tcp_bbr.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926
  1. /* Bottleneck Bandwidth and RTT (BBR) congestion control
  2. *
  3. * BBR congestion control computes the sending rate based on the delivery
  4. * rate (throughput) estimated from ACKs. In a nutshell:
  5. *
  6. * On each ACK, update our model of the network path:
  7. * bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
  8. * min_rtt = windowed_min(rtt, 10 seconds)
  9. * pacing_rate = pacing_gain * bottleneck_bandwidth
  10. * cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
  11. *
  12. * The core algorithm does not react directly to packet losses or delays,
  13. * although BBR may adjust the size of next send per ACK when loss is
  14. * observed, or adjust the sending rate if it estimates there is a
  15. * traffic policer, in order to keep the drop rate reasonable.
  16. *
  17. * Here is a state transition diagram for BBR:
  18. *
  19. * |
  20. * V
  21. * +---> STARTUP ----+
  22. * | | |
  23. * | V |
  24. * | DRAIN ----+
  25. * | | |
  26. * | V |
  27. * +---> PROBE_BW ----+
  28. * | ^ | |
  29. * | | | |
  30. * | +----+ |
  31. * | |
  32. * +---- PROBE_RTT <--+
  33. *
  34. * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
  35. * When it estimates the pipe is full, it enters DRAIN to drain the queue.
  36. * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
  37. * A long-lived BBR flow spends the vast majority of its time remaining
  38. * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
  39. * in a fair manner, with a small, bounded queue. *If* a flow has been
  40. * continuously sending for the entire min_rtt window, and hasn't seen an RTT
  41. * sample that matches or decreases its min_rtt estimate for 10 seconds, then
  42. * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
  43. * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
  44. * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
  45. * otherwise we enter STARTUP to try to fill the pipe.
  46. *
  47. * BBR is described in detail in:
  48. * "BBR: Congestion-Based Congestion Control",
  49. * Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
  50. * Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
  51. *
  52. * There is a public e-mail list for discussing BBR development and testing:
  53. * https://groups.google.com/forum/#!forum/bbr-dev
  54. *
  55. * NOTE: BBR *must* be used with the fq qdisc ("man tc-fq") with pacing enabled,
  56. * since pacing is integral to the BBR design and implementation.
  57. * BBR without pacing would not function properly, and may incur unnecessary
  58. * high packet loss rates.
  59. */
  60. #include <linux/module.h>
  61. #include <net/tcp.h>
  62. #include <linux/inet_diag.h>
  63. #include <linux/inet.h>
  64. #include <linux/random.h>
  65. #include <linux/win_minmax.h>
  66. /* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
  67. * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
  68. * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
  69. * Since the minimum window is >=4 packets, the lower bound isn't
  70. * an issue. The upper bound isn't an issue with existing technologies.
  71. */
  72. #define BW_SCALE 24
  73. #define BW_UNIT (1 << BW_SCALE)
  74. #define BBR_SCALE 8 /* scaling factor for fractions in BBR (e.g. gains) */
  75. #define BBR_UNIT (1 << BBR_SCALE)
  76. /* BBR has the following modes for deciding how fast to send: */
  77. enum bbr_mode {
  78. BBR_STARTUP, /* ramp up sending rate rapidly to fill pipe */
  79. BBR_DRAIN, /* drain any queue created during startup */
  80. BBR_PROBE_BW, /* discover, share bw: pace around estimated bw */
  81. BBR_PROBE_RTT, /* cut inflight to min to probe min_rtt */
  82. };
  83. /* BBR congestion control block */
  84. struct bbr {
  85. u32 min_rtt_us; /* min RTT in min_rtt_win_sec window */
  86. u32 min_rtt_stamp; /* timestamp of min_rtt_us */
  87. u32 probe_rtt_done_stamp; /* end time for BBR_PROBE_RTT mode */
  88. struct minmax bw; /* Max recent delivery rate in pkts/uS << 24 */
  89. u32 rtt_cnt; /* count of packet-timed rounds elapsed */
  90. u32 next_rtt_delivered; /* scb->tx.delivered at end of round */
  91. struct skb_mstamp cycle_mstamp; /* time of this cycle phase start */
  92. u32 mode:3, /* current bbr_mode in state machine */
  93. prev_ca_state:3, /* CA state on previous ACK */
  94. packet_conservation:1, /* use packet conservation? */
  95. restore_cwnd:1, /* decided to revert cwnd to old value */
  96. round_start:1, /* start of packet-timed tx->ack round? */
  97. tso_segs_goal:7, /* segments we want in each skb we send */
  98. idle_restart:1, /* restarting after idle? */
