ip6_offload.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386
  1. /*
  2. * IPV6 GSO/GRO offload support
  3. * Linux INET6 implementation
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version
  8. * 2 of the License, or (at your option) any later version.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/socket.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/skbuff.h>
  14. #include <linux/printk.h>
  15. #include <net/protocol.h>
  16. #include <net/ipv6.h>
  17. #include <net/inet_common.h>
  18. #include "ip6_offload.h"
  19. static int ipv6_gso_pull_exthdrs(struct sk_buff *skb, int proto)
  20. {
  21. const struct net_offload *ops = NULL;
  22. for (;;) {
  23. struct ipv6_opt_hdr *opth;
  24. int len;
  25. if (proto != NEXTHDR_HOP) {
  26. ops = rcu_dereference(inet6_offloads[proto]);
  27. if (unlikely(!ops))
  28. break;
  29. if (!(ops->flags & INET6_PROTO_GSO_EXTHDR))
  30. break;
  31. }
  32. if (unlikely(!pskb_may_pull(skb, 8)))
  33. break;
  34. opth = (void *)skb->data;
  35. len = ipv6_optlen(opth);
  36. if (unlikely(!pskb_may_pull(skb, len)))
  37. break;
  38. opth = (void *)skb->data;
  39. proto = opth->nexthdr;
  40. __skb_pull(skb, len);
  41. }
  42. return proto;
  43. }
  44. static struct sk_buff *ipv6_gso_segment(struct sk_buff *skb,
  45. netdev_features_t features)
  46. {
  47. struct sk_buff *segs = ERR_PTR(-EINVAL);
  48. struct ipv6hdr *ipv6h;
  49. const struct net_offload *ops;
  50. int proto;
  51. struct frag_hdr *fptr;
  52. unsigned int unfrag_ip6hlen;
  53. unsigned int payload_len;
  54. u8 *prevhdr;
  55. int offset = 0;
  56. bool encap, udpfrag;
  57. int nhoff;
  58. bool gso_partial;
  59. skb_reset_network_header(skb);
  60. nhoff = skb_network_header(skb) - skb_mac_header(skb);
  61. if (unlikely(!pskb_may_pull(skb, sizeof(*ipv6h))))
  62. goto out;
  63. encap = SKB_GSO_CB(skb)->encap_level > 0;
  64. if (encap)
  65. features &= skb->dev->hw_enc_features;
  66. SKB_GSO_CB(skb)->encap_level += sizeof(*ipv6h);
  67. ipv6h = ipv6_hdr(skb);
  68. __skb_pull(skb, sizeof(*ipv6h));
  69. segs = ERR_PTR(-EPROTONOSUPPORT);
  70. proto = ipv6_gso_pull_exthdrs(skb, ipv6h->nexthdr);
  71. if (skb->encapsulation &&
  72. skb_shinfo(skb)->gso_type & (SKB_GSO_IPXIP4 | SKB_GSO_IPXIP6))
  73. udpfrag = proto == IPPROTO_UDP && encap;
  74. else
  75. udpfrag = proto == IPPROTO_UDP && !skb->encapsulation;
  76. ops = rcu_dereference(inet6_offloads[proto]);
  77. if (likely(ops && ops->callbacks.gso_segment)) {
  78. skb_reset_transport_header(skb);
  79. segs = ops->callbacks.gso_segment(skb, features);
  80. }
  81. if (IS_ERR_OR_NULL(segs))
  82. goto out;
  83. gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL);
  84. for (skb = segs; skb; skb = skb->next) {
  85. ipv6h = (struct ipv6hdr *)(skb_mac_header(skb) + nhoff);
  86. if (gso_partial)
  87. payload_len = skb_shinfo(skb)->gso_size +
  88. SKB_GSO_CB(skb)->data_offset +
  89. skb->head - (unsigned char *)(ipv6h + 1);
  90. else
  91. payload_len = skb->len - nhoff - sizeof(*ipv6h);
  92. ipv6h->payload_len = htons(payload_len);
  93. skb->network_header = (u8 *)ipv6h - skb->head;
  94. if (udpfrag) {
  95. unfrag_ip6hlen = ip6_find_1stfragopt(skb, &prevhdr);
  96. fptr = (struct frag_hdr *)((u8 *)ipv6h + unfrag_ip6hlen);
  97. fptr->frag_off = htons(offset);
  98. if (skb->next)
  99. fptr->frag_off |= htons(IP6_MF);
  100. offset += (ntohs(ipv6h->payload_len) -
  101. sizeof(struct frag_hdr));
  102. }
  103. if (encap)
  104. skb_reset_inner_headers(skb);
  105. }
  106. out:
  107. return segs;
  108. }
  109. /* Return the total length of all the extension hdrs, following the same
  110. * logic in ipv6_gso_pull_exthdrs() when parsing ext-hdrs.
