ipmr.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850
  1. /*
  2. * IP multicast routing support for mrouted 3.6/3.8
  3. *
  4. * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
  5. * Linux Consultancy and Custom Driver Development
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Fixes:
  13. * Michael Chastain : Incorrect size of copying.
  14. * Alan Cox : Added the cache manager code
  15. * Alan Cox : Fixed the clone/copy bug and device race.
  16. * Mike McLagan : Routing by source
  17. * Malcolm Beattie : Buffer handling fixes.
  18. * Alexey Kuznetsov : Double buffer free and other fixes.
  19. * SVR Anand : Fixed several multicast bugs and problems.
  20. * Alexey Kuznetsov : Status, optimisations and more.
  21. * Brad Parker : Better behaviour on mrouted upcall
  22. * overflow.
  23. * Carlos Picoto : PIMv1 Support
  24. * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
  25. * Relax this requirement to work with older peers.
  26. *
  27. */
  28. #include <linux/uaccess.h>
  29. #include <linux/types.h>
  30. #include <linux/capability.h>
  31. #include <linux/errno.h>
  32. #include <linux/timer.h>
  33. #include <linux/mm.h>
  34. #include <linux/kernel.h>
  35. #include <linux/fcntl.h>
  36. #include <linux/stat.h>
  37. #include <linux/socket.h>
  38. #include <linux/in.h>
  39. #include <linux/inet.h>
  40. #include <linux/netdevice.h>
  41. #include <linux/inetdevice.h>
  42. #include <linux/igmp.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/mroute.h>
  46. #include <linux/init.h>
  47. #include <linux/if_ether.h>
  48. #include <linux/slab.h>
  49. #include <net/net_namespace.h>
  50. #include <net/ip.h>
  51. #include <net/protocol.h>
  52. #include <linux/skbuff.h>
  53. #include <net/route.h>
  54. #include <net/sock.h>
  55. #include <net/icmp.h>
  56. #include <net/udp.h>
  57. #include <net/raw.h>
  58. #include <linux/notifier.h>
  59. #include <linux/if_arp.h>
  60. #include <linux/netfilter_ipv4.h>
  61. #include <linux/compat.h>
  62. #include <linux/export.h>
  63. #include <net/ip_tunnels.h>
  64. #include <net/checksum.h>
  65. #include <net/netlink.h>
  66. #include <net/fib_rules.h>
  67. #include <linux/netconf.h>
  68. #include <net/nexthop.h>
  69. struct ipmr_rule {
  70. struct fib_rule common;
  71. };
  72. struct ipmr_result {
  73. struct mr_table *mrt;
  74. };
  75. /* Big lock, protecting vif table, mrt cache and mroute socket state.
  76. * Note that the changes are semaphored via rtnl_lock.
  77. */
  78. static DEFINE_RWLOCK(mrt_lock);
  79. /* Multicast router control variables */
  80. /* Special spinlock for queue of unresolved entries */
  81. static DEFINE_SPINLOCK(mfc_unres_lock);
  82. /* We return to original Alan's scheme. Hash table of resolved
  83. * entries is changed only in process context and protected
  84. * with weak lock mrt_lock. Queue of unresolved entries is protected
  85. * with strong spinlock mfc_unres_lock.
  86. *
  87. * In this case data path is free of exclusive locks at all.
  88. */
  89. static struct kmem_cache *mrt_cachep __read_mostly;
  90. static struct mr_table *ipmr_new_table(struct net *net, u32 id);
  91. static void ipmr_free_table(struct mr_table *mrt);
  92. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  93. struct sk_buff *skb, struct mfc_cache *cache,
  94. int local);
  95. static int ipmr_cache_report(struct mr_table *mrt,
  96. struct sk_buff *pkt, vifi_t vifi, int assert);
  97. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  98. struct mfc_cache *c, struct rtmsg *rtm);
  99. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  100. int cmd);
  101. static void mroute_clean_tables(struct mr_table *mrt, bool all);
  102. static void ipmr_expire_process(unsigned long arg);
  103. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  104. #define ipmr_for_each_table(mrt, net) \
  105. list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
  106. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  107. {
  108. struct mr_table *mrt;
  109. ipmr_for_each_table(mrt, net) {
  110. if (mrt->id == id)
  111. return mrt;
  112. }
  113. return NULL;
  114. }
  115. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  116. struct mr_table **mrt)
  117. {
  118. int err;
  119. struct ipmr_result res;
  120. struct fib_lookup_arg arg = {
  121. .result = &res,
  122. .flags = FIB_LOOKUP_NOREF,
  123. };
  124. /* update flow if oif or iif point to device enslaved to l3mdev */
  125. l3mdev_update_flow(net, flowi4_to_flowi(flp4));
  126. err = fib_rules_lookup(net->ipv4.mr_rules_ops,
  127. flowi4_to_flowi(flp4), 0, &arg);
  128. if (err < 0)
  129. return err;
  130. *mrt = res.mrt;
  131. return 0;
  132. }
  133. static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
  134. int flags, struct fib_lookup_arg *arg)
  135. {
  136. struct ipmr_result *res = arg->result;
  137. struct mr_table *mrt;
  138. switch (rule->action) {
  139. case FR_ACT_TO_TBL:
  140. break;
  141. case FR_ACT_UNREACHABLE:
  142. return -ENETUNREACH;
  143. case FR_ACT_PROHIBIT:
  144. return -EACCES;
  145. case FR_ACT_BLACKHOLE:
  146. default:
  147. return -EINVAL;
  148. }
  149. arg->table = fib_rule_get_table(rule, arg);
  150. mrt = ipmr_get_table(rule->fr_net, arg->table);
  151. if (!mrt)
  152. return -EAGAIN;
  153. res->mrt = mrt;
  154. return 0;
  155. }
  156. static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
  157. {
  158. return 1;
  159. }
  160. static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
  161. FRA_GENERIC_POLICY,
  162. };
  163. static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
  164. struct fib_rule_hdr *frh, struct nlattr **tb)
  165. {
  166. return 0;
  167. }
  168. static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
  169. struct nlattr **tb)
  170. {
  171. return 1;
  172. }
  173. static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
  174. struct fib_rule_hdr *frh)
  175. {
  176. frh->dst_len = 0;
  177. frh->src_len = 0;
  178. frh->tos = 0;
  179. return 0;
  180. }
  181. static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
  182. .family = RTNL_FAMILY_IPMR,
  183. .rule_size = sizeof(struct ipmr_rule),
  184. .addr_size = sizeof(u32),
  185. .action = ipmr_rule_action,
  186. .match = ipmr_rule_match,
  187. .configure = ipmr_rule_configure,
  188. .compare = ipmr_rule_compare,
  189. .fill = ipmr_rule_fill,
  190. .nlgroup = RTNLGRP_IPV4_RULE,
  191. .policy = ipmr_rule_policy,
  192. .owner = THIS_MODULE,
  193. };
  194. static int __net_init ipmr_rules_init(struct net *net)
  195. {
  196. struct fib_rules_ops *ops;
  197. struct mr_table *mrt;
  198. int err;
  199. ops = fib_rules_register(&ipmr_rules_ops_template, net);
  200. if (IS_ERR(ops))
  201. return PTR_ERR(ops);
  202. INIT_LIST_HEAD(&net->ipv4.mr_tables);
  203. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  204. if (IS_ERR(mrt)) {
  205. err = PTR_ERR(mrt);
  206. goto err1;
  207. }
  208. err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
  209. if (err < 0)
  210. goto err2;
  211. net->ipv4.mr_rules_ops = ops;
  212. return 0;
  213. err2:
  214. ipmr_free_table(mrt);
  215. err1:
  216. fib_rules_unregister(ops);
  217. return err;
  218. }
  219. static void __net_exit ipmr_rules_exit(struct net *net)
  220. {
  221. struct mr_table *mrt, *next;
  222. rtnl_lock();
  223. list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
  224. list_del(&mrt->list);
  225. ipmr_free_table(mrt);
  226. }
  227. fib_rules_unregister(net->ipv4.mr_rules_ops);
  228. rtnl_unlock();
  229. }
  230. #else
  231. #define ipmr_for_each_table(mrt, net) \
  232. for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
  233. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  234. {
  235. return net->ipv4.mrt;
  236. }
  237. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  238. struct mr_table **mrt)
  239. {
  240. *mrt = net->ipv4.mrt;
  241. return 0;
  242. }
  243. static int __net_init ipmr_rules_init(struct net *net)
  244. {
  245. struct mr_table *mrt;
  246. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  247. if (IS_ERR(mrt))
  248. return PTR_ERR(mrt);
  249. net->ipv4.mrt = mrt;
  250. return 0;
  251. }
  252. static void __net_exit ipmr_rules_exit(struct net *net)
  253. {
  254. rtnl_lock();
  255. ipmr_free_table(net->ipv4.mrt);
  256. net->ipv4.mrt = NULL;
  257. rtnl_unlock();
  258. }
  259. #endif
  260. static struct mr_table *ipmr_new_table(struct net *net, u32 id)
  261. {
  262. struct mr_table *mrt;
  263. unsigned int i;
  264. /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
  265. if (id != RT_TABLE_DEFAULT && id >= 1000000000)
  266. return ERR_PTR(-EINVAL);
  267. mrt = ipmr_get_table(net, id);
  268. if (mrt)
  269. return mrt;
  270. mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
  271. if (!mrt)
  272. return ERR_PTR(-ENOMEM);
  273. write_pnet(&mrt->net, net);
  274. mrt->id = id;
  275. /* Forwarding cache */
  276. for (i = 0; i < MFC_LINES; i++)
  277. INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
  278. INIT_LIST_HEAD(&mrt->mfc_unres_queue);
  279. setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
  280. (unsigned long)mrt);
  281. mrt->mroute_reg_vif_num = -1;
  282. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  283. list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
  284. #endif
  285. return mrt;
  286. }
  287. static void ipmr_free_table(struct mr_table *mrt)
  288. {
  289. del_timer_sync(&mrt->ipmr_expire_timer);
  290. mroute_clean_tables(mrt, true);
  291. kfree(mrt);
  292. }
  293. /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
  294. static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
  295. {
  296. struct net *net = dev_net(dev);
  297. dev_close(dev);
  298. dev = __dev_get_by_name(net, "tunl0");
  299. if (dev) {
  300. const struct net_device_ops *ops = dev->netdev_ops;
  301. struct ifreq ifr;
  302. struct ip_tunnel_parm p;
  303. memset(&p, 0, sizeof(p));
  304. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  305. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  306. p.iph.version = 4;
  307. p.iph.ihl = 5;
  308. p.iph.protocol = IPPROTO_IPIP;
  309. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  310. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  311. if (ops->ndo_do_ioctl) {
  312. mm_segment_t oldfs = get_fs();
  313. set_fs(KERNEL_DS);
  314. ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
  315. set_fs(oldfs);
  316. }
  317. }
  318. }
  319. /* Initialize ipmr pimreg/tunnel in_device */
  320. static bool ipmr_init_vif_indev(const struct net_device *dev)
  321. {
  322. struct in_device *in_dev;
  323. ASSERT_RTNL();
  324. in_dev = __in_dev_get_rtnl(dev);
  325. if (!in_dev)
  326. return false;
  327. ipv4_devconf_setall(in_dev);
  328. neigh_parms_data_state_setall(in_dev->arp_parms);