  99. probe_rtt_round_done:1, /* a BBR_PROBE_RTT round at 4 pkts? */
  100. unused:5,
  101. lt_is_sampling:1, /* taking long-term ("LT") samples now? */
  102. lt_rtt_cnt:7, /* round trips in long-term interval */
  103. lt_use_bw:1; /* use lt_bw as our bw estimate? */
  104. u32 lt_bw; /* LT est delivery rate in pkts/uS << 24 */
  105. u32 lt_last_delivered; /* LT intvl start: tp->delivered */
  106. u32 lt_last_stamp; /* LT intvl start: tp->delivered_mstamp */
  107. u32 lt_last_lost; /* LT intvl start: tp->lost */
  108. u32 pacing_gain:10, /* current gain for setting pacing rate */
  109. cwnd_gain:10, /* current gain for setting cwnd */
  110. full_bw_cnt:3, /* number of rounds without large bw gains */
  111. cycle_idx:3, /* current index in pacing_gain cycle array */
  112. unused_b:6;
  113. u32 prior_cwnd; /* prior cwnd upon entering loss recovery */
  114. u32 full_bw; /* recent bw, to estimate if pipe is full */
  115. };
  116. #define CYCLE_LEN 8 /* number of phases in a pacing gain cycle */
  117. /* Window length of bw filter (in rounds): */
  118. static const int bbr_bw_rtts = CYCLE_LEN + 2;
  119. /* Window length of min_rtt filter (in sec): */
  120. static const u32 bbr_min_rtt_win_sec = 10;
  121. /* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
  122. static const u32 bbr_probe_rtt_mode_ms = 200;
  123. /* Skip TSO below the following bandwidth (bits/sec): */
  124. static const int bbr_min_tso_rate = 1200000;
  125. /* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
  126. * that will allow a smoothly increasing pacing rate that will double each RTT
  127. * and send the same number of packets per RTT that an un-paced, slow-starting
  128. * Reno or CUBIC flow would:
  129. */
  130. static const int bbr_high_gain = BBR_UNIT * 2885 / 1000 + 1;
  131. /* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
  132. * the queue created in BBR_STARTUP in a single round:
  133. */
  134. static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
  135. /* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
  136. static const int bbr_cwnd_gain = BBR_UNIT * 2;
  137. /* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
  138. static const int bbr_pacing_gain[] = {
  139. BBR_UNIT * 5 / 4, /* probe for more available bw */
  140. BBR_UNIT * 3 / 4, /* drain queue and/or yield bw to other flows */
  141. BBR_UNIT, BBR_UNIT, BBR_UNIT, /* cruise at 1.0*bw to utilize pipe, */
  142. BBR_UNIT, BBR_UNIT, BBR_UNIT /* without creating excess queue... */
  143. };
  144. /* Randomize the starting gain cycling phase over N phases: */
  145. static const u32 bbr_cycle_rand = 7;
  146. /* Try to keep at least this many packets in flight, if things go smoothly. For
  147. * smooth functioning, a sliding window protocol ACKing every other packet
  148. * needs at least 4 packets in flight:
  149. */
  150. static const u32 bbr_cwnd_min_target = 4;
  151. /* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
  152. /* If bw has increased significantly (1.25x), there may be more bw available: */
  153. static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
  154. /* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
  155. static const u32 bbr_full_bw_cnt = 3;
  156. /* "long-term" ("LT") bandwidth estimator parameters... */
  157. /* The minimum number of rounds in an LT bw sampling interval: */
  158. static const u32 bbr_lt_intvl_min_rtts = 4;
  159. /* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
  160. static const u32 bbr_lt_loss_thresh = 50;
  161. /* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
  162. static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
  163. /* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
  164. static const u32 bbr_lt_bw_diff = 4000 / 8;
  165. /* If we estimate we're policed, use lt_bw for this many round trips: */
  166. static const u32 bbr_lt_bw_max_rtts = 48;
  167. /* Do we estimate that STARTUP filled the pipe? */
  168. static bool bbr_full_bw_reached(const struct sock *sk)
  169. {
  170. const struct bbr *bbr = inet_csk_ca(sk);
  171. return bbr->full_bw_cnt >= bbr_full_bw_cnt;
  172. }
  173. /* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
  174. static u32 bbr_max_bw(const struct sock *sk)
  175. {
  176. struct bbr *bbr = inet_csk_ca(sk);
  177. return minmax_get(&bbr->bw);
  178. }
  179. /* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
  180. static u32 bbr_bw(const struct sock *sk)
  181. {
  182. struct bbr *bbr = inet_csk_ca(sk);
  183. return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
  184. }
  185. /* Return rate in bytes per second, optionally with a gain.
