fou.c 23 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118
  1. #include <linux/module.h>
  2. #include <linux/errno.h>
  3. #include <linux/socket.h>
  4. #include <linux/skbuff.h>
  5. #include <linux/ip.h>
  6. #include <linux/udp.h>
  7. #include <linux/types.h>
  8. #include <linux/kernel.h>
  9. #include <net/genetlink.h>
  10. #include <net/gue.h>
  11. #include <net/ip.h>
  12. #include <net/protocol.h>
  13. #include <net/udp.h>
  14. #include <net/udp_tunnel.h>
  15. #include <net/xfrm.h>
  16. #include <uapi/linux/fou.h>
  17. #include <uapi/linux/genetlink.h>
  18. struct fou {
  19. struct socket *sock;
  20. u8 protocol;
  21. u8 flags;
  22. __be16 port;
  23. u8 family;
  24. u16 type;
  25. struct list_head list;
  26. struct rcu_head rcu;
  27. };
  28. #define FOU_F_REMCSUM_NOPARTIAL BIT(0)
  29. struct fou_cfg {
  30. u16 type;
  31. u8 protocol;
  32. u8 flags;
  33. struct udp_port_cfg udp_config;
  34. };
  35. static unsigned int fou_net_id;
  36. struct fou_net {
  37. struct list_head fou_list;
  38. struct mutex fou_lock;
  39. };
  40. static inline struct fou *fou_from_sock(struct sock *sk)
  41. {
  42. return sk->sk_user_data;
  43. }
  44. static int fou_recv_pull(struct sk_buff *skb, struct fou *fou, size_t len)
  45. {
  46. /* Remove 'len' bytes from the packet (UDP header and
  47. * FOU header if present).
  48. */
  49. if (fou->family == AF_INET)
  50. ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(skb)->tot_len) - len);
  51. else
  52. ipv6_hdr(skb)->payload_len =
  53. htons(ntohs(ipv6_hdr(skb)->payload_len) - len);
  54. __skb_pull(skb, len);
  55. skb_postpull_rcsum(skb, udp_hdr(skb), len);
  56. skb_reset_transport_header(skb);
  57. return iptunnel_pull_offloads(skb);
  58. }
  59. static int fou_udp_recv(struct sock *sk, struct sk_buff *skb)
  60. {
  61. struct fou *fou = fou_from_sock(sk);
  62. if (!fou)
  63. return 1;
  64. if (fou_recv_pull(skb, fou, sizeof(struct udphdr)))
  65. goto drop;
  66. return -fou->protocol;
  67. drop:
  68. kfree_skb(skb);
  69. return 0;
  70. }
  71. static struct guehdr *gue_remcsum(struct sk_buff *skb, struct guehdr *guehdr,
  72. void *data, size_t hdrlen, u8 ipproto,
  73. bool nopartial)
  74. {
  75. __be16 *pd = data;
  76. size_t start = ntohs(pd[0]);
  77. size_t offset = ntohs(pd[1]);
  78. size_t plen = sizeof(struct udphdr) + hdrlen +
  79. max_t(size_t, offset + sizeof(u16), start);
  80. if (skb->remcsum_offload)
  81. return guehdr;
  82. if (!pskb_may_pull(skb, plen))
  83. return NULL;
  84. guehdr = (struct guehdr *)&udp_hdr(skb)[1];
  85. skb_remcsum_process(skb, (void *)guehdr + hdrlen,
  86. start, offset, nopartial);
  87. return guehdr;
  88. }
  89. static int gue_control_message(struct sk_buff *skb, struct guehdr *guehdr)
  90. {
  91. /* No support yet */
  92. kfree_skb(skb);
  93. return 0;
  94. }
  95. static int gue_udp_recv(struct sock *sk, struct sk_buff *skb)
  96. {
  97. struct fou *fou = fou_from_sock(sk);
  98. size_t len, optlen, hdrlen;
  99. struct guehdr *guehdr;
  100. void *data;
  101. u16 doffset = 0;
  102. if (!fou)
  103. return 1;
  104. len = sizeof(struct udphdr) + sizeof(struct guehdr);
  105. if (!pskb_may_pull(skb, len))
  106. goto drop;
  107. guehdr = (struct guehdr *)&udp_hdr(skb)[1];
  108. switch (guehdr->version) {
  109. case 0: /* Full GUE header present */
  110. break;
  111. case 1: {
  112. /* Direct encasulation of IPv4 or IPv6 */
  113. int prot;
  114. switch (((struct iphdr *)guehdr)->version) {
  115. case 4:
  116. prot = IPPROTO_IPIP;
  117. break;
  118. case 6:
  119. prot = IPPROTO_IPV6;
  120. break;
  121. default:
  122. goto drop;
  123. }
  124. if (fou_recv_pull(skb, fou, sizeof(struct udphdr)))
  125. goto drop;
  126. return -prot;
  127. }
  128. default: /* Undefined version */
  129. goto drop;
  130. }
  131. optlen = guehdr->hlen << 2;
  132. len += optlen;
  133. if (!pskb_may_pull(skb, len))
  134. goto drop;
  135. /* guehdr may change after pull */
  136. guehdr = (struct guehdr *)&udp_hdr(skb)[1];
  137. hdrlen = sizeof(struct guehdr) + optlen;
  138. if (guehdr->version != 0 || validate_gue_flags(guehdr, optlen))
  139. goto drop;
  140. hdrlen = sizeof(struct guehdr) + optlen;
  141. if (fou->family == AF_INET)
  142. ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(skb)->tot_len) - len);
  143. else
  144. ipv6_hdr(skb)->payload_len =
  145. htons(ntohs(ipv6_hdr(skb)->payload_len) - len);
  146. /* Pull csum through the guehdr now . This can be used if
  147. * there is a remote checksum offload.
