv = iucv_sk(sk);
  1761. if (!iucv)
  1762. goto out;
  1763. if (sk->sk_state != IUCV_BOUND)
  1764. goto out;
  1765. bh_lock_sock(sk);
  1766. sk->sk_state = IUCV_DISCONN;
  1767. sk->sk_state_change(sk);
  1768. bh_unlock_sock(sk);
  1769. out:
  1770. kfree_skb(skb);
  1771. return NET_RX_SUCCESS;
  1772. }
  1773. /**
  1774. * afiucv_hs_callback_fin() - react on received FIN
  1775. **/
  1776. static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb)
  1777. {
  1778. struct iucv_sock *iucv = iucv_sk(sk);
  1779. /* other end of connection closed */
  1780. if (!iucv)
  1781. goto out;
  1782. bh_lock_sock(sk);
  1783. if (sk->sk_state == IUCV_CONNECTED) {
  1784. sk->sk_state = IUCV_DISCONN;
  1785. sk->sk_state_change(sk);
  1786. }
  1787. bh_unlock_sock(sk);
  1788. out:
  1789. kfree_skb(skb);
  1790. return NET_RX_SUCCESS;
  1791. }
  1792. /**
  1793. * afiucv_hs_callback_win() - react on received WIN
  1794. **/
  1795. static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb)
  1796. {
  1797. struct iucv_sock *iucv = iucv_sk(sk);
  1798. struct af_iucv_trans_hdr *trans_hdr =
  1799. (struct af_iucv_trans_hdr *)skb->data;
  1800. if (!iucv)
  1801. return NET_RX_SUCCESS;
  1802. if (sk->sk_state != IUCV_CONNECTED)
  1803. return NET_RX_SUCCESS;
  1804. atomic_sub(trans_hdr->window, &iucv->msg_sent);
  1805. iucv_sock_wake_msglim(sk);
  1806. return NET_RX_SUCCESS;
  1807. }
  1808. /**
  1809. * afiucv_hs_callback_rx() - react on received data
  1810. **/
  1811. static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb)
  1812. {
  1813. struct iucv_sock *iucv = iucv_sk(sk);
  1814. if (!iucv) {
  1815. kfree_skb(skb);
  1816. return NET_RX_SUCCESS;
  1817. }
  1818. if (sk->sk_state != IUCV_CONNECTED) {
  1819. kfree_skb(skb);
  1820. return NET_RX_SUCCESS;
  1821. }
  1822. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1823. kfree_skb(skb);
  1824. return NET_RX_SUCCESS;
  1825. }
  1826. /* write stuff from iucv_msg to skb cb */
  1827. skb_pull(skb, sizeof(struct af_iucv_trans_hdr));
  1828. skb_reset_transport_header(skb);
  1829. skb_reset_network_header(skb);
  1830. IUCV_SKB_CB(skb)->offset = 0;
  1831. if (sk_filter(sk, skb)) {
  1832. atomic_inc(&sk->sk_drops); /* skb rejected by filter */
  1833. kfree_skb(skb);
  1834. return NET_RX_SUCCESS;
  1835. }
  1836. spin_lock(&iucv->message_q.lock);
  1837. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1838. if (__sock_queue_rcv_skb(sk, skb))
  1839. /* handle rcv queue full */
  1840. skb_queue_tail(&iucv->backlog_skb_q, skb);
  1841. } else
  1842. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1843. spin_unlock(&iucv->message_q.lock);
  1844. return NET_RX_SUCCESS;
  1845. }
  1846. /**
  1847. * afiucv_hs_rcv() - base function for arriving data through HiperSockets
  1848. * transport
  1849. * called from netif RX softirq
  1850. **/
  1851. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  1852. struct packet_type *pt, struct net_device *orig_dev)
  1853. {
  1854. struct sock *sk;
  1855. struct iucv_sock *iucv;
  1856. struct af_iucv_trans_hdr *trans_hdr;
  1857. char nullstring[8];
  1858. int err = 0;
  1859. if (skb->len < (ETH_HLEN + sizeof(struct af_iucv_trans_hdr))) {
  1860. WARN_ONCE(1, "AF_IUCV too short skb, len=%d, min=%d",
  1861. (int)skb->len,
  1862. (int)(ETH_HLEN + sizeof(struct af_iucv_trans_hdr)));
  1863. kfree_skb(skb);
  1864. return NET_RX_SUCCESS;
  1865. }
  1866. if (skb_headlen(skb) < (ETH_HLEN + sizeof(struct af_iucv_trans_hdr)))