  186. * The order here is chosen carefully to avoid overflow of u64. This should
  187. * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
  188. */
  189. static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
  190. {
  191. rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache);
  192. rate *= gain;
  193. rate >>= BBR_SCALE;
  194. rate *= USEC_PER_SEC;
  195. return rate >> BW_SCALE;
  196. }
  197. /* Pace using current bw estimate and a gain factor. In order to help drive the
  198. * network toward lower queues while maintaining high utilization and low
  199. * latency, the average pacing rate aims to be slightly (~1%) lower than the
  200. * estimated bandwidth. This is an important aspect of the design. In this
  201. * implementation this slightly lower pacing rate is achieved implicitly by not
  202. * including link-layer headers in the packet size used for the pacing rate.
  203. */
  204. static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
  205. {
  206. struct bbr *bbr = inet_csk_ca(sk);
  207. u64 rate = bw;
  208. rate = bbr_rate_bytes_per_sec(sk, rate, gain);
  209. rate = min_t(u64, rate, sk->sk_max_pacing_rate);
  210. if (bbr->mode != BBR_STARTUP || rate > sk->sk_pacing_rate)
  211. sk->sk_pacing_rate = rate;
  212. }
  213. /* Return count of segments we want in the skbs we send, or 0 for default. */
  214. static u32 bbr_tso_segs_goal(struct sock *sk)
  215. {
  216. struct bbr *bbr = inet_csk_ca(sk);
  217. return bbr->tso_segs_goal;
  218. }
  219. static void bbr_set_tso_segs_goal(struct sock *sk)
  220. {
  221. struct tcp_sock *tp = tcp_sk(sk);
  222. struct bbr *bbr = inet_csk_ca(sk);
  223. u32 min_segs;
  224. min_segs = sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
  225. bbr->tso_segs_goal = min(tcp_tso_autosize(sk, tp->mss_cache, min_segs),
  226. 0x7FU);
  227. }
  228. /* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
  229. static void bbr_save_cwnd(struct sock *sk)
  230. {
  231. struct tcp_sock *tp = tcp_sk(sk);
  232. struct bbr *bbr = inet_csk_ca(sk);
  233. if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
  234. bbr->prior_cwnd = tp->snd_cwnd; /* this cwnd is good enough */
  235. else /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
  236. bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
  237. }
  238. static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
  239. {
  240. struct tcp_sock *tp = tcp_sk(sk);
  241. struct bbr *bbr = inet_csk_ca(sk);
  242. if (event == CA_EVENT_TX_START && tp->app_limited) {
  243. bbr->idle_restart = 1;
  244. /* Avoid pointless buffer overflows: pace at est. bw if we don't
  245. * need more speed (we're restarting from idle and app-limited).
  246. */
  247. if (bbr->mode == BBR_PROBE_BW)
  248. bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
  249. }
  250. }
  251. /* Find target cwnd. Right-size the cwnd based on min RTT and the
  252. * estimated bottleneck bandwidth:
  253. *
  254. * cwnd = bw * min_rtt * gain = BDP * gain
  255. *
  256. * The key factor, gain, controls the amount of queue. While a small gain
  257. * builds a smaller queue, it becomes more vulnerable to noise in RTT
  258. * measurements (e.g., delayed ACKs or other ACK compression effects). This
  259. * noise may cause BBR to under-estimate the rate.
  260. *
  261. * To achieve full performance in high-speed paths, we budget enough cwnd to
  262. * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
  263. * - one skb in sending host Qdisc,
  264. * - one skb in sending host TSO/GSO engine
  265. * - one skb being received by receiver host LRO/GRO/delayed-ACK engine
  266. * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
  267. * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
  268. * which allows 2 outstanding 2-packet sequences, to try to keep pipe
  269. * full even with ACK-every-other-packet delayed ACKs.
  270. */
  271. static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
  272. {
  273. struct bbr *bbr = inet_csk_ca(sk);
  274. u32 cwnd;
  275. u64 w;
  276. /* If we've never had a valid RTT sample, cap cwnd at the initial
  277. * default. This should only happen when the connection is not using TCP
  278. * timestamps and has retransmitted all of the SYN/SYNACK/data packets
  279. * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
  280. * case we need to slow-start up toward something safe: TCP_INIT_CWND.
  281. */
  282. if (unlikely(bbr->min_rtt_us == ~0U)) /* no valid RTT samples yet? */
  283. return TCP_INIT_CWND; /* be safe: cap at default initial cwnd*/
  284. w = (u64)bw * bbr->min_rtt_us;
  285. /* Apply a gain to the given value, then remove the BW_SCALE shift. */
  286. cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
  287. /* Allow enough full-sized skbs in flight to utilize end systems. */
  288. cwnd += 3 * bbr->tso_segs_goal;
  289. /* Reduce delayed ACKs by rounding up cwnd to the next even number. */
  290. cwnd = (cwnd + 1) & ~1U;
  291. return cwnd;
  292. }
  293. /* An optimization in BBR to reduce losses: On the first round of recovery, we
  294. * follow the packet conservation principle: send P packets per P packets acked.