  148. */
  149. skb_postpull_rcsum(skb, udp_hdr(skb), len);
  150. data = &guehdr[1];
  151. if (guehdr->flags & GUE_FLAG_PRIV) {
  152. __be32 flags = *(__be32 *)(data + doffset);
  153. doffset += GUE_LEN_PRIV;
  154. if (flags & GUE_PFLAG_REMCSUM) {
  155. guehdr = gue_remcsum(skb, guehdr, data + doffset,
  156. hdrlen, guehdr->proto_ctype,
  157. !!(fou->flags &
  158. FOU_F_REMCSUM_NOPARTIAL));
  159. if (!guehdr)
  160. goto drop;
  161. data = &guehdr[1];
  162. doffset += GUE_PLEN_REMCSUM;
  163. }
  164. }
  165. if (unlikely(guehdr->control))
  166. return gue_control_message(skb, guehdr);
  167. __skb_pull(skb, sizeof(struct udphdr) + hdrlen);
  168. skb_reset_transport_header(skb);
  169. if (iptunnel_pull_offloads(skb))
  170. goto drop;
  171. return -guehdr->proto_ctype;
  172. drop:
  173. kfree_skb(skb);
  174. return 0;
  175. }
  176. static struct sk_buff **fou_gro_receive(struct sock *sk,
  177. struct sk_buff **head,
  178. struct sk_buff *skb)
  179. {
  180. const struct net_offload *ops;
  181. struct sk_buff **pp = NULL;
  182. u8 proto = fou_from_sock(sk)->protocol;
  183. const struct net_offload **offloads;
  184. /* We can clear the encap_mark for FOU as we are essentially doing
  185. * one of two possible things. We are either adding an L4 tunnel
  186. * header to the outer L3 tunnel header, or we are are simply
  187. * treating the GRE tunnel header as though it is a UDP protocol
  188. * specific header such as VXLAN or GENEVE.
  189. */
  190. NAPI_GRO_CB(skb)->encap_mark = 0;
  191. /* Flag this frame as already having an outer encap header */
  192. NAPI_GRO_CB(skb)->is_fou = 1;
  193. rcu_read_lock();
  194. offloads = NAPI_GRO_CB(skb)->is_ipv6 ? inet6_offloads : inet_offloads;
  195. ops = rcu_dereference(offloads[proto]);
  196. if (!ops || !ops->callbacks.gro_receive)
  197. goto out_unlock;
  198. pp = call_gro_receive(ops->callbacks.gro_receive, head, skb);
  199. out_unlock:
  200. rcu_read_unlock();
  201. return pp;
  202. }
  203. static int fou_gro_complete(struct sock *sk, struct sk_buff *skb,
  204. int nhoff)
  205. {
  206. const struct net_offload *ops;
  207. u8 proto = fou_from_sock(sk)->protocol;
  208. int err = -ENOSYS;
  209. const struct net_offload **offloads;
  210. rcu_read_lock();
  211. offloads = NAPI_GRO_CB(skb)->is_ipv6 ? inet6_offloads : inet_offloads;
  212. ops = rcu_dereference(offloads[proto]);
  213. if (WARN_ON(!ops || !ops->callbacks.gro_complete))
  214. goto out_unlock;
  215. err = ops->callbacks.gro_complete(skb, nhoff);
  216. skb_set_inner_mac_header(skb, nhoff);
  217. out_unlock:
  218. rcu_read_unlock();
  219. return err;
  220. }
  221. static struct guehdr *gue_gro_remcsum(struct sk_buff *skb, unsigned int off,
  222. struct guehdr *guehdr, void *data,
  223. size_t hdrlen, struct gro_remcsum *grc,
  224. bool nopartial)
  225. {
  226. __be16 *pd = data;
  227. size_t start = ntohs(pd[0]);
  228. size_t offset = ntohs(pd[1]);
  229. if (skb->remcsum_offload)
  230. return guehdr;
  231. if (!NAPI_GRO_CB(skb)->csum_valid)
  232. return NULL;
  233. guehdr = skb_gro_remcsum_process(skb, (void *)guehdr, off, hdrlen,
  234. start, offset, grc, nopartial);
  235. skb->remcsum_offload = 1;
