fib_trie.c 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version
  5. * 2 of the License, or (at your option) any later version.
  6. *
  7. * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
  8. * & Swedish University of Agricultural Sciences.
  9. *
  10. * Jens Laas <jens.laas@data.slu.se> Swedish University of
  11. * Agricultural Sciences.
  12. *
  13. * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
  14. *
  15. * This work is based on the LPC-trie which is originally described in:
  16. *
  17. * An experimental study of compression methods for dynamic tries
  18. * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19. * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20. *
  21. *
  22. * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23. * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24. *
  25. *
  26. * Code from fib_hash has been reused which includes the following header:
  27. *
  28. *
  29. * INET An implementation of the TCP/IP protocol suite for the LINUX
  30. * operating system. INET is implemented using the BSD Socket
  31. * interface as the means of communication with the user level.
  32. *
  33. * IPv4 FIB: lookup engine and maintenance routines.
  34. *
  35. *
  36. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37. *
  38. * This program is free software; you can redistribute it and/or
  39. * modify it under the terms of the GNU General Public License
  40. * as published by the Free Software Foundation; either version
  41. * 2 of the License, or (at your option) any later version.
  42. *
  43. * Substantial contributions to this work comes from:
  44. *
  45. * David S. Miller, <davem@davemloft.net>
  46. * Stephen Hemminger <shemminger@osdl.org>
  47. * Paul E. McKenney <paulmck@us.ibm.com>
  48. * Patrick McHardy <kaber@trash.net>
  49. */
  50. #define VERSION "0.409"
  51. #include <linux/uaccess.h>
  52. #include <linux/bitops.h>
  53. #include <linux/types.h>
  54. #include <linux/kernel.h>
  55. #include <linux/mm.h>
  56. #include <linux/string.h>
  57. #include <linux/socket.h>
  58. #include <linux/sockios.h>
  59. #include <linux/errno.h>
  60. #include <linux/in.h>
  61. #include <linux/inet.h>
  62. #include <linux/inetdevice.h>
  63. #include <linux/netdevice.h>
  64. #include <linux/if_arp.h>
  65. #include <linux/proc_fs.h>
  66. #include <linux/rcupdate.h>
  67. #include <linux/skbuff.h>
  68. #include <linux/netlink.h>
  69. #include <linux/init.h>
  70. #include <linux/list.h>
  71. #include <linux/slab.h>
  72. #include <linux/export.h>
  73. #include <linux/vmalloc.h>
  74. #include <linux/notifier.h>
  75. #include <net/net_namespace.h>
  76. #include <net/ip.h>
  77. #include <net/protocol.h>
  78. #include <net/route.h>
  79. #include <net/tcp.h>
  80. #include <net/sock.h>
  81. #include <net/ip_fib.h>
  82. #include <trace/events/fib.h>
  83. #include "fib_lookup.h"
  84. static unsigned int fib_seq_sum(void)
  85. {
  86. unsigned int fib_seq = 0;
  87. struct net *net;
  88. rtnl_lock();
  89. for_each_net(net)
  90. fib_seq += net->ipv4.fib_seq;
  91. rtnl_unlock();
  92. return fib_seq;
  93. }
  94. static ATOMIC_NOTIFIER_HEAD(fib_chain);
  95. static int call_fib_notifier(struct notifier_block *nb, struct net *net,
  96. enum fib_event_type event_type,
  97. struct fib_notifier_info *info)
  98. {
  99. info->net = net;
  100. return nb->notifier_call(nb, event_type, info);
  101. }
  102. static void fib_rules_notify(struct net *net, struct notifier_block *nb,
  103. enum fib_event_type event_type)
  104. {
  105. #ifdef CONFIG_IP_MULTIPLE_TABLES
  106. struct fib_notifier_info info;
  107. if (net->ipv4.fib_has_custom_rules)
  108. call_fib_notifier(nb, net, event_type, &info);
  109. #endif
  110. }
  111. static void fib_notify(struct net *net, struct notifier_block *nb,
  112. enum fib_event_type event_type);
  113. static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
  114. enum fib_event_type event_type, u32 dst,
  115. int dst_len, struct fib_info *fi,
  116. u8 tos, u8 type, u32 tb_id, u32 nlflags)
  117. {
  118. struct fib_entry_notifier_info info = {
  119. .dst = dst,
  120. .dst_len = dst_len,
  121. .fi = fi,
  122. .tos = tos,
  123. .type = type,
  124. .tb_id = tb_id,
  125. .nlflags = nlflags,
  126. };
  127. return call_fib_notifier(nb, net, event_type, &info.info);
  128. }
  129. static bool fib_dump_is_consistent(struct notifier_block *nb,
  130. void (*cb)(struct notifier_block *nb),
  131. unsigned int fib_seq)
  132. {
  133. atomic_notifier_chain_register(&fib_chain, nb);
  134. if (fib_seq == fib_seq_sum())
  135. return true;
  136. atomic_notifier_chain_unregister(&fib_chain, nb);
  137. if (cb)
  138. cb(nb);
  139. return false;
  140. }
  141. #define FIB_DUMP_MAX_RETRIES 5
  142. int register_fib_notifier(struct notifier_block *nb,
  143. void (*cb)(struct notifier_block *nb))
  144. {
  145. int retries = 0;
  146. do {
  147. unsigned int fib_seq = fib_seq_sum();
  148. struct net *net;
  149. /* Mutex semantics guarantee that every change done to
  150. * FIB tries before we read the change sequence counter
  151. * is now visible to us.
  152. */
  153. rcu_read_lock();
  154. for_each_net_rcu(net) {
  155. fib_rules_notify(net, nb, FIB_EVENT_RULE_ADD);
  156. fib_notify(net, nb, FIB_EVENT_ENTRY_ADD);
  157. }
  158. rcu_read_unlock();
  159. if (fib_dump_is_consistent(nb, cb, fib_seq))
  160. return 0;
  161. } while (++retries < FIB_DUMP_MAX_RETRIES);
  162. return -EBUSY;
  163. }
  164. EXPORT_SYMBOL(register_fib_notifier);
  165. int unregister_fib_notifier(struct notifier_block *nb)
  166. {
  167. return atomic_notifier_chain_unregister(&fib_chain, nb);
  168. }
  169. EXPORT_SYMBOL(unregister_fib_notifier);
  170. int call_fib_notifiers(struct net *net, enum fib_event_type event_type,
  171. struct fib_notifier_info *info)
  172. {
  173. net->ipv4.fib_seq++;
  174. info->net = net;
  175. return atomic_notifier_call_chain(&fib_chain, event_type, info);
  176. }
  177. static int call_fib_entry_notifiers(struct net *net,
  178. enum fib_event_type event_type, u32 dst,
  179. int dst_len, struct fib_info *fi,
  180. u8 tos, u8 type, u32 tb_id, u32 nlflags)
  181. {
  182. struct fib_entry_notifier_info info = {
  183. .dst = dst,
  184. .dst_len = dst_len,
  185. .fi = fi,
  186. .tos = tos,
  187. .type = type,
  188. .tb_id = tb_id,
  189. .nlflags = nlflags,
  190. };
  191. return call_fib_notifiers(net, event_type, &info.info);
  192. }
  193. #define MAX_STAT_DEPTH 32
  194. #define KEYLENGTH (8*sizeof(t_key))
  195. #define KEY_MAX ((t_key)~0)
  196. typedef unsigned int t_key;
  197. #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
  198. #define IS_TNODE(n) ((n)->bits)
  199. #define IS_LEAF(n) (!(n)->bits)
  200. struct key_vector {
  201. t_key key;
  202. unsigned char pos; /* 2log(KEYLENGTH) bits needed */
  203. unsigned char bits; /* 2log(KEYLENGTH) bits needed */
  204. unsigned char slen;
  205. union {
  206. /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
  207. struct hlist_head leaf;
  208. /* This array is valid if (pos | bits) > 0 (TNODE) */
  209. struct key_vector __rcu *tnode[0];
  210. };
  211. };
  212. struct tnode {
  213. struct rcu_head rcu;
  214. t_key empty_children; /* KEYLENGTH bits needed */
  215. t_key full_children; /* KEYLENGTH bits needed */
  216. struct key_vector __rcu *parent;
  217. struct key_vector kv[1];
  218. #define tn_bits kv[0].bits
  219. };
  220. #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
  221. #define LEAF_SIZE TNODE_SIZE(1)
  222. #ifdef CONFIG_IP_FIB_TRIE_STATS
  223. struct trie_use_stats {
  224. unsigned int gets;
  225. unsigned int backtrack;
  226. unsigned int semantic_match_passed;
  227. unsigned int semantic_match_miss;
  228. unsigned int null_node_hit;
  229. unsigned int resize_node_skipped;
  230. };
  231. #endif
  232. struct trie_stat {
  233. unsigned int totdepth;
  234. unsigned int maxdepth;
  235. unsigned int tnodes;
  236. unsigned int leaves;
  237. unsigned int nullpointers;
  238. unsigned int prefixes;
  239. unsigned int nodesizes[MAX_STAT_DEPTH];
  240. };
  241. struct trie {
  242. struct key_vector kv[1];
  243. #ifdef CONFIG_IP_FIB_TRIE_STATS
  244. struct trie_use_stats __percpu *stats;
  245. #endif
  246. };
  247. static struct key_vector *resize(struct trie *t, struct key_vector *tn);
  248. static size_t tnode_free_size;
  249. /*
  250. * synchronize_rcu after call_rcu for that many pages; it should be especially
  251. * useful before resizing the root node with PREEMPT_NONE configs; the value was
  252. * obtained experimentally, aiming to avoid visible slowdown.
  253. */
  254. static const int sync_pages = 128;
  255. static struct kmem_cache *fn_alias_kmem __read_mostly;
  256. static struct kmem_cache *trie_leaf_kmem __read_mostly;
  257. static inline struct tnode *tn_info(struct key_vector *kv)
  258. {
  259. return container_of(kv, struct tnode, kv[0]);
  260. }
  261. /* caller must hold RTNL */
  262. #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
  263. #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
  264. /* caller must hold RCU read lock or RTNL */
  265. #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
  266. #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
  267. /* wrapper for rcu_assign_pointer */
  268. static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
  269. {
  270. if (n)
  271. rcu_assign_pointer(tn_info(n)->parent, tp);
  272. }
  273. #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
  274. /* This provides us with the number of children in this node, in the case of a
  275. * leaf this will return 0 meaning none of the children are accessible.
  276. */
  277. static inline unsigned long child_length(const struct key_vector *tn)
  278. {
  279. return (1ul << tn->bits) & ~(1ul);
  280. }
  281. #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
  282. static inline unsigned long get_index(t_key key, struct key_vector *kv)
  283. {
  284. unsigned long index = key ^ kv->key;
  285. if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
  286. return 0;
  287. return index >> kv->pos;
  288. }
  289. /* To understand this stuff, an understanding of keys and all their bits is
  290. * necessary. Every node in the trie has a key associated with it, but not
  291. * all of the bits in that key are significant.
