khugepaged.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/mm.h>
  3. #include <linux/sched.h>
  4. #include <linux/mmu_notifier.h>
  5. #include <linux/rmap.h>
  6. #include <linux/swap.h>
  7. #include <linux/mm_inline.h>
  8. #include <linux/kthread.h>
  9. #include <linux/khugepaged.h>
  10. #include <linux/freezer.h>
  11. #include <linux/mman.h>
  12. #include <linux/hashtable.h>
  13. #include <linux/userfaultfd_k.h>
  14. #include <linux/page_idle.h>
  15. #include <linux/swapops.h>
  16. #include <linux/shmem_fs.h>
  17. #include <asm/tlb.h>
  18. #include <asm/pgalloc.h>
  19. #include "internal.h"
  20. enum scan_result {
  21. SCAN_FAIL,
  22. SCAN_SUCCEED,
  23. SCAN_PMD_NULL,
  24. SCAN_EXCEED_NONE_PTE,
  25. SCAN_PTE_NON_PRESENT,
  26. SCAN_PAGE_RO,
  27. SCAN_LACK_REFERENCED_PAGE,
  28. SCAN_PAGE_NULL,
  29. SCAN_SCAN_ABORT,
  30. SCAN_PAGE_COUNT,
  31. SCAN_PAGE_LRU,
  32. SCAN_PAGE_LOCK,
  33. SCAN_PAGE_ANON,
  34. SCAN_PAGE_COMPOUND,
  35. SCAN_ANY_PROCESS,
  36. SCAN_VMA_NULL,
  37. SCAN_VMA_CHECK,
  38. SCAN_ADDRESS_RANGE,
  39. SCAN_SWAP_CACHE_PAGE,
  40. SCAN_DEL_PAGE_LRU,
  41. SCAN_ALLOC_HUGE_PAGE_FAIL,
  42. SCAN_CGROUP_CHARGE_FAIL,
  43. SCAN_EXCEED_SWAP_PTE,
  44. SCAN_TRUNCATED,
  45. };
  46. #define CREATE_TRACE_POINTS
  47. #include <trace/events/huge_memory.h>
  48. /* default scan 8*512 pte (or vmas) every 30 second */
  49. static unsigned int khugepaged_pages_to_scan __read_mostly;
  50. static unsigned int khugepaged_pages_collapsed;
  51. static unsigned int khugepaged_full_scans;
  52. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  53. /* during fragmentation poll the hugepage allocator once every minute */
  54. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  55. static unsigned long khugepaged_sleep_expire;
  56. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  57. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  58. /*
  59. * default collapse hugepages if there is at least one pte mapped like
  60. * it would have happened if the vma was large enough during page
  61. * fault.
  62. */
  63. static unsigned int khugepaged_max_ptes_none __read_mostly;
  64. static unsigned int khugepaged_max_ptes_swap __read_mostly;
  65. #define MM_SLOTS_HASH_BITS 10
  66. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  67. static struct kmem_cache *mm_slot_cache __read_mostly;
  68. /**
  69. * struct mm_slot - hash lookup from mm to mm_slot
  70. * @hash: hash collision list
  71. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  72. * @mm: the mm that this information is valid for
  73. */
  74. struct mm_slot {
  75. struct hlist_node hash;
  76. struct list_head mm_node;
  77. struct mm_struct *mm;
  78. };
  79. /**
  80. * struct khugepaged_scan - cursor for scanning
  81. * @mm_head: the head of the mm list to scan
  82. * @mm_slot: the current mm_slot we are scanning
  83. * @address: the next address inside that to be scanned
  84. *
  85. * There is only the one khugepaged_scan instance of this cursor structure.
  86. */
  87. struct khugepaged_scan {
  88. struct list_head mm_head;
  89. struct mm_slot *mm_slot;
  90. unsigned long address;
  91. };
  92. static struct khugepaged_scan khugepaged_scan = {
  93. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  94. };
  95. #ifdef CONFIG_SYSFS
  96. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  97. struct kobj_attribute *attr,
  98. char *buf)
  99. {
  100. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  101. }
  102. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  103. struct kobj_attribute *attr,
  104. const char *buf, size_t count)
  105. {
  106. unsigned long msecs;
  107. int err;
  108. err = kstrtoul(buf, 10, &msecs);
  109. if (err || msecs > UINT_MAX)
  110. return -EINVAL;
  111. khugepaged_scan_sleep_millisecs = msecs;
  112. khugepaged_sleep_expire = 0;
  113. wake_up_interruptible(&khugepaged_wait);
  114. return count;
  115. }
  116. static struct kobj_attribute scan_sleep_millisecs_attr =
  117. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  118. scan_sleep_millisecs_store);
  119. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  120. struct kobj_attribute *attr,
  121. char *buf)
  122. {
  123. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  124. }
  125. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  126. struct kobj_attribute *attr,
  127. const char *buf, size_t count)
  128. {
  129. unsigned long msecs;
  130. int err;
  131. err = kstrtoul(buf, 10, &msecs);
  132. if (err || msecs > UINT_MAX)
  133. return -EINVAL;
  134. khugepaged_alloc_sleep_millisecs = msecs;
  135. khugepaged_sleep_expire = 0;
  136. wake_up_interruptible(&khugepaged_wait);
  137. return count;
  138. }
  139. static struct kobj_attribute alloc_sleep_millisecs_attr =
  140. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  141. alloc_sleep_millisecs_store);
  142. static ssize_t pages_to_scan_show(struct kobject *kobj,
  143. struct kobj_attribute *attr,
  144. char *buf)
  145. {