  236. return guehdr;
  237. }
  238. static struct sk_buff **gue_gro_receive(struct sock *sk,
  239. struct sk_buff **head,
  240. struct sk_buff *skb)
  241. {
  242. const struct net_offload **offloads;
  243. const struct net_offload *ops;
  244. struct sk_buff **pp = NULL;
  245. struct sk_buff *p;
  246. struct guehdr *guehdr;
  247. size_t len, optlen, hdrlen, off;
  248. void *data;
  249. u16 doffset = 0;
  250. int flush = 1;
  251. struct fou *fou = fou_from_sock(sk);
  252. struct gro_remcsum grc;
  253. u8 proto;
  254. skb_gro_remcsum_init(&grc);
  255. off = skb_gro_offset(skb);
  256. len = off + sizeof(*guehdr);
  257. guehdr = skb_gro_header_fast(skb, off);
  258. if (skb_gro_header_hard(skb, len)) {
  259. guehdr = skb_gro_header_slow(skb, len, off);
  260. if (unlikely(!guehdr))
  261. goto out;
  262. }
  263. switch (guehdr->version) {
  264. case 0:
  265. break;
  266. case 1:
  267. switch (((struct iphdr *)guehdr)->version) {
  268. case 4:
  269. proto = IPPROTO_IPIP;
  270. break;
  271. case 6:
  272. proto = IPPROTO_IPV6;
  273. break;
  274. default:
  275. goto out;
  276. }
  277. goto next_proto;
  278. default:
  279. goto out;
  280. }
  281. optlen = guehdr->hlen << 2;
  282. len += optlen;
  283. if (skb_gro_header_hard(skb, len)) {
  284. guehdr = skb_gro_header_slow(skb, len, off);
  285. if (unlikely(!guehdr))
  286. goto out;
  287. }
  288. if (unlikely(guehdr->control) || guehdr->version != 0 ||
  289. validate_gue_flags(guehdr, optlen))
  290. goto out;
  291. hdrlen = sizeof(*guehdr) + optlen;
  292. /* Adjust NAPI_GRO_CB(skb)->csum to account for guehdr,
  293. * this is needed if there is a remote checkcsum offload.
  294. */
  295. skb_gro_postpull_rcsum(skb, guehdr, hdrlen);
  296. data = &guehdr[1];
  297. if (guehdr->flags & GUE_FLAG_PRIV) {
  298. __be32 flags = *(__be32 *)(data + doffset);
  299. doffset += GUE_LEN_PRIV;
  300. if (flags & GUE_PFLAG_REMCSUM) {
  301. guehdr = gue_gro_remcsum(skb, off, guehdr,
  302. data + doffset, hdrlen, &grc,
  303. !!(fou->flags &
  304. FOU_F_REMCSUM_NOPARTIAL));
  305. if (!guehdr)
  306. goto out;
  307. data = &guehdr[1];
  308. doffset += GUE_PLEN_REMCSUM;
  309. }
  310. }
  311. skb_gro_pull(skb, hdrlen);
  312. for (p = *head; p; p = p->next) {
  313. const struct guehdr *guehdr2;
  314. if (!NAPI_GRO_CB(p)->same_flow)
  315. continue;
  316. guehdr2 = (struct guehdr *)(p->data + off);
  317. /* Compare base GUE header to be equal (covers
  318. * hlen, version, proto_ctype, and flags.
  319. */
  320. if (guehdr->word != guehdr2->word) {
  321. NAPI_GRO_CB(p)->same_flow = 0;
  322. continue;
  323. }
  324. /* Compare optional fields are the same. */
  325. if (guehdr->hlen && memcmp(&guehdr[1], &guehdr2[1],
  326. guehdr->hlen << 2)) {
  327. NAPI_GRO_CB(p)->same_flow = 0;
  328. continue;
  329. }
  330. }
  331. proto = guehdr->proto_ctype;
  332. next_proto:
  333. /* We can clear the encap_mark for GUE as we are essentially doing
  334. * one of two possible things. We are either adding an L4 tunnel
  335. * header to the outer L3 tunnel header, or we are are simply
  336. * treating the GRE tunnel header as though it is a UDP protocol
  337. * specific header such as VXLAN or GENEVE.