  292. *
  293. * Consider a node 'n' and its parent 'tp'.
  294. *
  295. * If n is a leaf, every bit in its key is significant. Its presence is
  296. * necessitated by path compression, since during a tree traversal (when
  297. * searching for a leaf - unless we are doing an insertion) we will completely
  298. * ignore all skipped bits we encounter. Thus we need to verify, at the end of
  299. * a potentially successful search, that we have indeed been walking the
  300. * correct key path.
  301. *
  302. * Note that we can never "miss" the correct key in the tree if present by
  303. * following the wrong path. Path compression ensures that segments of the key
  304. * that are the same for all keys with a given prefix are skipped, but the
  305. * skipped part *is* identical for each node in the subtrie below the skipped
  306. * bit! trie_insert() in this implementation takes care of that.
  307. *
  308. * if n is an internal node - a 'tnode' here, the various parts of its key
  309. * have many different meanings.
  310. *
  311. * Example:
  312. * _________________________________________________________________
  313. * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  314. * -----------------------------------------------------------------
  315. * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
  316. *
  317. * _________________________________________________________________
  318. * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  319. * -----------------------------------------------------------------
  320. * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
  321. *
  322. * tp->pos = 22
  323. * tp->bits = 3
  324. * n->pos = 13
  325. * n->bits = 4
  326. *
  327. * First, let's just ignore the bits that come before the parent tp, that is
  328. * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
  329. * point we do not use them for anything.
  330. *
  331. * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
  332. * index into the parent's child array. That is, they will be used to find
  333. * 'n' among tp's children.
  334. *
  335. * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
  336. * for the node n.
  337. *
  338. * All the bits we have seen so far are significant to the node n. The rest
  339. * of the bits are really not needed or indeed known in n->key.
  340. *
  341. * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
  342. * n's child array, and will of course be different for each child.
  343. *
  344. * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
  345. * at this point.
  346. */
  347. static const int halve_threshold = 25;
  348. static const int inflate_threshold = 50;
  349. static const int halve_threshold_root = 15;
  350. static const int inflate_threshold_root = 30;
  351. static void __alias_free_mem(struct rcu_head *head)
  352. {
  353. struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
  354. kmem_cache_free(fn_alias_kmem, fa);
  355. }
  356. static inline void alias_free_mem_rcu(struct fib_alias *fa)
  357. {
  358. call_rcu(&fa->rcu, __alias_free_mem);
  359. }
  360. #define TNODE_KMALLOC_MAX \
  361. ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  362. #define TNODE_VMALLOC_MAX \
  363. ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  364. static void __node_free_rcu(struct rcu_head *head)
  365. {
  366. struct tnode *n = container_of(head, struct tnode, rcu);
  367. if (!n->tn_bits)
  368. kmem_cache_free(trie_leaf_kmem, n);
  369. else
  370. kvfree(n);
  371. }
  372. #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
  373. static struct tnode *tnode_alloc(int bits)
  374. {
  375. size_t size;
  376. /* verify bits is within bounds */
  377. if (bits > TNODE_VMALLOC_MAX)
  378. return NULL;
  379. /* determine size and verify it is non-zero and didn't overflow */
  380. size = TNODE_SIZE(1ul << bits);
  381. if (size <= PAGE_SIZE)
  382. return kzalloc(size, GFP_KERNEL);
  383. else
  384. return vzalloc(size);
  385. }
  386. static inline void empty_child_inc(struct key_vector *n)
  387. {
  388. ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
  389. }
  390. static inline void empty_child_dec(struct key_vector *n)
  391. {
  392. tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
  393. }
  394. static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
  395. {
  396. struct key_vector *l;
  397. struct tnode *kv;
  398. kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
  399. if (!kv)
  400. return NULL;
  401. /* initialize key vector */
  402. l = kv->kv;
  403. l->key = key;
  404. l->pos = 0;
  405. l->bits = 0;
  406. l->slen = fa->fa_slen;
  407. /* link leaf to fib alias */
  408. INIT_HLIST_HEAD(&l->leaf);
  409. hlist_add_head(&fa->fa_list, &l->leaf);
  410. return l;
  411. }
  412. static struct key_vector *tnode_new(t_key key, int pos, int bits)
  413. {
  414. unsigned int shift = pos + bits;
  415. struct key_vector *tn;
  416. struct tnode *tnode;
  417. /* verify bits and pos their msb bits clear and values are valid */
  418. BUG_ON(!bits || (shift > KEYLENGTH));
  419. tnode = tnode_alloc(bits);
  420. if (!tnode)
  421. return NULL;
  422. pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
  423. sizeof(struct key_vector *) << bits);
  424. if (bits == KEYLENGTH)
  425. tnode->full_children = 1;
  426. else
  427. tnode->empty_children = 1ul << bits;
  428. tn = tnode->kv;
  429. tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
  430. tn->pos = pos;
  431. tn->bits = bits;
  432. tn->slen = pos;
  433. return tn;
  434. }
  435. /* Check whether a tnode 'n' is "full", i.e. it is an internal node
  436. * and no bits are skipped. See discussion in dyntree paper p. 6
  437. */
  438. static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
  439. {
  440. return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
  441. }
  442. /* Add a child at position i overwriting the old value.
  443. * Update the value of full_children and empty_children.
  444. */
  445. static void put_child(struct key_vector *tn, unsigned long i,
  446. struct key_vector *n)
  447. {
  448. struct key_vector *chi = get_child(tn, i);
  449. int isfull, wasfull;
  450. BUG_ON(i >= child_length(tn));
  451. /* update emptyChildren, overflow into fullChildren */
  452. if (!n && chi)
  453. empty_child_inc(tn);
  454. if (n && !chi)
  455. empty_child_dec(tn);
  456. /* update fullChildren */
  457. wasfull = tnode_full(tn, chi);
  458. isfull = tnode_full(tn, n);
  459. if (wasfull && !isfull)
  460. tn_info(tn)->full_children--;
  461. else if (!wasfull && isfull)
  462. tn_info(tn)->full_children++;
  463. if (n && (tn->slen < n->slen))
  464. tn->slen = n->slen;
  465. rcu_assign_pointer(tn->tnode[i], n);
  466. }
  467. static void update_children(struct key_vector *tn)
  468. {
  469. unsigned long i;
  470. /* update all of the child parent pointers */
  471. for (i = child_length(tn); i;) {
  472. struct key_vector *inode = get_child(tn, --i);
  473. if (!inode)
  474. continue;
  475. /* Either update the children of a tnode that
  476. * already belongs to us or update the child
  477. * to point to ourselves.
  478. */
  479. if (node_parent(inode) == tn)
  480. update_children(inode);
  481. else
  482. node_set_parent(inode, tn);
  483. }
  484. }
  485. static inline void put_child_root(struct key_vector *tp, t_key key,
  486. struct key_vector *n)
  487. {
  488. if (IS_TRIE(tp))
  489. rcu_assign_pointer(tp->tnode[0], n);
  490. else
  491. put_child(tp, get_index(key, tp), n);
  492. }
  493. static inline void tnode_free_init(struct key_vector *tn)
  494. {
  495. tn_info(tn)->rcu.next = NULL;
  496. }
  497. static inline void tnode_free_append(struct key_vector *tn,
  498. struct key_vector *n)
  499. {
  500. tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
  501. tn_info(tn)->rcu.next = &tn_info(n)->rcu;
  502. }
  503. static void tnode_free(struct key_vector *tn)
  504. {
  505. struct callback_head *head = &tn_info(tn)->rcu;
  506. while (head) {
  507. head = head->next;
  508. tnode_free_size += TNODE_SIZE(1ul << tn->bits);
  509. node_free(tn);
  510. tn = container_of(head, struct tnode, rcu)->kv;
  511. }
  512. if (tnode_free_size >= PAGE_SIZE * sync_pages) {
  513. tnode_free_size = 0;
  514. synchronize_rcu();
  515. }
  516. }
  517. static struct key_vector *replace(struct trie *t,
  518. struct key_vector *oldtnode,
  519. struct key_vector *tn)
  520. {
  521. struct key_vector *tp = node_parent(oldtnode);
  522. unsigned long i;
  523. /* setup the parent pointer out of and back into this node */
  524. NODE_INIT_PARENT(tn, tp);
  525. put_child_root(tp, tn->key, tn);
  526. /* update all of the child parent pointers */
  527. update_children(tn);
  528. /* all pointers should be clean so we are done */
  529. tnode_free(oldtnode);
  530. /* resize children now that oldtnode is freed */
  531. for (i = child_length(tn); i;) {
  532. struct key_vector *inode = get_child(tn, --i);
  533. /* resize child node */
  534. if (tnode_full(tn, inode))
  535. tn = resize(t, inode);
  536. }
  537. return tp;
  538. }
  539. static struct key_vector *inflate(struct trie *t,
  540. struct key_vector *oldtnode)
  541. {
  542. struct key_vector *tn;
  543. unsigned long i;
  544. t_key m;
  545. pr_debug("In inflate\n");
  546. tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
  547. if (!tn)
  548. goto notnode;
  549. /* prepare oldtnode to be freed */
  550. tnode_free_init(oldtnode);
  551. /* Assemble all of the pointers in our cluster, in this case that
  552. * represents all of the pointers out of our allocated nodes that
  553. * point to existing tnodes and the links between our allocated
  554. * nodes.
  555. */
  556. for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
  557. struct key_vector *inode = get_child(oldtnode, --i);
  558. struct key_vector *node0, *node1;
  559. unsigned long j, k;
  560. /* An empty child */
  561. if (!inode)
  562. continue;
  563. /* A leaf or an internal node with skipped bits */
  564. if (!tnode_full(oldtnode, inode)) {
  565. put_child(tn, get_index(inode->key, tn), inode);
  566. continue;
  567. }
  568. /* drop the node in the old tnode free list */
  569. tnode_free_append(oldtnode, inode);
  570. /* An internal node with two children */
  571. if (inode->bits == 1) {
  572. put_child(tn, 2 * i + 1, get_child(inode, 1));
  573. put_child(tn, 2 * i, get_child(inode, 0));
  574. continue;
  575. }
  576. /* We will replace this node 'inode' with two new
  577. * ones, 'node0' and 'node1', each with half of the
  578. * original children. The two new nodes will have
  579. * a position one bit further down the key and this
  580. * means that the "significant" part of their keys
  581. * (see the discussion near the top of this file)
  582. * will differ by one bit, which will be "0" in
  583. * node0's key and "1" in node1's key. Since we are
  584. * moving the key position by one step, the bit that
  585. * we are moving away from - the bit at position
  586. * (tn->pos) - is the one that will differ between
  587. * node0 and node1. So... we synthesize that bit in the
  588. * two new keys.