  295. * After that, we slow-start and send at most 2*P packets per P packets acked.
  296. * After recovery finishes, or upon undo, we restore the cwnd we had when
  297. * recovery started (capped by the target cwnd based on estimated BDP).
  298. *
  299. * TODO(ycheng/ncardwell): implement a rate-based approach.
  300. */
  301. static bool bbr_set_cwnd_to_recover_or_restore(
  302. struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
  303. {
  304. struct tcp_sock *tp = tcp_sk(sk);
  305. struct bbr *bbr = inet_csk_ca(sk);
  306. u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
  307. u32 cwnd = tp->snd_cwnd;
  308. /* An ACK for P pkts should release at most 2*P packets. We do this
  309. * in two steps. First, here we deduct the number of lost packets.
  310. * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
  311. */
  312. if (rs->losses > 0)
  313. cwnd = max_t(s32, cwnd - rs->losses, 1);
  314. if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
  315. /* Starting 1st round of Recovery, so do packet conservation. */
  316. bbr->packet_conservation = 1;
  317. bbr->next_rtt_delivered = tp->delivered; /* start round now */
  318. /* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
  319. cwnd = tcp_packets_in_flight(tp) + acked;
  320. } else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
  321. /* Exiting loss recovery; restore cwnd saved before recovery. */
  322. bbr->restore_cwnd = 1;
  323. bbr->packet_conservation = 0;
  324. }
  325. bbr->prev_ca_state = state;
  326. if (bbr->restore_cwnd) {
  327. /* Restore cwnd after exiting loss recovery or PROBE_RTT. */
  328. cwnd = max(cwnd, bbr->prior_cwnd);
  329. bbr->restore_cwnd = 0;
  330. }
  331. if (bbr->packet_conservation) {
  332. *new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
  333. return true; /* yes, using packet conservation */
  334. }
  335. *new_cwnd = cwnd;
  336. return false;
  337. }
  338. /* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
  339. * has drawn us down below target), or snap down to target if we're above it.
  340. */
  341. static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
  342. u32 acked, u32 bw, int gain)
  343. {
  344. struct tcp_sock *tp = tcp_sk(sk);
  345. struct bbr *bbr = inet_csk_ca(sk);
  346. u32 cwnd = 0, target_cwnd = 0;
  347. if (!acked)
  348. return;
  349. if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
  350. goto done;
  351. /* If we're below target cwnd, slow start cwnd toward target cwnd. */
  352. target_cwnd = bbr_target_cwnd(sk, bw, gain);
  353. if (bbr_full_bw_reached(sk)) /* only cut cwnd if we filled the pipe */
  354. cwnd = min(cwnd + acked, target_cwnd);
  355. else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
  356. cwnd = cwnd + acked;
  357. cwnd = max(cwnd, bbr_cwnd_min_target);
  358. done:
  359. tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp); /* apply global cap */
  360. if (bbr->mode == BBR_PROBE_RTT) /* drain queue, refresh min_rtt */
  361. tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
  362. }
  363. /* End cycle phase if it's time and/or we hit the phase's in-flight target. */
  364. static bool bbr_is_next_cycle_phase(struct sock *sk,
  365. const struct rate_sample *rs)
  366. {
  367. struct tcp_sock *tp = tcp_sk(sk);
  368. struct bbr *bbr = inet_csk_ca(sk);
  369. bool is_full_length =
  370. skb_mstamp_us_delta(&tp->delivered_mstamp, &bbr->cycle_mstamp) >
  371. bbr->min_rtt_us;
  372. u32 inflight, bw;
  373. /* The pacing_gain of 1.0 paces at the estimated bw to try to fully
  374. * use the pipe without increasing the queue.
  375. */
  376. if (bbr->pacing_gain == BBR_UNIT)
  377. return is_full_length; /* just use wall clock time */
  378. inflight = rs->prior_in_flight; /* what was in-flight before ACK? */
  379. bw = bbr_max_bw(sk);
  380. /* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
  381. * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
  382. * small (e.g. on a LAN). We do not persist if packets are lost, since
  383. * a path with small buffers may not hold that much.
  384. */
  385. if (bbr->pacing_gain > BBR_UNIT)
  386. return is_full_length &&
  387. (rs->losses || /* perhaps pacing_gain*BDP won't fit */
  388. inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));
  389. /* A pacing_gain < 1.0 tries to drain extra queue we added if bw
  390. * probing didn't find more bw. If inflight falls to match BDP then we
  391. * estimate queue is drained; persisting would underutilize the pipe.