  111. */
  112. static int ipv6_exthdrs_len(struct ipv6hdr *iph,
  113. const struct net_offload **opps)
  114. {
  115. struct ipv6_opt_hdr *opth = (void *)iph;
  116. int len = 0, proto, optlen = sizeof(*iph);
  117. proto = iph->nexthdr;
  118. for (;;) {
  119. if (proto != NEXTHDR_HOP) {
  120. *opps = rcu_dereference(inet6_offloads[proto]);
  121. if (unlikely(!(*opps)))
  122. break;
  123. if (!((*opps)->flags & INET6_PROTO_GSO_EXTHDR))
  124. break;
  125. }
  126. opth = (void *)opth + optlen;
  127. optlen = ipv6_optlen(opth);
  128. len += optlen;
  129. proto = opth->nexthdr;
  130. }
  131. return len;
  132. }
  133. static struct sk_buff **ipv6_gro_receive(struct sk_buff **head,
  134. struct sk_buff *skb)
  135. {
  136. const struct net_offload *ops;
  137. struct sk_buff **pp = NULL;
  138. struct sk_buff *p;
  139. struct ipv6hdr *iph;
  140. unsigned int nlen;
  141. unsigned int hlen;
  142. unsigned int off;
  143. u16 flush = 1;
  144. int proto;
  145. off = skb_gro_offset(skb);
  146. hlen = off + sizeof(*iph);
  147. iph = skb_gro_header_fast(skb, off);
  148. if (skb_gro_header_hard(skb, hlen)) {
  149. iph = skb_gro_header_slow(skb, hlen, off);
  150. if (unlikely(!iph))
  151. goto out;
  152. }
  153. skb_set_network_header(skb, off);
  154. skb_gro_pull(skb, sizeof(*iph));
  155. skb_set_transport_header(skb, skb_gro_offset(skb));
  156. flush += ntohs(iph->payload_len) != skb_gro_len(skb);
  157. rcu_read_lock();
  158. proto = iph->nexthdr;
  159. ops = rcu_dereference(inet6_offloads[proto]);
  160. if (!ops || !ops->callbacks.gro_receive) {
  161. __pskb_pull(skb, skb_gro_offset(skb));
  162. skb_gro_frag0_invalidate(skb);
  163. proto = ipv6_gso_pull_exthdrs(skb, proto);
  164. skb_gro_pull(skb, -skb_transport_offset(skb));
  165. skb_reset_transport_header(skb);
  166. __skb_push(skb, skb_gro_offset(skb));
  167. ops = rcu_dereference(inet6_offloads[proto]);
  168. if (!ops || !ops->callbacks.gro_receive)
  169. goto out_unlock;
  170. iph = ipv6_hdr(skb);
  171. }
  172. NAPI_GRO_CB(skb)->proto = proto;
  173. flush--;
  174. nlen = skb_network_header_len(skb);
  175. for (p = *head; p; p = p->next) {
  176. const struct ipv6hdr *iph2;
  177. __be32 first_word; /* <Version:4><Traffic_Class:8><Flow_Label:20> */
  178. if (!NAPI_GRO_CB(p)->same_flow)
  179. continue;
  180. iph2 = (struct ipv6hdr *)(p->data + off);
  181. first_word = *(__be32 *)iph ^ *(__be32 *)iph2;
  182. /* All fields must match except length and Traffic Class.
  183. * XXX skbs on the gro_list have all been parsed and pulled
  184. * already so we don't need to compare nlen
  185. * (nlen != (sizeof(*iph2) + ipv6_exthdrs_len(iph2, &ops)))
  186. * memcmp() alone below is suffcient, right?
  187. */
  188. if ((first_word & htonl(0xF00FFFFF)) ||
  189. memcmp(&iph->nexthdr, &iph2->nexthdr,
  190. nlen - offsetof(struct ipv6hdr, nexthdr))) {
  191. NAPI_GRO_CB(p)->same_flow = 0;
  192. continue;
  193. }
  194. /* flush if Traffic Class fields are different */
  195. NAPI_GRO_CB(p)->flush |= !!(first_word & htonl(0x0FF00000));
  196. NAPI_GRO_CB(p)->flush |= flush;
  197. /* If the previous IP ID value was based on an atomic
  198. * datagram we can overwrite the value and ignore it.