  589. */
  590. node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
  591. if (!node1)
  592. goto nomem;
  593. node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
  594. tnode_free_append(tn, node1);
  595. if (!node0)
  596. goto nomem;
  597. tnode_free_append(tn, node0);
  598. /* populate child pointers in new nodes */
  599. for (k = child_length(inode), j = k / 2; j;) {
  600. put_child(node1, --j, get_child(inode, --k));
  601. put_child(node0, j, get_child(inode, j));
  602. put_child(node1, --j, get_child(inode, --k));
  603. put_child(node0, j, get_child(inode, j));
  604. }
  605. /* link new nodes to parent */
  606. NODE_INIT_PARENT(node1, tn);
  607. NODE_INIT_PARENT(node0, tn);
  608. /* link parent to nodes */
  609. put_child(tn, 2 * i + 1, node1);
  610. put_child(tn, 2 * i, node0);
  611. }
  612. /* setup the parent pointers into and out of this node */
  613. return replace(t, oldtnode, tn);
  614. nomem:
  615. /* all pointers should be clean so we are done */
  616. tnode_free(tn);
  617. notnode:
  618. return NULL;
  619. }
  620. static struct key_vector *halve(struct trie *t,
  621. struct key_vector *oldtnode)
  622. {
  623. struct key_vector *tn;
  624. unsigned long i;
  625. pr_debug("In halve\n");
  626. tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
  627. if (!tn)
  628. goto notnode;
  629. /* prepare oldtnode to be freed */
  630. tnode_free_init(oldtnode);
  631. /* Assemble all of the pointers in our cluster, in this case that
  632. * represents all of the pointers out of our allocated nodes that
  633. * point to existing tnodes and the links between our allocated
  634. * nodes.
  635. */
  636. for (i = child_length(oldtnode); i;) {
  637. struct key_vector *node1 = get_child(oldtnode, --i);
  638. struct key_vector *node0 = get_child(oldtnode, --i);
  639. struct key_vector *inode;
  640. /* At least one of the children is empty */
  641. if (!node1 || !node0) {
  642. put_child(tn, i / 2, node1 ? : node0);
  643. continue;
  644. }
  645. /* Two nonempty children */
  646. inode = tnode_new(node0->key, oldtnode->pos, 1);
  647. if (!inode)
  648. goto nomem;
  649. tnode_free_append(tn, inode);
  650. /* initialize pointers out of node */
  651. put_child(inode, 1, node1);
  652. put_child(inode, 0, node0);
  653. NODE_INIT_PARENT(inode, tn);
  654. /* link parent to node */
  655. put_child(tn, i / 2, inode);
  656. }
  657. /* setup the parent pointers into and out of this node */
  658. return replace(t, oldtnode, tn);
  659. nomem:
  660. /* all pointers should be clean so we are done */
  661. tnode_free(tn);
  662. notnode:
  663. return NULL;
  664. }
  665. static struct key_vector *collapse(struct trie *t,
  666. struct key_vector *oldtnode)
  667. {
  668. struct key_vector *n, *tp;
  669. unsigned long i;
  670. /* scan the tnode looking for that one child that might still exist */
  671. for (n = NULL, i = child_length(oldtnode); !n && i;)
  672. n = get_child(oldtnode, --i);
  673. /* compress one level */
  674. tp = node_parent(oldtnode);
  675. put_child_root(tp, oldtnode->key, n);
  676. node_set_parent(n, tp);
  677. /* drop dead node */
  678. node_free(oldtnode);
  679. return tp;
  680. }
  681. static unsigned char update_suffix(struct key_vector *tn)
  682. {
  683. unsigned char slen = tn->pos;
  684. unsigned long stride, i;
  685. unsigned char slen_max;
  686. /* only vector 0 can have a suffix length greater than or equal to
  687. * tn->pos + tn->bits, the second highest node will have a suffix
  688. * length at most of tn->pos + tn->bits - 1
  689. */
  690. slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
  691. /* search though the list of children looking for nodes that might
  692. * have a suffix greater than the one we currently have. This is
  693. * why we start with a stride of 2 since a stride of 1 would
  694. * represent the nodes with suffix length equal to tn->pos
  695. */
  696. for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
  697. struct key_vector *n = get_child(tn, i);
  698. if (!n || (n->slen <= slen))
  699. continue;
  700. /* update stride and slen based on new value */
  701. stride <<= (n->slen - slen);
  702. slen = n->slen;
  703. i &= ~(stride - 1);
  704. /* stop searching if we have hit the maximum possible value */
  705. if (slen >= slen_max)
  706. break;
  707. }
  708. tn->slen = slen;
  709. return slen;
  710. }
  711. /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
  712. * the Helsinki University of Technology and Matti Tikkanen of Nokia
  713. * Telecommunications, page 6:
  714. * "A node is doubled if the ratio of non-empty children to all
  715. * children in the *doubled* node is at least 'high'."
  716. *
  717. * 'high' in this instance is the variable 'inflate_threshold'. It
  718. * is expressed as a percentage, so we multiply it with
  719. * child_length() and instead of multiplying by 2 (since the
  720. * child array will be doubled by inflate()) and multiplying
  721. * the left-hand side by 100 (to handle the percentage thing) we
  722. * multiply the left-hand side by 50.
  723. *
  724. * The left-hand side may look a bit weird: child_length(tn)
  725. * - tn->empty_children is of course the number of non-null children
  726. * in the current node. tn->full_children is the number of "full"
  727. * children, that is non-null tnodes with a skip value of 0.
  728. * All of those will be doubled in the resulting inflated tnode, so
  729. * we just count them one extra time here.
  730. *
  731. * A clearer way to write this would be:
  732. *
  733. * to_be_doubled = tn->full_children;
  734. * not_to_be_doubled = child_length(tn) - tn->empty_children -
  735. * tn->full_children;
  736. *
  737. * new_child_length = child_length(tn) * 2;
  738. *
  739. * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
  740. * new_child_length;
  741. * if (new_fill_factor >= inflate_threshold)
  742. *
  743. * ...and so on, tho it would mess up the while () loop.
  744. *
  745. * anyway,
  746. * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
  747. * inflate_threshold
  748. *
  749. * avoid a division:
  750. * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
  751. * inflate_threshold * new_child_length
  752. *
  753. * expand not_to_be_doubled and to_be_doubled, and shorten:
  754. * 100 * (child_length(tn) - tn->empty_children +
  755. * tn->full_children) >= inflate_threshold * new_child_length
  756. *
  757. * expand new_child_length:
  758. * 100 * (child_length(tn) - tn->empty_children +
  759. * tn->full_children) >=
  760. * inflate_threshold * child_length(tn) * 2
  761. *
  762. * shorten again:
  763. * 50 * (tn->full_children + child_length(tn) -
  764. * tn->empty_children) >= inflate_threshold *
  765. * child_length(tn)
  766. *
  767. */
  768. static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
  769. {
  770. unsigned long used = child_length(tn);
  771. unsigned long threshold = used;
  772. /* Keep root node larger */
  773. threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
  774. used -= tn_info(tn)->empty_children;
  775. used += tn_info(tn)->full_children;
  776. /* if bits == KEYLENGTH then pos = 0, and will fail below */
  777. return (used > 1) && tn->pos && ((50 * used) >= threshold);
  778. }
  779. static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
  780. {
  781. unsigned long used = child_length(tn);
  782. unsigned long threshold = used;
  783. /* Keep root node larger */
  784. threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
  785. used -= tn_info(tn)->empty_children;
  786. /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
  787. return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
  788. }
  789. static inline bool should_collapse(struct key_vector *tn)
  790. {
  791. unsigned long used = child_length(tn);
  792. used -= tn_info(tn)->empty_children;
  793. /* account for bits == KEYLENGTH case */
  794. if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
  795. used -= KEY_MAX;
  796. /* One child or none, time to drop us from the trie */
  797. return used < 2;
  798. }
  799. #define MAX_WORK 10
  800. static struct key_vector *resize(struct trie *t, struct key_vector *tn)
  801. {
  802. #ifdef CONFIG_IP_FIB_TRIE_STATS
  803. struct trie_use_stats __percpu *stats = t->stats;
  804. #endif
  805. struct key_vector *tp = node_parent(tn);
  806. unsigned long cindex = get_index(tn->key, tp);
  807. int max_work = MAX_WORK;
  808. pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
  809. tn, inflate_threshold, halve_threshold);
  810. /* track the tnode via the pointer from the parent instead of
  811. * doing it ourselves. This way we can let RCU fully do its
  812. * thing without us interfering
  813. */
  814. BUG_ON(tn != get_child(tp, cindex));
  815. /* Double as long as the resulting node has a number of
  816. * nonempty nodes that are above the threshold.
  817. */
  818. while (should_inflate(tp, tn) && max_work) {
  819. tp = inflate(t, tn);
  820. if (!tp) {
  821. #ifdef CONFIG_IP_FIB_TRIE_STATS
  822. this_cpu_inc(stats->resize_node_skipped);
  823. #endif
  824. break;
  825. }
  826. max_work--;
  827. tn = get_child(tp, cindex);
  828. }
  829. /* update parent in case inflate failed */
  830. tp = node_parent(tn);
  831. /* Return if at least one inflate is run */
  832. if (max_work != MAX_WORK)
  833. return tp;
  834. /* Halve as long as the number of empty children in this
  835. * node is above threshold.
  836. */
  837. while (should_halve(tp, tn) && max_work) {
  838. tp = halve(t, tn);
  839. if (!tp) {
  840. #ifdef CONFIG_IP_FIB_TRIE_STATS
  841. this_cpu_inc(stats->resize_node_skipped);
  842. #endif
  843. break;
  844. }
  845. max_work--;
  846. tn = get_child(tp, cindex);
  847. }
  848. /* Only one child remains */
  849. if (should_collapse(tn))
  850. return collapse(t, tn);
  851. /* update parent in case halve failed */
  852. return node_parent(tn);
  853. }
  854. static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
  855. {
  856. unsigned char node_slen = tn->slen;
  857. while ((node_slen > tn->pos) && (node_slen > slen)) {
  858. slen = update_suffix(tn);
  859. if (node_slen == slen)
  860. break;
  861. tn = node_parent(tn);
  862. node_slen = tn->slen;
  863. }
  864. }
  865. static void node_push_suffix(struct key_vector *tn, unsigned char slen)
  866. {
  867. while (tn->slen < slen) {
  868. tn->slen = slen;
  869. tn = node_parent(tn);
  870. }
  871. }
  872. /* rcu_read_lock needs to be hold by caller from readside */
  873. static struct key_vector *fib_find_node(struct trie *t,
  874. struct key_vector **tp, u32 key)
  875. {
  876. struct key_vector *pn, *n = t->kv;
  877. unsigned long index = 0;
  878. do {
  879. pn = n;
  880. n = get_child_rcu(n, index);
  881. if (!n)
  882. break;
  883. index = get_cindex(key, n);
  884. /* This bit of code is a bit tricky but it combines multiple
  885. * checks into a single check. The prefix consists of the
  886. * prefix plus zeros for the bits in the cindex. The index
  887. * is the difference between the key and this value. From
  888. * this we can actually derive several pieces of data.