  329. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  330. return true;
  331. }
  332. static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
  333. {
  334. struct net_device *dev;
  335. dev = __dev_get_by_name(net, "tunl0");
  336. if (dev) {
  337. const struct net_device_ops *ops = dev->netdev_ops;
  338. int err;
  339. struct ifreq ifr;
  340. struct ip_tunnel_parm p;
  341. memset(&p, 0, sizeof(p));
  342. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  343. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  344. p.iph.version = 4;
  345. p.iph.ihl = 5;
  346. p.iph.protocol = IPPROTO_IPIP;
  347. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  348. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  349. if (ops->ndo_do_ioctl) {
  350. mm_segment_t oldfs = get_fs();
  351. set_fs(KERNEL_DS);
  352. err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
  353. set_fs(oldfs);
  354. } else {
  355. err = -EOPNOTSUPP;
  356. }
  357. dev = NULL;
  358. if (err == 0 &&
  359. (dev = __dev_get_by_name(net, p.name)) != NULL) {
  360. dev->flags |= IFF_MULTICAST;
  361. if (!ipmr_init_vif_indev(dev))
  362. goto failure;
  363. if (dev_open(dev))
  364. goto failure;
  365. dev_hold(dev);
  366. }
  367. }
  368. return dev;
  369. failure:
  370. unregister_netdevice(dev);
  371. return NULL;
  372. }
  373. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  374. static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
  375. {
  376. struct net *net = dev_net(dev);
  377. struct mr_table *mrt;
  378. struct flowi4 fl4 = {
  379. .flowi4_oif = dev->ifindex,
  380. .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
  381. .flowi4_mark = skb->mark,
  382. };
  383. int err;
  384. err = ipmr_fib_lookup(net, &fl4, &mrt);
  385. if (err < 0) {
  386. kfree_skb(skb);
  387. return err;
  388. }
  389. read_lock(&mrt_lock);
  390. dev->stats.tx_bytes += skb->len;
  391. dev->stats.tx_packets++;
  392. ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
  393. read_unlock(&mrt_lock);
  394. kfree_skb(skb);
  395. return NETDEV_TX_OK;
  396. }
  397. static int reg_vif_get_iflink(const struct net_device *dev)
  398. {
  399. return 0;
  400. }
  401. static const struct net_device_ops reg_vif_netdev_ops = {
  402. .ndo_start_xmit = reg_vif_xmit,
  403. .ndo_get_iflink = reg_vif_get_iflink,
  404. };
  405. static void reg_vif_setup(struct net_device *dev)
  406. {
  407. dev->type = ARPHRD_PIMREG;
  408. dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
  409. dev->flags = IFF_NOARP;
  410. dev->netdev_ops = &reg_vif_netdev_ops;
  411. dev->destructor = free_netdev;
  412. dev->features |= NETIF_F_NETNS_LOCAL;
  413. }
  414. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  415. {
  416. struct net_device *dev;
  417. char name[IFNAMSIZ];
  418. if (mrt->id == RT_TABLE_DEFAULT)
  419. sprintf(name, "pimreg");
  420. else
  421. sprintf(name, "pimreg%u", mrt->id);
  422. dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
  423. if (!dev)
  424. return NULL;
  425. dev_net_set(dev, net);
  426. if (register_netdevice(dev)) {
  427. free_netdev(dev);
  428. return NULL;
  429. }
  430. if (!ipmr_init_vif_indev(dev))
  431. goto failure;
  432. if (dev_open(dev))
  433. goto failure;
  434. dev_hold(dev);
  435. return dev;
  436. failure:
  437. unregister_netdevice(dev);
  438. return NULL;
  439. }
  440. /* called with rcu_read_lock() */
  441. static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
  442. unsigned int pimlen)
  443. {
  444. struct net_device *reg_dev = NULL;
  445. struct iphdr *encap;
  446. encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
  447. /* Check that:
  448. * a. packet is really sent to a multicast group
  449. * b. packet is not a NULL-REGISTER
  450. * c. packet is not truncated
  451. */
  452. if (!ipv4_is_multicast(encap->daddr) ||
  453. encap->tot_len == 0 ||
  454. ntohs(encap->tot_len) + pimlen > skb->len)
  455. return 1;
  456. read_lock(&mrt_lock);
  457. if (mrt->mroute_reg_vif_num >= 0)
  458. reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
  459. read_unlock(&mrt_lock);
  460. if (!reg_dev)
  461. return 1;
  462. skb->mac_header = skb->network_header;
  463. skb_pull(skb, (u8 *)encap - skb->data);
  464. skb_reset_network_header(skb);
  465. skb->protocol = htons(ETH_P_IP);
  466. skb->ip_summed = CHECKSUM_NONE;
  467. skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
  468. netif_rx(skb);
  469. return NET_RX_SUCCESS;
  470. }
  471. #else
  472. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  473. {
  474. return NULL;
  475. }
  476. #endif
  477. /**
  478. * vif_delete - Delete a VIF entry
  479. * @notify: Set to 1, if the caller is a notifier_call
  480. */
  481. static int vif_delete(struct mr_table *mrt, int vifi, int notify,
  482. struct list_head *head)
  483. {
  484. struct vif_device *v;
  485. struct net_device *dev;
  486. struct in_device *in_dev;
  487. if (vifi < 0 || vifi >= mrt->maxvif)
  488. return -EADDRNOTAVAIL;
  489. v = &mrt->vif_table[vifi];
  490. write_lock_bh(&mrt_lock);
  491. dev = v->dev;
  492. v->dev = NULL;
  493. if (!dev) {
  494. write_unlock_bh(&mrt_lock);
  495. return -EADDRNOTAVAIL;
  496. }
  497. if (vifi == mrt->mroute_reg_vif_num)
  498. mrt->mroute_reg_vif_num = -1;
  499. if (vifi + 1 == mrt->maxvif) {
  500. int tmp;
  501. for (tmp = vifi - 1; tmp >= 0; tmp--) {
  502. if (VIF_EXISTS(mrt, tmp))
  503. break;
  504. }
  505. mrt->maxvif = tmp+1;
  506. }
  507. write_unlock_bh(&mrt_lock);
  508. dev_set_allmulti(dev, -1);
  509. in_dev = __in_dev_get_rtnl(dev);
  510. if (in_dev) {
  511. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
  512. inet_netconf_notify_devconf(dev_net(dev),
  513. NETCONFA_MC_FORWARDING,
  514. dev->ifindex, &in_dev->cnf);
  515. ip_rt_multicast_event(in_dev);
  516. }
  517. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
  518. unregister_netdevice_queue(dev, head);
  519. dev_put(dev);
  520. return 0;
  521. }
  522. static void ipmr_cache_free_rcu(struct rcu_head *head)
  523. {
  524. struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
  525. kmem_cache_free(mrt_cachep, c);
  526. }
  527. static inline void ipmr_cache_free(struct mfc_cache *c)
  528. {
  529. call_rcu(&c->rcu, ipmr_cache_free_rcu);
  530. }
  531. /* Destroy an unresolved cache entry, killing queued skbs
  532. * and reporting error to netlink readers.
  533. */
  534. static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
  535. {
  536. struct net *net = read_pnet(&mrt->net);
  537. struct sk_buff *skb;
  538. struct nlmsgerr *e;
  539. atomic_dec(&mrt->cache_resolve_queue_len);
  540. while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
  541. if (ip_hdr(skb)->version == 0) {
  542. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  543. nlh->nlmsg_type = NLMSG_ERROR;
  544. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  545. skb_trim(skb, nlh->nlmsg_len);
  546. e = nlmsg_data(nlh);
  547. e->error = -ETIMEDOUT;
  548. memset(&e->msg, 0, sizeof(e->msg));
  549. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  550. } else {
  551. kfree_skb(skb);
  552. }
  553. }
  554. ipmr_cache_free(c);
  555. }
  556. /* Timer process for the unresolved queue. */
  557. static void ipmr_expire_process(unsigned long arg)
  558. {
  559. struct mr_table *mrt = (struct mr_table *)arg;
  560. unsigned long now;
  561. unsigned long expires;
  562. struct mfc_cache *c, *next;
  563. if (!spin_trylock(&mfc_unres_lock)) {
  564. mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
  565. return;
  566. }
  567. if (list_empty(&mrt->mfc_unres_queue))
  568. goto out;
  569. now = jiffies;
  570. expires = 10*HZ;
  571. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  572. if (time_after(c->mfc_un.unres.expires, now)) {
  573. unsigned long interval = c->mfc_un.unres.expires - now;
  574. if (interval < expires)
  575. expires = interval;
  576. continue;
  577. }
  578. list_del(&c->list);
  579. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  580. ipmr_destroy_unres(mrt, c);
  581. }
  582. if (!list_empty(&mrt->mfc_unres_queue))
  583. mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
  584. out:
  585. spin_unlock(&mfc_unres_lock);
  586. }
  587. /* Fill oifs list. It is called under write locked mrt_lock. */
  588. static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
  589. unsigned char *ttls)
  590. {
  591. int vifi;
  592. cache->mfc_un.res.minvif = MAXVIFS;
  593. cache->mfc_un.res.maxvif = 0;
  594. memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
  595. for (vifi = 0; vifi < mrt->maxvif; vifi++) {
  596. if (VIF_EXISTS(mrt, vifi) &&
  597. ttls[vifi] && ttls[vifi] < 255) {
  598. cache->mfc_un.res.ttls[vifi] = ttls[vifi];
  599. if (cache->mfc_un.res.minvif > vifi)
  600. cache->mfc_un.res.minvif = vifi;
  601. if (cache->mfc_un.res.maxvif <= vifi)
  602. cache->mfc_un.res.maxvif = vifi + 1;
  603. }
  604. }
  605. cache->mfc_un.res.lastuse = jiffies;
  606. }
  607. static int vif_add(struct net *net, struct mr_table *mrt,
  608. struct vifctl *vifc, int mrtsock)
  609. {
  610. int vifi = vifc->vifc_vifi;
  611. struct vif_device *v = &mrt->vif_table[vifi];
  612. struct net_device *dev;
  613. struct in_device *in_dev;
  614. int err;
  615. /* Is vif busy ? */
  616. if (VIF_EXISTS(mrt, vifi))
  617. return -EADDRINUSE;
  618. switch (vifc->vifc_flags) {
  619. case VIFF_REGISTER:
  620. if (!ipmr_pimsm_enabled())
  621. return -EINVAL;
  622. /* Special Purpose VIF in PIM
  623. * All the packets will be sent to the daemon
  624. */
  625. if (mrt->mroute_reg_vif_num >= 0)
  626. return -EADDRINUSE;
  627. dev = ipmr_reg_vif(net, mrt);
  628. if (!dev)
  629. return -ENOBUFS;
  630. err = dev_set_allmulti(dev, 1);
  631. if (err) {
  632. unregister_netdevice(dev);
  633. dev_put(dev);
  634. return err;
  635. }
  636. break;
  637. case VIFF_TUNNEL:
  638. dev = ipmr_new_tunnel(net, vifc);
  639. if (!dev)
  640. return -ENOBUFS;
  641. err = dev_set_allmulti(dev, 1);
  642. if (err) {
  643. ipmr_del_tunnel(dev, vifc);
  644. dev_put(dev);
  645. return err;
  646. }
  647. break;
  648. case VIFF_USE_IFINDEX:
  649. case 0:
  650. if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
  651. dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
  652. if (dev && !__in_dev_get_rtnl(dev)) {
  653. dev_put(dev);
  654. return -EADDRNOTAVAIL;
  655. }
  656. } else {
  657. dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
  658. }
  659. if (!dev)
  660. return -EADDRNOTAVAIL;
  661. err = dev_set_allmulti(dev, 1);
  662. if (err) {
  663. dev_put(dev);
  664. return err;
  665. }
  666. break;
  667. default:
  668. return -EINVAL;
  669. }
  670. in_dev = __in_dev_get_rtnl(dev);
  671. if (!in_dev) {
  672. dev_put(dev);
  673. return -EADDRNOTAVAIL;
  674. }
  675. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