  146. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  147. }
  148. static ssize_t pages_to_scan_store(struct kobject *kobj,
  149. struct kobj_attribute *attr,
  150. const char *buf, size_t count)
  151. {
  152. int err;
  153. unsigned long pages;
  154. err = kstrtoul(buf, 10, &pages);
  155. if (err || !pages || pages > UINT_MAX)
  156. return -EINVAL;
  157. khugepaged_pages_to_scan = pages;
  158. return count;
  159. }
  160. static struct kobj_attribute pages_to_scan_attr =
  161. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  162. pages_to_scan_store);
  163. static ssize_t pages_collapsed_show(struct kobject *kobj,
  164. struct kobj_attribute *attr,
  165. char *buf)
  166. {
  167. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  168. }
  169. static struct kobj_attribute pages_collapsed_attr =
  170. __ATTR_RO(pages_collapsed);
  171. static ssize_t full_scans_show(struct kobject *kobj,
  172. struct kobj_attribute *attr,
  173. char *buf)
  174. {
  175. return sprintf(buf, "%u\n", khugepaged_full_scans);
  176. }
  177. static struct kobj_attribute full_scans_attr =
  178. __ATTR_RO(full_scans);
  179. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  180. struct kobj_attribute *attr, char *buf)
  181. {
  182. return single_hugepage_flag_show(kobj, attr, buf,
  183. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  184. }
  185. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  186. struct kobj_attribute *attr,
  187. const char *buf, size_t count)
  188. {
  189. return single_hugepage_flag_store(kobj, attr, buf, count,
  190. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  191. }
  192. static struct kobj_attribute khugepaged_defrag_attr =
  193. __ATTR(defrag, 0644, khugepaged_defrag_show,
  194. khugepaged_defrag_store);
  195. /*
  196. * max_ptes_none controls if khugepaged should collapse hugepages over
  197. * any unmapped ptes in turn potentially increasing the memory
  198. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  199. * reduce the available free memory in the system as it
  200. * runs. Increasing max_ptes_none will instead potentially reduce the
  201. * free memory in the system during the khugepaged scan.
  202. */
  203. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  204. struct kobj_attribute *attr,
  205. char *buf)
  206. {
  207. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  208. }
  209. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  210. struct kobj_attribute *attr,
  211. const char *buf, size_t count)
  212. {
  213. int err;
  214. unsigned long max_ptes_none;
  215. err = kstrtoul(buf, 10, &max_ptes_none);
  216. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  217. return -EINVAL;
  218. khugepaged_max_ptes_none = max_ptes_none;
  219. return count;
  220. }
  221. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  222. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  223. khugepaged_max_ptes_none_store);
  224. static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
  225. struct kobj_attribute *attr,
  226. char *buf)
  227. {
  228. return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
  229. }
  230. static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
  231. struct kobj_attribute *attr,
  232. const char *buf, size_t count)
  233. {
  234. int err;
  235. unsigned long max_ptes_swap;
  236. err = kstrtoul(buf, 10, &max_ptes_swap);
  237. if (err || max_ptes_swap > HPAGE_PMD_NR-1)
  238. return -EINVAL;
  239. khugepaged_max_ptes_swap = max_ptes_swap;
  240. return count;
  241. }
  242. static struct kobj_attribute khugepaged_max_ptes_swap_attr =
  243. __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
  244. khugepaged_max_ptes_swap_store);
  245. static struct attribute *khugepaged_attr[] = {
  246. &khugepaged_defrag_attr.attr,
  247. &khugepaged_max_ptes_none_attr.attr,
  248. &pages_to_scan_attr.attr,
  249. &pages_collapsed_attr.attr,
  250. &full_scans_attr.attr,
  251. &scan_sleep_millisecs_attr.attr,
  252. &alloc_sleep_millisecs_attr.attr,
  253. &khugepaged_max_ptes_swap_attr.attr,
  254. NULL,
  255. };
  256. struct attribute_group khugepaged_attr_group = {
  257. .attrs = khugepaged_attr,
  258. .name = "khugepaged",
  259. };
  260. #endif /* CONFIG_SYSFS */
  261. #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
  262. int hugepage_madvise(struct vm_area_struct *vma,
  263. unsigned long *vm_flags, int advice)
  264. {
  265. switch (advice) {
  266. case MADV_HUGEPAGE:
  267. #ifdef CONFIG_S390
  268. /*
  269. * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
  270. * can't handle this properly after s390_enable_sie, so we simply
  271. * ignore the madvise to prevent qemu from causing a SIGSEGV.
  272. */
  273. if (mm_has_pgste(vma->vm_mm))
  274. return 0;
  275. #endif
  276. *vm_flags &= ~VM_NOHUGEPAGE;
  277. *vm_flags |= VM_HUGEPAGE;
  278. /*
  279. * If the vma become good for khugepaged to scan,
  280. * register it here without waiting a page fault that
  281. * may not happen any time soon.