  889. * if (index >= (1ul << bits))
  890. * we have a mismatch in skip bits and failed
  891. * else
  892. * we know the value is cindex
  893. *
  894. * This check is safe even if bits == KEYLENGTH due to the
  895. * fact that we can only allocate a node with 32 bits if a
  896. * long is greater than 32 bits.
  897. */
  898. if (index >= (1ul << n->bits)) {
  899. n = NULL;
  900. break;
  901. }
  902. /* keep searching until we find a perfect match leaf or NULL */
  903. } while (IS_TNODE(n));
  904. *tp = pn;
  905. return n;
  906. }
  907. /* Return the first fib alias matching TOS with
  908. * priority less than or equal to PRIO.
  909. */
  910. static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
  911. u8 tos, u32 prio, u32 tb_id)
  912. {
  913. struct fib_alias *fa;
  914. if (!fah)
  915. return NULL;
  916. hlist_for_each_entry(fa, fah, fa_list) {
  917. if (fa->fa_slen < slen)
  918. continue;
  919. if (fa->fa_slen != slen)
  920. break;
  921. if (fa->tb_id > tb_id)
  922. continue;
  923. if (fa->tb_id != tb_id)
  924. break;
  925. if (fa->fa_tos > tos)
  926. continue;
  927. if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
  928. return fa;
  929. }
  930. return NULL;
  931. }
  932. static void trie_rebalance(struct trie *t, struct key_vector *tn)
  933. {
  934. while (!IS_TRIE(tn))
  935. tn = resize(t, tn);
  936. }
  937. static int fib_insert_node(struct trie *t, struct key_vector *tp,
  938. struct fib_alias *new, t_key key)
  939. {
  940. struct key_vector *n, *l;
  941. l = leaf_new(key, new);
  942. if (!l)
  943. goto noleaf;
  944. /* retrieve child from parent node */
  945. n = get_child(tp, get_index(key, tp));
  946. /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
  947. *
  948. * Add a new tnode here
  949. * first tnode need some special handling
  950. * leaves us in position for handling as case 3
  951. */
  952. if (n) {
  953. struct key_vector *tn;
  954. tn = tnode_new(key, __fls(key ^ n->key), 1);
  955. if (!tn)
  956. goto notnode;
  957. /* initialize routes out of node */
  958. NODE_INIT_PARENT(tn, tp);
  959. put_child(tn, get_index(key, tn) ^ 1, n);
  960. /* start adding routes into the node */
  961. put_child_root(tp, key, tn);
  962. node_set_parent(n, tn);
  963. /* parent now has a NULL spot where the leaf can go */
  964. tp = tn;
  965. }
  966. /* Case 3: n is NULL, and will just insert a new leaf */
  967. node_push_suffix(tp, new->fa_slen);
  968. NODE_INIT_PARENT(l, tp);
  969. put_child_root(tp, key, l);
  970. trie_rebalance(t, tp);
  971. return 0;
  972. notnode:
  973. node_free(l);
  974. noleaf:
  975. return -ENOMEM;
  976. }
  977. static int fib_insert_alias(struct trie *t, struct key_vector *tp,
  978. struct key_vector *l, struct fib_alias *new,
  979. struct fib_alias *fa, t_key key)
  980. {
  981. if (!l)
  982. return fib_insert_node(t, tp, new, key);
  983. if (fa) {
  984. hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
  985. } else {
  986. struct fib_alias *last;
  987. hlist_for_each_entry(last, &l->leaf, fa_list) {
  988. if (new->fa_slen < last->fa_slen)
  989. break;
  990. if ((new->fa_slen == last->fa_slen) &&
  991. (new->tb_id > last->tb_id))
  992. break;
  993. fa = last;
  994. }
  995. if (fa)
  996. hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
  997. else
  998. hlist_add_head_rcu(&new->fa_list, &l->leaf);
  999. }
  1000. /* if we added to the tail node then we need to update slen */
  1001. if (l->slen < new->fa_slen) {
  1002. l->slen = new->fa_slen;
  1003. node_push_suffix(tp, new->fa_slen);
  1004. }
  1005. return 0;
  1006. }
  1007. /* Caller must hold RTNL. */
  1008. int fib_table_insert(struct net *net, struct fib_table *tb,
  1009. struct fib_config *cfg)
  1010. {
  1011. struct trie *t = (struct trie *)tb->tb_data;
  1012. struct fib_alias *fa, *new_fa;
  1013. struct key_vector *l, *tp;
  1014. u16 nlflags = NLM_F_EXCL;
  1015. struct fib_info *fi;
  1016. u8 plen = cfg->fc_dst_len;
  1017. u8 slen = KEYLENGTH - plen;
  1018. u8 tos = cfg->fc_tos;
  1019. u32 key;
  1020. int err;
  1021. if (plen > KEYLENGTH)
  1022. return -EINVAL;
  1023. key = ntohl(cfg->fc_dst);
  1024. pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
  1025. if ((plen < KEYLENGTH) && (key << plen))
  1026. return -EINVAL;
  1027. fi = fib_create_info(cfg);
  1028. if (IS_ERR(fi)) {
  1029. err = PTR_ERR(fi);
  1030. goto err;
  1031. }
  1032. l = fib_find_node(t, &tp, key);
  1033. fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
  1034. tb->tb_id) : NULL;
  1035. /* Now fa, if non-NULL, points to the first fib alias
  1036. * with the same keys [prefix,tos,priority], if such key already
  1037. * exists or to the node before which we will insert new one.
  1038. *
  1039. * If fa is NULL, we will need to allocate a new one and
  1040. * insert to the tail of the section matching the suffix length
  1041. * of the new alias.
  1042. */
  1043. if (fa && fa->fa_tos == tos &&
  1044. fa->fa_info->fib_priority == fi->fib_priority) {
  1045. struct fib_alias *fa_first, *fa_match;
  1046. err = -EEXIST;
  1047. if (cfg->fc_nlflags & NLM_F_EXCL)
  1048. goto out;
  1049. nlflags &= ~NLM_F_EXCL;
  1050. /* We have 2 goals:
  1051. * 1. Find exact match for type, scope, fib_info to avoid
  1052. * duplicate routes
  1053. * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
  1054. */
  1055. fa_match = NULL;
  1056. fa_first = fa;
  1057. hlist_for_each_entry_from(fa, fa_list) {
  1058. if ((fa->fa_slen != slen) ||
  1059. (fa->tb_id != tb->tb_id) ||
  1060. (fa->fa_tos != tos))
  1061. break;
  1062. if (fa->fa_info->fib_priority != fi->fib_priority)
  1063. break;
  1064. if (fa->fa_type == cfg->fc_type &&
  1065. fa->fa_info == fi) {
  1066. fa_match = fa;
  1067. break;
  1068. }
  1069. }
  1070. if (cfg->fc_nlflags & NLM_F_REPLACE) {
  1071. struct fib_info *fi_drop;
  1072. u8 state;
  1073. nlflags |= NLM_F_REPLACE;
  1074. fa = fa_first;
  1075. if (fa_match) {
  1076. if (fa == fa_match)
  1077. err = 0;
  1078. goto out;
  1079. }
  1080. err = -ENOBUFS;
  1081. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1082. if (!new_fa)
  1083. goto out;
  1084. fi_drop = fa->fa_info;
  1085. new_fa->fa_tos = fa->fa_tos;
  1086. new_fa->fa_info = fi;
  1087. new_fa->fa_type = cfg->fc_type;
  1088. state = fa->fa_state;
  1089. new_fa->fa_state = state & ~FA_S_ACCESSED;
  1090. new_fa->fa_slen = fa->fa_slen;
  1091. new_fa->tb_id = tb->tb_id;
  1092. new_fa->fa_default = -1;
  1093. hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
  1094. alias_free_mem_rcu(fa);
  1095. fib_release_info(fi_drop);
  1096. if (state & FA_S_ACCESSED)
  1097. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1098. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD,
  1099. key, plen, fi,
  1100. new_fa->fa_tos, cfg->fc_type,
  1101. tb->tb_id, cfg->fc_nlflags);
  1102. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
  1103. tb->tb_id, &cfg->fc_nlinfo, nlflags);
  1104. goto succeeded;
  1105. }
  1106. /* Error if we find a perfect match which
  1107. * uses the same scope, type, and nexthop
  1108. * information.
  1109. */
  1110. if (fa_match)
  1111. goto out;
  1112. if (cfg->fc_nlflags & NLM_F_APPEND)
  1113. nlflags |= NLM_F_APPEND;
  1114. else
  1115. fa = fa_first;
  1116. }
  1117. err = -ENOENT;
  1118. if (!(cfg->fc_nlflags & NLM_F_CREATE))
  1119. goto out;
  1120. nlflags |= NLM_F_CREATE;
  1121. err = -ENOBUFS;
  1122. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1123. if (!new_fa)
  1124. goto out;
  1125. new_fa->fa_info = fi;
  1126. new_fa->fa_tos = tos;
  1127. new_fa->fa_type = cfg->fc_type;
  1128. new_fa->fa_state = 0;
  1129. new_fa->fa_slen = slen;
  1130. new_fa->tb_id = tb->tb_id;
  1131. new_fa->fa_default = -1;
  1132. /* Insert new entry to the list. */
  1133. err = fib_insert_alias(t, tp, l, new_fa, fa, key);
  1134. if (err)
  1135. goto out_free_new_fa;
  1136. if (!plen)
  1137. tb->tb_num_default++;
  1138. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1139. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, key, plen, fi, tos,
  1140. cfg->fc_type, tb->tb_id, cfg->fc_nlflags);
  1141. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
  1142. &cfg->fc_nlinfo, nlflags);
  1143. succeeded:
  1144. return 0;
  1145. out_free_new_fa:
  1146. kmem_cache_free(fn_alias_kmem, new_fa);
  1147. out:
  1148. fib_release_info(fi);
  1149. err:
  1150. return err;
  1151. }
  1152. static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
  1153. {
  1154. t_key prefix = n->key;
  1155. return (key ^ prefix) & (prefix | -prefix);
  1156. }
  1157. /* should be called with rcu_read_lock */
  1158. int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
  1159. struct fib_result *res, int fib_flags)
  1160. {
  1161. struct trie *t = (struct trie *) tb->tb_data;
  1162. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1163. struct trie_use_stats __percpu *stats = t->stats;
  1164. #endif
  1165. const t_key key = ntohl(flp->daddr);
  1166. struct key_vector *n, *pn;
  1167. struct fib_alias *fa;
  1168. unsigned long index;
  1169. t_key cindex;
  1170. trace_fib_table_lookup(tb->tb_id, flp);
  1171. pn = t->kv;
  1172. cindex = 0;
  1173. n = get_child_rcu(pn, cindex);
  1174. if (!n)
  1175. return -EAGAIN;
  1176. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1177. this_cpu_inc(stats->gets);
  1178. #endif
  1179. /* Step 1: Travel to the longest prefix match in the trie */
  1180. for (;;) {
  1181. index = get_cindex(key, n);
  1182. /* This bit of code is a bit tricky but it combines multiple
  1183. * checks into a single check. The prefix consists of the
  1184. * prefix plus zeros for the "bits" in the prefix. The index
  1185. * is the difference between the key and this value. From
  1186. * this we can actually derive several pieces of data.