  392. */
  393. return is_full_length ||
  394. inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
  395. }
  396. static void bbr_advance_cycle_phase(struct sock *sk)
  397. {
  398. struct tcp_sock *tp = tcp_sk(sk);
  399. struct bbr *bbr = inet_csk_ca(sk);
  400. bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
  401. bbr->cycle_mstamp = tp->delivered_mstamp;
  402. bbr->pacing_gain = bbr_pacing_gain[bbr->cycle_idx];
  403. }
  404. /* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
  405. static void bbr_update_cycle_phase(struct sock *sk,
  406. const struct rate_sample *rs)
  407. {
  408. struct bbr *bbr = inet_csk_ca(sk);
  409. if ((bbr->mode == BBR_PROBE_BW) && !bbr->lt_use_bw &&
  410. bbr_is_next_cycle_phase(sk, rs))
  411. bbr_advance_cycle_phase(sk);
  412. }
  413. static void bbr_reset_startup_mode(struct sock *sk)
  414. {
  415. struct bbr *bbr = inet_csk_ca(sk);
  416. bbr->mode = BBR_STARTUP;
  417. bbr->pacing_gain = bbr_high_gain;
  418. bbr->cwnd_gain = bbr_high_gain;
  419. }
  420. static void bbr_reset_probe_bw_mode(struct sock *sk)
  421. {
  422. struct bbr *bbr = inet_csk_ca(sk);
  423. bbr->mode = BBR_PROBE_BW;
  424. bbr->pacing_gain = BBR_UNIT;
  425. bbr->cwnd_gain = bbr_cwnd_gain;
  426. bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
  427. bbr_advance_cycle_phase(sk); /* flip to next phase of gain cycle */
  428. }
  429. static void bbr_reset_mode(struct sock *sk)
  430. {
  431. if (!bbr_full_bw_reached(sk))
  432. bbr_reset_startup_mode(sk);
  433. else
  434. bbr_reset_probe_bw_mode(sk);
  435. }
  436. /* Start a new long-term sampling interval. */
  437. static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
  438. {
  439. struct tcp_sock *tp = tcp_sk(sk);
  440. struct bbr *bbr = inet_csk_ca(sk);
  441. bbr->lt_last_stamp = tp->delivered_mstamp.stamp_jiffies;
  442. bbr->lt_last_delivered = tp->delivered;
  443. bbr->lt_last_lost = tp->lost;
  444. bbr->lt_rtt_cnt = 0;
  445. }
  446. /* Completely reset long-term bandwidth sampling. */
  447. static void bbr_reset_lt_bw_sampling(struct sock *sk)
  448. {
  449. struct bbr *bbr = inet_csk_ca(sk);
  450. bbr->lt_bw = 0;
  451. bbr->lt_use_bw = 0;
  452. bbr->lt_is_sampling = false;
  453. bbr_reset_lt_bw_sampling_interval(sk);
  454. }
  455. /* Long-term bw sampling interval is done. Estimate whether we're policed. */
  456. static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
  457. {
  458. struct bbr *bbr = inet_csk_ca(sk);
  459. u32 diff;
  460. if (bbr->lt_bw) { /* do we have bw from a previous interval? */
  461. /* Is new bw close to the lt_bw from the previous interval? */
  462. diff = abs(bw - bbr->lt_bw);
  463. if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
  464. (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
  465. bbr_lt_bw_diff)) {
  466. /* All criteria are met; estimate we're policed. */
  467. bbr->lt_bw = (bw + bbr->lt_bw) >> 1; /* avg 2 intvls */
  468. bbr->lt_use_bw = 1;
  469. bbr->pacing_gain = BBR_UNIT; /* try to avoid drops */
  470. bbr->lt_rtt_cnt = 0;
  471. return;
  472. }
  473. }
  474. bbr->lt_bw = bw;
  475. bbr_reset_lt_bw_sampling_interval(sk);
  476. }
  477. /* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
  478. * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
  479. * explicitly models their policed rate, to reduce unnecessary losses. We
  480. * estimate that we're policed if we see 2 consecutive sampling intervals with
  481. * consistent throughput and high packet loss. If we think we're being policed,
  482. * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
  483. */
  484. static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
  485. {
  486. struct tcp_sock *tp = tcp_sk(sk);
  487. struct bbr *bbr = inet_csk_ca(sk);
  488. u32 lost, delivered;
  489. u64 bw;
  490. s32 t;
  491. if (bbr->lt_use_bw) { /* already using long-term rate, lt_bw? */
  492. if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
  493. ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
  494. bbr_reset_lt_bw_sampling(sk); /* stop using lt_bw */
  495. bbr_reset_probe_bw_mode(sk); /* restart gain cycling */
  496. }
  497. return;
  498. }
  499. /* Wait for the first loss before sampling, to let the policer exhaust
  500. * its tokens and estimate the steady-state rate allowed by the policer.