  282. */
  283. if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
  284. khugepaged_enter_vma_merge(vma, *vm_flags))
  285. return -ENOMEM;
  286. break;
  287. case MADV_NOHUGEPAGE:
  288. *vm_flags &= ~VM_HUGEPAGE;
  289. *vm_flags |= VM_NOHUGEPAGE;
  290. /*
  291. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  292. * this vma even if we leave the mm registered in khugepaged if
  293. * it got registered before VM_NOHUGEPAGE was set.
  294. */
  295. break;
  296. }
  297. return 0;
  298. }
  299. int __init khugepaged_init(void)
  300. {
  301. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  302. sizeof(struct mm_slot),
  303. __alignof__(struct mm_slot), 0, NULL);
  304. if (!mm_slot_cache)
  305. return -ENOMEM;
  306. khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
  307. khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
  308. khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
  309. return 0;
  310. }
  311. void __init khugepaged_destroy(void)
  312. {
  313. kmem_cache_destroy(mm_slot_cache);
  314. }
  315. static inline struct mm_slot *alloc_mm_slot(void)
  316. {
  317. if (!mm_slot_cache) /* initialization failed */
  318. return NULL;
  319. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  320. }
  321. static inline void free_mm_slot(struct mm_slot *mm_slot)
  322. {
  323. kmem_cache_free(mm_slot_cache, mm_slot);
  324. }
  325. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  326. {
  327. struct mm_slot *mm_slot;
  328. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  329. if (mm == mm_slot->mm)
  330. return mm_slot;
  331. return NULL;
  332. }
  333. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  334. struct mm_slot *mm_slot)
  335. {
  336. mm_slot->mm = mm;
  337. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  338. }
  339. static inline int khugepaged_test_exit(struct mm_struct *mm)
  340. {
  341. return atomic_read(&mm->mm_users) == 0;
  342. }
  343. int __khugepaged_enter(struct mm_struct *mm)
  344. {
  345. struct mm_slot *mm_slot;
  346. int wakeup;
  347. mm_slot = alloc_mm_slot();
  348. if (!mm_slot)
  349. return -ENOMEM;
  350. /* __khugepaged_exit() must not run from under us */
  351. VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
  352. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  353. free_mm_slot(mm_slot);
  354. return 0;
  355. }
  356. spin_lock(&khugepaged_mm_lock);
  357. insert_to_mm_slots_hash(mm, mm_slot);
  358. /*
  359. * Insert just behind the scanning cursor, to let the area settle
  360. * down a little.
  361. */
  362. wakeup = list_empty(&khugepaged_scan.mm_head);
  363. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  364. spin_unlock(&khugepaged_mm_lock);
  365. atomic_inc(&mm->mm_count);
  366. if (wakeup)
  367. wake_up_interruptible(&khugepaged_wait);
  368. return 0;
  369. }
  370. int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
  371. unsigned long vm_flags)
  372. {
  373. unsigned long hstart, hend;
  374. if (!vma->anon_vma)
  375. /*
  376. * Not yet faulted in so we will register later in the
  377. * page fault if needed.
  378. */
  379. return 0;
  380. if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
  381. /* khugepaged not yet working on file or special mappings */
  382. return 0;
  383. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  384. hend = vma->vm_end & HPAGE_PMD_MASK;
  385. if (hstart < hend)
  386. return khugepaged_enter(vma, vm_flags);
  387. return 0;
  388. }
  389. void __khugepaged_exit(struct mm_struct *mm)
  390. {
  391. struct mm_slot *mm_slot;
  392. int free = 0;
  393. spin_lock(&khugepaged_mm_lock);
  394. mm_slot = get_mm_slot(mm);
  395. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  396. hash_del(&mm_slot->hash);
  397. list_del(&mm_slot->mm_node);
  398. free = 1;
  399. }
  400. spin_unlock(&khugepaged_mm_lock);
  401. if (free) {
  402. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  403. free_mm_slot(mm_slot);
  404. mmdrop(mm);
  405. } else if (mm_slot) {
  406. /*
  407. * This is required to serialize against
  408. * khugepaged_test_exit() (which is guaranteed to run
  409. * under mmap sem read mode). Stop here (after we
  410. * return all pagetables will be destroyed) until
  411. * khugepaged has finished working on the pagetables
  412. * under the mmap_sem.
  413. */
  414. down_write(&mm->mmap_sem);
  415. up_write(&mm->mmap_sem);
  416. }
  417. }
  418. static void release_pte_page(struct page *page)
  419. {
  420. /* 0 stands for page_is_file_cache(page) == false */
  421. dec_node_page_state(page, NR_ISOLATED_ANON + 0);
  422. unlock_page(page);
  423. putback_lru_page(page);
  424. }
  425. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  426. {
  427. while (--_pte >= pte) {
  428. pte_t pteval = *_pte;
  429. if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
  430. release_pte_page(pte_page(pteval));
  431. }
  432. }
  433. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  434. unsigned long address,
  435. pte_t *pte)
  436. {
  437. struct page *page = NULL;
  438. pte_t *_pte;
  439. int none_or_zero = 0, result = 0, referenced = 0;
  440. bool writable = false;
  441. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  442. _pte++, address += PAGE_SIZE) {
  443. pte_t pteval = *_pte;
  444. if (pte_none(pteval) || (pte_present(pteval) &&
  445. is_zero_pfn(pte_pfn(pteval)))) {
  446. if (!userfaultfd_armed(vma) &&
  447. ++none_or_zero <= khugepaged_max_ptes_none) {
  448. continue;
  449. } else {
  450. result = SCAN_EXCEED_NONE_PTE;
  451. goto out;
  452. }
  453. }
  454. if (!pte_present(pteval)) {
  455. result = SCAN_PTE_NON_PRESENT;
  456. goto out;
  457. }
  458. page = vm_normal_page(vma, address, pteval);
  459. if (unlikely(!page)) {
  460. result = SCAN_PAGE_NULL;
  461. goto out;
  462. }
  463. VM_BUG_ON_PAGE(PageCompound(page), page);
  464. VM_BUG_ON_PAGE(!PageAnon(page), page);
  465. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  466. /*
  467. * We can do it before isolate_lru_page because the
  468. * page can't be freed from under us. NOTE: PG_lock
  469. * is needed to serialize against split_huge_page
  470. * when invoked from the VM.