  1867. if (skb_linearize(skb)) {
  1868. WARN_ONCE(1, "AF_IUCV skb_linearize failed, len=%d",
  1869. (int)skb->len);
  1870. kfree_skb(skb);
  1871. return NET_RX_SUCCESS;
  1872. }
  1873. skb_pull(skb, ETH_HLEN);
  1874. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1875. EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1876. EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1877. EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1878. EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1879. memset(nullstring, 0, sizeof(nullstring));
  1880. iucv = NULL;
  1881. sk = NULL;
  1882. read_lock(&iucv_sk_list.lock);
  1883. sk_for_each(sk, &iucv_sk_list.head) {
  1884. if (trans_hdr->flags == AF_IUCV_FLAG_SYN) {
  1885. if ((!memcmp(&iucv_sk(sk)->src_name,
  1886. trans_hdr->destAppName, 8)) &&
  1887. (!memcmp(&iucv_sk(sk)->src_user_id,
  1888. trans_hdr->destUserID, 8)) &&
  1889. (!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) &&
  1890. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1891. nullstring, 8))) {
  1892. iucv = iucv_sk(sk);
  1893. break;
  1894. }
  1895. } else {
  1896. if ((!memcmp(&iucv_sk(sk)->src_name,
  1897. trans_hdr->destAppName, 8)) &&
  1898. (!memcmp(&iucv_sk(sk)->src_user_id,
  1899. trans_hdr->destUserID, 8)) &&
  1900. (!memcmp(&iucv_sk(sk)->dst_name,
  1901. trans_hdr->srcAppName, 8)) &&
  1902. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1903. trans_hdr->srcUserID, 8))) {
  1904. iucv = iucv_sk(sk);
  1905. break;
  1906. }
  1907. }
  1908. }
  1909. read_unlock(&iucv_sk_list.lock);
  1910. if (!iucv)
  1911. sk = NULL;
  1912. /* no sock
  1913. how should we send with no sock
  1914. 1) send without sock no send rc checking?
  1915. 2) introduce default sock to handle this cases
  1916. SYN -> send SYN|ACK in good case, send SYN|FIN in bad case
  1917. data -> send FIN
  1918. SYN|ACK, SYN|FIN, FIN -> no action? */
  1919. switch (trans_hdr->flags) {
  1920. case AF_IUCV_FLAG_SYN:
  1921. /* connect request */
  1922. err = afiucv_hs_callback_syn(sk, skb);
  1923. break;
  1924. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK):
  1925. /* connect request confirmed */
  1926. err = afiucv_hs_callback_synack(sk, skb);
  1927. break;
  1928. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN):
  1929. /* connect request refused */
  1930. err = afiucv_hs_callback_synfin(sk, skb);
  1931. break;
  1932. case (AF_IUCV_FLAG_FIN):
  1933. /* close request */
  1934. err = afiucv_hs_callback_fin(sk, skb);
  1935. break;
  1936. case (AF_IUCV_FLAG_WIN):
  1937. err = afiucv_hs_callback_win(sk, skb);
  1938. if (skb->len == sizeof(struct af_iucv_trans_hdr)) {
  1939. kfree_skb(skb);
  1940. break;
  1941. }
  1942. /* fall through and receive non-zero length data */
  1943. case (AF_IUCV_FLAG_SHT):
  1944. /* shutdown request */
  1945. /* fall through and receive zero length data */
  1946. case 0:
  1947. /* plain data frame */
  1948. IUCV_SKB_CB(skb)->class = trans_hdr->iucv_hdr.class;
  1949. err = afiucv_hs_callback_rx(sk, skb);
  1950. break;
  1951. default:
  1952. ;
  1953. }
  1954. return err;
  1955. }
  1956. /**
  1957. * afiucv_hs_callback_txnotify() - handle send notifcations from HiperSockets
  1958. * transport
  1959. **/
  1960. static void afiucv_hs_callback_txnotify(struct sk_buff *skb,
  1961. enum iucv_tx_notify n)
  1962. {
  1963. struct sock *isk = skb->sk;
  1964. struct sock *sk = NULL;
  1965. struct iucv_sock *iucv = NULL;