  338. */
  339. NAPI_GRO_CB(skb)->encap_mark = 0;
  340. /* Flag this frame as already having an outer encap header */
  341. NAPI_GRO_CB(skb)->is_fou = 1;
  342. rcu_read_lock();
  343. offloads = NAPI_GRO_CB(skb)->is_ipv6 ? inet6_offloads : inet_offloads;
  344. ops = rcu_dereference(offloads[proto]);
  345. if (WARN_ON_ONCE(!ops || !ops->callbacks.gro_receive))
  346. goto out_unlock;
  347. pp = call_gro_receive(ops->callbacks.gro_receive, head, skb);
  348. flush = 0;
  349. out_unlock:
  350. rcu_read_unlock();
  351. out:
  352. NAPI_GRO_CB(skb)->flush |= flush;
  353. skb_gro_remcsum_cleanup(skb, &grc);
  354. return pp;
  355. }
  356. static int gue_gro_complete(struct sock *sk, struct sk_buff *skb, int nhoff)
  357. {
  358. const struct net_offload **offloads;
  359. struct guehdr *guehdr = (struct guehdr *)(skb->data + nhoff);
  360. const struct net_offload *ops;
  361. unsigned int guehlen = 0;
  362. u8 proto;
  363. int err = -ENOENT;
  364. switch (guehdr->version) {
  365. case 0:
  366. proto = guehdr->proto_ctype;
  367. guehlen = sizeof(*guehdr) + (guehdr->hlen << 2);
  368. break;
  369. case 1:
  370. switch (((struct iphdr *)guehdr)->version) {
  371. case 4:
  372. proto = IPPROTO_IPIP;
  373. break;
  374. case 6:
  375. proto = IPPROTO_IPV6;
  376. break;
  377. default:
  378. return err;
  379. }
  380. break;
  381. default:
  382. return err;
  383. }
  384. rcu_read_lock();
  385. offloads = NAPI_GRO_CB(skb)->is_ipv6 ? inet6_offloads : inet_offloads;
  386. ops = rcu_dereference(offloads[proto]);
  387. if (WARN_ON(!ops || !ops->callbacks.gro_complete))
  388. goto out_unlock;
  389. err = ops->callbacks.gro_complete(skb, nhoff + guehlen);
  390. skb_set_inner_mac_header(skb, nhoff + guehlen);
  391. out_unlock:
  392. rcu_read_unlock();
  393. return err;
  394. }
  395. static int fou_add_to_port_list(struct net *net, struct fou *fou)
  396. {
  397. struct fou_net *fn = net_generic(net, fou_net_id);
  398. struct fou *fout;
  399. mutex_lock(&fn->fou_lock);
  400. list_for_each_entry(fout, &fn->fou_list, list) {
  401. if (fou->port == fout->port &&
  402. fou->family == fout->family) {
  403. mutex_unlock(&fn->fou_lock);
  404. return -EALREADY;
  405. }
  406. }
  407. list_add(&fou->list, &fn->fou_list);
  408. mutex_unlock(&fn->fou_lock);
  409. return 0;
  410. }
  411. static void fou_release(struct fou *fou)
  412. {
  413. struct socket *sock = fou->sock;
  414. list_del(&fou->list);
  415. udp_tunnel_sock_release(sock);
  416. kfree_rcu(fou, rcu);
  417. }
  418. static int fou_create(struct net *net, struct fou_cfg *cfg,
  419. struct socket **sockp)
  420. {
  421. struct socket *sock = NULL;
  422. struct fou *fou = NULL;
  423. struct sock *sk;
  424. struct udp_tunnel_sock_cfg tunnel_cfg;
  425. int err;
  426. /* Open UDP socket */
  427. err = udp_sock_create(net, &cfg->udp_config, &sock);
  428. if (err < 0)
  429. goto error;
  430. /* Allocate FOU port structure */
  431. fou = kzalloc(sizeof(*fou), GFP_KERNEL);
  432. if (!fou) {
  433. err = -ENOMEM;
  434. goto error;
  435. }
  436. sk = sock->sk;
  437. fou->port = cfg->udp_config.local_udp_port;
  438. fou->family = cfg->udp_config.family;
  439. fou->flags = cfg->flags;
  440. fou->type = cfg->type;
  441. fou->sock = sock;
  442. memset(&tunnel_cfg, 0, sizeof(tunnel_cfg));
  443. tunnel_cfg.encap_type = 1;
  444. tunnel_cfg.sk_user_data = fou;
  445. tunnel_cfg.encap_destroy = NULL;
  446. /* Initial for fou type */