  471. */
  472. if (!trylock_page(page)) {
  473. result = SCAN_PAGE_LOCK;
  474. goto out;
  475. }
  476. /*
  477. * cannot use mapcount: can't collapse if there's a gup pin.
  478. * The page must only be referenced by the scanned process
  479. * and page swap cache.
  480. */
  481. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  482. unlock_page(page);
  483. result = SCAN_PAGE_COUNT;
  484. goto out;
  485. }
  486. if (pte_write(pteval)) {
  487. writable = true;
  488. } else {
  489. if (PageSwapCache(page) &&
  490. !reuse_swap_page(page, NULL)) {
  491. unlock_page(page);
  492. result = SCAN_SWAP_CACHE_PAGE;
  493. goto out;
  494. }
  495. /*
  496. * Page is not in the swap cache. It can be collapsed
  497. * into a THP.
  498. */
  499. }
  500. /*
  501. * Isolate the page to avoid collapsing an hugepage
  502. * currently in use by the VM.
  503. */
  504. if (isolate_lru_page(page)) {
  505. unlock_page(page);
  506. result = SCAN_DEL_PAGE_LRU;
  507. goto out;
  508. }
  509. /* 0 stands for page_is_file_cache(page) == false */
  510. inc_node_page_state(page, NR_ISOLATED_ANON + 0);
  511. VM_BUG_ON_PAGE(!PageLocked(page), page);
  512. VM_BUG_ON_PAGE(PageLRU(page), page);
  513. /* There should be enough young pte to collapse the page */
  514. if (pte_young(pteval) ||
  515. page_is_young(page) || PageReferenced(page) ||
  516. mmu_notifier_test_young(vma->vm_mm, address))
  517. referenced++;
  518. }
  519. if (likely(writable)) {
  520. if (likely(referenced)) {
  521. result = SCAN_SUCCEED;
  522. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  523. referenced, writable, result);
  524. return 1;
  525. }
  526. } else {
  527. result = SCAN_PAGE_RO;
  528. }
  529. out:
  530. release_pte_pages(pte, _pte);
  531. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  532. referenced, writable, result);
  533. return 0;
  534. }
  535. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  536. struct vm_area_struct *vma,
  537. unsigned long address,
  538. spinlock_t *ptl)
  539. {
  540. pte_t *_pte;
  541. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  542. pte_t pteval = *_pte;
  543. struct page *src_page;
  544. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  545. clear_user_highpage(page, address);
  546. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  547. if (is_zero_pfn(pte_pfn(pteval))) {
  548. /*
  549. * ptl mostly unnecessary.
  550. */
  551. spin_lock(ptl);
  552. /*
  553. * paravirt calls inside pte_clear here are
  554. * superfluous.
  555. */
  556. pte_clear(vma->vm_mm, address, _pte);
  557. spin_unlock(ptl);
  558. }
  559. } else {
  560. src_page = pte_page(pteval);
  561. copy_user_highpage(page, src_page, address, vma);
  562. VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
  563. release_pte_page(src_page);
  564. /*
  565. * ptl mostly unnecessary, but preempt has to
  566. * be disabled to update the per-cpu stats
  567. * inside page_remove_rmap().
  568. */
  569. spin_lock(ptl);
  570. /*
  571. * paravirt calls inside pte_clear here are
  572. * superfluous.
  573. */
  574. pte_clear(vma->vm_mm, address, _pte);
  575. page_remove_rmap(src_page, false);
  576. spin_unlock(ptl);
  577. free_page_and_swap_cache(src_page);
  578. }
  579. address += PAGE_SIZE;
  580. page++;
  581. }
  582. }
  583. static void khugepaged_alloc_sleep(void)
  584. {
  585. DEFINE_WAIT(wait);
  586. add_wait_queue(&khugepaged_wait, &wait);
  587. freezable_schedule_timeout_interruptible(
  588. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  589. remove_wait_queue(&khugepaged_wait, &wait);
  590. }
  591. static int khugepaged_node_load[MAX_NUMNODES];
  592. static bool khugepaged_scan_abort(int nid)
  593. {
  594. int i;
  595. /*
  596. * If node_reclaim_mode is disabled, then no extra effort is made to
  597. * allocate memory locally.