  1187. * if (index >= (1ul << bits))
  1188. * we have a mismatch in skip bits and failed
  1189. * else
  1190. * we know the value is cindex
  1191. *
  1192. * This check is safe even if bits == KEYLENGTH due to the
  1193. * fact that we can only allocate a node with 32 bits if a
  1194. * long is greater than 32 bits.
  1195. */
  1196. if (index >= (1ul << n->bits))
  1197. break;
  1198. /* we have found a leaf. Prefixes have already been compared */
  1199. if (IS_LEAF(n))
  1200. goto found;
  1201. /* only record pn and cindex if we are going to be chopping
  1202. * bits later. Otherwise we are just wasting cycles.
  1203. */
  1204. if (n->slen > n->pos) {
  1205. pn = n;
  1206. cindex = index;
  1207. }
  1208. n = get_child_rcu(n, index);
  1209. if (unlikely(!n))
  1210. goto backtrace;
  1211. }
  1212. /* Step 2: Sort out leaves and begin backtracing for longest prefix */
  1213. for (;;) {
  1214. /* record the pointer where our next node pointer is stored */
  1215. struct key_vector __rcu **cptr = n->tnode;
  1216. /* This test verifies that none of the bits that differ
  1217. * between the key and the prefix exist in the region of
  1218. * the lsb and higher in the prefix.
  1219. */
  1220. if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
  1221. goto backtrace;
  1222. /* exit out and process leaf */
  1223. if (unlikely(IS_LEAF(n)))
  1224. break;
  1225. /* Don't bother recording parent info. Since we are in
  1226. * prefix match mode we will have to come back to wherever
  1227. * we started this traversal anyway
  1228. */
  1229. while ((n = rcu_dereference(*cptr)) == NULL) {
  1230. backtrace:
  1231. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1232. if (!n)
  1233. this_cpu_inc(stats->null_node_hit);
  1234. #endif
  1235. /* If we are at cindex 0 there are no more bits for
  1236. * us to strip at this level so we must ascend back
  1237. * up one level to see if there are any more bits to
  1238. * be stripped there.
  1239. */
  1240. while (!cindex) {
  1241. t_key pkey = pn->key;
  1242. /* If we don't have a parent then there is
  1243. * nothing for us to do as we do not have any
  1244. * further nodes to parse.
  1245. */
  1246. if (IS_TRIE(pn))
  1247. return -EAGAIN;
  1248. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1249. this_cpu_inc(stats->backtrack);
  1250. #endif
  1251. /* Get Child's index */
  1252. pn = node_parent_rcu(pn);
  1253. cindex = get_index(pkey, pn);
  1254. }
  1255. /* strip the least significant bit from the cindex */
  1256. cindex &= cindex - 1;
  1257. /* grab pointer for next child node */
  1258. cptr = &pn->tnode[cindex];
  1259. }
  1260. }
  1261. found:
  1262. /* this line carries forward the xor from earlier in the function */
  1263. index = key ^ n->key;
  1264. /* Step 3: Process the leaf, if that fails fall back to backtracing */
  1265. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1266. struct fib_info *fi = fa->fa_info;
  1267. int nhsel, err;
  1268. if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
  1269. if (index >= (1ul << fa->fa_slen))
  1270. continue;
  1271. }
  1272. if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
  1273. continue;
  1274. if (fi->fib_dead)
  1275. continue;
  1276. if (fa->fa_info->fib_scope < flp->flowi4_scope)
  1277. continue;
  1278. fib_alias_accessed(fa);
  1279. err = fib_props[fa->fa_type].error;
  1280. if (unlikely(err < 0)) {
  1281. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1282. this_cpu_inc(stats->semantic_match_passed);
  1283. #endif
  1284. return err;
  1285. }
  1286. if (fi->fib_flags & RTNH_F_DEAD)
  1287. continue;
  1288. for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
  1289. const struct fib_nh *nh = &fi->fib_nh[nhsel];
  1290. struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
  1291. if (nh->nh_flags & RTNH_F_DEAD)
  1292. continue;
  1293. if (in_dev &&
  1294. IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
  1295. nh->nh_flags & RTNH_F_LINKDOWN &&
  1296. !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
  1297. continue;
  1298. if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
  1299. if (flp->flowi4_oif &&
  1300. flp->flowi4_oif != nh->nh_oif)
  1301. continue;
  1302. }
  1303. if (!(fib_flags & FIB_LOOKUP_NOREF))
  1304. atomic_inc(&fi->fib_clntref);
  1305. res->prefixlen = KEYLENGTH - fa->fa_slen;
  1306. res->nh_sel = nhsel;
  1307. res->type = fa->fa_type;
  1308. res->scope = fi->fib_scope;
  1309. res->fi = fi;
  1310. res->table = tb;
  1311. res->fa_head = &n->leaf;
  1312. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1313. this_cpu_inc(stats->semantic_match_passed);
  1314. #endif
  1315. trace_fib_table_lookup_nh(nh);
  1316. return err;
  1317. }
  1318. }
  1319. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1320. this_cpu_inc(stats->semantic_match_miss);
  1321. #endif
  1322. goto backtrace;
  1323. }
  1324. EXPORT_SYMBOL_GPL(fib_table_lookup);
  1325. static void fib_remove_alias(struct trie *t, struct key_vector *tp,
  1326. struct key_vector *l, struct fib_alias *old)
  1327. {
  1328. /* record the location of the previous list_info entry */
  1329. struct hlist_node **pprev = old->fa_list.pprev;
  1330. struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
  1331. /* remove the fib_alias from the list */
  1332. hlist_del_rcu(&old->fa_list);
  1333. /* if we emptied the list this leaf will be freed and we can sort
  1334. * out parent suffix lengths as a part of trie_rebalance
  1335. */
  1336. if (hlist_empty(&l->leaf)) {
  1337. if (tp->slen == l->slen)
  1338. node_pull_suffix(tp, tp->pos);
  1339. put_child_root(tp, l->key, NULL);
  1340. node_free(l);
  1341. trie_rebalance(t, tp);
  1342. return;
  1343. }
  1344. /* only access fa if it is pointing at the last valid hlist_node */
  1345. if (*pprev)
  1346. return;
  1347. /* update the trie with the latest suffix length */
  1348. l->slen = fa->fa_slen;
  1349. node_pull_suffix(tp, fa->fa_slen);
  1350. }
  1351. /* Caller must hold RTNL. */
  1352. int fib_table_delete(struct net *net, struct fib_table *tb,
  1353. struct fib_config *cfg)
  1354. {
  1355. struct trie *t = (struct trie *) tb->tb_data;
  1356. struct fib_alias *fa, *fa_to_delete;
  1357. struct key_vector *l, *tp;
  1358. u8 plen = cfg->fc_dst_len;
  1359. u8 slen = KEYLENGTH - plen;
  1360. u8 tos = cfg->fc_tos;
  1361. u32 key;
  1362. if (plen > KEYLENGTH)
  1363. return -EINVAL;
  1364. key = ntohl(cfg->fc_dst);
  1365. if ((plen < KEYLENGTH) && (key << plen))
  1366. return -EINVAL;
  1367. l = fib_find_node(t, &tp, key);
  1368. if (!l)
  1369. return -ESRCH;
  1370. fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
  1371. if (!fa)
  1372. return -ESRCH;
  1373. pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
  1374. fa_to_delete = NULL;
  1375. hlist_for_each_entry_from(fa, fa_list) {
  1376. struct fib_info *fi = fa->fa_info;
  1377. if ((fa->fa_slen != slen) ||
  1378. (fa->tb_id != tb->tb_id) ||
  1379. (fa->fa_tos != tos))
  1380. break;
  1381. if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
  1382. (cfg->fc_scope == RT_SCOPE_NOWHERE ||
  1383. fa->fa_info->fib_scope == cfg->fc_scope) &&
  1384. (!cfg->fc_prefsrc ||
  1385. fi->fib_prefsrc == cfg->fc_prefsrc) &&
  1386. (!cfg->fc_protocol ||
  1387. fi->fib_protocol == cfg->fc_protocol) &&
  1388. fib_nh_match(cfg, fi) == 0) {
  1389. fa_to_delete = fa;
  1390. break;
  1391. }
  1392. }
  1393. if (!fa_to_delete)
  1394. return -ESRCH;
  1395. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
  1396. fa_to_delete->fa_info, tos, cfg->fc_type,
  1397. tb->tb_id, 0);
  1398. rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
  1399. &cfg->fc_nlinfo, 0);
  1400. if (!plen)
  1401. tb->tb_num_default--;
  1402. fib_remove_alias(t, tp, l, fa_to_delete);
  1403. if (fa_to_delete->fa_state & FA_S_ACCESSED)
  1404. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1405. fib_release_info(fa_to_delete->fa_info);
  1406. alias_free_mem_rcu(fa_to_delete);
  1407. return 0;
  1408. }
  1409. /* Scan for the next leaf starting at the provided key value */
  1410. static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
  1411. {
  1412. struct key_vector *pn, *n = *tn;
  1413. unsigned long cindex;
  1414. /* this loop is meant to try and find the key in the trie */
  1415. do {
  1416. /* record parent and next child index */
  1417. pn = n;
  1418. cindex = (key > pn->key) ? get_index(key, pn) : 0;
  1419. if (cindex >> pn->bits)
  1420. break;
  1421. /* descend into the next child */
  1422. n = get_child_rcu(pn, cindex++);
  1423. if (!n)
  1424. break;
  1425. /* guarantee forward progress on the keys */
  1426. if (IS_LEAF(n) && (n->key >= key))
  1427. goto found;
  1428. } while (IS_TNODE(n));
  1429. /* this loop will search for the next leaf with a greater key */
  1430. while (!IS_TRIE(pn)) {
  1431. /* if we exhausted the parent node we will need to climb */
  1432. if (cindex >= (1ul << pn->bits)) {
  1433. t_key pkey = pn->key;
  1434. pn = node_parent_rcu(pn);
  1435. cindex = get_index(pkey, pn) + 1;
  1436. continue;
  1437. }
  1438. /* grab the next available node */
  1439. n = get_child_rcu(pn, cindex++);
  1440. if (!n)
  1441. continue;
  1442. /* no need to compare keys since we bumped the index */
  1443. if (IS_LEAF(n))
  1444. goto found;
  1445. /* Rescan start scanning in new node */
  1446. pn = n;
  1447. cindex = 0;
  1448. }
  1449. *tn = pn;
  1450. return NULL; /* Root of trie */
  1451. found:
  1452. /* if we are at the limit for keys just return NULL for the tnode */
  1453. *tn = pn;
