slab.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508
  1. #ifndef MM_SLAB_H
  2. #define MM_SLAB_H
  3. /*
  4. * Internal slab definitions
  5. */
  6. #ifdef CONFIG_SLOB
  7. /*
  8. * Common fields provided in kmem_cache by all slab allocators
  9. * This struct is either used directly by the allocator (SLOB)
  10. * or the allocator must include definitions for all fields
  11. * provided in kmem_cache_common in their definition of kmem_cache.
  12. *
  13. * Once we can do anonymous structs (C11 standard) we could put a
  14. * anonymous struct definition in these allocators so that the
  15. * separate allocations in the kmem_cache structure of SLAB and
  16. * SLUB is no longer needed.
  17. */
  18. struct kmem_cache {
  19. unsigned int object_size;/* The original size of the object */
  20. unsigned int size; /* The aligned/padded/added on size */
  21. unsigned int align; /* Alignment as calculated */
  22. unsigned long flags; /* Active flags on the slab */
  23. const char *name; /* Slab name for sysfs */
  24. int refcount; /* Use counter */
  25. void (*ctor)(void *); /* Called on object slot creation */
  26. struct list_head list; /* List of all slab caches on the system */
  27. };
  28. #endif /* CONFIG_SLOB */
  29. #ifdef CONFIG_SLAB
  30. #include <linux/slab_def.h>
  31. #endif
  32. #ifdef CONFIG_SLUB
  33. #include <linux/slub_def.h>
  34. #endif
  35. #include <linux/memcontrol.h>
  36. #include <linux/fault-inject.h>
  37. #include <linux/kmemcheck.h>
  38. #include <linux/kasan.h>
  39. #include <linux/kmemleak.h>
  40. #include <linux/random.h>
  41. /*
  42. * State of the slab allocator.
  43. *
  44. * This is used to describe the states of the allocator during bootup.
  45. * Allocators use this to gradually bootstrap themselves. Most allocators
  46. * have the problem that the structures used for managing slab caches are
  47. * allocated from slab caches themselves.
  48. */
  49. enum slab_state {
  50. DOWN, /* No slab functionality yet */
  51. PARTIAL, /* SLUB: kmem_cache_node available */
  52. PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
  53. UP, /* Slab caches usable but not all extras yet */
  54. FULL /* Everything is working */
  55. };
  56. extern enum slab_state slab_state;
  57. /* The slab cache mutex protects the management structures during changes */
  58. extern struct mutex slab_mutex;
  59. /* The list of all slab caches on the system */
  60. extern struct list_head slab_caches;
  61. /* The slab cache that manages slab cache information */
  62. extern struct kmem_cache *kmem_cache;
  63. unsigned long calculate_alignment(unsigned long flags,
  64. unsigned long align, unsigned long size);
  65. #ifndef CONFIG_SLOB
  66. /* Kmalloc array related functions */
  67. void setup_kmalloc_cache_index_table(void);
  68. void create_kmalloc_caches(unsigned long);
  69. /* Find the kmalloc slab corresponding for a certain size */
  70. struct kmem_cache *kmalloc_slab(size_t, gfp_t);
  71. #endif
  72. /* Functions provided by the slab allocators */
  73. extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
  74. extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
  75. unsigned long flags);
  76. extern void create_boot_cache(struct kmem_cache *, const char *name,
  77. size_t size, unsigned long flags);
  78. int slab_unmergeable(struct kmem_cache *s);
  79. struct kmem_cache *find_mergeable(size_t size, size_t align,
  80. unsigned long flags, const char *name, void (*ctor)(void *));
  81. #ifndef CONFIG_SLOB
  82. struct kmem_cache *
  83. __kmem_cache_alias(const char *name, size_t size, size_t align,
  84. unsigned long flags, void (*ctor)(void *));
  85. unsigned long kmem_cache_flags(unsigned long object_size,
  86. unsigned long flags, const char *name,
  87. void (*ctor)(void *));
  88. #else
  89. static inline struct kmem_cache *
  90. __kmem_cache_alias(const char *name, size_t size, size_t align,
  91. unsigned long flags, void (*ctor)(void *))
  92. { return NULL; }
  93. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  94. unsigned long flags, const char *name,