  676. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
  677. &in_dev->cnf);
  678. ip_rt_multicast_event(in_dev);
  679. /* Fill in the VIF structures */
  680. v->rate_limit = vifc->vifc_rate_limit;
  681. v->local = vifc->vifc_lcl_addr.s_addr;
  682. v->remote = vifc->vifc_rmt_addr.s_addr;
  683. v->flags = vifc->vifc_flags;
  684. if (!mrtsock)
  685. v->flags |= VIFF_STATIC;
  686. v->threshold = vifc->vifc_threshold;
  687. v->bytes_in = 0;
  688. v->bytes_out = 0;
  689. v->pkt_in = 0;
  690. v->pkt_out = 0;
  691. v->link = dev->ifindex;
  692. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
  693. v->link = dev_get_iflink(dev);
  694. /* And finish update writing critical data */
  695. write_lock_bh(&mrt_lock);
  696. v->dev = dev;
  697. if (v->flags & VIFF_REGISTER)
  698. mrt->mroute_reg_vif_num = vifi;
  699. if (vifi+1 > mrt->maxvif)
  700. mrt->maxvif = vifi+1;
  701. write_unlock_bh(&mrt_lock);
  702. return 0;
  703. }
  704. /* called with rcu_read_lock() */
  705. static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
  706. __be32 origin,
  707. __be32 mcastgrp)
  708. {
  709. int line = MFC_HASH(mcastgrp, origin);
  710. struct mfc_cache *c;
  711. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
  712. if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
  713. return c;
  714. }
  715. return NULL;
  716. }
  717. /* Look for a (*,*,oif) entry */
  718. static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
  719. int vifi)
  720. {
  721. int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
  722. struct mfc_cache *c;
  723. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
  724. if (c->mfc_origin == htonl(INADDR_ANY) &&
  725. c->mfc_mcastgrp == htonl(INADDR_ANY) &&
  726. c->mfc_un.res.ttls[vifi] < 255)
  727. return c;
  728. return NULL;
  729. }
  730. /* Look for a (*,G) entry */
  731. static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
  732. __be32 mcastgrp, int vifi)
  733. {
  734. int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
  735. struct mfc_cache *c, *proxy;
  736. if (mcastgrp == htonl(INADDR_ANY))
  737. goto skip;
  738. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
  739. if (c->mfc_origin == htonl(INADDR_ANY) &&
  740. c->mfc_mcastgrp == mcastgrp) {
  741. if (c->mfc_un.res.ttls[vifi] < 255)
  742. return c;
  743. /* It's ok if the vifi is part of the static tree */
  744. proxy = ipmr_cache_find_any_parent(mrt,
  745. c->mfc_parent);
  746. if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
  747. return c;
  748. }
  749. skip:
  750. return ipmr_cache_find_any_parent(mrt, vifi);
  751. }
  752. /* Allocate a multicast cache entry */
  753. static struct mfc_cache *ipmr_cache_alloc(void)
  754. {
  755. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
  756. if (c) {
  757. c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
  758. c->mfc_un.res.minvif = MAXVIFS;
  759. }
  760. return c;
  761. }
  762. static struct mfc_cache *ipmr_cache_alloc_unres(void)
  763. {
  764. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
  765. if (c) {
  766. skb_queue_head_init(&c->mfc_un.unres.unresolved);
  767. c->mfc_un.unres.expires = jiffies + 10*HZ;
  768. }
  769. return c;
  770. }
  771. /* A cache entry has gone into a resolved state from queued */
  772. static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
  773. struct mfc_cache *uc, struct mfc_cache *c)
  774. {
  775. struct sk_buff *skb;
  776. struct nlmsgerr *e;
  777. /* Play the pending entries through our router */
  778. while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
  779. if (ip_hdr(skb)->version == 0) {
  780. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  781. if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
  782. nlh->nlmsg_len = skb_tail_pointer(skb) -
  783. (u8 *)nlh;
  784. } else {
  785. nlh->nlmsg_type = NLMSG_ERROR;
  786. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  787. skb_trim(skb, nlh->nlmsg_len);
  788. e = nlmsg_data(nlh);
  789. e->error = -EMSGSIZE;
  790. memset(&e->msg, 0, sizeof(e->msg));
  791. }
  792. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  793. } else {
  794. ip_mr_forward(net, mrt, skb, c, 0);
  795. }
  796. }
  797. }
  798. /* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
  799. * expects the following bizarre scheme.
  800. *
  801. * Called under mrt_lock.
  802. */
  803. static int ipmr_cache_report(struct mr_table *mrt,
  804. struct sk_buff *pkt, vifi_t vifi, int assert)
  805. {
  806. const int ihl = ip_hdrlen(pkt);
  807. struct sock *mroute_sk;
  808. struct igmphdr *igmp;
  809. struct igmpmsg *msg;
  810. struct sk_buff *skb;
  811. int ret;
  812. if (assert == IGMPMSG_WHOLEPKT)
  813. skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
  814. else
  815. skb = alloc_skb(128, GFP_ATOMIC);
  816. if (!skb)
  817. return -ENOBUFS;
  818. if (assert == IGMPMSG_WHOLEPKT) {
  819. /* Ugly, but we have no choice with this interface.
  820. * Duplicate old header, fix ihl, length etc.
  821. * And all this only to mangle msg->im_msgtype and
  822. * to set msg->im_mbz to "mbz" :-)
  823. */
  824. skb_push(skb, sizeof(struct iphdr));
  825. skb_reset_network_header(skb);
  826. skb_reset_transport_header(skb);
  827. msg = (struct igmpmsg *)skb_network_header(skb);
  828. memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
  829. msg->im_msgtype = IGMPMSG_WHOLEPKT;
  830. msg->im_mbz = 0;
  831. msg->im_vif = mrt->mroute_reg_vif_num;
  832. ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
  833. ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
  834. sizeof(struct iphdr));
  835. } else {
  836. /* Copy the IP header */
  837. skb_set_network_header(skb, skb->len);
  838. skb_put(skb, ihl);
  839. skb_copy_to_linear_data(skb, pkt->data, ihl);
  840. /* Flag to the kernel this is a route add */
  841. ip_hdr(skb)->protocol = 0;
  842. msg = (struct igmpmsg *)skb_network_header(skb);
  843. msg->im_vif = vifi;
  844. skb_dst_set(skb, dst_clone(skb_dst(pkt)));
  845. /* Add our header */
  846. igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
  847. igmp->type = assert;
  848. msg->im_msgtype = assert;
  849. igmp->code = 0;
  850. ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
  851. skb->transport_header = skb->network_header;
  852. }
  853. rcu_read_lock();
  854. mroute_sk = rcu_dereference(mrt->mroute_sk);
  855. if (!mroute_sk) {
  856. rcu_read_unlock();
  857. kfree_skb(skb);
  858. return -EINVAL;
  859. }
  860. /* Deliver to mrouted */
  861. ret = sock_queue_rcv_skb(mroute_sk, skb);
  862. rcu_read_unlock();
  863. if (ret < 0) {
  864. net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
  865. kfree_skb(skb);
  866. }
  867. return ret;
  868. }
  869. /* Queue a packet for resolution. It gets locked cache entry! */
  870. static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
  871. struct sk_buff *skb)
  872. {
  873. bool found = false;
  874. int err;
  875. struct mfc_cache *c;
  876. const struct iphdr *iph = ip_hdr(skb);
  877. spin_lock_bh(&mfc_unres_lock);
  878. list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
  879. if (c->mfc_mcastgrp == iph->daddr &&
  880. c->mfc_origin == iph->saddr) {
  881. found = true;
  882. break;
  883. }
  884. }
  885. if (!found) {
  886. /* Create a new entry if allowable */
  887. if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
  888. (c = ipmr_cache_alloc_unres()) == NULL) {
  889. spin_unlock_bh(&mfc_unres_lock);
  890. kfree_skb(skb);
  891. return -ENOBUFS;
  892. }
  893. /* Fill in the new cache entry */
  894. c->mfc_parent = -1;
  895. c->mfc_origin = iph->saddr;
  896. c->mfc_mcastgrp = iph->daddr;
  897. /* Reflect first query at mrouted. */
  898. err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
  899. if (err < 0) {
  900. /* If the report failed throw the cache entry
  901. out - Brad Parker
  902. */
  903. spin_unlock_bh(&mfc_unres_lock);
  904. ipmr_cache_free(c);
  905. kfree_skb(skb);
  906. return err;
  907. }
  908. atomic_inc(&mrt->cache_resolve_queue_len);
  909. list_add(&c->list, &mrt->mfc_unres_queue);
  910. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  911. if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
  912. mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
  913. }
  914. /* See if we can append the packet */
  915. if (c->mfc_un.unres.unresolved.qlen > 3) {
  916. kfree_skb(skb);
  917. err = -ENOBUFS;
  918. } else {
  919. skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
  920. err = 0;
  921. }
  922. spin_unlock_bh(&mfc_unres_lock);
  923. return err;
  924. }
  925. /* MFC cache manipulation by user space mroute daemon */
  926. static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
  927. {
  928. int line;
  929. struct mfc_cache *c, *next;
  930. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  931. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
  932. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  933. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
  934. (parent == -1 || parent == c->mfc_parent)) {
  935. list_del_rcu(&c->list);
  936. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  937. ipmr_cache_free(c);
  938. return 0;
  939. }
  940. }
  941. return -ENOENT;
  942. }
  943. static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
  944. struct mfcctl *mfc, int mrtsock, int parent)
  945. {
  946. bool found = false;
  947. int line;
  948. struct mfc_cache *uc, *c;
  949. if (mfc->mfcc_parent >= MAXVIFS)
  950. return -ENFILE;
  951. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  952. list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
  953. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  954. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
  955. (parent == -1 || parent == c->mfc_parent)) {
  956. found = true;
  957. break;
  958. }
  959. }
  960. if (found) {
  961. write_lock_bh(&mrt_lock);
  962. c->mfc_parent = mfc->mfcc_parent;
  963. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  964. if (!mrtsock)
  965. c->mfc_flags |= MFC_STATIC;
  966. write_unlock_bh(&mrt_lock);
  967. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  968. return 0;
  969. }
  970. if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
  971. !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
  972. return -EINVAL;
  973. c = ipmr_cache_alloc();
  974. if (!c)
  975. return -ENOMEM;
  976. c->mfc_origin = mfc->mfcc_origin.s_addr;
  977. c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
  978. c->mfc_parent = mfc->mfcc_parent;
  979. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  980. if (!mrtsock)
  981. c->mfc_flags |= MFC_STATIC;
  982. list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
  983. /* Check to see if we resolved a queued list. If so we
  984. * need to send on the frames and tidy up.