  1454. return n;
  1455. }
  1456. static void fib_trie_free(struct fib_table *tb)
  1457. {
  1458. struct trie *t = (struct trie *)tb->tb_data;
  1459. struct key_vector *pn = t->kv;
  1460. unsigned long cindex = 1;
  1461. struct hlist_node *tmp;
  1462. struct fib_alias *fa;
  1463. /* walk trie in reverse order and free everything */
  1464. for (;;) {
  1465. struct key_vector *n;
  1466. if (!(cindex--)) {
  1467. t_key pkey = pn->key;
  1468. if (IS_TRIE(pn))
  1469. break;
  1470. n = pn;
  1471. pn = node_parent(pn);
  1472. /* drop emptied tnode */
  1473. put_child_root(pn, n->key, NULL);
  1474. node_free(n);
  1475. cindex = get_index(pkey, pn);
  1476. continue;
  1477. }
  1478. /* grab the next available node */
  1479. n = get_child(pn, cindex);
  1480. if (!n)
  1481. continue;
  1482. if (IS_TNODE(n)) {
  1483. /* record pn and cindex for leaf walking */
  1484. pn = n;
  1485. cindex = 1ul << n->bits;
  1486. continue;
  1487. }
  1488. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1489. hlist_del_rcu(&fa->fa_list);
  1490. alias_free_mem_rcu(fa);
  1491. }
  1492. put_child_root(pn, n->key, NULL);
  1493. node_free(n);
  1494. }
  1495. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1496. free_percpu(t->stats);
  1497. #endif
  1498. kfree(tb);
  1499. }
  1500. struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
  1501. {
  1502. struct trie *ot = (struct trie *)oldtb->tb_data;
  1503. struct key_vector *l, *tp = ot->kv;
  1504. struct fib_table *local_tb;
  1505. struct fib_alias *fa;
  1506. struct trie *lt;
  1507. t_key key = 0;
  1508. if (oldtb->tb_data == oldtb->__data)
  1509. return oldtb;
  1510. local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
  1511. if (!local_tb)
  1512. return NULL;
  1513. lt = (struct trie *)local_tb->tb_data;
  1514. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1515. struct key_vector *local_l = NULL, *local_tp;
  1516. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1517. struct fib_alias *new_fa;
  1518. if (local_tb->tb_id != fa->tb_id)
  1519. continue;
  1520. /* clone fa for new local table */
  1521. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1522. if (!new_fa)
  1523. goto out;
  1524. memcpy(new_fa, fa, sizeof(*fa));
  1525. /* insert clone into table */
  1526. if (!local_l)
  1527. local_l = fib_find_node(lt, &local_tp, l->key);
  1528. if (fib_insert_alias(lt, local_tp, local_l, new_fa,
  1529. NULL, l->key)) {
  1530. kmem_cache_free(fn_alias_kmem, new_fa);
  1531. goto out;
  1532. }
  1533. }
  1534. /* stop loop if key wrapped back to 0 */
  1535. key = l->key + 1;
  1536. if (key < l->key)
  1537. break;
  1538. }
  1539. return local_tb;
  1540. out:
  1541. fib_trie_free(local_tb);
  1542. return NULL;
  1543. }
  1544. /* Caller must hold RTNL */
  1545. void fib_table_flush_external(struct fib_table *tb)
  1546. {
  1547. struct trie *t = (struct trie *)tb->tb_data;
  1548. struct key_vector *pn = t->kv;
  1549. unsigned long cindex = 1;
  1550. struct hlist_node *tmp;
  1551. struct fib_alias *fa;
  1552. /* walk trie in reverse order */
  1553. for (;;) {
  1554. unsigned char slen = 0;
  1555. struct key_vector *n;
  1556. if (!(cindex--)) {
  1557. t_key pkey = pn->key;
  1558. /* cannot resize the trie vector */
  1559. if (IS_TRIE(pn))
  1560. break;
  1561. /* update the suffix to address pulled leaves */
  1562. if (pn->slen > pn->pos)
  1563. update_suffix(pn);
  1564. /* resize completed node */
  1565. pn = resize(t, pn);
  1566. cindex = get_index(pkey, pn);
  1567. continue;
  1568. }
  1569. /* grab the next available node */
  1570. n = get_child(pn, cindex);
  1571. if (!n)
  1572. continue;
  1573. if (IS_TNODE(n)) {
  1574. /* record pn and cindex for leaf walking */
  1575. pn = n;
  1576. cindex = 1ul << n->bits;
  1577. continue;
  1578. }
  1579. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1580. /* if alias was cloned to local then we just
  1581. * need to remove the local copy from main
  1582. */
  1583. if (tb->tb_id != fa->tb_id) {
  1584. hlist_del_rcu(&fa->fa_list);
  1585. alias_free_mem_rcu(fa);
  1586. continue;
  1587. }
  1588. /* record local slen */
  1589. slen = fa->fa_slen;
  1590. }
  1591. /* update leaf slen */
  1592. n->slen = slen;
  1593. if (hlist_empty(&n->leaf)) {
  1594. put_child_root(pn, n->key, NULL);
  1595. node_free(n);
  1596. }
  1597. }
  1598. }
  1599. /* Caller must hold RTNL. */
  1600. int fib_table_flush(struct net *net, struct fib_table *tb)
  1601. {
  1602. struct trie *t = (struct trie *)tb->tb_data;
  1603. struct key_vector *pn = t->kv;
  1604. unsigned long cindex = 1;
  1605. struct hlist_node *tmp;
  1606. struct fib_alias *fa;
  1607. int found = 0;
  1608. /* walk trie in reverse order */
  1609. for (;;) {
  1610. unsigned char slen = 0;
  1611. struct key_vector *n;
  1612. if (!(cindex--)) {
  1613. t_key pkey = pn->key;
  1614. /* cannot resize the trie vector */
  1615. if (IS_TRIE(pn))
  1616. break;
  1617. /* update the suffix to address pulled leaves */
  1618. if (pn->slen > pn->pos)
  1619. update_suffix(pn);
  1620. /* resize completed node */
  1621. pn = resize(t, pn);
  1622. cindex = get_index(pkey, pn);
  1623. continue;
  1624. }
  1625. /* grab the next available node */
  1626. n = get_child(pn, cindex);
  1627. if (!n)
  1628. continue;
  1629. if (IS_TNODE(n)) {
  1630. /* record pn and cindex for leaf walking */
  1631. pn = n;
  1632. cindex = 1ul << n->bits;
  1633. continue;
  1634. }
  1635. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1636. struct fib_info *fi = fa->fa_info;
  1637. if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
  1638. slen = fa->fa_slen;
  1639. continue;
  1640. }
  1641. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
  1642. n->key,
  1643. KEYLENGTH - fa->fa_slen,
  1644. fi, fa->fa_tos, fa->fa_type,
  1645. tb->tb_id, 0);
  1646. hlist_del_rcu(&fa->fa_list);
  1647. fib_release_info(fa->fa_info);
  1648. alias_free_mem_rcu(fa);
  1649. found++;
  1650. }
  1651. /* update leaf slen */
  1652. n->slen = slen;
  1653. if (hlist_empty(&n->leaf)) {
  1654. put_child_root(pn, n->key, NULL);
  1655. node_free(n);
  1656. }
  1657. }
  1658. pr_debug("trie_flush found=%d\n", found);
  1659. return found;
  1660. }
  1661. static void fib_leaf_notify(struct net *net, struct key_vector *l,
  1662. struct fib_table *tb, struct notifier_block *nb,
  1663. enum fib_event_type event_type)
  1664. {
  1665. struct fib_alias *fa;
  1666. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1667. struct fib_info *fi = fa->fa_info;
  1668. if (!fi)
  1669. continue;
  1670. /* local and main table can share the same trie,
  1671. * so don't notify twice for the same entry.
  1672. */
  1673. if (tb->tb_id != fa->tb_id)
  1674. continue;
  1675. call_fib_entry_notifier(nb, net, event_type, l->key,
  1676. KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
  1677. fa->fa_type, fa->tb_id, 0);
  1678. }
  1679. }
  1680. static void fib_table_notify(struct net *net, struct fib_table *tb,
  1681. struct notifier_block *nb,
  1682. enum fib_event_type event_type)
  1683. {
  1684. struct trie *t = (struct trie *)tb->tb_data;
  1685. struct key_vector *l, *tp = t->kv;
  1686. t_key key = 0;
  1687. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1688. fib_leaf_notify(net, l, tb, nb, event_type);
  1689. key = l->key + 1;
  1690. /* stop in case of wrap around */
  1691. if (key < l->key)
  1692. break;
  1693. }
  1694. }
  1695. static void fib_notify(struct net *net, struct notifier_block *nb,
  1696. enum fib_event_type event_type)
  1697. {
  1698. unsigned int h;
  1699. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1700. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1701. struct fib_table *tb;
  1702. hlist_for_each_entry_rcu(tb, head, tb_hlist)
  1703. fib_table_notify(net, tb, nb, event_type);
  1704. }
  1705. }
  1706. static void __trie_free_rcu(struct rcu_head *head)
  1707. {
  1708. struct fib_table *tb = container_of(head, struct fib_table, rcu);
  1709. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1710. struct trie *t = (struct trie *)tb->tb_data;
  1711. if (tb->tb_data == tb->__data)
  1712. free_percpu(t->stats);
  1713. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1714. kfree(tb);
  1715. }
  1716. void fib_free_table(struct fib_table *tb)
  1717. {
  1718. call_rcu(&tb->rcu, __trie_free_rcu);
  1719. }
  1720. static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
  1721. struct sk_buff *skb, struct netlink_callback *cb)
  1722. {
  1723. __be32 xkey = htonl(l->key);
  1724. struct fib_alias *fa;
  1725. int i, s_i;
  1726. s_i = cb->args[4];
  1727. i = 0;
  1728. /* rcu_read_lock is hold by caller */
  1729. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1730. if (i < s_i) {
  1731. i++;
  1732. continue;
  1733. }
  1734. if (tb->tb_id != fa->tb_id) {
  1735. i++;
  1736. continue;
  1737. }
  1738. if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
  1739. cb->nlh->nlmsg_seq,
  1740. RTM_NEWROUTE,
  1741. tb->tb_id,
  1742. fa->fa_type,
  1743. xkey,
  1744. KEYLENGTH - fa->fa_slen,
  1745. fa->fa_tos,
  1746. fa->fa_info, NLM_F_MULTI) < 0) {
  1747. cb->args[4] = i;
  1748. return -1;
  1749. }
  1750. i++;
  1751. }
  1752. cb->args[4] = i;
  1753. return skb->len;
  1754. }
  1755. /* rcu_read_lock needs to be hold by caller from readside */
  1756. int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
  1757. struct netlink_callback *cb)
  1758. {
  1759. struct trie *t = (struct trie *)tb->tb_data;
  1760. struct key_vector *l, *tp = t->kv;
  1761. /* Dump starting at last key.