  501. * Starting samples earlier includes bursts that over-estimate the bw.
  502. */
  503. if (!bbr->lt_is_sampling) {
  504. if (!rs->losses)
  505. return;
  506. bbr_reset_lt_bw_sampling_interval(sk);
  507. bbr->lt_is_sampling = true;
  508. }
  509. /* To avoid underestimates, reset sampling if we run out of data. */
  510. if (rs->is_app_limited) {
  511. bbr_reset_lt_bw_sampling(sk);
  512. return;
  513. }
  514. if (bbr->round_start)
  515. bbr->lt_rtt_cnt++; /* count round trips in this interval */
  516. if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
  517. return; /* sampling interval needs to be longer */
  518. if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
  519. bbr_reset_lt_bw_sampling(sk); /* interval is too long */
  520. return;
  521. }
  522. /* End sampling interval when a packet is lost, so we estimate the
  523. * policer tokens were exhausted. Stopping the sampling before the
  524. * tokens are exhausted under-estimates the policed rate.
  525. */
  526. if (!rs->losses)
  527. return;
  528. /* Calculate packets lost and delivered in sampling interval. */
  529. lost = tp->lost - bbr->lt_last_lost;
  530. delivered = tp->delivered - bbr->lt_last_delivered;
  531. /* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
  532. if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
  533. return;
  534. /* Find average delivery rate in this sampling interval. */
  535. t = (s32)(tp->delivered_mstamp.stamp_jiffies - bbr->lt_last_stamp);
  536. if (t < 1)
  537. return; /* interval is less than one jiffy, so wait */
  538. t = jiffies_to_usecs(t);
  539. /* Interval long enough for jiffies_to_usecs() to return a bogus 0? */
  540. if (t < 1) {
  541. bbr_reset_lt_bw_sampling(sk); /* interval too long; reset */
  542. return;
  543. }
  544. bw = (u64)delivered * BW_UNIT;
  545. do_div(bw, t);
  546. bbr_lt_bw_interval_done(sk, bw);
  547. }
  548. /* Estimate the bandwidth based on how fast packets are delivered */
  549. static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
  550. {
  551. struct tcp_sock *tp = tcp_sk(sk);
  552. struct bbr *bbr = inet_csk_ca(sk);
  553. u64 bw;
  554. bbr->round_start = 0;
  555. if (rs->delivered < 0 || rs->interval_us <= 0)
  556. return; /* Not a valid observation */
  557. /* See if we've reached the next RTT */
  558. if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
  559. bbr->next_rtt_delivered = tp->delivered;
  560. bbr->rtt_cnt++;
  561. bbr->round_start = 1;
  562. bbr->packet_conservation = 0;
  563. }
  564. bbr_lt_bw_sampling(sk, rs);
  565. /* Divide delivered by the interval to find a (lower bound) bottleneck
  566. * bandwidth sample. Delivered is in packets and interval_us in uS and
  567. * ratio will be <<1 for most connections. So delivered is first scaled.
  568. */
  569. bw = (u64)rs->delivered * BW_UNIT;
  570. do_div(bw, rs->interval_us);
  571. /* If this sample is application-limited, it is likely to have a very
  572. * low delivered count that represents application behavior rather than
  573. * the available network rate. Such a sample could drag down estimated
  574. * bw, causing needless slow-down. Thus, to continue to send at the
  575. * last measured network rate, we filter out app-limited samples unless
  576. * they describe the path bw at least as well as our bw model.
  577. *
  578. * So the goal during app-limited phase is to proceed with the best
  579. * network rate no matter how long. We automatically leave this
  580. * phase when app writes faster than the network can deliver :)
  581. */
  582. if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
  583. /* Incorporate new sample into our max bw filter. */
  584. minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
  585. }
  586. }
  587. /* Estimate when the pipe is full, using the change in delivery rate: BBR
  588. * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
  589. * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
  590. * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
  591. * higher rwin, 3: we get higher delivery rate samples. Or transient
  592. * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
  593. * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
  594. */
  595. static void bbr_check_full_bw_reached(struct sock *sk,
  596. const struct rate_sample *rs)
  597. {
  598. struct bbr *bbr = inet_csk_ca(sk);
  599. u32 bw_thresh;
  600. if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
  601. return;
  602. bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
  603. if (bbr_max_bw(sk) >= bw_thresh) {
  604. bbr->full_bw = bbr_max_bw(sk);
  605. bbr->full_bw_cnt = 0;
  606. return;
  607. }
  608. ++bbr->full_bw_cnt;
  609. }
  610. /* If pipe is probably full, drain the queue and then enter steady-state. */
  611. static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
  612. {
  613. struct bbr *bbr = inet_csk_ca(sk);
  614. if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
  615. bbr->mode = BBR_DRAIN; /* drain queue we created */
  616. bbr->pacing_gain = bbr_drain_gain; /* pace slow to drain */
  617. bbr->cwnd_gain = bbr_high_gain; /* maintain cwnd */
  618. } /* fall through to check if in-flight is already small: */
  619. if (bbr->mode == BBR_DRAIN &&
  620. tcp_packets_in_flight(tcp_sk(sk)) <=
  621. bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
  622. bbr_reset_probe_bw_mode(sk); /* we estimate queue is drained */
  623. }
  624. /* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
  625. * periodically drain the bottleneck queue, to converge to measure the true
  626. * min_rtt (unloaded propagation delay). This allows the flows to keep queues
  627. * small (reducing queuing delay and packet loss) and achieve fairness among
  628. * BBR flows.