  598. */
  599. if (!node_reclaim_mode)
  600. return false;
  601. /* If there is a count for this node already, it must be acceptable */
  602. if (khugepaged_node_load[nid])
  603. return false;
  604. for (i = 0; i < MAX_NUMNODES; i++) {
  605. if (!khugepaged_node_load[i])
  606. continue;
  607. if (node_distance(nid, i) > RECLAIM_DISTANCE)
  608. return true;
  609. }
  610. return false;
  611. }
  612. /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
  613. static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
  614. {
  615. return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
  616. }
  617. #ifdef CONFIG_NUMA
  618. static int khugepaged_find_target_node(void)
  619. {
  620. static int last_khugepaged_target_node = NUMA_NO_NODE;
  621. int nid, target_node = 0, max_value = 0;
  622. /* find first node with max normal pages hit */
  623. for (nid = 0; nid < MAX_NUMNODES; nid++)
  624. if (khugepaged_node_load[nid] > max_value) {
  625. max_value = khugepaged_node_load[nid];
  626. target_node = nid;
  627. }
  628. /* do some balance if several nodes have the same hit record */
  629. if (target_node <= last_khugepaged_target_node)
  630. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  631. nid++)
  632. if (max_value == khugepaged_node_load[nid]) {
  633. target_node = nid;
  634. break;
  635. }
  636. last_khugepaged_target_node = target_node;
  637. return target_node;
  638. }
  639. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  640. {
  641. if (IS_ERR(*hpage)) {
  642. if (!*wait)
  643. return false;
  644. *wait = false;
  645. *hpage = NULL;
  646. khugepaged_alloc_sleep();
  647. } else if (*hpage) {
  648. put_page(*hpage);
  649. *hpage = NULL;
  650. }
  651. return true;
  652. }
  653. static struct page *
  654. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
  655. {
  656. VM_BUG_ON_PAGE(*hpage, *hpage);
  657. *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
  658. if (unlikely(!*hpage)) {
  659. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  660. *hpage = ERR_PTR(-ENOMEM);
  661. return NULL;
  662. }
  663. prep_transhuge_page(*hpage);
  664. count_vm_event(THP_COLLAPSE_ALLOC);
  665. return *hpage;
  666. }
  667. #else
  668. static int khugepaged_find_target_node(void)
  669. {
  670. return 0;
  671. }
  672. static inline struct page *alloc_khugepaged_hugepage(void)
  673. {
  674. struct page *page;
  675. page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
  676. HPAGE_PMD_ORDER);
  677. if (page)
  678. prep_transhuge_page(page);
  679. return page;
  680. }
  681. static struct page *khugepaged_alloc_hugepage(bool *wait)
  682. {
  683. struct page *hpage;
  684. do {
  685. hpage = alloc_khugepaged_hugepage();
  686. if (!hpage) {
  687. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  688. if (!*wait)
  689. return NULL;
  690. *wait = false;
  691. khugepaged_alloc_sleep();
  692. } else
  693. count_vm_event(THP_COLLAPSE_ALLOC);
  694. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  695. return hpage;
  696. }
  697. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  698. {
  699. if (!*hpage)
  700. *hpage = khugepaged_alloc_hugepage(wait);
  701. if (unlikely(!*hpage))
  702. return false;
  703. return true;
  704. }
  705. static struct page *
  706. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
  707. {
  708. VM_BUG_ON(!*hpage);
  709. return *hpage;
  710. }
  711. #endif
  712. static bool hugepage_vma_check(struct vm_area_struct *vma)
  713. {
  714. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  715. (vma->vm_flags & VM_NOHUGEPAGE))
  716. return false;
  717. if (shmem_file(vma->vm_file)) {
  718. if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
  719. return false;
  720. return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
  721. HPAGE_PMD_NR);
  722. }
  723. if (!vma->anon_vma || vma->vm_ops)
  724. return false;
  725. if (is_vma_temporary_stack(vma))
  726. return false;
  727. return !(vma->vm_flags & VM_NO_KHUGEPAGED);
  728. }
  729. /*
  730. * If mmap_sem temporarily dropped, revalidate vma
  731. * before taking mmap_sem.
  732. * Return 0 if succeeds, otherwise return none-zero
  733. * value (scan code).
  734. */
  735. static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
  736. struct vm_area_struct **vmap)
  737. {
  738. struct vm_area_struct *vma;
  739. unsigned long hstart, hend;
  740. if (unlikely(khugepaged_test_exit(mm)))
  741. return SCAN_ANY_PROCESS;
  742. *vmap = vma = find_vma(mm, address);
  743. if (!vma)
  744. return SCAN_VMA_NULL;
  745. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  746. hend = vma->vm_end & HPAGE_PMD_MASK;
  747. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  748. return SCAN_ADDRESS_RANGE;
  749. if (!hugepage_vma_check(vma))
  750. return SCAN_VMA_CHECK;
  751. return 0;
  752. }
  753. /*
  754. * Bring missing pages in from swap, to complete THP collapse.
  755. * Only done if khugepaged_scan_pmd believes it is worthwhile.
  756. *
  757. * Called and returns without pte mapped or spinlocks held,
  758. * but with mmap_sem held to protect against vma changes.