  1762. * Note: 0.0.0.0/0 (ie default) is first key.
  1763. */
  1764. int count = cb->args[2];
  1765. t_key key = cb->args[3];
  1766. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1767. if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
  1768. cb->args[3] = key;
  1769. cb->args[2] = count;
  1770. return -1;
  1771. }
  1772. ++count;
  1773. key = l->key + 1;
  1774. memset(&cb->args[4], 0,
  1775. sizeof(cb->args) - 4*sizeof(cb->args[0]));
  1776. /* stop loop if key wrapped back to 0 */
  1777. if (key < l->key)
  1778. break;
  1779. }
  1780. cb->args[3] = key;
  1781. cb->args[2] = count;
  1782. return skb->len;
  1783. }
  1784. void __init fib_trie_init(void)
  1785. {
  1786. fn_alias_kmem = kmem_cache_create("ip_fib_alias",
  1787. sizeof(struct fib_alias),
  1788. 0, SLAB_PANIC, NULL);
  1789. trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
  1790. LEAF_SIZE,
  1791. 0, SLAB_PANIC, NULL);
  1792. }
  1793. struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
  1794. {
  1795. struct fib_table *tb;
  1796. struct trie *t;
  1797. size_t sz = sizeof(*tb);
  1798. if (!alias)
  1799. sz += sizeof(struct trie);
  1800. tb = kzalloc(sz, GFP_KERNEL);
  1801. if (!tb)
  1802. return NULL;
  1803. tb->tb_id = id;
  1804. tb->tb_num_default = 0;
  1805. tb->tb_data = (alias ? alias->__data : tb->__data);
  1806. if (alias)
  1807. return tb;
  1808. t = (struct trie *) tb->tb_data;
  1809. t->kv[0].pos = KEYLENGTH;
  1810. t->kv[0].slen = KEYLENGTH;
  1811. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1812. t->stats = alloc_percpu(struct trie_use_stats);
  1813. if (!t->stats) {
  1814. kfree(tb);
  1815. tb = NULL;
  1816. }
  1817. #endif
  1818. return tb;
  1819. }
  1820. #ifdef CONFIG_PROC_FS
  1821. /* Depth first Trie walk iterator */
  1822. struct fib_trie_iter {
  1823. struct seq_net_private p;
  1824. struct fib_table *tb;
  1825. struct key_vector *tnode;
  1826. unsigned int index;
  1827. unsigned int depth;
  1828. };
  1829. static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
  1830. {
  1831. unsigned long cindex = iter->index;
  1832. struct key_vector *pn = iter->tnode;
  1833. t_key pkey;
  1834. pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
  1835. iter->tnode, iter->index, iter->depth);
  1836. while (!IS_TRIE(pn)) {
  1837. while (cindex < child_length(pn)) {
  1838. struct key_vector *n = get_child_rcu(pn, cindex++);
  1839. if (!n)
  1840. continue;
  1841. if (IS_LEAF(n)) {
  1842. iter->tnode = pn;
  1843. iter->index = cindex;
  1844. } else {
  1845. /* push down one level */
  1846. iter->tnode = n;
  1847. iter->index = 0;
  1848. ++iter->depth;
  1849. }
  1850. return n;
  1851. }
  1852. /* Current node exhausted, pop back up */
  1853. pkey = pn->key;
  1854. pn = node_parent_rcu(pn);
  1855. cindex = get_index(pkey, pn) + 1;
  1856. --iter->depth;
  1857. }
  1858. /* record root node so further searches know we are done */
  1859. iter->tnode = pn;
  1860. iter->index = 0;
  1861. return NULL;
  1862. }
  1863. static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
  1864. struct trie *t)
  1865. {
  1866. struct key_vector *n, *pn;
  1867. if (!t)
  1868. return NULL;
  1869. pn = t->kv;
  1870. n = rcu_dereference(pn->tnode[0]);
  1871. if (!n)
  1872. return NULL;
  1873. if (IS_TNODE(n)) {
  1874. iter->tnode = n;
  1875. iter->index = 0;
  1876. iter->depth = 1;
  1877. } else {
  1878. iter->tnode = pn;
  1879. iter->index = 0;
  1880. iter->depth = 0;
  1881. }
  1882. return n;
  1883. }
  1884. static void trie_collect_stats(struct trie *t, struct trie_stat *s)
  1885. {
  1886. struct key_vector *n;
  1887. struct fib_trie_iter iter;
  1888. memset(s, 0, sizeof(*s));
  1889. rcu_read_lock();
  1890. for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
  1891. if (IS_LEAF(n)) {
  1892. struct fib_alias *fa;
  1893. s->leaves++;
  1894. s->totdepth += iter.depth;
  1895. if (iter.depth > s->maxdepth)
  1896. s->maxdepth = iter.depth;
  1897. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
  1898. ++s->prefixes;
  1899. } else {
  1900. s->tnodes++;
  1901. if (n->bits < MAX_STAT_DEPTH)
  1902. s->nodesizes[n->bits]++;
  1903. s->nullpointers += tn_info(n)->empty_children;
  1904. }
  1905. }
  1906. rcu_read_unlock();
  1907. }
  1908. /*
  1909. * This outputs /proc/net/fib_triestats
  1910. */
  1911. static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
  1912. {
  1913. unsigned int i, max, pointers, bytes, avdepth;
  1914. if (stat->leaves)
  1915. avdepth = stat->totdepth*100 / stat->leaves;
  1916. else
  1917. avdepth = 0;
  1918. seq_printf(seq, "\tAver depth: %u.%02d\n",
  1919. avdepth / 100, avdepth % 100);
  1920. seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
  1921. seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
  1922. bytes = LEAF_SIZE * stat->leaves;
  1923. seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
  1924. bytes += sizeof(struct fib_alias) * stat->prefixes;
  1925. seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
  1926. bytes += TNODE_SIZE(0) * stat->tnodes;
  1927. max = MAX_STAT_DEPTH;
  1928. while (max > 0 && stat->nodesizes[max-1] == 0)
  1929. max--;
  1930. pointers = 0;
  1931. for (i = 1; i < max; i++)
  1932. if (stat->nodesizes[i] != 0) {
  1933. seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
  1934. pointers += (1<<i) * stat->nodesizes[i];
  1935. }
  1936. seq_putc(seq, '\n');
  1937. seq_printf(seq, "\tPointers: %u\n", pointers);
  1938. bytes += sizeof(struct key_vector *) * pointers;
  1939. seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
  1940. seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
  1941. }
  1942. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1943. static void trie_show_usage(struct seq_file *seq,
  1944. const struct trie_use_stats __percpu *stats)
  1945. {
  1946. struct trie_use_stats s = { 0 };
  1947. int cpu;
  1948. /* loop through all of the CPUs and gather up the stats */
  1949. for_each_possible_cpu(cpu) {
  1950. const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
  1951. s.gets += pcpu->gets;
  1952. s.backtrack += pcpu->backtrack;
  1953. s.semantic_match_passed += pcpu->semantic_match_passed;
  1954. s.semantic_match_miss += pcpu->semantic_match_miss;
  1955. s.null_node_hit += pcpu->null_node_hit;
  1956. s.resize_node_skipped += pcpu->resize_node_skipped;
  1957. }
  1958. seq_printf(seq, "\nCounters:\n---------\n");
  1959. seq_printf(seq, "gets = %u\n", s.gets);
  1960. seq_printf(seq, "backtracks = %u\n", s.backtrack);
  1961. seq_printf(seq, "semantic match passed = %u\n",
  1962. s.semantic_match_passed);
  1963. seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
  1964. seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
  1965. seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
  1966. }
  1967. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1968. static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
  1969. {
  1970. if (tb->tb_id == RT_TABLE_LOCAL)
  1971. seq_puts(seq, "Local:\n");
  1972. else if (tb->tb_id == RT_TABLE_MAIN)
  1973. seq_puts(seq, "Main:\n");
  1974. else
  1975. seq_printf(seq, "Id %d:\n", tb->tb_id);
  1976. }
  1977. static int fib_triestat_seq_show(struct seq_file *seq, void *v)
  1978. {
  1979. struct net *net = (struct net *)seq->private;
  1980. unsigned int h;
  1981. seq_printf(seq,
  1982. "Basic info: size of leaf:"
  1983. " %Zd bytes, size of tnode: %Zd bytes.\n",
  1984. LEAF_SIZE, TNODE_SIZE(0));
  1985. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1986. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1987. struct fib_table *tb;
  1988. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1989. struct trie *t = (struct trie *) tb->tb_data;
  1990. struct trie_stat stat;
  1991. if (!t)
  1992. continue;
  1993. fib_table_print(seq, tb);
  1994. trie_collect_stats(t, &stat);
  1995. trie_show_stats(seq, &stat);
  1996. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1997. trie_show_usage(seq, t->stats);
  1998. #endif
  1999. }
  2000. }
  2001. return 0;
  2002. }
  2003. static int fib_triestat_seq_open(struct inode *inode, struct file *file)
  2004. {
  2005. return single_open_net(inode, file, fib_triestat_seq_show);
  2006. }
  2007. static const struct file_operations fib_triestat_fops = {
  2008. .owner = THIS_MODULE,
  2009. .open = fib_triestat_seq_open,
  2010. .read = seq_read,
  2011. .llseek = seq_lseek,
  2012. .release = single_release_net,
  2013. };
  2014. static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
  2015. {
  2016. struct fib_trie_iter *iter = seq->private;
  2017. struct net *net = seq_file_net(seq);
  2018. loff_t idx = 0;
  2019. unsigned int h;
  2020. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  2021. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  2022. struct fib_table *tb;
  2023. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  2024. struct key_vector *n;
  2025. for (n = fib_trie_get_first(iter,
  2026. (struct trie *) tb->tb_data);
  2027. n; n = fib_trie_get_next(iter))
  2028. if (pos == idx++) {
  2029. iter->tb = tb;
  2030. return n;
  2031. }
  2032. }
  2033. }
  2034. return NULL;
  2035. }
  2036. static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
  2037. __acquires(RCU)
  2038. {
  2039. rcu_read_lock();
  2040. return fib_trie_get_idx(seq, *pos);
  2041. }
  2042. static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2043. {
  2044. struct fib_trie_iter *iter = seq->private;
  2045. struct net *net = seq_file_net(seq);
  2046. struct fib_table *tb = iter->tb;
  2047. struct hlist_node *tb_node;
  2048. unsigned int h;
  2049. struct key_vector *n;
  2050. ++*pos;
  2051. /* next node in same table */
  2052. n = fib_trie_get_next(iter);
  2053. if (n)