  1966. struct sk_buff_head *list;
  1967. struct sk_buff *list_skb;
  1968. struct sk_buff *nskb;
  1969. unsigned long flags;
  1970. read_lock_irqsave(&iucv_sk_list.lock, flags);
  1971. sk_for_each(sk, &iucv_sk_list.head)
  1972. if (sk == isk) {
  1973. iucv = iucv_sk(sk);
  1974. break;
  1975. }
  1976. read_unlock_irqrestore(&iucv_sk_list.lock, flags);
  1977. if (!iucv || sock_flag(sk, SOCK_ZAPPED))
  1978. return;
  1979. list = &iucv->send_skb_q;
  1980. spin_lock_irqsave(&list->lock, flags);
  1981. if (skb_queue_empty(list))
  1982. goto out_unlock;
  1983. list_skb = list->next;
  1984. nskb = list_skb->next;
  1985. while (list_skb != (struct sk_buff *)list) {
  1986. if (skb_shinfo(list_skb) == skb_shinfo(skb)) {
  1987. switch (n) {
  1988. case TX_NOTIFY_OK:
  1989. __skb_unlink(list_skb, list);
  1990. kfree_skb(list_skb);
  1991. iucv_sock_wake_msglim(sk);
  1992. break;
  1993. case TX_NOTIFY_PENDING:
  1994. atomic_inc(&iucv->pendings);
  1995. break;
  1996. case TX_NOTIFY_DELAYED_OK:
  1997. __skb_unlink(list_skb, list);
  1998. atomic_dec(&iucv->pendings);
  1999. if (atomic_read(&iucv->pendings) <= 0)
  2000. iucv_sock_wake_msglim(sk);
  2001. kfree_skb(list_skb);
  2002. break;
  2003. case TX_NOTIFY_UNREACHABLE:
  2004. case TX_NOTIFY_DELAYED_UNREACHABLE:
  2005. case TX_NOTIFY_TPQFULL: /* not yet used */
  2006. case TX_NOTIFY_GENERALERROR:
  2007. case TX_NOTIFY_DELAYED_GENERALERROR:
  2008. __skb_unlink(list_skb, list);
  2009. kfree_skb(list_skb);
  2010. if (sk->sk_state == IUCV_CONNECTED) {
  2011. sk->sk_state = IUCV_DISCONN;
  2012. sk->sk_state_change(sk);
  2013. }
  2014. break;
  2015. }
  2016. break;
  2017. }
  2018. list_skb = nskb;
  2019. nskb = nskb->next;
  2020. }
  2021. out_unlock:
  2022. spin_unlock_irqrestore(&list->lock, flags);
  2023. if (sk->sk_state == IUCV_CLOSING) {
  2024. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  2025. sk->sk_state = IUCV_CLOSED;
  2026. sk->sk_state_change(sk);
  2027. }
  2028. }
  2029. }
  2030. /*
  2031. * afiucv_netdev_event: handle netdev notifier chain events
  2032. */
  2033. static int afiucv_netdev_event(struct notifier_block *this,
  2034. unsigned long event, void *ptr)
  2035. {
  2036. struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
  2037. struct sock *sk;
  2038. struct iucv_sock *iucv;
  2039. switch (event) {
  2040. case NETDEV_REBOOT:
  2041. case NETDEV_GOING_DOWN:
  2042. sk_for_each(sk, &iucv_sk_list.head) {
  2043. iucv = iucv_sk(sk);
  2044. if ((iucv->hs_dev == event_dev) &&
  2045. (sk->sk_state == IUCV_CONNECTED)) {
  2046. if (event == NETDEV_GOING_DOWN)
  2047. iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
  2048. sk->sk_state = IUCV_DISCONN;
  2049. sk->sk_state_change(sk);
  2050. }
  2051. }
  2052. break;
  2053. case NETDEV_DOWN:
  2054. case NETDEV_UNREGISTER:
  2055. default:
  2056. break;
  2057. }
  2058. return NOTIFY_DONE;
  2059. }
  2060. static struct notifier_block afiucv_netdev_notifier = {
  2061. .notifier_call = afiucv_netdev_event,
  2062. };
  2063. static const struct proto_ops iucv_sock_ops = {
  2064. .family = PF_IUCV,
  2065. .owner = THIS_MODULE,
  2066. .release = iucv_sock_release,
  2067. .bind = iucv_sock_bind,
  2068. .connect = iucv_sock_connect,
  2069. .listen = iucv_sock_listen,
  2070. .accept = iucv_sock_accept,
  2071. .getname = iucv_sock_getname,
  2072. .sendmsg = iucv_sock_sendmsg,
  2073. .recvmsg = iucv_sock_recvmsg,
  2074. .poll = iucv_sock_poll,