  759. */
  760. static bool __collapse_huge_page_swapin(struct mm_struct *mm,
  761. struct vm_area_struct *vma,
  762. unsigned long address, pmd_t *pmd,
  763. int referenced)
  764. {
  765. int swapped_in = 0, ret = 0;
  766. struct vm_fault vmf = {
  767. .vma = vma,
  768. .address = address,
  769. .flags = FAULT_FLAG_ALLOW_RETRY,
  770. .pmd = pmd,
  771. .pgoff = linear_page_index(vma, address),
  772. };
  773. /* we only decide to swapin, if there is enough young ptes */
  774. if (referenced < HPAGE_PMD_NR/2) {
  775. trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
  776. return false;
  777. }
  778. vmf.pte = pte_offset_map(pmd, address);
  779. for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
  780. vmf.pte++, vmf.address += PAGE_SIZE) {
  781. vmf.orig_pte = *vmf.pte;
  782. if (!is_swap_pte(vmf.orig_pte))
  783. continue;
  784. swapped_in++;
  785. ret = do_swap_page(&vmf);
  786. /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
  787. if (ret & VM_FAULT_RETRY) {
  788. down_read(&mm->mmap_sem);
  789. if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
  790. /* vma is no longer available, don't continue to swapin */
  791. trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
  792. return false;
  793. }
  794. /* check if the pmd is still valid */
  795. if (mm_find_pmd(mm, address) != pmd)
  796. return false;
  797. }
  798. if (ret & VM_FAULT_ERROR) {
  799. trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
  800. return false;
  801. }
  802. /* pte is unmapped now, we need to map it */
  803. vmf.pte = pte_offset_map(pmd, vmf.address);
  804. }
  805. vmf.pte--;
  806. pte_unmap(vmf.pte);
  807. trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
  808. return true;
  809. }
  810. static void collapse_huge_page(struct mm_struct *mm,
  811. unsigned long address,
  812. struct page **hpage,
  813. int node, int referenced)
  814. {
  815. pmd_t *pmd, _pmd;
  816. pte_t *pte;
  817. pgtable_t pgtable;
  818. struct page *new_page;
  819. spinlock_t *pmd_ptl, *pte_ptl;
  820. int isolated = 0, result = 0;
  821. struct mem_cgroup *memcg;
  822. struct vm_area_struct *vma;
  823. unsigned long mmun_start; /* For mmu_notifiers */
  824. unsigned long mmun_end; /* For mmu_notifiers */
  825. gfp_t gfp;
  826. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  827. /* Only allocate from the target node */
  828. gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
  829. /*
  830. * Before allocating the hugepage, release the mmap_sem read lock.
  831. * The allocation can take potentially a long time if it involves
  832. * sync compaction, and we do not need to hold the mmap_sem during
  833. * that. We will recheck the vma after taking it again in write mode.
  834. */
  835. up_read(&mm->mmap_sem);
  836. new_page = khugepaged_alloc_page(hpage, gfp, node);
  837. if (!new_page) {
  838. result = SCAN_ALLOC_HUGE_PAGE_FAIL;
  839. goto out_nolock;
  840. }
  841. if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
  842. result = SCAN_CGROUP_CHARGE_FAIL;
  843. goto out_nolock;
  844. }
  845. down_read(&mm->mmap_sem);
  846. result = hugepage_vma_revalidate(mm, address, &vma);
  847. if (result) {
  848. mem_cgroup_cancel_charge(new_page, memcg, true);
  849. up_read(&mm->mmap_sem);
  850. goto out_nolock;
  851. }
  852. pmd = mm_find_pmd(mm, address);
  853. if (!pmd) {
  854. result = SCAN_PMD_NULL;
  855. mem_cgroup_cancel_charge(new_page, memcg, true);
  856. up_read(&mm->mmap_sem);
  857. goto out_nolock;
  858. }
  859. /*
  860. * __collapse_huge_page_swapin always returns with mmap_sem locked.
  861. * If it fails, we release mmap_sem and jump out_nolock.
  862. * Continuing to collapse causes inconsistency.
  863. */
  864. if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
  865. mem_cgroup_cancel_charge(new_page, memcg, true);
  866. up_read(&mm->mmap_sem);
  867. goto out_nolock;
  868. }
  869. up_read(&mm->mmap_sem);
  870. /*
  871. * Prevent all access to pagetables with the exception of
  872. * gup_fast later handled by the ptep_clear_flush and the VM
  873. * handled by the anon_vma lock + PG_lock.
  874. */
  875. down_write(&mm->mmap_sem);
  876. result = hugepage_vma_revalidate(mm, address, &vma);
  877. if (result)
  878. goto out;
  879. /* check if the pmd is still valid */
  880. if (mm_find_pmd(mm, address) != pmd)
  881. goto out;
  882. anon_vma_lock_write(vma->anon_vma);
  883. pte = pte_offset_map(pmd, address);
  884. pte_ptl = pte_lockptr(mm, pmd);
  885. mmun_start = address;
  886. mmun_end = address + HPAGE_PMD_SIZE;
  887. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  888. pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
  889. /*
  890. * After this gup_fast can't run anymore. This also removes
  891. * any huge TLB entry from the CPU so we won't allow
  892. * huge and small TLB entries for the same virtual address
  893. * to avoid the risk of CPU bugs in that area.
  894. */
  895. _pmd = pmdp_collapse_flush(vma, address, pmd);
  896. spin_unlock(pmd_ptl);
  897. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  898. spin_lock(pte_ptl);
  899. isolated = __collapse_huge_page_isolate(vma, address, pte);
  900. spin_unlock(pte_ptl);
  901. if (unlikely(!isolated)) {
  902. pte_unmap(pte);
  903. spin_lock(pmd_ptl);
  904. BUG_ON(!pmd_none(*pmd));
  905. /*
  906. * We can only use set_pmd_at when establishing
  907. * hugepmds and never for establishing regular pmds that
  908. * points to regular pagetables. Use pmd_populate for that
  909. */
  910. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  911. spin_unlock(pmd_ptl);
  912. anon_vma_unlock_write(vma->anon_vma);
  913. result = SCAN_FAIL;
  914. goto out;
  915. }
  916. /*
  917. * All pages are isolated and locked so anon_vma rmap
  918. * can't run anymore.