  447. switch (cfg->type) {
  448. case FOU_ENCAP_DIRECT:
  449. tunnel_cfg.encap_rcv = fou_udp_recv;
  450. tunnel_cfg.gro_receive = fou_gro_receive;
  451. tunnel_cfg.gro_complete = fou_gro_complete;
  452. fou->protocol = cfg->protocol;
  453. break;
  454. case FOU_ENCAP_GUE:
  455. tunnel_cfg.encap_rcv = gue_udp_recv;
  456. tunnel_cfg.gro_receive = gue_gro_receive;
  457. tunnel_cfg.gro_complete = gue_gro_complete;
  458. break;
  459. default:
  460. err = -EINVAL;
  461. goto error;
  462. }
  463. setup_udp_tunnel_sock(net, sock, &tunnel_cfg);
  464. sk->sk_allocation = GFP_ATOMIC;
  465. err = fou_add_to_port_list(net, fou);
  466. if (err)
  467. goto error;
  468. if (sockp)
  469. *sockp = sock;
  470. return 0;
  471. error:
  472. kfree(fou);
  473. if (sock)
  474. udp_tunnel_sock_release(sock);
  475. return err;
  476. }
  477. static int fou_destroy(struct net *net, struct fou_cfg *cfg)
  478. {
  479. struct fou_net *fn = net_generic(net, fou_net_id);
  480. __be16 port = cfg->udp_config.local_udp_port;
  481. u8 family = cfg->udp_config.family;
  482. int err = -EINVAL;
  483. struct fou *fou;
  484. mutex_lock(&fn->fou_lock);
  485. list_for_each_entry(fou, &fn->fou_list, list) {
  486. if (fou->port == port && fou->family == family) {
  487. fou_release(fou);
  488. err = 0;
  489. break;
  490. }
  491. }
  492. mutex_unlock(&fn->fou_lock);
  493. return err;
  494. }
  495. static struct genl_family fou_nl_family;
  496. static const struct nla_policy fou_nl_policy[FOU_ATTR_MAX + 1] = {
  497. [FOU_ATTR_PORT] = { .type = NLA_U16, },
  498. [FOU_ATTR_AF] = { .type = NLA_U8, },
  499. [FOU_ATTR_IPPROTO] = { .type = NLA_U8, },
  500. [FOU_ATTR_TYPE] = { .type = NLA_U8, },
  501. [FOU_ATTR_REMCSUM_NOPARTIAL] = { .type = NLA_FLAG, },
  502. };
  503. static int parse_nl_config(struct genl_info *info,
  504. struct fou_cfg *cfg)
  505. {
  506. memset(cfg, 0, sizeof(*cfg));
  507. cfg->udp_config.family = AF_INET;
  508. if (info->attrs[FOU_ATTR_AF]) {
  509. u8 family = nla_get_u8(info->attrs[FOU_ATTR_AF]);
  510. switch (family) {
  511. case AF_INET:
  512. break;
  513. case AF_INET6:
  514. cfg->udp_config.ipv6_v6only = 1;
  515. break;
  516. default:
  517. return -EAFNOSUPPORT;
  518. }
  519. cfg->udp_config.family = family;
  520. }
  521. if (info->attrs[FOU_ATTR_PORT]) {
  522. __be16 port = nla_get_be16(info->attrs[FOU_ATTR_PORT]);
  523. cfg->udp_config.local_udp_port = port;
  524. }
  525. if (info->attrs[FOU_ATTR_IPPROTO])
  526. cfg->protocol = nla_get_u8(info->attrs[FOU_ATTR_IPPROTO]);
  527. if (info->attrs[FOU_ATTR_TYPE])
  528. cfg->type = nla_get_u8(info->attrs[FOU_ATTR_TYPE]);
  529. if (info->attrs[FOU_ATTR_REMCSUM_NOPARTIAL])
  530. cfg->flags |= FOU_F_REMCSUM_NOPARTIAL;
  531. return 0;
  532. }
  533. static int fou_nl_cmd_add_port(struct sk_buff *skb, struct genl_info *info)
  534. {
  535. struct net *net = genl_info_net(info);
  536. struct fou_cfg cfg;
  537. int err;
  538. err = parse_nl_config(info, &cfg);
  539. if (err)
  540. return err;
  541. return fou_create(net, &cfg, NULL);
  542. }
  543. static int fou_nl_cmd_rm_port(struct sk_buff *skb, struct genl_info *info)
  544. {
  545. struct net *net = genl_info_net(info);
  546. struct fou_cfg cfg;
  547. int err;
  548. err = parse_nl_config(info, &cfg);
  549. if (err)
  550. return err;
  551. return fou_destroy(net, &cfg);
  552. }
  553. static int fou_fill_info(struct fou *fou, struct sk_buff *msg)
  554. {