  985. */
  986. found = false;
  987. spin_lock_bh(&mfc_unres_lock);
  988. list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
  989. if (uc->mfc_origin == c->mfc_origin &&
  990. uc->mfc_mcastgrp == c->mfc_mcastgrp) {
  991. list_del(&uc->list);
  992. atomic_dec(&mrt->cache_resolve_queue_len);
  993. found = true;
  994. break;
  995. }
  996. }
  997. if (list_empty(&mrt->mfc_unres_queue))
  998. del_timer(&mrt->ipmr_expire_timer);
  999. spin_unlock_bh(&mfc_unres_lock);
  1000. if (found) {
  1001. ipmr_cache_resolve(net, mrt, uc, c);
  1002. ipmr_cache_free(uc);
  1003. }
  1004. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  1005. return 0;
  1006. }
  1007. /* Close the multicast socket, and clear the vif tables etc */
  1008. static void mroute_clean_tables(struct mr_table *mrt, bool all)
  1009. {
  1010. int i;
  1011. LIST_HEAD(list);
  1012. struct mfc_cache *c, *next;
  1013. /* Shut down all active vif entries */
  1014. for (i = 0; i < mrt->maxvif; i++) {
  1015. if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
  1016. continue;
  1017. vif_delete(mrt, i, 0, &list);
  1018. }
  1019. unregister_netdevice_many(&list);
  1020. /* Wipe the cache */
  1021. for (i = 0; i < MFC_LINES; i++) {
  1022. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
  1023. if (!all && (c->mfc_flags & MFC_STATIC))
  1024. continue;
  1025. list_del_rcu(&c->list);
  1026. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1027. ipmr_cache_free(c);
  1028. }
  1029. }
  1030. if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
  1031. spin_lock_bh(&mfc_unres_lock);
  1032. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  1033. list_del(&c->list);
  1034. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1035. ipmr_destroy_unres(mrt, c);
  1036. }
  1037. spin_unlock_bh(&mfc_unres_lock);
  1038. }
  1039. }
  1040. /* called from ip_ra_control(), before an RCU grace period,
  1041. * we dont need to call synchronize_rcu() here
  1042. */
  1043. static void mrtsock_destruct(struct sock *sk)
  1044. {
  1045. struct net *net = sock_net(sk);
  1046. struct mr_table *mrt;
  1047. rtnl_lock();
  1048. ipmr_for_each_table(mrt, net) {
  1049. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1050. IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
  1051. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
  1052. NETCONFA_IFINDEX_ALL,
  1053. net->ipv4.devconf_all);
  1054. RCU_INIT_POINTER(mrt->mroute_sk, NULL);
  1055. mroute_clean_tables(mrt, false);
  1056. }
  1057. }
  1058. rtnl_unlock();
  1059. }
  1060. /* Socket options and virtual interface manipulation. The whole
  1061. * virtual interface system is a complete heap, but unfortunately
  1062. * that's how BSD mrouted happens to think. Maybe one day with a proper
  1063. * MOSPF/PIM router set up we can clean this up.
  1064. */
  1065. int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
  1066. unsigned int optlen)
  1067. {
  1068. struct net *net = sock_net(sk);
  1069. int val, ret = 0, parent = 0;
  1070. struct mr_table *mrt;
  1071. struct vifctl vif;
  1072. struct mfcctl mfc;
  1073. u32 uval;
  1074. /* There's one exception to the lock - MRT_DONE which needs to unlock */
  1075. rtnl_lock();
  1076. if (sk->sk_type != SOCK_RAW ||
  1077. inet_sk(sk)->inet_num != IPPROTO_IGMP) {
  1078. ret = -EOPNOTSUPP;
  1079. goto out_unlock;
  1080. }
  1081. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1082. if (!mrt) {
  1083. ret = -ENOENT;
  1084. goto out_unlock;
  1085. }
  1086. if (optname != MRT_INIT) {
  1087. if (sk != rcu_access_pointer(mrt->mroute_sk) &&
  1088. !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
  1089. ret = -EACCES;
  1090. goto out_unlock;
  1091. }
  1092. }
  1093. switch (optname) {
  1094. case MRT_INIT:
  1095. if (optlen != sizeof(int)) {
  1096. ret = -EINVAL;
  1097. break;
  1098. }
  1099. if (rtnl_dereference(mrt->mroute_sk)) {
  1100. ret = -EADDRINUSE;
  1101. break;
  1102. }
  1103. ret = ip_ra_control(sk, 1, mrtsock_destruct);
  1104. if (ret == 0) {
  1105. rcu_assign_pointer(mrt->mroute_sk, sk);
  1106. IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
  1107. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
  1108. NETCONFA_IFINDEX_ALL,
  1109. net->ipv4.devconf_all);
  1110. }
  1111. break;
  1112. case MRT_DONE:
  1113. if (sk != rcu_access_pointer(mrt->mroute_sk)) {
  1114. ret = -EACCES;
  1115. } else {
  1116. /* We need to unlock here because mrtsock_destruct takes
  1117. * care of rtnl itself and we can't change that due to
  1118. * the IP_ROUTER_ALERT setsockopt which runs without it.
  1119. */
  1120. rtnl_unlock();
  1121. ret = ip_ra_control(sk, 0, NULL);
  1122. goto out;
  1123. }
  1124. break;
  1125. case MRT_ADD_VIF:
  1126. case MRT_DEL_VIF:
  1127. if (optlen != sizeof(vif)) {
  1128. ret = -EINVAL;
  1129. break;
  1130. }
  1131. if (copy_from_user(&vif, optval, sizeof(vif))) {
  1132. ret = -EFAULT;
  1133. break;
  1134. }
  1135. if (vif.vifc_vifi >= MAXVIFS) {
  1136. ret = -ENFILE;
  1137. break;
  1138. }
  1139. if (optname == MRT_ADD_VIF) {
  1140. ret = vif_add(net, mrt, &vif,
  1141. sk == rtnl_dereference(mrt->mroute_sk));
  1142. } else {
  1143. ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
  1144. }
  1145. break;
  1146. /* Manipulate the forwarding caches. These live
  1147. * in a sort of kernel/user symbiosis.
  1148. */
  1149. case MRT_ADD_MFC:
  1150. case MRT_DEL_MFC:
  1151. parent = -1;
  1152. case MRT_ADD_MFC_PROXY:
  1153. case MRT_DEL_MFC_PROXY:
  1154. if (optlen != sizeof(mfc)) {
  1155. ret = -EINVAL;
  1156. break;
  1157. }
  1158. if (copy_from_user(&mfc, optval, sizeof(mfc))) {
  1159. ret = -EFAULT;
  1160. break;
  1161. }
  1162. if (parent == 0)
  1163. parent = mfc.mfcc_parent;
  1164. if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
  1165. ret = ipmr_mfc_delete(mrt, &mfc, parent);
  1166. else
  1167. ret = ipmr_mfc_add(net, mrt, &mfc,
  1168. sk == rtnl_dereference(mrt->mroute_sk),
  1169. parent);
  1170. break;
  1171. /* Control PIM assert. */
  1172. case MRT_ASSERT:
  1173. if (optlen != sizeof(val)) {
  1174. ret = -EINVAL;
  1175. break;
  1176. }
  1177. if (get_user(val, (int __user *)optval)) {
  1178. ret = -EFAULT;
  1179. break;
  1180. }
  1181. mrt->mroute_do_assert = val;
  1182. break;
  1183. case MRT_PIM:
  1184. if (!ipmr_pimsm_enabled()) {
  1185. ret = -ENOPROTOOPT;
  1186. break;
  1187. }
  1188. if (optlen != sizeof(val)) {
  1189. ret = -EINVAL;
  1190. break;
  1191. }
  1192. if (get_user(val, (int __user *)optval)) {
  1193. ret = -EFAULT;
  1194. break;
  1195. }
  1196. val = !!val;
  1197. if (val != mrt->mroute_do_pim) {
  1198. mrt->mroute_do_pim = val;
  1199. mrt->mroute_do_assert = val;
  1200. }
  1201. break;
  1202. case MRT_TABLE:
  1203. if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
  1204. ret = -ENOPROTOOPT;
  1205. break;
  1206. }
  1207. if (optlen != sizeof(uval)) {
  1208. ret = -EINVAL;
  1209. break;
  1210. }
  1211. if (get_user(uval, (u32 __user *)optval)) {
  1212. ret = -EFAULT;
  1213. break;
  1214. }
  1215. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1216. ret = -EBUSY;
  1217. } else {
  1218. mrt = ipmr_new_table(net, uval);
  1219. if (IS_ERR(mrt))
  1220. ret = PTR_ERR(mrt);
  1221. else
  1222. raw_sk(sk)->ipmr_table = uval;
  1223. }
  1224. break;
  1225. /* Spurious command, or MRT_VERSION which you cannot set. */
  1226. default:
  1227. ret = -ENOPROTOOPT;
  1228. }
  1229. out_unlock:
  1230. rtnl_unlock();
  1231. out:
  1232. return ret;
  1233. }
  1234. /* Getsock opt support for the multicast routing system. */
  1235. int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
  1236. {
  1237. int olr;
  1238. int val;
  1239. struct net *net = sock_net(sk);
  1240. struct mr_table *mrt;
  1241. if (sk->sk_type != SOCK_RAW ||
  1242. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1243. return -EOPNOTSUPP;
  1244. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1245. if (!mrt)
  1246. return -ENOENT;
  1247. switch (optname) {
  1248. case MRT_VERSION:
  1249. val = 0x0305;
  1250. break;
  1251. case MRT_PIM:
  1252. if (!ipmr_pimsm_enabled())
  1253. return -ENOPROTOOPT;
  1254. val = mrt->mroute_do_pim;
  1255. break;
  1256. case MRT_ASSERT:
  1257. val = mrt->mroute_do_assert;
  1258. break;
  1259. default:
  1260. return -ENOPROTOOPT;
  1261. }
  1262. if (get_user(olr, optlen))
  1263. return -EFAULT;
  1264. olr = min_t(unsigned int, olr, sizeof(int));
  1265. if (olr < 0)
  1266. return -EINVAL;
  1267. if (put_user(olr, optlen))
  1268. return -EFAULT;
  1269. if (copy_to_user(optval, &val, olr))
  1270. return -EFAULT;
  1271. return 0;
  1272. }
  1273. /* The IP multicast ioctl support routines. */
  1274. int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
  1275. {
  1276. struct sioc_sg_req sr;
  1277. struct sioc_vif_req vr;
  1278. struct vif_device *vif;
  1279. struct mfc_cache *c;
  1280. struct net *net = sock_net(sk);
  1281. struct mr_table *mrt;
  1282. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1283. if (!mrt)
  1284. return -ENOENT;
  1285. switch (cmd) {
  1286. case SIOCGETVIFCNT:
  1287. if (copy_from_user(&vr, arg, sizeof(vr)))
  1288. return -EFAULT;
  1289. if (vr.vifi >= mrt->maxvif)
  1290. return -EINVAL;
  1291. read_lock(&mrt_lock);
  1292. vif = &mrt->vif_table[vr.vifi];
  1293. if (VIF_EXISTS(mrt, vr.vifi)) {
  1294. vr.icount = vif->pkt_in;
  1295. vr.ocount = vif->pkt_out;