  2075. .ioctl = sock_no_ioctl,
  2076. .mmap = sock_no_mmap,
  2077. .socketpair = sock_no_socketpair,
  2078. .shutdown = iucv_sock_shutdown,
  2079. .setsockopt = iucv_sock_setsockopt,
  2080. .getsockopt = iucv_sock_getsockopt,
  2081. };
  2082. static const struct net_proto_family iucv_sock_family_ops = {
  2083. .family = AF_IUCV,
  2084. .owner = THIS_MODULE,
  2085. .create = iucv_sock_create,
  2086. };
  2087. static struct packet_type iucv_packet_type = {
  2088. .type = cpu_to_be16(ETH_P_AF_IUCV),
  2089. .func = afiucv_hs_rcv,
  2090. };
  2091. static int afiucv_iucv_init(void)
  2092. {
  2093. int err;
  2094. err = pr_iucv->iucv_register(&af_iucv_handler, 0);
  2095. if (err)
  2096. goto out;
  2097. /* establish dummy device */
  2098. af_iucv_driver.bus = pr_iucv->bus;
  2099. err = driver_register(&af_iucv_driver);
  2100. if (err)
  2101. goto out_iucv;
  2102. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  2103. if (!af_iucv_dev) {
  2104. err = -ENOMEM;
  2105. goto out_driver;
  2106. }
  2107. dev_set_name(af_iucv_dev, "af_iucv");
  2108. af_iucv_dev->bus = pr_iucv->bus;
  2109. af_iucv_dev->parent = pr_iucv->root;
  2110. af_iucv_dev->release = (void (*)(struct device *))kfree;
  2111. af_iucv_dev->driver = &af_iucv_driver;
  2112. err = device_register(af_iucv_dev);
  2113. if (err)
  2114. goto out_driver;
  2115. return 0;
  2116. out_driver:
  2117. driver_unregister(&af_iucv_driver);
  2118. out_iucv:
  2119. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2120. out:
  2121. return err;
  2122. }
  2123. static int __init afiucv_init(void)
  2124. {
  2125. int err;
  2126. if (MACHINE_IS_VM) {
  2127. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  2128. if (unlikely(err)) {
  2129. WARN_ON(err);
  2130. err = -EPROTONOSUPPORT;
  2131. goto out;
  2132. }
  2133. pr_iucv = try_then_request_module(symbol_get(iucv_if), "iucv");
  2134. if (!pr_iucv) {
  2135. printk(KERN_WARNING "iucv_if lookup failed\n");
  2136. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2137. }
  2138. } else {
  2139. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2140. pr_iucv = NULL;
  2141. }
  2142. err = proto_register(&iucv_proto, 0);
  2143. if (err)
  2144. goto out;
  2145. err = sock_register(&iucv_sock_family_ops);
  2146. if (err)
  2147. goto out_proto;
  2148. if (pr_iucv) {
  2149. err = afiucv_iucv_init();
  2150. if (err)
  2151. goto out_sock;
  2152. } else
  2153. register_netdevice_notifier(&afiucv_netdev_notifier);
  2154. dev_add_pack(&iucv_packet_type);
  2155. return 0;
  2156. out_sock:
  2157. sock_unregister(PF_IUCV);
  2158. out_proto:
  2159. proto_unregister(&iucv_proto);
  2160. out:
  2161. if (pr_iucv)
  2162. symbol_put(iucv_if);
  2163. return err;
  2164. }
  2165. static void __exit afiucv_exit(void)
  2166. {
  2167. if (pr_iucv) {
  2168. device_unregister(af_iucv_dev);
  2169. driver_unregister(&af_iucv_driver);
  2170. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2171. symbol_put(iucv_if);
  2172. } else
  2173. unregister_netdevice_notifier(&afiucv_netdev_notifier);
  2174. dev_remove_pack(&iucv_packet_type);
  2175. sock_unregister(PF_IUCV);
  2176. proto_unregister(&iucv_proto);
  2177. }
  2178. module_init(afiucv_init);
  2179. module_exit(afiucv_exit);
  2180. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  2181. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  2182. MODULE_VERSION(VERSION);
  2183. MODULE_LICENSE("GPL");
  2184. MODULE_ALIAS_NETPROTO(PF_IUCV);