  555. if (nla_put_u8(msg, FOU_ATTR_AF, fou->sock->sk->sk_family) ||
  556. nla_put_be16(msg, FOU_ATTR_PORT, fou->port) ||
  557. nla_put_u8(msg, FOU_ATTR_IPPROTO, fou->protocol) ||
  558. nla_put_u8(msg, FOU_ATTR_TYPE, fou->type))
  559. return -1;
  560. if (fou->flags & FOU_F_REMCSUM_NOPARTIAL)
  561. if (nla_put_flag(msg, FOU_ATTR_REMCSUM_NOPARTIAL))
  562. return -1;
  563. return 0;
  564. }
  565. static int fou_dump_info(struct fou *fou, u32 portid, u32 seq,
  566. u32 flags, struct sk_buff *skb, u8 cmd)
  567. {
  568. void *hdr;
  569. hdr = genlmsg_put(skb, portid, seq, &fou_nl_family, flags, cmd);
  570. if (!hdr)
  571. return -ENOMEM;
  572. if (fou_fill_info(fou, skb) < 0)
  573. goto nla_put_failure;
  574. genlmsg_end(skb, hdr);
  575. return 0;
  576. nla_put_failure:
  577. genlmsg_cancel(skb, hdr);
  578. return -EMSGSIZE;
  579. }
  580. static int fou_nl_cmd_get_port(struct sk_buff *skb, struct genl_info *info)
  581. {
  582. struct net *net = genl_info_net(info);
  583. struct fou_net *fn = net_generic(net, fou_net_id);
  584. struct sk_buff *msg;
  585. struct fou_cfg cfg;
  586. struct fou *fout;
  587. __be16 port;
  588. u8 family;
  589. int ret;
  590. ret = parse_nl_config(info, &cfg);
  591. if (ret)
  592. return ret;
  593. port = cfg.udp_config.local_udp_port;
  594. if (port == 0)
  595. return -EINVAL;
  596. family = cfg.udp_config.family;
  597. if (family != AF_INET && family != AF_INET6)
  598. return -EINVAL;
  599. msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
  600. if (!msg)
  601. return -ENOMEM;
  602. ret = -ESRCH;
  603. mutex_lock(&fn->fou_lock);
  604. list_for_each_entry(fout, &fn->fou_list, list) {
  605. if (port == fout->port && family == fout->family) {
  606. ret = fou_dump_info(fout, info->snd_portid,
  607. info->snd_seq, 0, msg,
  608. info->genlhdr->cmd);
  609. break;
  610. }
  611. }
  612. mutex_unlock(&fn->fou_lock);
  613. if (ret < 0)
  614. goto out_free;
  615. return genlmsg_reply(msg, info);
  616. out_free:
  617. nlmsg_free(msg);
  618. return ret;
  619. }
  620. static int fou_nl_dump(struct sk_buff *skb, struct netlink_callback *cb)
  621. {
  622. struct net *net = sock_net(skb->sk);
  623. struct fou_net *fn = net_generic(net, fou_net_id);
  624. struct fou *fout;
  625. int idx = 0, ret;
  626. mutex_lock(&fn->fou_lock);
  627. list_for_each_entry(fout, &fn->fou_list, list) {
  628. if (idx++ < cb->args[0])
  629. continue;
  630. ret = fou_dump_info(fout, NETLINK_CB(cb->skb).portid,
  631. cb->nlh->nlmsg_seq, NLM_F_MULTI,
  632. skb, FOU_CMD_GET);
  633. if (ret)
  634. break;
  635. }
  636. mutex_unlock(&fn->fou_lock);
  637. cb->args[0] = idx;
  638. return skb->len;
  639. }
  640. static const struct genl_ops fou_nl_ops[] = {
  641. {
  642. .cmd = FOU_CMD_ADD,
  643. .doit = fou_nl_cmd_add_port,
  644. .policy = fou_nl_policy,
  645. .flags = GENL_ADMIN_PERM,
  646. },
  647. {
  648. .cmd = FOU_CMD_DEL,
  649. .doit = fou_nl_cmd_rm_port,
  650. .policy = fou_nl_policy,
  651. .flags = GENL_ADMIN_PERM,
  652. },
  653. {
  654. .cmd = FOU_CMD_GET,
  655. .doit = fou_nl_cmd_get_port,
  656. .dumpit = fou_nl_dump,
  657. .policy = fou_nl_policy,
  658. },
  659. };
  660. static struct genl_family fou_nl_family __ro_after_init = {
  661. .hdrsize = 0,
  662. .name = FOU_GENL_NAME,
  663. .version = FOU_GENL_VERSION,
  664. .maxattr = FOU_ATTR_MAX,
  665. .netnsok = true,
  666. .module = THIS_MODULE,
  667. .ops = fou_nl_ops,
  668. .n_ops = ARRAY_SIZE(fou_nl_ops),
  669. };