  1296. vr.ibytes = vif->bytes_in;
  1297. vr.obytes = vif->bytes_out;
  1298. read_unlock(&mrt_lock);
  1299. if (copy_to_user(arg, &vr, sizeof(vr)))
  1300. return -EFAULT;
  1301. return 0;
  1302. }
  1303. read_unlock(&mrt_lock);
  1304. return -EADDRNOTAVAIL;
  1305. case SIOCGETSGCNT:
  1306. if (copy_from_user(&sr, arg, sizeof(sr)))
  1307. return -EFAULT;
  1308. rcu_read_lock();
  1309. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1310. if (c) {
  1311. sr.pktcnt = c->mfc_un.res.pkt;
  1312. sr.bytecnt = c->mfc_un.res.bytes;
  1313. sr.wrong_if = c->mfc_un.res.wrong_if;
  1314. rcu_read_unlock();
  1315. if (copy_to_user(arg, &sr, sizeof(sr)))
  1316. return -EFAULT;
  1317. return 0;
  1318. }
  1319. rcu_read_unlock();
  1320. return -EADDRNOTAVAIL;
  1321. default:
  1322. return -ENOIOCTLCMD;
  1323. }
  1324. }
  1325. #ifdef CONFIG_COMPAT
  1326. struct compat_sioc_sg_req {
  1327. struct in_addr src;
  1328. struct in_addr grp;
  1329. compat_ulong_t pktcnt;
  1330. compat_ulong_t bytecnt;
  1331. compat_ulong_t wrong_if;
  1332. };
  1333. struct compat_sioc_vif_req {
  1334. vifi_t vifi; /* Which iface */
  1335. compat_ulong_t icount;
  1336. compat_ulong_t ocount;
  1337. compat_ulong_t ibytes;
  1338. compat_ulong_t obytes;
  1339. };
  1340. int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
  1341. {
  1342. struct compat_sioc_sg_req sr;
  1343. struct compat_sioc_vif_req vr;
  1344. struct vif_device *vif;
  1345. struct mfc_cache *c;
  1346. struct net *net = sock_net(sk);
  1347. struct mr_table *mrt;
  1348. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1349. if (!mrt)
  1350. return -ENOENT;
  1351. switch (cmd) {
  1352. case SIOCGETVIFCNT:
  1353. if (copy_from_user(&vr, arg, sizeof(vr)))
  1354. return -EFAULT;
  1355. if (vr.vifi >= mrt->maxvif)
  1356. return -EINVAL;
  1357. read_lock(&mrt_lock);
  1358. vif = &mrt->vif_table[vr.vifi];
  1359. if (VIF_EXISTS(mrt, vr.vifi)) {
  1360. vr.icount = vif->pkt_in;
  1361. vr.ocount = vif->pkt_out;
  1362. vr.ibytes = vif->bytes_in;
  1363. vr.obytes = vif->bytes_out;
  1364. read_unlock(&mrt_lock);
  1365. if (copy_to_user(arg, &vr, sizeof(vr)))
  1366. return -EFAULT;
  1367. return 0;
  1368. }
  1369. read_unlock(&mrt_lock);
  1370. return -EADDRNOTAVAIL;
  1371. case SIOCGETSGCNT:
  1372. if (copy_from_user(&sr, arg, sizeof(sr)))
  1373. return -EFAULT;
  1374. rcu_read_lock();
  1375. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1376. if (c) {
  1377. sr.pktcnt = c->mfc_un.res.pkt;
  1378. sr.bytecnt = c->mfc_un.res.bytes;
  1379. sr.wrong_if = c->mfc_un.res.wrong_if;
  1380. rcu_read_unlock();
  1381. if (copy_to_user(arg, &sr, sizeof(sr)))
  1382. return -EFAULT;
  1383. return 0;
  1384. }
  1385. rcu_read_unlock();
  1386. return -EADDRNOTAVAIL;
  1387. default:
  1388. return -ENOIOCTLCMD;
  1389. }
  1390. }
  1391. #endif
  1392. static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
  1393. {
  1394. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1395. struct net *net = dev_net(dev);
  1396. struct mr_table *mrt;
  1397. struct vif_device *v;
  1398. int ct;
  1399. if (event != NETDEV_UNREGISTER)
  1400. return NOTIFY_DONE;
  1401. ipmr_for_each_table(mrt, net) {
  1402. v = &mrt->vif_table[0];
  1403. for (ct = 0; ct < mrt->maxvif; ct++, v++) {
  1404. if (v->dev == dev)
  1405. vif_delete(mrt, ct, 1, NULL);
  1406. }
  1407. }
  1408. return NOTIFY_DONE;
  1409. }
  1410. static struct notifier_block ip_mr_notifier = {
  1411. .notifier_call = ipmr_device_event,
  1412. };
  1413. /* Encapsulate a packet by attaching a valid IPIP header to it.
  1414. * This avoids tunnel drivers and other mess and gives us the speed so
  1415. * important for multicast video.
  1416. */
  1417. static void ip_encap(struct net *net, struct sk_buff *skb,
  1418. __be32 saddr, __be32 daddr)
  1419. {
  1420. struct iphdr *iph;
  1421. const struct iphdr *old_iph = ip_hdr(skb);
  1422. skb_push(skb, sizeof(struct iphdr));
  1423. skb->transport_header = skb->network_header;
  1424. skb_reset_network_header(skb);
  1425. iph = ip_hdr(skb);
  1426. iph->version = 4;
  1427. iph->tos = old_iph->tos;
  1428. iph->ttl = old_iph->ttl;
  1429. iph->frag_off = 0;
  1430. iph->daddr = daddr;
  1431. iph->saddr = saddr;
  1432. iph->protocol = IPPROTO_IPIP;
  1433. iph->ihl = 5;
  1434. iph->tot_len = htons(skb->len);
  1435. ip_select_ident(net, skb, NULL);
  1436. ip_send_check(iph);
  1437. memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
  1438. nf_reset(skb);
  1439. }
  1440. static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
  1441. struct sk_buff *skb)
  1442. {
  1443. struct ip_options *opt = &(IPCB(skb)->opt);
  1444. IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
  1445. IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
  1446. if (unlikely(opt->optlen))
  1447. ip_forward_options(skb);
  1448. return dst_output(net, sk, skb);
  1449. }
  1450. /* Processing handlers for ipmr_forward */
  1451. static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
  1452. struct sk_buff *skb, struct mfc_cache *c, int vifi)
  1453. {
  1454. const struct iphdr *iph = ip_hdr(skb);
  1455. struct vif_device *vif = &mrt->vif_table[vifi];
  1456. struct net_device *dev;
  1457. struct rtable *rt;
  1458. struct flowi4 fl4;
  1459. int encap = 0;
  1460. if (!vif->dev)
  1461. goto out_free;
  1462. if (vif->flags & VIFF_REGISTER) {
  1463. vif->pkt_out++;
  1464. vif->bytes_out += skb->len;
  1465. vif->dev->stats.tx_bytes += skb->len;
  1466. vif->dev->stats.tx_packets++;
  1467. ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
  1468. goto out_free;
  1469. }
  1470. if (vif->flags & VIFF_TUNNEL) {
  1471. rt = ip_route_output_ports(net, &fl4, NULL,
  1472. vif->remote, vif->local,
  1473. 0, 0,
  1474. IPPROTO_IPIP,
  1475. RT_TOS(iph->tos), vif->link);
  1476. if (IS_ERR(rt))
  1477. goto out_free;
  1478. encap = sizeof(struct iphdr);
  1479. } else {
  1480. rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
  1481. 0, 0,
  1482. IPPROTO_IPIP,
  1483. RT_TOS(iph->tos), vif->link);
  1484. if (IS_ERR(rt))
  1485. goto out_free;
  1486. }
  1487. dev = rt->dst.dev;
  1488. if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
  1489. /* Do not fragment multicasts. Alas, IPv4 does not
  1490. * allow to send ICMP, so that packets will disappear
  1491. * to blackhole.
  1492. */
  1493. IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
  1494. ip_rt_put(rt);
  1495. goto out_free;
  1496. }
  1497. encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
  1498. if (skb_cow(skb, encap)) {
  1499. ip_rt_put(rt);
  1500. goto out_free;
  1501. }
  1502. vif->pkt_out++;
  1503. vif->bytes_out += skb->len;
  1504. skb_dst_drop(skb);
  1505. skb_dst_set(skb, &rt->dst);
  1506. ip_decrease_ttl(ip_hdr(skb));
  1507. /* FIXME: forward and output firewalls used to be called here.
  1508. * What do we do with netfilter? -- RR
  1509. */
  1510. if (vif->flags & VIFF_TUNNEL) {
  1511. ip_encap(net, skb, vif->local, vif->remote);
  1512. /* FIXME: extra output firewall step used to be here. --RR */
  1513. vif->dev->stats.tx_packets++;
  1514. vif->dev->stats.tx_bytes += skb->len;
  1515. }
  1516. IPCB(skb)->flags |= IPSKB_FORWARDED;
  1517. /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
  1518. * not only before forwarding, but after forwarding on all output
  1519. * interfaces. It is clear, if mrouter runs a multicasting
  1520. * program, it should receive packets not depending to what interface
  1521. * program is joined.
  1522. * If we will not make it, the program will have to join on all
  1523. * interfaces. On the other hand, multihoming host (or router, but
  1524. * not mrouter) cannot join to more than one interface - it will
  1525. * result in receiving multiple packets.
  1526. */
  1527. NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
  1528. net, NULL, skb, skb->dev, dev,
  1529. ipmr_forward_finish);
  1530. return;
  1531. out_free:
  1532. kfree_skb(skb);
  1533. }
  1534. static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
  1535. {
  1536. int ct;
  1537. for (ct = mrt->maxvif-1; ct >= 0; ct--) {
  1538. if (mrt->vif_table[ct].dev == dev)
  1539. break;
  1540. }
  1541. return ct;
  1542. }
  1543. /* "local" means that we should preserve one skb (for local delivery) */
  1544. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  1545. struct sk_buff *skb, struct mfc_cache *cache,
  1546. int local)
  1547. {
  1548. int psend = -1;
  1549. int vif, ct;
  1550. int true_vifi = ipmr_find_vif(mrt, skb->dev);
  1551. vif = cache->mfc_parent;
  1552. cache->mfc_un.res.pkt++;
  1553. cache->mfc_un.res.bytes += skb->len;
  1554. cache->mfc_un.res.lastuse = jiffies;
  1555. if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
  1556. struct mfc_cache *cache_proxy;
  1557. /* For an (*,G) entry, we only check that the incomming
  1558. * interface is part of the static tree.
  1559. */
  1560. cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
  1561. if (cache_proxy &&
  1562. cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
  1563. goto forward;
  1564. }
  1565. /* Wrong interface: drop packet and (maybe) send PIM assert. */
  1566. if (mrt->vif_table[vif].dev != skb->dev) {
  1567. struct net_device *mdev;
  1568. mdev = l3mdev_master_dev_rcu(mrt->vif_table[vif].dev);
  1569. if (mdev == skb->dev)
  1570. goto forward;
  1571. if (rt_is_output_route(skb_rtable(skb))) {
  1572. /* It is our own packet, looped back.