  629. *
  630. * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
  631. * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
  632. * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
  633. * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
  634. * re-enter the previous mode. BBR uses 200ms to approximately bound the
  635. * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
  636. *
  637. * Note that flows need only pay 2% if they are busy sending over the last 10
  638. * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
  639. * natural silences or low-rate periods within 10 seconds where the rate is low
  640. * enough for long enough to drain its queue in the bottleneck. We pick up
  641. * these min RTT measurements opportunistically with our min_rtt filter. :-)
  642. */
  643. static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
  644. {
  645. struct tcp_sock *tp = tcp_sk(sk);
  646. struct bbr *bbr = inet_csk_ca(sk);
  647. bool filter_expired;
  648. /* Track min RTT seen in the min_rtt_win_sec filter window: */
  649. filter_expired = after(tcp_time_stamp,
  650. bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
  651. if (rs->rtt_us >= 0 &&
  652. (rs->rtt_us <= bbr->min_rtt_us || filter_expired)) {
  653. bbr->min_rtt_us = rs->rtt_us;
  654. bbr->min_rtt_stamp = tcp_time_stamp;
  655. }
  656. if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
  657. !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
  658. bbr->mode = BBR_PROBE_RTT; /* dip, drain queue */
  659. bbr->pacing_gain = BBR_UNIT;
  660. bbr->cwnd_gain = BBR_UNIT;
  661. bbr_save_cwnd(sk); /* note cwnd so we can restore it */
  662. bbr->probe_rtt_done_stamp = 0;
  663. }
  664. if (bbr->mode == BBR_PROBE_RTT) {
  665. /* Ignore low rate samples during this mode. */
  666. tp->app_limited =
  667. (tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
  668. /* Maintain min packets in flight for max(200 ms, 1 round). */
  669. if (!bbr->probe_rtt_done_stamp &&
  670. tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
  671. bbr->probe_rtt_done_stamp = tcp_time_stamp +
  672. msecs_to_jiffies(bbr_probe_rtt_mode_ms);
  673. bbr->probe_rtt_round_done = 0;
  674. bbr->next_rtt_delivered = tp->delivered;
  675. } else if (bbr->probe_rtt_done_stamp) {
  676. if (bbr->round_start)
  677. bbr->probe_rtt_round_done = 1;
  678. if (bbr->probe_rtt_round_done &&
  679. after(tcp_time_stamp, bbr->probe_rtt_done_stamp)) {
  680. bbr->min_rtt_stamp = tcp_time_stamp;
  681. bbr->restore_cwnd = 1; /* snap to prior_cwnd */
  682. bbr_reset_mode(sk);
  683. }
  684. }
  685. }
  686. bbr->idle_restart = 0;
  687. }
  688. static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
  689. {
  690. bbr_update_bw(sk, rs);
  691. bbr_update_cycle_phase(sk, rs);
  692. bbr_check_full_bw_reached(sk, rs);
  693. bbr_check_drain(sk, rs);
  694. bbr_update_min_rtt(sk, rs);
  695. }
  696. static void bbr_main(struct sock *sk, const struct rate_sample *rs)
  697. {
  698. struct bbr *bbr = inet_csk_ca(sk);
  699. u32 bw;
  700. bbr_update_model(sk, rs);
  701. bw = bbr_bw(sk);
  702. bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
  703. bbr_set_tso_segs_goal(sk);
  704. bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
  705. }
  706. static void bbr_init(struct sock *sk)
  707. {
  708. struct tcp_sock *tp = tcp_sk(sk);
  709. struct bbr *bbr = inet_csk_ca(sk);
  710. u64 bw;
  711. bbr->prior_cwnd = 0;
  712. bbr->tso_segs_goal = 0; /* default segs per skb until first ACK */
  713. bbr->rtt_cnt = 0;
  714. bbr->next_rtt_delivered = 0;
  715. bbr->prev_ca_state = TCP_CA_Open;
  716. bbr->packet_conservation = 0;
  717. bbr->probe_rtt_done_stamp = 0;
  718. bbr->probe_rtt_round_done = 0;