  95. void (*ctor)(void *))
  96. {
  97. return flags;
  98. }
  99. #endif
  100. /* Legal flag mask for kmem_cache_create(), for various configurations */
  101. #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
  102. SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
  103. #if defined(CONFIG_DEBUG_SLAB)
  104. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  105. #elif defined(CONFIG_SLUB_DEBUG)
  106. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  107. SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
  108. #else
  109. #define SLAB_DEBUG_FLAGS (0)
  110. #endif
  111. #if defined(CONFIG_SLAB)
  112. #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
  113. SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
  114. SLAB_NOTRACK | SLAB_ACCOUNT)
  115. #elif defined(CONFIG_SLUB)
  116. #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
  117. SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
  118. #else
  119. #define SLAB_CACHE_FLAGS (0)
  120. #endif
  121. /* Common flags available with current configuration */
  122. #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
  123. /* Common flags permitted for kmem_cache_create */
  124. #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
  125. SLAB_RED_ZONE | \
  126. SLAB_POISON | \
  127. SLAB_STORE_USER | \
  128. SLAB_TRACE | \
  129. SLAB_CONSISTENCY_CHECKS | \
  130. SLAB_MEM_SPREAD | \
  131. SLAB_NOLEAKTRACE | \
  132. SLAB_RECLAIM_ACCOUNT | \
  133. SLAB_TEMPORARY | \
  134. SLAB_NOTRACK | \
  135. SLAB_ACCOUNT)
  136. int __kmem_cache_shutdown(struct kmem_cache *);
  137. void __kmem_cache_release(struct kmem_cache *);
  138. int __kmem_cache_shrink(struct kmem_cache *);
  139. void slab_kmem_cache_release(struct kmem_cache *);
  140. struct seq_file;
  141. struct file;
  142. struct slabinfo {
  143. unsigned long active_objs;
  144. unsigned long num_objs;
  145. unsigned long active_slabs;
  146. unsigned long num_slabs;
  147. unsigned long shared_avail;
  148. unsigned int limit;
  149. unsigned int batchcount;
  150. unsigned int shared;
  151. unsigned int objects_per_slab;
  152. unsigned int cache_order;
  153. };
  154. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
  155. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
  156. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  157. size_t count, loff_t *ppos);
  158. /*
  159. * Generic implementation of bulk operations
  160. * These are useful for situations in which the allocator cannot
  161. * perform optimizations. In that case segments of the object listed
  162. * may be allocated or freed using these operations.
  163. */
  164. void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
  165. int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
  166. #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
  167. /*
  168. * Iterate over all memcg caches of the given root cache. The caller must hold
  169. * slab_mutex.
  170. */
  171. #define for_each_memcg_cache(iter, root) \
  172. list_for_each_entry(iter, &(root)->memcg_params.list, \
  173. memcg_params.list)
  174. static inline bool is_root_cache(struct kmem_cache *s)
  175. {
  176. return s->memcg_params.is_root_cache;
  177. }
  178. static inline bool slab_equal_or_root(struct kmem_cache *s,
  179. struct kmem_cache *p)
  180. {
  181. return p == s || p == s->memcg_params.root_cache;
  182. }
  183. /*
  184. * We use suffixes to the name in memcg because we can't have caches
  185. * created in the system with the same name. But when we print them
  186. * locally, better refer to them with the base name
  187. */
  188. static inline const char *cache_name(struct kmem_cache *s)
  189. {
  190. if (!is_root_cache(s))
  191. s = s->memcg_params.root_cache;
  192. return s->name;
  193. }
  194. /*
  195. * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
  196. * That said the caller must assure the memcg's cache won't go away by either
  197. * taking a css reference to the owner cgroup, or holding the slab_mutex.