  1573. * Very complicated situation...
  1574. *
  1575. * The best workaround until routing daemons will be
  1576. * fixed is not to redistribute packet, if it was
  1577. * send through wrong interface. It means, that
  1578. * multicast applications WILL NOT work for
  1579. * (S,G), which have default multicast route pointing
  1580. * to wrong oif. In any case, it is not a good
  1581. * idea to use multicasting applications on router.
  1582. */
  1583. goto dont_forward;
  1584. }
  1585. cache->mfc_un.res.wrong_if++;
  1586. if (true_vifi >= 0 && mrt->mroute_do_assert &&
  1587. /* pimsm uses asserts, when switching from RPT to SPT,
  1588. * so that we cannot check that packet arrived on an oif.
  1589. * It is bad, but otherwise we would need to move pretty
  1590. * large chunk of pimd to kernel. Ough... --ANK
  1591. */
  1592. (mrt->mroute_do_pim ||
  1593. cache->mfc_un.res.ttls[true_vifi] < 255) &&
  1594. time_after(jiffies,
  1595. cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
  1596. cache->mfc_un.res.last_assert = jiffies;
  1597. ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
  1598. }
  1599. goto dont_forward;
  1600. }
  1601. forward:
  1602. mrt->vif_table[vif].pkt_in++;
  1603. mrt->vif_table[vif].bytes_in += skb->len;
  1604. /* Forward the frame */
  1605. if (cache->mfc_origin == htonl(INADDR_ANY) &&
  1606. cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
  1607. if (true_vifi >= 0 &&
  1608. true_vifi != cache->mfc_parent &&
  1609. ip_hdr(skb)->ttl >
  1610. cache->mfc_un.res.ttls[cache->mfc_parent]) {
  1611. /* It's an (*,*) entry and the packet is not coming from
  1612. * the upstream: forward the packet to the upstream
  1613. * only.
  1614. */
  1615. psend = cache->mfc_parent;
  1616. goto last_forward;
  1617. }
  1618. goto dont_forward;
  1619. }
  1620. for (ct = cache->mfc_un.res.maxvif - 1;
  1621. ct >= cache->mfc_un.res.minvif; ct--) {
  1622. /* For (*,G) entry, don't forward to the incoming interface */
  1623. if ((cache->mfc_origin != htonl(INADDR_ANY) ||
  1624. ct != true_vifi) &&
  1625. ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
  1626. if (psend != -1) {
  1627. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1628. if (skb2)
  1629. ipmr_queue_xmit(net, mrt, skb2, cache,
  1630. psend);
  1631. }
  1632. psend = ct;
  1633. }
  1634. }
  1635. last_forward:
  1636. if (psend != -1) {
  1637. if (local) {
  1638. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1639. if (skb2)
  1640. ipmr_queue_xmit(net, mrt, skb2, cache, psend);
  1641. } else {
  1642. ipmr_queue_xmit(net, mrt, skb, cache, psend);
  1643. return;
  1644. }
  1645. }
  1646. dont_forward:
  1647. if (!local)
  1648. kfree_skb(skb);
  1649. }
  1650. static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
  1651. {
  1652. struct rtable *rt = skb_rtable(skb);
  1653. struct iphdr *iph = ip_hdr(skb);
  1654. struct flowi4 fl4 = {
  1655. .daddr = iph->daddr,
  1656. .saddr = iph->saddr,
  1657. .flowi4_tos = RT_TOS(iph->tos),
  1658. .flowi4_oif = (rt_is_output_route(rt) ?
  1659. skb->dev->ifindex : 0),
  1660. .flowi4_iif = (rt_is_output_route(rt) ?
  1661. LOOPBACK_IFINDEX :
  1662. skb->dev->ifindex),
  1663. .flowi4_mark = skb->mark,
  1664. };
  1665. struct mr_table *mrt;
  1666. int err;
  1667. err = ipmr_fib_lookup(net, &fl4, &mrt);
  1668. if (err)
  1669. return ERR_PTR(err);
  1670. return mrt;
  1671. }
  1672. /* Multicast packets for forwarding arrive here
  1673. * Called with rcu_read_lock();
  1674. */
  1675. int ip_mr_input(struct sk_buff *skb)
  1676. {
  1677. struct mfc_cache *cache;
  1678. struct net *net = dev_net(skb->dev);
  1679. int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
  1680. struct mr_table *mrt;
  1681. /* Packet is looped back after forward, it should not be
  1682. * forwarded second time, but still can be delivered locally.
  1683. */
  1684. if (IPCB(skb)->flags & IPSKB_FORWARDED)
  1685. goto dont_forward;
  1686. mrt = ipmr_rt_fib_lookup(net, skb);
  1687. if (IS_ERR(mrt)) {
  1688. kfree_skb(skb);
  1689. return PTR_ERR(mrt);
  1690. }
  1691. if (!local) {
  1692. if (IPCB(skb)->opt.router_alert) {
  1693. if (ip_call_ra_chain(skb))
  1694. return 0;
  1695. } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
  1696. /* IGMPv1 (and broken IGMPv2 implementations sort of
  1697. * Cisco IOS <= 11.2(8)) do not put router alert
  1698. * option to IGMP packets destined to routable
  1699. * groups. It is very bad, because it means
  1700. * that we can forward NO IGMP messages.
  1701. */
  1702. struct sock *mroute_sk;
  1703. mroute_sk = rcu_dereference(mrt->mroute_sk);
  1704. if (mroute_sk) {
  1705. nf_reset(skb);
  1706. raw_rcv(mroute_sk, skb);
  1707. return 0;
  1708. }
  1709. }
  1710. }
  1711. /* already under rcu_read_lock() */
  1712. cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
  1713. if (!cache) {
  1714. int vif = ipmr_find_vif(mrt, skb->dev);
  1715. if (vif >= 0)
  1716. cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
  1717. vif);
  1718. }
  1719. /* No usable cache entry */
  1720. if (!cache) {
  1721. int vif;
  1722. if (local) {
  1723. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1724. ip_local_deliver(skb);
  1725. if (!skb2)
  1726. return -ENOBUFS;
  1727. skb = skb2;
  1728. }
  1729. read_lock(&mrt_lock);
  1730. vif = ipmr_find_vif(mrt, skb->dev);
  1731. if (vif >= 0) {
  1732. int err2 = ipmr_cache_unresolved(mrt, vif, skb);
  1733. read_unlock(&mrt_lock);
  1734. return err2;
  1735. }
  1736. read_unlock(&mrt_lock);
  1737. kfree_skb(skb);
  1738. return -ENODEV;
  1739. }
  1740. read_lock(&mrt_lock);
  1741. ip_mr_forward(net, mrt, skb, cache, local);
  1742. read_unlock(&mrt_lock);
  1743. if (local)
  1744. return ip_local_deliver(skb);
  1745. return 0;
  1746. dont_forward:
  1747. if (local)
  1748. return ip_local_deliver(skb);
  1749. kfree_skb(skb);
  1750. return 0;
  1751. }
  1752. #ifdef CONFIG_IP_PIMSM_V1
  1753. /* Handle IGMP messages of PIMv1 */
  1754. int pim_rcv_v1(struct sk_buff *skb)
  1755. {
  1756. struct igmphdr *pim;
  1757. struct net *net = dev_net(skb->dev);
  1758. struct mr_table *mrt;
  1759. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1760. goto drop;
  1761. pim = igmp_hdr(skb);
  1762. mrt = ipmr_rt_fib_lookup(net, skb);
  1763. if (IS_ERR(mrt))
  1764. goto drop;
  1765. if (!mrt->mroute_do_pim ||
  1766. pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
  1767. goto drop;
  1768. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1769. drop:
  1770. kfree_skb(skb);
  1771. }
  1772. return 0;
  1773. }
  1774. #endif
  1775. #ifdef CONFIG_IP_PIMSM_V2
  1776. static int pim_rcv(struct sk_buff *skb)
  1777. {
  1778. struct pimreghdr *pim;
  1779. struct net *net = dev_net(skb->dev);
  1780. struct mr_table *mrt;
  1781. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1782. goto drop;
  1783. pim = (struct pimreghdr *)skb_transport_header(skb);
  1784. if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
  1785. (pim->flags & PIM_NULL_REGISTER) ||
  1786. (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
  1787. csum_fold(skb_checksum(skb, 0, skb->len, 0))))
  1788. goto drop;
  1789. mrt = ipmr_rt_fib_lookup(net, skb);
  1790. if (IS_ERR(mrt))
  1791. goto drop;
  1792. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1793. drop:
  1794. kfree_skb(skb);
  1795. }
  1796. return 0;
  1797. }
  1798. #endif
  1799. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1800. struct mfc_cache *c, struct rtmsg *rtm)
  1801. {
  1802. struct rta_mfc_stats mfcs;
  1803. struct nlattr *mp_attr;
  1804. struct rtnexthop *nhp;
  1805. unsigned long lastuse;
  1806. int ct;
  1807. /* If cache is unresolved, don't try to parse IIF and OIF */
  1808. if (c->mfc_parent >= MAXVIFS)
  1809. return -ENOENT;
  1810. if (VIF_EXISTS(mrt, c->mfc_parent) &&
  1811. nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
  1812. return -EMSGSIZE;
  1813. if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
  1814. return -EMSGSIZE;
  1815. for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
  1816. if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
  1817. if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
  1818. nla_nest_cancel(skb, mp_attr);
  1819. return -EMSGSIZE;
  1820. }
  1821. nhp->rtnh_flags = 0;
  1822. nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
  1823. nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
  1824. nhp->rtnh_len = sizeof(*nhp);
  1825. }
  1826. }
  1827. nla_nest_end(skb, mp_attr);
  1828. lastuse = READ_ONCE(c->mfc_un.res.lastuse);
  1829. lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0;
  1830. mfcs.mfcs_packets = c->mfc_un.res.pkt;
  1831. mfcs.mfcs_bytes = c->mfc_un.res.bytes;
  1832. mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
  1833. if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) ||
  1834. nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse),
  1835. RTA_PAD))
  1836. return -EMSGSIZE;
  1837. rtm->rtm_type = RTN_MULTICAST;
  1838. return 1;
  1839. }
  1840. int ipmr_get_route(struct net *net, struct sk_buff *skb,
  1841. __be32 saddr, __be32 daddr,
  1842. struct rtmsg *rtm, int nowait, u32 portid)
  1843. {
  1844. struct mfc_cache *cache;
  1845. struct mr_table *mrt;
  1846. int err;
  1847. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1848. if (!mrt)
  1849. return -ENOENT;
  1850. rcu_read_lock();
  1851. cache = ipmr_cache_find(mrt, saddr, daddr);
  1852. if (!cache && skb->dev) {
  1853. int vif = ipmr_find_vif(mrt, skb->dev);
  1854. if (vif >= 0)
  1855. cache = ipmr_cache_find_any(mrt, daddr, vif);
  1856. }
  1857. if (!cache) {