  719. bbr->min_rtt_us = tcp_min_rtt(tp);
  720. bbr->min_rtt_stamp = tcp_time_stamp;
  721. minmax_reset(&bbr->bw, bbr->rtt_cnt, 0); /* init max bw to 0 */
  722. /* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
  723. bw = (u64)tp->snd_cwnd * BW_UNIT;
  724. do_div(bw, (tp->srtt_us >> 3) ? : USEC_PER_MSEC);
  725. sk->sk_pacing_rate = 0; /* force an update of sk_pacing_rate */
  726. bbr_set_pacing_rate(sk, bw, bbr_high_gain);
  727. bbr->restore_cwnd = 0;
  728. bbr->round_start = 0;
  729. bbr->idle_restart = 0;
  730. bbr->full_bw = 0;
  731. bbr->full_bw_cnt = 0;
  732. bbr->cycle_mstamp.v64 = 0;
  733. bbr->cycle_idx = 0;
  734. bbr_reset_lt_bw_sampling(sk);
  735. bbr_reset_startup_mode(sk);
  736. }
  737. static u32 bbr_sndbuf_expand(struct sock *sk)
  738. {
  739. /* Provision 3 * cwnd since BBR may slow-start even during recovery. */
  740. return 3;
  741. }
  742. /* In theory BBR does not need to undo the cwnd since it does not
  743. * always reduce cwnd on losses (see bbr_main()). Keep it for now.
  744. */
  745. static u32 bbr_undo_cwnd(struct sock *sk)
  746. {
  747. return tcp_sk(sk)->snd_cwnd;
  748. }
  749. /* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
  750. static u32 bbr_ssthresh(struct sock *sk)
  751. {
  752. bbr_save_cwnd(sk);
  753. return TCP_INFINITE_SSTHRESH; /* BBR does not use ssthresh */
  754. }
  755. static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
  756. union tcp_cc_info *info)
  757. {
  758. if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
  759. ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
  760. struct tcp_sock *tp = tcp_sk(sk);
  761. struct bbr *bbr = inet_csk_ca(sk);
  762. u64 bw = bbr_bw(sk);
  763. bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
  764. memset(&info->bbr, 0, sizeof(info->bbr));
  765. info->bbr.bbr_bw_lo = (u32)bw;
  766. info->bbr.bbr_bw_hi = (u32)(bw >> 32);
  767. info->bbr.bbr_min_rtt = bbr->min_rtt_us;
  768. info->bbr.bbr_pacing_gain = bbr->pacing_gain;
  769. info->bbr.bbr_cwnd_gain = bbr->cwnd_gain;
  770. *attr = INET_DIAG_BBRINFO;
  771. return sizeof(info->bbr);
  772. }
  773. return 0;
  774. }
  775. static void bbr_set_state(struct sock *sk, u8 new_state)
  776. {
  777. struct bbr *bbr = inet_csk_ca(sk);
  778. if (new_state == TCP_CA_Loss) {
  779. struct rate_sample rs = { .losses = 1 };
  780. bbr->prev_ca_state = TCP_CA_Loss;
  781. bbr->full_bw = 0;
  782. bbr->round_start = 1; /* treat RTO like end of a round */
  783. bbr_lt_bw_sampling(sk, &rs);
  784. }
  785. }
  786. static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
  787. .flags = TCP_CONG_NON_RESTRICTED,
  788. .name = "bbr",
  789. .owner = THIS_MODULE,
  790. .init = bbr_init,
  791. .cong_control = bbr_main,
  792. .sndbuf_expand = bbr_sndbuf_expand,
  793. .undo_cwnd = bbr_undo_cwnd,
  794. .cwnd_event = bbr_cwnd_event,
  795. .ssthresh = bbr_ssthresh,
  796. .tso_segs_goal = bbr_tso_segs_goal,
  797. .get_info = bbr_get_info,
  798. .set_state = bbr_set_state,
  799. };
  800. static int __init bbr_register(void)
  801. {
  802. BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
  803. return tcp_register_congestion_control(&tcp_bbr_cong_ops);
  804. }
  805. static void __exit bbr_unregister(void)
  806. {
  807. tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
  808. }
  809. module_init(bbr_register);
  810. module_exit(bbr_unregister);
  811. MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
  812. MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
  813. MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
  814. MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
  815. MODULE_LICENSE("Dual BSD/GPL");
  816. MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");