  670. size_t fou_encap_hlen(struct ip_tunnel_encap *e)
  671. {
  672. return sizeof(struct udphdr);
  673. }
  674. EXPORT_SYMBOL(fou_encap_hlen);
  675. size_t gue_encap_hlen(struct ip_tunnel_encap *e)
  676. {
  677. size_t len;
  678. bool need_priv = false;
  679. len = sizeof(struct udphdr) + sizeof(struct guehdr);
  680. if (e->flags & TUNNEL_ENCAP_FLAG_REMCSUM) {
  681. len += GUE_PLEN_REMCSUM;
  682. need_priv = true;
  683. }
  684. len += need_priv ? GUE_LEN_PRIV : 0;
  685. return len;
  686. }
  687. EXPORT_SYMBOL(gue_encap_hlen);
  688. static void fou_build_udp(struct sk_buff *skb, struct ip_tunnel_encap *e,
  689. struct flowi4 *fl4, u8 *protocol, __be16 sport)
  690. {
  691. struct udphdr *uh;
  692. skb_push(skb, sizeof(struct udphdr));
  693. skb_reset_transport_header(skb);
  694. uh = udp_hdr(skb);
  695. uh->dest = e->dport;
  696. uh->source = sport;
  697. uh->len = htons(skb->len);
  698. udp_set_csum(!(e->flags & TUNNEL_ENCAP_FLAG_CSUM), skb,
  699. fl4->saddr, fl4->daddr, skb->len);
  700. *protocol = IPPROTO_UDP;
  701. }
  702. int __fou_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e,
  703. u8 *protocol, __be16 *sport, int type)
  704. {
  705. int err;
  706. err = iptunnel_handle_offloads(skb, type);
  707. if (err)
  708. return err;
  709. *sport = e->sport ? : udp_flow_src_port(dev_net(skb->dev),
  710. skb, 0, 0, false);
  711. return 0;
  712. }
  713. EXPORT_SYMBOL(__fou_build_header);
  714. int fou_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e,
  715. u8 *protocol, struct flowi4 *fl4)
  716. {
  717. int type = e->flags & TUNNEL_ENCAP_FLAG_CSUM ? SKB_GSO_UDP_TUNNEL_CSUM :
  718. SKB_GSO_UDP_TUNNEL;
  719. __be16 sport;
  720. int err;
  721. err = __fou_build_header(skb, e, protocol, &sport, type);
  722. if (err)
  723. return err;
  724. fou_build_udp(skb, e, fl4, protocol, sport);
  725. return 0;
  726. }
  727. EXPORT_SYMBOL(fou_build_header);
  728. int __gue_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e,
  729. u8 *protocol, __be16 *sport, int type)
  730. {
  731. struct guehdr *guehdr;
  732. size_t hdrlen, optlen = 0;
  733. void *data;
  734. bool need_priv = false;
  735. int err;
  736. if ((e->flags & TUNNEL_ENCAP_FLAG_REMCSUM) &&
  737. skb->ip_summed == CHECKSUM_PARTIAL) {
  738. optlen += GUE_PLEN_REMCSUM;
  739. type |= SKB_GSO_TUNNEL_REMCSUM;
  740. need_priv = true;
  741. }
  742. optlen += need_priv ? GUE_LEN_PRIV : 0;
  743. err = iptunnel_handle_offloads(skb, type);
  744. if (err)
  745. return err;
  746. /* Get source port (based on flow hash) before skb_push */
  747. *sport = e->sport ? : udp_flow_src_port(dev_net(skb->dev),
  748. skb, 0, 0, false);
  749. hdrlen = sizeof(struct guehdr) + optlen;
  750. skb_push(skb, hdrlen);
  751. guehdr = (struct guehdr *)skb->data;
  752. guehdr->control = 0;
  753. guehdr->version = 0;
  754. guehdr->hlen = optlen >> 2;
  755. guehdr->flags = 0;
  756. guehdr->proto_ctype = *protocol;
  757. data = &guehdr[1];
  758. if (need_priv) {
  759. __be32 *flags = data;
  760. guehdr->flags |= GUE_FLAG_PRIV;
  761. *flags = 0;
  762. data += GUE_LEN_PRIV;
  763. if (type & SKB_GSO_TUNNEL_REMCSUM) {
  764. u16 csum_start = skb_checksum_start_offset(skb);
  765. __be16 *pd = data;
  766. if (csum_start < hdrlen)
  767. return -EINVAL;
  768. csum_start -= hdrlen;
  769. pd[0] = htons(csum_start);
  770. pd[1] = htons(csum_start + skb->csum_offset);
  771. if (!skb_is_gso(skb)) {
  772. skb->ip_summed = CHECKSUM_NONE;