  919. */
  920. anon_vma_unlock_write(vma->anon_vma);
  921. __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
  922. pte_unmap(pte);
  923. __SetPageUptodate(new_page);
  924. pgtable = pmd_pgtable(_pmd);
  925. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  926. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  927. /*
  928. * spin_lock() below is not the equivalent of smp_wmb(), so
  929. * this is needed to avoid the copy_huge_page writes to become
  930. * visible after the set_pmd_at() write.
  931. */
  932. smp_wmb();
  933. spin_lock(pmd_ptl);
  934. BUG_ON(!pmd_none(*pmd));
  935. page_add_new_anon_rmap(new_page, vma, address, true);
  936. mem_cgroup_commit_charge(new_page, memcg, false, true);
  937. lru_cache_add_active_or_unevictable(new_page, vma);
  938. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  939. set_pmd_at(mm, address, pmd, _pmd);
  940. update_mmu_cache_pmd(vma, address, pmd);
  941. spin_unlock(pmd_ptl);
  942. *hpage = NULL;
  943. khugepaged_pages_collapsed++;
  944. result = SCAN_SUCCEED;
  945. out_up_write:
  946. up_write(&mm->mmap_sem);
  947. out_nolock:
  948. trace_mm_collapse_huge_page(mm, isolated, result);
  949. return;
  950. out:
  951. mem_cgroup_cancel_charge(new_page, memcg, true);
  952. goto out_up_write;
  953. }
  954. static int khugepaged_scan_pmd(struct mm_struct *mm,
  955. struct vm_area_struct *vma,
  956. unsigned long address,
  957. struct page **hpage)
  958. {
  959. pmd_t *pmd;
  960. pte_t *pte, *_pte;
  961. int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
  962. struct page *page = NULL;
  963. unsigned long _address;
  964. spinlock_t *ptl;
  965. int node = NUMA_NO_NODE, unmapped = 0;
  966. bool writable = false;
  967. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  968. pmd = mm_find_pmd(mm, address);
  969. if (!pmd) {
  970. result = SCAN_PMD_NULL;
  971. goto out;
  972. }
  973. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  974. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  975. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  976. _pte++, _address += PAGE_SIZE) {
  977. pte_t pteval = *_pte;
  978. if (is_swap_pte(pteval)) {
  979. if (++unmapped <= khugepaged_max_ptes_swap) {
  980. continue;
  981. } else {
  982. result = SCAN_EXCEED_SWAP_PTE;
  983. goto out_unmap;
  984. }
  985. }
  986. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  987. if (!userfaultfd_armed(vma) &&
  988. ++none_or_zero <= khugepaged_max_ptes_none) {
  989. continue;
  990. } else {
  991. result = SCAN_EXCEED_NONE_PTE;
  992. goto out_unmap;
  993. }
  994. }
  995. if (!pte_present(pteval)) {
  996. result = SCAN_PTE_NON_PRESENT;
  997. goto out_unmap;
  998. }
  999. if (pte_write(pteval))
  1000. writable = true;
  1001. page = vm_normal_page(vma, _address, pteval);
  1002. if (unlikely(!page)) {
  1003. result = SCAN_PAGE_NULL;
  1004. goto out_unmap;
  1005. }
  1006. /* TODO: teach khugepaged to collapse THP mapped with pte */
  1007. if (PageCompound(page)) {
  1008. result = SCAN_PAGE_COMPOUND;
  1009. goto out_unmap;
  1010. }
  1011. /*
  1012. * Record which node the original page is from and save this
  1013. * information to khugepaged_node_load[].
  1014. * Khupaged will allocate hugepage from the node has the max
  1015. * hit record.
  1016. */
  1017. node = page_to_nid(page);
  1018. if (khugepaged_scan_abort(node)) {
  1019. result = SCAN_SCAN_ABORT;
  1020. goto out_unmap;
  1021. }
  1022. khugepaged_node_load[node]++;
  1023. if (!PageLRU(page)) {
  1024. result = SCAN_PAGE_LRU;
  1025. goto out_unmap;
  1026. }
  1027. if (PageLocked(page)) {
  1028. result = SCAN_PAGE_LOCK;
  1029. goto out_unmap;
  1030. }
  1031. if (!PageAnon(page)) {
  1032. result = SCAN_PAGE_ANON;
  1033. goto out_unmap;
  1034. }
  1035. /*
  1036. * cannot use mapcount: can't collapse if there's a gup pin.
  1037. * The page must only be referenced by the scanned process
  1038. * and page swap cache.