  1858. struct sk_buff *skb2;
  1859. struct iphdr *iph;
  1860. struct net_device *dev;
  1861. int vif = -1;
  1862. if (nowait) {
  1863. rcu_read_unlock();
  1864. return -EAGAIN;
  1865. }
  1866. dev = skb->dev;
  1867. read_lock(&mrt_lock);
  1868. if (dev)
  1869. vif = ipmr_find_vif(mrt, dev);
  1870. if (vif < 0) {
  1871. read_unlock(&mrt_lock);
  1872. rcu_read_unlock();
  1873. return -ENODEV;
  1874. }
  1875. skb2 = skb_clone(skb, GFP_ATOMIC);
  1876. if (!skb2) {
  1877. read_unlock(&mrt_lock);
  1878. rcu_read_unlock();
  1879. return -ENOMEM;
  1880. }
  1881. NETLINK_CB(skb2).portid = portid;
  1882. skb_push(skb2, sizeof(struct iphdr));
  1883. skb_reset_network_header(skb2);
  1884. iph = ip_hdr(skb2);
  1885. iph->ihl = sizeof(struct iphdr) >> 2;
  1886. iph->saddr = saddr;
  1887. iph->daddr = daddr;
  1888. iph->version = 0;
  1889. err = ipmr_cache_unresolved(mrt, vif, skb2);
  1890. read_unlock(&mrt_lock);
  1891. rcu_read_unlock();
  1892. return err;
  1893. }
  1894. read_lock(&mrt_lock);
  1895. err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
  1896. read_unlock(&mrt_lock);
  1897. rcu_read_unlock();
  1898. return err;
  1899. }
  1900. static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1901. u32 portid, u32 seq, struct mfc_cache *c, int cmd,
  1902. int flags)
  1903. {
  1904. struct nlmsghdr *nlh;
  1905. struct rtmsg *rtm;
  1906. int err;
  1907. nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
  1908. if (!nlh)
  1909. return -EMSGSIZE;
  1910. rtm = nlmsg_data(nlh);
  1911. rtm->rtm_family = RTNL_FAMILY_IPMR;
  1912. rtm->rtm_dst_len = 32;
  1913. rtm->rtm_src_len = 32;
  1914. rtm->rtm_tos = 0;
  1915. rtm->rtm_table = mrt->id;
  1916. if (nla_put_u32(skb, RTA_TABLE, mrt->id))
  1917. goto nla_put_failure;
  1918. rtm->rtm_type = RTN_MULTICAST;
  1919. rtm->rtm_scope = RT_SCOPE_UNIVERSE;
  1920. if (c->mfc_flags & MFC_STATIC)
  1921. rtm->rtm_protocol = RTPROT_STATIC;
  1922. else
  1923. rtm->rtm_protocol = RTPROT_MROUTED;
  1924. rtm->rtm_flags = 0;
  1925. if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
  1926. nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
  1927. goto nla_put_failure;
  1928. err = __ipmr_fill_mroute(mrt, skb, c, rtm);
  1929. /* do not break the dump if cache is unresolved */
  1930. if (err < 0 && err != -ENOENT)
  1931. goto nla_put_failure;
  1932. nlmsg_end(skb, nlh);
  1933. return 0;
  1934. nla_put_failure:
  1935. nlmsg_cancel(skb, nlh);
  1936. return -EMSGSIZE;
  1937. }
  1938. static size_t mroute_msgsize(bool unresolved, int maxvif)
  1939. {
  1940. size_t len =
  1941. NLMSG_ALIGN(sizeof(struct rtmsg))
  1942. + nla_total_size(4) /* RTA_TABLE */
  1943. + nla_total_size(4) /* RTA_SRC */
  1944. + nla_total_size(4) /* RTA_DST */
  1945. ;
  1946. if (!unresolved)
  1947. len = len
  1948. + nla_total_size(4) /* RTA_IIF */
  1949. + nla_total_size(0) /* RTA_MULTIPATH */
  1950. + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
  1951. /* RTA_MFC_STATS */
  1952. + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
  1953. ;
  1954. return len;
  1955. }
  1956. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  1957. int cmd)
  1958. {
  1959. struct net *net = read_pnet(&mrt->net);
  1960. struct sk_buff *skb;
  1961. int err = -ENOBUFS;
  1962. skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
  1963. GFP_ATOMIC);
  1964. if (!skb)
  1965. goto errout;
  1966. err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
  1967. if (err < 0)
  1968. goto errout;
  1969. rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
  1970. return;
  1971. errout:
  1972. kfree_skb(skb);
  1973. if (err < 0)
  1974. rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
  1975. }
  1976. static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
  1977. {
  1978. struct net *net = sock_net(skb->sk);
  1979. struct mr_table *mrt;
  1980. struct mfc_cache *mfc;
  1981. unsigned int t = 0, s_t;
  1982. unsigned int h = 0, s_h;
  1983. unsigned int e = 0, s_e;
  1984. s_t = cb->args[0];
  1985. s_h = cb->args[1];
  1986. s_e = cb->args[2];
  1987. rcu_read_lock();
  1988. ipmr_for_each_table(mrt, net) {
  1989. if (t < s_t)
  1990. goto next_table;
  1991. if (t > s_t)
  1992. s_h = 0;
  1993. for (h = s_h; h < MFC_LINES; h++) {
  1994. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
  1995. if (e < s_e)
  1996. goto next_entry;
  1997. if (ipmr_fill_mroute(mrt, skb,
  1998. NETLINK_CB(cb->skb).portid,
  1999. cb->nlh->nlmsg_seq,
  2000. mfc, RTM_NEWROUTE,
  2001. NLM_F_MULTI) < 0)
  2002. goto done;
  2003. next_entry:
  2004. e++;
  2005. }
  2006. e = s_e = 0;
  2007. }
  2008. spin_lock_bh(&mfc_unres_lock);
  2009. list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
  2010. if (e < s_e)
  2011. goto next_entry2;
  2012. if (ipmr_fill_mroute(mrt, skb,
  2013. NETLINK_CB(cb->skb).portid,
  2014. cb->nlh->nlmsg_seq,
  2015. mfc, RTM_NEWROUTE,
  2016. NLM_F_MULTI) < 0) {
  2017. spin_unlock_bh(&mfc_unres_lock);
  2018. goto done;
  2019. }
  2020. next_entry2:
  2021. e++;
  2022. }
  2023. spin_unlock_bh(&mfc_unres_lock);
  2024. e = s_e = 0;
  2025. s_h = 0;
  2026. next_table:
  2027. t++;
  2028. }
  2029. done:
  2030. rcu_read_unlock();
  2031. cb->args[2] = e;
  2032. cb->args[1] = h;
  2033. cb->args[0] = t;
  2034. return skb->len;
  2035. }
  2036. static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
  2037. [RTA_SRC] = { .type = NLA_U32 },
  2038. [RTA_DST] = { .type = NLA_U32 },
  2039. [RTA_IIF] = { .type = NLA_U32 },
  2040. [RTA_TABLE] = { .type = NLA_U32 },
  2041. [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
  2042. };
  2043. static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
  2044. {
  2045. switch (rtm_protocol) {
  2046. case RTPROT_STATIC:
  2047. case RTPROT_MROUTED:
  2048. return true;
  2049. }
  2050. return false;
  2051. }
  2052. static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
  2053. {
  2054. struct rtnexthop *rtnh = nla_data(nla);
  2055. int remaining = nla_len(nla), vifi = 0;
  2056. while (rtnh_ok(rtnh, remaining)) {
  2057. mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
  2058. if (++vifi == MAXVIFS)
  2059. break;
  2060. rtnh = rtnh_next(rtnh, &remaining);
  2061. }
  2062. return remaining > 0 ? -EINVAL : vifi;
  2063. }
  2064. /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
  2065. static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
  2066. struct mfcctl *mfcc, int *mrtsock,
  2067. struct mr_table **mrtret)
  2068. {
  2069. struct net_device *dev = NULL;
  2070. u32 tblid = RT_TABLE_DEFAULT;
  2071. struct mr_table *mrt;
  2072. struct nlattr *attr;
  2073. struct rtmsg *rtm;
  2074. int ret, rem;
  2075. ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy);
  2076. if (ret < 0)
  2077. goto out;
  2078. rtm = nlmsg_data(nlh);
  2079. ret = -EINVAL;
  2080. if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
  2081. rtm->rtm_type != RTN_MULTICAST ||
  2082. rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
  2083. !ipmr_rtm_validate_proto(rtm->rtm_protocol))
  2084. goto out;
  2085. memset(mfcc, 0, sizeof(*mfcc));
  2086. mfcc->mfcc_parent = -1;
  2087. ret = 0;
  2088. nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
  2089. switch (nla_type(attr)) {
  2090. case RTA_SRC:
  2091. mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
  2092. break;
  2093. case RTA_DST:
  2094. mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
  2095. break;
  2096. case RTA_IIF:
  2097. dev = __dev_get_by_index(net, nla_get_u32(attr));
  2098. if (!dev) {
  2099. ret = -ENODEV;
  2100. goto out;
  2101. }
  2102. break;
  2103. case RTA_MULTIPATH:
  2104. if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
  2105. ret = -EINVAL;
  2106. goto out;
  2107. }
  2108. break;
  2109. case RTA_PREFSRC:
  2110. ret = 1;
  2111. break;
  2112. case RTA_TABLE:
  2113. tblid = nla_get_u32(attr);
  2114. break;
  2115. }
  2116. }
  2117. mrt = ipmr_get_table(net, tblid);
  2118. if (!mrt) {
  2119. ret = -ENOENT;
  2120. goto out;
  2121. }
  2122. *mrtret = mrt;
  2123. *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
  2124. if (dev)
  2125. mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
  2126. out:
  2127. return ret;
  2128. }
  2129. /* takes care of both newroute and delroute */
  2130. static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh)
  2131. {
  2132. struct net *net = sock_net(skb->sk);
  2133. int ret, mrtsock, parent;
  2134. struct mr_table *tbl;
  2135. struct mfcctl mfcc;
  2136. mrtsock = 0;
  2137. tbl = NULL;
  2138. ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl);
  2139. if (ret < 0)
  2140. return ret;
  2141. parent = ret ? mfcc.mfcc_parent : -1;
  2142. if (nlh->nlmsg_type == RTM_NEWROUTE)
  2143. return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
  2144. else
  2145. return ipmr_mfc_delete(tbl, &mfcc, parent);
  2146. }
  2147. #ifdef CONFIG_PROC_FS
  2148. /* The /proc interfaces to multicast routing :
  2149. * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
  2150. */
  2151. struct ipmr_vif_iter {
  2152. struct seq_net_private p;
  2153. struct mr_table *mrt;
  2154. int ct;
  2155. };
  2156. static struct vif_device *ipmr_vif_seq_idx(struct net *net,
  2157. struct ipmr_vif_iter *iter,
  2158. loff_t pos)
  2159. {
  2160. struct mr_table *mrt = iter->mrt;
  2161. for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
  2162. if (!VIF_EXISTS(mrt, iter->ct))
  2163. continue;
  2164. if (pos-- == 0)
  2165. return &mrt->vif_table[iter->ct];
  2166. }
  2167. return NULL;
  2168. }
  2169. static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
  2170. __acquires(mrt_lock)