  2054. return n;
  2055. /* walk rest of this hash chain */
  2056. h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
  2057. while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
  2058. tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
  2059. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  2060. if (n)
  2061. goto found;
  2062. }
  2063. /* new hash chain */
  2064. while (++h < FIB_TABLE_HASHSZ) {
  2065. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  2066. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  2067. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  2068. if (n)
  2069. goto found;
  2070. }
  2071. }
  2072. return NULL;
  2073. found:
  2074. iter->tb = tb;
  2075. return n;
  2076. }
  2077. static void fib_trie_seq_stop(struct seq_file *seq, void *v)
  2078. __releases(RCU)
  2079. {
  2080. rcu_read_unlock();
  2081. }
  2082. static void seq_indent(struct seq_file *seq, int n)
  2083. {
  2084. while (n-- > 0)
  2085. seq_puts(seq, " ");
  2086. }
  2087. static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
  2088. {
  2089. switch (s) {
  2090. case RT_SCOPE_UNIVERSE: return "universe";
  2091. case RT_SCOPE_SITE: return "site";
  2092. case RT_SCOPE_LINK: return "link";
  2093. case RT_SCOPE_HOST: return "host";
  2094. case RT_SCOPE_NOWHERE: return "nowhere";
  2095. default:
  2096. snprintf(buf, len, "scope=%d", s);
  2097. return buf;
  2098. }
  2099. }
  2100. static const char *const rtn_type_names[__RTN_MAX] = {
  2101. [RTN_UNSPEC] = "UNSPEC",
  2102. [RTN_UNICAST] = "UNICAST",
  2103. [RTN_LOCAL] = "LOCAL",
  2104. [RTN_BROADCAST] = "BROADCAST",
  2105. [RTN_ANYCAST] = "ANYCAST",
  2106. [RTN_MULTICAST] = "MULTICAST",
  2107. [RTN_BLACKHOLE] = "BLACKHOLE",
  2108. [RTN_UNREACHABLE] = "UNREACHABLE",
  2109. [RTN_PROHIBIT] = "PROHIBIT",
  2110. [RTN_THROW] = "THROW",
  2111. [RTN_NAT] = "NAT",
  2112. [RTN_XRESOLVE] = "XRESOLVE",
  2113. };
  2114. static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
  2115. {
  2116. if (t < __RTN_MAX && rtn_type_names[t])
  2117. return rtn_type_names[t];
  2118. snprintf(buf, len, "type %u", t);
  2119. return buf;
  2120. }
  2121. /* Pretty print the trie */
  2122. static int fib_trie_seq_show(struct seq_file *seq, void *v)
  2123. {
  2124. const struct fib_trie_iter *iter = seq->private;
  2125. struct key_vector *n = v;
  2126. if (IS_TRIE(node_parent_rcu(n)))
  2127. fib_table_print(seq, iter->tb);
  2128. if (IS_TNODE(n)) {
  2129. __be32 prf = htonl(n->key);
  2130. seq_indent(seq, iter->depth-1);
  2131. seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
  2132. &prf, KEYLENGTH - n->pos - n->bits, n->bits,
  2133. tn_info(n)->full_children,
  2134. tn_info(n)->empty_children);
  2135. } else {
  2136. __be32 val = htonl(n->key);
  2137. struct fib_alias *fa;
  2138. seq_indent(seq, iter->depth);
  2139. seq_printf(seq, " |-- %pI4\n", &val);
  2140. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  2141. char buf1[32], buf2[32];
  2142. seq_indent(seq, iter->depth + 1);
  2143. seq_printf(seq, " /%zu %s %s",
  2144. KEYLENGTH - fa->fa_slen,
  2145. rtn_scope(buf1, sizeof(buf1),
  2146. fa->fa_info->fib_scope),
  2147. rtn_type(buf2, sizeof(buf2),
  2148. fa->fa_type));
  2149. if (fa->fa_tos)
  2150. seq_printf(seq, " tos=%d", fa->fa_tos);
  2151. seq_putc(seq, '\n');
  2152. }
  2153. }
  2154. return 0;
  2155. }
  2156. static const struct seq_operations fib_trie_seq_ops = {
  2157. .start = fib_trie_seq_start,
  2158. .next = fib_trie_seq_next,
  2159. .stop = fib_trie_seq_stop,
  2160. .show = fib_trie_seq_show,
  2161. };
  2162. static int fib_trie_seq_open(struct inode *inode, struct file *file)
  2163. {
  2164. return seq_open_net(inode, file, &fib_trie_seq_ops,
  2165. sizeof(struct fib_trie_iter));
  2166. }
  2167. static const struct file_operations fib_trie_fops = {
  2168. .owner = THIS_MODULE,
  2169. .open = fib_trie_seq_open,
  2170. .read = seq_read,
  2171. .llseek = seq_lseek,
  2172. .release = seq_release_net,
  2173. };
  2174. struct fib_route_iter {
  2175. struct seq_net_private p;
  2176. struct fib_table *main_tb;
  2177. struct key_vector *tnode;
  2178. loff_t pos;
  2179. t_key key;
  2180. };
  2181. static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
  2182. loff_t pos)
  2183. {
  2184. struct key_vector *l, **tp = &iter->tnode;
  2185. t_key key;
  2186. /* use cached location of previously found key */
  2187. if (iter->pos > 0 && pos >= iter->pos) {
  2188. key = iter->key;
  2189. } else {
  2190. iter->pos = 1;
  2191. key = 0;
  2192. }
  2193. pos -= iter->pos;
  2194. while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
  2195. key = l->key + 1;
  2196. iter->pos++;
  2197. l = NULL;
  2198. /* handle unlikely case of a key wrap */
  2199. if (!key)
  2200. break;
  2201. }
  2202. if (l)
  2203. iter->key = l->key; /* remember it */
  2204. else
  2205. iter->pos = 0; /* forget it */
  2206. return l;
  2207. }
  2208. static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
  2209. __acquires(RCU)
  2210. {
  2211. struct fib_route_iter *iter = seq->private;
  2212. struct fib_table *tb;
  2213. struct trie *t;
  2214. rcu_read_lock();
  2215. tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
  2216. if (!tb)
  2217. return NULL;
  2218. iter->main_tb = tb;
  2219. t = (struct trie *)tb->tb_data;
  2220. iter->tnode = t->kv;
  2221. if (*pos != 0)
  2222. return fib_route_get_idx(iter, *pos);
  2223. iter->pos = 0;
  2224. iter->key = KEY_MAX;
  2225. return SEQ_START_TOKEN;
  2226. }
  2227. static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2228. {
  2229. struct fib_route_iter *iter = seq->private;
  2230. struct key_vector *l = NULL;
  2231. t_key key = iter->key + 1;
  2232. ++*pos;
  2233. /* only allow key of 0 for start of sequence */
  2234. if ((v == SEQ_START_TOKEN) || key)
  2235. l = leaf_walk_rcu(&iter->tnode, key);
  2236. if (l) {
  2237. iter->key = l->key;
  2238. iter->pos++;
  2239. } else {
  2240. iter->pos = 0;
  2241. }
  2242. return l;
  2243. }
  2244. static void fib_route_seq_stop(struct seq_file *seq, void *v)
  2245. __releases(RCU)
  2246. {
  2247. rcu_read_unlock();
  2248. }
  2249. static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
  2250. {
  2251. unsigned int flags = 0;
  2252. if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
  2253. flags = RTF_REJECT;
  2254. if (fi && fi->fib_nh->nh_gw)
  2255. flags |= RTF_GATEWAY;
  2256. if (mask == htonl(0xFFFFFFFF))
  2257. flags |= RTF_HOST;
  2258. flags |= RTF_UP;
  2259. return flags;
  2260. }
  2261. /*
  2262. * This outputs /proc/net/route.
  2263. * The format of the file is not supposed to be changed
  2264. * and needs to be same as fib_hash output to avoid breaking
  2265. * legacy utilities
  2266. */
  2267. static int fib_route_seq_show(struct seq_file *seq, void *v)
  2268. {
  2269. struct fib_route_iter *iter = seq->private;
  2270. struct fib_table *tb = iter->main_tb;
  2271. struct fib_alias *fa;
  2272. struct key_vector *l = v;
  2273. __be32 prefix;
  2274. if (v == SEQ_START_TOKEN) {
  2275. seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
  2276. "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
  2277. "\tWindow\tIRTT");
  2278. return 0;
  2279. }
  2280. prefix = htonl(l->key);
  2281. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  2282. const struct fib_info *fi = fa->fa_info;
  2283. __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
  2284. unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
  2285. if ((fa->fa_type == RTN_BROADCAST) ||
  2286. (fa->fa_type == RTN_MULTICAST))
  2287. continue;
  2288. if (fa->tb_id != tb->tb_id)
  2289. continue;
  2290. seq_setwidth(seq, 127);
  2291. if (fi)
  2292. seq_printf(seq,
  2293. "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
  2294. "%d\t%08X\t%d\t%u\t%u",
  2295. fi->fib_dev ? fi->fib_dev->name : "*",
  2296. prefix,
  2297. fi->fib_nh->nh_gw, flags, 0, 0,
  2298. fi->fib_priority,
  2299. mask,
  2300. (fi->fib_advmss ?
  2301. fi->fib_advmss + 40 : 0),
  2302. fi->fib_window,
  2303. fi->fib_rtt >> 3);
  2304. else
  2305. seq_printf(seq,
  2306. "*\t%08X\t%08X\t%04X\t%d\t%u\t"
  2307. "%d\t%08X\t%d\t%u\t%u",
  2308. prefix, 0, flags, 0, 0, 0,
  2309. mask, 0, 0, 0);
  2310. seq_pad(seq, '\n');
  2311. }
  2312. return 0;
  2313. }
  2314. static const struct seq_operations fib_route_seq_ops = {
  2315. .start = fib_route_seq_start,
  2316. .next = fib_route_seq_next,
  2317. .stop = fib_route_seq_stop,
  2318. .show = fib_route_seq_show,
  2319. };
  2320. static int fib_route_seq_open(struct inode *inode, struct file *file)
  2321. {
  2322. return seq_open_net(inode, file, &fib_route_seq_ops,
  2323. sizeof(struct fib_route_iter));
  2324. }
  2325. static const struct file_operations fib_route_fops = {
  2326. .owner = THIS_MODULE,
  2327. .open = fib_route_seq_open,
  2328. .read = seq_read,
  2329. .llseek = seq_lseek,
  2330. .release = seq_release_net,
  2331. };
  2332. int __net_init fib_proc_init(struct net *net)
  2333. {
  2334. if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
  2335. goto out1;
  2336. if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
  2337. &fib_triestat_fops))
  2338. goto out2;
  2339. if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
  2340. goto out3;
  2341. return 0;
  2342. out3:
  2343. remove_proc_entry("fib_triestat", net->proc_net);
  2344. out2:
  2345. remove_proc_entry("fib_trie", net->proc_net);
  2346. out1:
  2347. return -ENOMEM;
  2348. }
  2349. void __net_exit fib_proc_exit(struct net *net)
  2350. {
  2351. remove_proc_entry("fib_trie", net->proc_net);
  2352. remove_proc_entry("fib_triestat", net->proc_net);
  2353. remove_proc_entry("route", net->proc_net);
  2354. }
  2355. #endif /* CONFIG_PROC_FS */