  198. */
  199. static inline struct kmem_cache *
  200. cache_from_memcg_idx(struct kmem_cache *s, int idx)
  201. {
  202. struct kmem_cache *cachep;
  203. struct memcg_cache_array *arr;
  204. rcu_read_lock();
  205. arr = rcu_dereference(s->memcg_params.memcg_caches);
  206. /*
  207. * Make sure we will access the up-to-date value. The code updating
  208. * memcg_caches issues a write barrier to match this (see
  209. * memcg_create_kmem_cache()).
  210. */
  211. cachep = lockless_dereference(arr->entries[idx]);
  212. rcu_read_unlock();
  213. return cachep;
  214. }
  215. static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
  216. {
  217. if (is_root_cache(s))
  218. return s;
  219. return s->memcg_params.root_cache;
  220. }
  221. static __always_inline int memcg_charge_slab(struct page *page,
  222. gfp_t gfp, int order,
  223. struct kmem_cache *s)
  224. {
  225. int ret;
  226. if (!memcg_kmem_enabled())
  227. return 0;
  228. if (is_root_cache(s))
  229. return 0;
  230. ret = memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
  231. if (ret)
  232. return ret;
  233. memcg_kmem_update_page_stat(page,
  234. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  235. MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
  236. 1 << order);
  237. return 0;
  238. }
  239. static __always_inline void memcg_uncharge_slab(struct page *page, int order,
  240. struct kmem_cache *s)
  241. {
  242. if (!memcg_kmem_enabled())
  243. return;
  244. memcg_kmem_update_page_stat(page,
  245. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  246. MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
  247. -(1 << order));
  248. memcg_kmem_uncharge(page, order);
  249. }
  250. extern void slab_init_memcg_params(struct kmem_cache *);
  251. #else /* CONFIG_MEMCG && !CONFIG_SLOB */
  252. #define for_each_memcg_cache(iter, root) \
  253. for ((void)(iter), (void)(root); 0; )
  254. static inline bool is_root_cache(struct kmem_cache *s)
  255. {
  256. return true;
  257. }
  258. static inline bool slab_equal_or_root(struct kmem_cache *s,
  259. struct kmem_cache *p)
  260. {
  261. return true;
  262. }
  263. static inline const char *cache_name(struct kmem_cache *s)
  264. {
  265. return s->name;
  266. }
  267. static inline struct kmem_cache *
  268. cache_from_memcg_idx(struct kmem_cache *s, int idx)
  269. {
  270. return NULL;
  271. }
  272. static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
  273. {
  274. return s;
  275. }
  276. static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
  277. struct kmem_cache *s)
  278. {
  279. return 0;
  280. }
  281. static inline void memcg_uncharge_slab(struct page *page, int order,
  282. struct kmem_cache *s)
  283. {
  284. }
  285. static inline void slab_init_memcg_params(struct kmem_cache *s)
  286. {
  287. }
  288. #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
  289. static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
  290. {
  291. struct kmem_cache *cachep;
  292. struct page *page;
  293. /*
  294. * When kmemcg is not being used, both assignments should return the
  295. * same value. but we don't want to pay the assignment price in that
  296. * case. If it is not compiled in, the compiler should be smart enough
  297. * to not do even the assignment. In that case, slab_equal_or_root
  298. * will also be a constant.
  299. */
  300. if (!memcg_kmem_enabled() &&
  301. !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
  302. return s;
  303. page = virt_to_head_page(x);
  304. cachep = page->slab_cache;
  305. if (slab_equal_or_root(cachep, s))
  306. return cachep;
  307. pr_err("%s: Wrong slab cache. %s but object is from %s\n",
  308. __func__, s->name, cachep->name);
  309. WARN_ON_ONCE(1);
  310. return s;
  311. }
  312. static inline size_t slab_ksize(const struct kmem_cache *s)
  313. {
  314. #ifndef CONFIG_SLUB
  315. return s->object_size;
  316. #else /* CONFIG_SLUB */
  317. # ifdef CONFIG_SLUB_DEBUG
  318. /*
  319. * Debugging requires use of the padding between object
  320. * and whatever may come after it.