  199. */
  200. if (NAPI_GRO_CB(skb)->is_atomic)
  201. NAPI_GRO_CB(p)->flush_id = 0;
  202. }
  203. NAPI_GRO_CB(skb)->is_atomic = true;
  204. NAPI_GRO_CB(skb)->flush |= flush;
  205. skb_gro_postpull_rcsum(skb, iph, nlen);
  206. pp = call_gro_receive(ops->callbacks.gro_receive, head, skb);
  207. out_unlock:
  208. rcu_read_unlock();
  209. out:
  210. NAPI_GRO_CB(skb)->flush |= flush;
  211. return pp;
  212. }
  213. static struct sk_buff **sit_ip6ip6_gro_receive(struct sk_buff **head,
  214. struct sk_buff *skb)
  215. {
  216. /* Common GRO receive for SIT and IP6IP6 */
  217. if (NAPI_GRO_CB(skb)->encap_mark) {
  218. NAPI_GRO_CB(skb)->flush = 1;
  219. return NULL;
  220. }
  221. NAPI_GRO_CB(skb)->encap_mark = 1;
  222. return ipv6_gro_receive(head, skb);
  223. }
  224. static struct sk_buff **ip4ip6_gro_receive(struct sk_buff **head,
  225. struct sk_buff *skb)
  226. {
  227. /* Common GRO receive for SIT and IP6IP6 */
  228. if (NAPI_GRO_CB(skb)->encap_mark) {
  229. NAPI_GRO_CB(skb)->flush = 1;
  230. return NULL;
  231. }
  232. NAPI_GRO_CB(skb)->encap_mark = 1;
  233. return inet_gro_receive(head, skb);
  234. }
  235. static int ipv6_gro_complete(struct sk_buff *skb, int nhoff)
  236. {
  237. const struct net_offload *ops;
  238. struct ipv6hdr *iph = (struct ipv6hdr *)(skb->data + nhoff);
  239. int err = -ENOSYS;
  240. if (skb->encapsulation)
  241. skb_set_inner_network_header(skb, nhoff);
  242. iph->payload_len = htons(skb->len - nhoff - sizeof(*iph));
  243. rcu_read_lock();
  244. nhoff += sizeof(*iph) + ipv6_exthdrs_len(iph, &ops);
  245. if (WARN_ON(!ops || !ops->callbacks.gro_complete))
  246. goto out_unlock;
  247. err = ops->callbacks.gro_complete(skb, nhoff);
  248. out_unlock:
  249. rcu_read_unlock();
  250. return err;
  251. }
  252. static int sit_gro_complete(struct sk_buff *skb, int nhoff)
  253. {
  254. skb->encapsulation = 1;
  255. skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4;
  256. return ipv6_gro_complete(skb, nhoff);
  257. }
  258. static int ip6ip6_gro_complete(struct sk_buff *skb, int nhoff)
  259. {
  260. skb->encapsulation = 1;
  261. skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP6;
  262. return ipv6_gro_complete(skb, nhoff);
  263. }
  264. static int ip4ip6_gro_complete(struct sk_buff *skb, int nhoff)
  265. {
  266. skb->encapsulation = 1;
  267. skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP6;
  268. return inet_gro_complete(skb, nhoff);
  269. }
  270. static struct packet_offload ipv6_packet_offload __read_mostly = {
  271. .type = cpu_to_be16(ETH_P_IPV6),
  272. .callbacks = {
  273. .gso_segment = ipv6_gso_segment,
  274. .gro_receive = ipv6_gro_receive,
  275. .gro_complete = ipv6_gro_complete,
  276. },
  277. };
  278. static const struct net_offload sit_offload = {
  279. .callbacks = {
  280. .gso_segment = ipv6_gso_segment,
  281. .gro_receive = sit_ip6ip6_gro_receive,
  282. .gro_complete = sit_gro_complete,
  283. },
  284. };
  285. static const struct net_offload ip4ip6_offload = {
  286. .callbacks = {
  287. .gso_segment = inet_gso_segment,
  288. .gro_receive = ip4ip6_gro_receive,
  289. .gro_complete = ip4ip6_gro_complete,
  290. },
  291. };
  292. static const struct net_offload ip6ip6_offload = {
  293. .callbacks = {
  294. .gso_segment = ipv6_gso_segment,
  295. .gro_receive = sit_ip6ip6_gro_receive,
  296. .gro_complete = ip6ip6_gro_complete,
  297. },
  298. };
  299. static int __init ipv6_offload_init(void)
  300. {
  301. if (tcpv6_offload_init() < 0)
  302. pr_crit("%s: Cannot add TCP protocol offload\n", __func__);
  303. if (ipv6_exthdrs_offload_init() < 0)
  304. pr_crit("%s: Cannot add EXTHDRS protocol offload\n", __func__);
  305. dev_add_offload(&ipv6_packet_offload);
  306. inet_add_offload(&sit_offload, IPPROTO_IPV6);
  307. inet6_add_offload(&ip6ip6_offload, IPPROTO_IPV6);
  308. inet6_add_offload(&ip4ip6_offload, IPPROTO_IPIP);
  309. return 0;
  310. }
  311. fs_initcall(ipv6_offload_init);