  773. skb->encapsulation = 0;
  774. }
  775. *flags |= GUE_PFLAG_REMCSUM;
  776. data += GUE_PLEN_REMCSUM;
  777. }
  778. }
  779. return 0;
  780. }
  781. EXPORT_SYMBOL(__gue_build_header);
  782. int gue_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e,
  783. u8 *protocol, struct flowi4 *fl4)
  784. {
  785. int type = e->flags & TUNNEL_ENCAP_FLAG_CSUM ? SKB_GSO_UDP_TUNNEL_CSUM :
  786. SKB_GSO_UDP_TUNNEL;
  787. __be16 sport;
  788. int err;
  789. err = __gue_build_header(skb, e, protocol, &sport, type);
  790. if (err)
  791. return err;
  792. fou_build_udp(skb, e, fl4, protocol, sport);
  793. return 0;
  794. }
  795. EXPORT_SYMBOL(gue_build_header);
  796. #ifdef CONFIG_NET_FOU_IP_TUNNELS
  797. static const struct ip_tunnel_encap_ops fou_iptun_ops = {
  798. .encap_hlen = fou_encap_hlen,
  799. .build_header = fou_build_header,
  800. };
  801. static const struct ip_tunnel_encap_ops gue_iptun_ops = {
  802. .encap_hlen = gue_encap_hlen,
  803. .build_header = gue_build_header,
  804. };
  805. static int ip_tunnel_encap_add_fou_ops(void)
  806. {
  807. int ret;
  808. ret = ip_tunnel_encap_add_ops(&fou_iptun_ops, TUNNEL_ENCAP_FOU);
  809. if (ret < 0) {
  810. pr_err("can't add fou ops\n");
  811. return ret;
  812. }
  813. ret = ip_tunnel_encap_add_ops(&gue_iptun_ops, TUNNEL_ENCAP_GUE);
  814. if (ret < 0) {
  815. pr_err("can't add gue ops\n");
  816. ip_tunnel_encap_del_ops(&fou_iptun_ops, TUNNEL_ENCAP_FOU);
  817. return ret;
  818. }
  819. return 0;
  820. }
  821. static void ip_tunnel_encap_del_fou_ops(void)
  822. {
  823. ip_tunnel_encap_del_ops(&fou_iptun_ops, TUNNEL_ENCAP_FOU);
  824. ip_tunnel_encap_del_ops(&gue_iptun_ops, TUNNEL_ENCAP_GUE);
  825. }
  826. #else
  827. static int ip_tunnel_encap_add_fou_ops(void)
  828. {
  829. return 0;
  830. }
  831. static void ip_tunnel_encap_del_fou_ops(void)
  832. {
  833. }
  834. #endif
  835. static __net_init int fou_init_net(struct net *net)
  836. {
  837. struct fou_net *fn = net_generic(net, fou_net_id);
  838. INIT_LIST_HEAD(&fn->fou_list);
  839. mutex_init(&fn->fou_lock);
  840. return 0;
  841. }
  842. static __net_exit void fou_exit_net(struct net *net)
  843. {
  844. struct fou_net *fn = net_generic(net, fou_net_id);
  845. struct fou *fou, *next;
  846. /* Close all the FOU sockets */
  847. mutex_lock(&fn->fou_lock);
  848. list_for_each_entry_safe(fou, next, &fn->fou_list, list)
  849. fou_release(fou);
  850. mutex_unlock(&fn->fou_lock);
  851. }
  852. static struct pernet_operations fou_net_ops = {
  853. .init = fou_init_net,
  854. .exit = fou_exit_net,
  855. .id = &fou_net_id,
  856. .size = sizeof(struct fou_net),
  857. };
  858. static int __init fou_init(void)
  859. {
  860. int ret;
  861. ret = register_pernet_device(&fou_net_ops);
  862. if (ret)
  863. goto exit;
  864. ret = genl_register_family(&fou_nl_family);
  865. if (ret < 0)
  866. goto unregister;
  867. ret = ip_tunnel_encap_add_fou_ops();
  868. if (ret == 0)
  869. return 0;
  870. genl_unregister_family(&fou_nl_family);
  871. unregister:
  872. unregister_pernet_device(&fou_net_ops);
  873. exit:
  874. return ret;
  875. }
  876. static void __exit fou_fini(void)
  877. {
  878. ip_tunnel_encap_del_fou_ops();
  879. genl_unregister_family(&fou_nl_family);
  880. unregister_pernet_device(&fou_net_ops);
  881. }
  882. module_init(fou_init);
  883. module_exit(fou_fini);
  884. MODULE_AUTHOR("Tom Herbert <therbert@google.com>");
  885. MODULE_LICENSE("GPL");