  321. */
  322. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  323. return s->object_size;
  324. # endif
  325. if (s->flags & SLAB_KASAN)
  326. return s->object_size;
  327. /*
  328. * If we have the need to store the freelist pointer
  329. * back there or track user information then we can
  330. * only use the space before that information.
  331. */
  332. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  333. return s->inuse;
  334. /*
  335. * Else we can use all the padding etc for the allocation
  336. */
  337. return s->size;
  338. #endif
  339. }
  340. static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
  341. gfp_t flags)
  342. {
  343. flags &= gfp_allowed_mask;
  344. lockdep_trace_alloc(flags);
  345. might_sleep_if(gfpflags_allow_blocking(flags));
  346. if (should_failslab(s, flags))
  347. return NULL;
  348. if (memcg_kmem_enabled() &&
  349. ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
  350. return memcg_kmem_get_cache(s);
  351. return s;
  352. }
  353. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  354. size_t size, void **p)
  355. {
  356. size_t i;
  357. flags &= gfp_allowed_mask;
  358. for (i = 0; i < size; i++) {
  359. void *object = p[i];
  360. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  361. kmemleak_alloc_recursive(object, s->object_size, 1,
  362. s->flags, flags);
  363. kasan_slab_alloc(s, object, flags);
  364. }
  365. if (memcg_kmem_enabled())
  366. memcg_kmem_put_cache(s);
  367. }
  368. #ifndef CONFIG_SLOB
  369. /*
  370. * The slab lists for all objects.
  371. */
  372. struct kmem_cache_node {
  373. spinlock_t list_lock;
  374. #ifdef CONFIG_SLAB
  375. struct list_head slabs_partial; /* partial list first, better asm code */
  376. struct list_head slabs_full;
  377. struct list_head slabs_free;
  378. unsigned long total_slabs; /* length of all slab lists */
  379. unsigned long free_slabs; /* length of free slab list only */
  380. unsigned long free_objects;
  381. unsigned int free_limit;
  382. unsigned int colour_next; /* Per-node cache coloring */
  383. struct array_cache *shared; /* shared per node */
  384. struct alien_cache **alien; /* on other nodes */
  385. unsigned long next_reap; /* updated without locking */
  386. int free_touched; /* updated without locking */
  387. #endif
  388. #ifdef CONFIG_SLUB
  389. unsigned long nr_partial;
  390. struct list_head partial;
  391. #ifdef CONFIG_SLUB_DEBUG
  392. atomic_long_t nr_slabs;
  393. atomic_long_t total_objects;
  394. struct list_head full;
  395. #endif
  396. #endif
  397. };
  398. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  399. {
  400. return s->node[node];
  401. }
  402. /*
  403. * Iterator over all nodes. The body will be executed for each node that has
  404. * a kmem_cache_node structure allocated (which is true for all online nodes)
  405. */
  406. #define for_each_kmem_cache_node(__s, __node, __n) \
  407. for (__node = 0; __node < nr_node_ids; __node++) \
  408. if ((__n = get_node(__s, __node)))
  409. #endif
  410. void *slab_start(struct seq_file *m, loff_t *pos);
  411. void *slab_next(struct seq_file *m, void *p, loff_t *pos);
  412. void slab_stop(struct seq_file *m, void *p);
  413. int memcg_slab_show(struct seq_file *m, void *p);
  414. void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
  415. #ifdef CONFIG_SLAB_FREELIST_RANDOM
  416. int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
  417. gfp_t gfp);
  418. void cache_random_seq_destroy(struct kmem_cache *cachep);
  419. #else
  420. static inline int cache_random_seq_create(struct kmem_cache *cachep,
  421. unsigned int count, gfp_t gfp)
  422. {
  423. return 0;
  424. }
  425. static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
  426. #endif /* CONFIG_SLAB_FREELIST_RANDOM */
  427. #endif /* MM_SLAB_H */