  2171. {
  2172. struct ipmr_vif_iter *iter = seq->private;
  2173. struct net *net = seq_file_net(seq);
  2174. struct mr_table *mrt;
  2175. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2176. if (!mrt)
  2177. return ERR_PTR(-ENOENT);
  2178. iter->mrt = mrt;
  2179. read_lock(&mrt_lock);
  2180. return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
  2181. : SEQ_START_TOKEN;
  2182. }
  2183. static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2184. {
  2185. struct ipmr_vif_iter *iter = seq->private;
  2186. struct net *net = seq_file_net(seq);
  2187. struct mr_table *mrt = iter->mrt;
  2188. ++*pos;
  2189. if (v == SEQ_START_TOKEN)
  2190. return ipmr_vif_seq_idx(net, iter, 0);
  2191. while (++iter->ct < mrt->maxvif) {
  2192. if (!VIF_EXISTS(mrt, iter->ct))
  2193. continue;
  2194. return &mrt->vif_table[iter->ct];
  2195. }
  2196. return NULL;
  2197. }
  2198. static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
  2199. __releases(mrt_lock)
  2200. {
  2201. read_unlock(&mrt_lock);
  2202. }
  2203. static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
  2204. {
  2205. struct ipmr_vif_iter *iter = seq->private;
  2206. struct mr_table *mrt = iter->mrt;
  2207. if (v == SEQ_START_TOKEN) {
  2208. seq_puts(seq,
  2209. "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
  2210. } else {
  2211. const struct vif_device *vif = v;
  2212. const char *name = vif->dev ? vif->dev->name : "none";
  2213. seq_printf(seq,
  2214. "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
  2215. vif - mrt->vif_table,
  2216. name, vif->bytes_in, vif->pkt_in,
  2217. vif->bytes_out, vif->pkt_out,
  2218. vif->flags, vif->local, vif->remote);
  2219. }
  2220. return 0;
  2221. }
  2222. static const struct seq_operations ipmr_vif_seq_ops = {
  2223. .start = ipmr_vif_seq_start,
  2224. .next = ipmr_vif_seq_next,
  2225. .stop = ipmr_vif_seq_stop,
  2226. .show = ipmr_vif_seq_show,
  2227. };
  2228. static int ipmr_vif_open(struct inode *inode, struct file *file)
  2229. {
  2230. return seq_open_net(inode, file, &ipmr_vif_seq_ops,
  2231. sizeof(struct ipmr_vif_iter));
  2232. }
  2233. static const struct file_operations ipmr_vif_fops = {
  2234. .owner = THIS_MODULE,
  2235. .open = ipmr_vif_open,
  2236. .read = seq_read,
  2237. .llseek = seq_lseek,
  2238. .release = seq_release_net,
  2239. };
  2240. struct ipmr_mfc_iter {
  2241. struct seq_net_private p;
  2242. struct mr_table *mrt;
  2243. struct list_head *cache;
  2244. int ct;
  2245. };
  2246. static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
  2247. struct ipmr_mfc_iter *it, loff_t pos)
  2248. {
  2249. struct mr_table *mrt = it->mrt;
  2250. struct mfc_cache *mfc;
  2251. rcu_read_lock();
  2252. for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
  2253. it->cache = &mrt->mfc_cache_array[it->ct];
  2254. list_for_each_entry_rcu(mfc, it->cache, list)
  2255. if (pos-- == 0)
  2256. return mfc;
  2257. }
  2258. rcu_read_unlock();
  2259. spin_lock_bh(&mfc_unres_lock);
  2260. it->cache = &mrt->mfc_unres_queue;
  2261. list_for_each_entry(mfc, it->cache, list)
  2262. if (pos-- == 0)
  2263. return mfc;
  2264. spin_unlock_bh(&mfc_unres_lock);
  2265. it->cache = NULL;
  2266. return NULL;
  2267. }
  2268. static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
  2269. {
  2270. struct ipmr_mfc_iter *it = seq->private;
  2271. struct net *net = seq_file_net(seq);
  2272. struct mr_table *mrt;
  2273. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2274. if (!mrt)
  2275. return ERR_PTR(-ENOENT);
  2276. it->mrt = mrt;
  2277. it->cache = NULL;
  2278. it->ct = 0;
  2279. return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
  2280. : SEQ_START_TOKEN;
  2281. }
  2282. static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2283. {
  2284. struct mfc_cache *mfc = v;
  2285. struct ipmr_mfc_iter *it = seq->private;
  2286. struct net *net = seq_file_net(seq);
  2287. struct mr_table *mrt = it->mrt;
  2288. ++*pos;
  2289. if (v == SEQ_START_TOKEN)
  2290. return ipmr_mfc_seq_idx(net, seq->private, 0);
  2291. if (mfc->list.next != it->cache)
  2292. return list_entry(mfc->list.next, struct mfc_cache, list);
  2293. if (it->cache == &mrt->mfc_unres_queue)
  2294. goto end_of_list;
  2295. BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
  2296. while (++it->ct < MFC_LINES) {
  2297. it->cache = &mrt->mfc_cache_array[it->ct];
  2298. if (list_empty(it->cache))
  2299. continue;
  2300. return list_first_entry(it->cache, struct mfc_cache, list);
  2301. }
  2302. /* exhausted cache_array, show unresolved */
  2303. rcu_read_unlock();
  2304. it->cache = &mrt->mfc_unres_queue;
  2305. it->ct = 0;
  2306. spin_lock_bh(&mfc_unres_lock);
  2307. if (!list_empty(it->cache))
  2308. return list_first_entry(it->cache, struct mfc_cache, list);
  2309. end_of_list:
  2310. spin_unlock_bh(&mfc_unres_lock);
  2311. it->cache = NULL;
  2312. return NULL;
  2313. }
  2314. static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
  2315. {
  2316. struct ipmr_mfc_iter *it = seq->private;
  2317. struct mr_table *mrt = it->mrt;
  2318. if (it->cache == &mrt->mfc_unres_queue)
  2319. spin_unlock_bh(&mfc_unres_lock);
  2320. else if (it->cache == &mrt->mfc_cache_array[it->ct])
  2321. rcu_read_unlock();
  2322. }
  2323. static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
  2324. {
  2325. int n;
  2326. if (v == SEQ_START_TOKEN) {
  2327. seq_puts(seq,
  2328. "Group Origin Iif Pkts Bytes Wrong Oifs\n");
  2329. } else {
  2330. const struct mfc_cache *mfc = v;
  2331. const struct ipmr_mfc_iter *it = seq->private;
  2332. const struct mr_table *mrt = it->mrt;
  2333. seq_printf(seq, "%08X %08X %-3hd",
  2334. (__force u32) mfc->mfc_mcastgrp,
  2335. (__force u32) mfc->mfc_origin,
  2336. mfc->mfc_parent);
  2337. if (it->cache != &mrt->mfc_unres_queue) {
  2338. seq_printf(seq, " %8lu %8lu %8lu",
  2339. mfc->mfc_un.res.pkt,
  2340. mfc->mfc_un.res.bytes,
  2341. mfc->mfc_un.res.wrong_if);
  2342. for (n = mfc->mfc_un.res.minvif;
  2343. n < mfc->mfc_un.res.maxvif; n++) {
  2344. if (VIF_EXISTS(mrt, n) &&
  2345. mfc->mfc_un.res.ttls[n] < 255)
  2346. seq_printf(seq,
  2347. " %2d:%-3d",
  2348. n, mfc->mfc_un.res.ttls[n]);
  2349. }
  2350. } else {
  2351. /* unresolved mfc_caches don't contain
  2352. * pkt, bytes and wrong_if values
  2353. */
  2354. seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
  2355. }
  2356. seq_putc(seq, '\n');
  2357. }
  2358. return 0;
  2359. }
  2360. static const struct seq_operations ipmr_mfc_seq_ops = {
  2361. .start = ipmr_mfc_seq_start,
  2362. .next = ipmr_mfc_seq_next,
  2363. .stop = ipmr_mfc_seq_stop,
  2364. .show = ipmr_mfc_seq_show,
  2365. };
  2366. static int ipmr_mfc_open(struct inode *inode, struct file *file)
  2367. {
  2368. return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
  2369. sizeof(struct ipmr_mfc_iter));
  2370. }
  2371. static const struct file_operations ipmr_mfc_fops = {
  2372. .owner = THIS_MODULE,
  2373. .open = ipmr_mfc_open,
  2374. .read = seq_read,
  2375. .llseek = seq_lseek,
  2376. .release = seq_release_net,
  2377. };
  2378. #endif
  2379. #ifdef CONFIG_IP_PIMSM_V2
  2380. static const struct net_protocol pim_protocol = {
  2381. .handler = pim_rcv,
  2382. .netns_ok = 1,
  2383. };
  2384. #endif
  2385. /* Setup for IP multicast routing */
  2386. static int __net_init ipmr_net_init(struct net *net)
  2387. {
  2388. int err;
  2389. err = ipmr_rules_init(net);
  2390. if (err < 0)
  2391. goto fail;
  2392. #ifdef CONFIG_PROC_FS
  2393. err = -ENOMEM;
  2394. if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
  2395. goto proc_vif_fail;
  2396. if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
  2397. goto proc_cache_fail;
  2398. #endif
  2399. return 0;
  2400. #ifdef CONFIG_PROC_FS
  2401. proc_cache_fail:
  2402. remove_proc_entry("ip_mr_vif", net->proc_net);
  2403. proc_vif_fail:
  2404. ipmr_rules_exit(net);
  2405. #endif
  2406. fail:
  2407. return err;
  2408. }
  2409. static void __net_exit ipmr_net_exit(struct net *net)
  2410. {
  2411. #ifdef CONFIG_PROC_FS
  2412. remove_proc_entry("ip_mr_cache", net->proc_net);
  2413. remove_proc_entry("ip_mr_vif", net->proc_net);
  2414. #endif
  2415. ipmr_rules_exit(net);
  2416. }
  2417. static struct pernet_operations ipmr_net_ops = {
  2418. .init = ipmr_net_init,
  2419. .exit = ipmr_net_exit,
  2420. };
  2421. int __init ip_mr_init(void)
  2422. {
  2423. int err;
  2424. mrt_cachep = kmem_cache_create("ip_mrt_cache",
  2425. sizeof(struct mfc_cache),
  2426. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
  2427. NULL);
  2428. err = register_pernet_subsys(&ipmr_net_ops);
  2429. if (err)
  2430. goto reg_pernet_fail;
  2431. err = register_netdevice_notifier(&ip_mr_notifier);
  2432. if (err)
  2433. goto reg_notif_fail;
  2434. #ifdef CONFIG_IP_PIMSM_V2
  2435. if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
  2436. pr_err("%s: can't add PIM protocol\n", __func__);
  2437. err = -EAGAIN;
  2438. goto add_proto_fail;
  2439. }
  2440. #endif
  2441. rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
  2442. NULL, ipmr_rtm_dumproute, NULL);
  2443. rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
  2444. ipmr_rtm_route, NULL, NULL);
  2445. rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
  2446. ipmr_rtm_route, NULL, NULL);
  2447. return 0;
  2448. #ifdef CONFIG_IP_PIMSM_V2
  2449. add_proto_fail:
  2450. unregister_netdevice_notifier(&ip_mr_notifier);
  2451. #endif
  2452. reg_notif_fail:
  2453. unregister_pernet_subsys(&ipmr_net_ops);
  2454. reg_pernet_fail:
  2455. kmem_cache_destroy(mrt_cachep);
  2456. return err;
  2457. }