  1039. */
  1040. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  1041. result = SCAN_PAGE_COUNT;
  1042. goto out_unmap;
  1043. }
  1044. if (pte_young(pteval) ||
  1045. page_is_young(page) || PageReferenced(page) ||
  1046. mmu_notifier_test_young(vma->vm_mm, address))
  1047. referenced++;
  1048. }
  1049. if (writable) {
  1050. if (referenced) {
  1051. result = SCAN_SUCCEED;
  1052. ret = 1;
  1053. } else {
  1054. result = SCAN_LACK_REFERENCED_PAGE;
  1055. }
  1056. } else {
  1057. result = SCAN_PAGE_RO;
  1058. }
  1059. out_unmap:
  1060. pte_unmap_unlock(pte, ptl);
  1061. if (ret) {
  1062. node = khugepaged_find_target_node();
  1063. /* collapse_huge_page will return with the mmap_sem released */
  1064. collapse_huge_page(mm, address, hpage, node, referenced);
  1065. }
  1066. out:
  1067. trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
  1068. none_or_zero, result, unmapped);
  1069. return ret;
  1070. }
  1071. static void collect_mm_slot(struct mm_slot *mm_slot)
  1072. {
  1073. struct mm_struct *mm = mm_slot->mm;
  1074. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1075. if (khugepaged_test_exit(mm)) {
  1076. /* free mm_slot */
  1077. hash_del(&mm_slot->hash);
  1078. list_del(&mm_slot->mm_node);
  1079. /*
  1080. * Not strictly needed because the mm exited already.
  1081. *
  1082. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1083. */
  1084. /* khugepaged_mm_lock actually not necessary for the below */
  1085. free_mm_slot(mm_slot);
  1086. mmdrop(mm);
  1087. }
  1088. }
  1089. #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
  1090. static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
  1091. {
  1092. struct vm_area_struct *vma;
  1093. unsigned long addr;
  1094. pmd_t *pmd, _pmd;
  1095. i_mmap_lock_write(mapping);
  1096. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  1097. /* probably overkill */
  1098. if (vma->anon_vma)
  1099. continue;
  1100. addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  1101. if (addr & ~HPAGE_PMD_MASK)
  1102. continue;
  1103. if (vma->vm_end < addr + HPAGE_PMD_SIZE)
  1104. continue;
  1105. pmd = mm_find_pmd(vma->vm_mm, addr);
  1106. if (!pmd)
  1107. continue;
  1108. /*
  1109. * We need exclusive mmap_sem to retract page table.
  1110. * If trylock fails we would end up with pte-mapped THP after
  1111. * re-fault. Not ideal, but it's more important to not disturb
  1112. * the system too much.
  1113. */
  1114. if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
  1115. spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
  1116. /* assume page table is clear */
  1117. _pmd = pmdp_collapse_flush(vma, addr, pmd);
  1118. spin_unlock(ptl);
  1119. up_write(&vma->vm_mm->mmap_sem);
  1120. atomic_long_dec(&vma->vm_mm->nr_ptes);
  1121. pte_free(vma->vm_mm, pmd_pgtable(_pmd));
  1122. }
  1123. }
  1124. i_mmap_unlock_write(mapping);
  1125. }
  1126. /**
  1127. * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
  1128. *
  1129. * Basic scheme is simple, details are more complex:
  1130. * - allocate and freeze a new huge page;
  1131. * - scan over radix tree replacing old pages the new one
  1132. * + swap in pages if necessary;
  1133. * + fill in gaps;
  1134. * + keep old pages around in case if rollback is required;
  1135. * - if replacing succeed:
  1136. * + copy data over;
  1137. * + free old pages;
  1138. * + unfreeze huge page;
  1139. * - if replacing failed;
  1140. * + put all pages back and unfreeze them;
  1141. * + restore gaps in the radix-tree;
  1142. * + free huge page;
  1143. */
  1144. static void collapse_shmem(struct mm_struct *mm,
  1145. struct address_space *mapping, pgoff_t start,
  1146. struct page **hpage, int node)
  1147. {
  1148. gfp_t gfp;
  1149. struct page *page, *new_page, *tmp;
  1150. struct mem_cgroup *memcg;
  1151. pgoff_t index, end = start + HPAGE_PMD_NR;
  1152. LIST_HEAD(pagelist);
  1153. struct radix_tree_iter iter;
  1154. void **slot;
  1155. int nr_none = 0, result = SCAN_SUCCEED;
  1156. VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
  1157. /* Only allocate from the target node */
  1158. gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
  1159. new_page = khugepaged_alloc_page(hpage, gfp, node);
  1160. if (!new_page) {
  1161. result = SCAN_ALLOC_HUGE_PAGE_FAIL;
  1162. goto out;
  1163. }
  1164. if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
  1165. result = SCAN_CGROUP_CHARGE_FAIL;
  1166. goto out;
  1167. }
  1168. new_page->index = start;
  1169. new_page->mapping = mapping;
  1170. __SetPageSwapBacked(new_page);
  1171. __SetPageLocked(new_page);
  1172. BUG_ON(!page_ref_freeze(new_page, 1));
  1173. /*
  1174. * At this point the new_page is 'frozen' (page_count() is zero), locked
  1175. * and not up-to-date. It's safe to insert it into radix tree, because
  1176. * nobody would be able to map it or use it in other way until we
  1177. * unfreeze it.
  1178. */
  1179. index = start;
  1180. spin_lock_irq(&mapping->tree_lock);
  1181. radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
  1182. int n = min(iter.index, end) - index;
  1183. /*
  1184. * Handle holes in the radix tree: charge it from shmem and
  1185. * insert relevant subpage of new_page into the radix-tree.
  1186. */
  1187. if (n && !shmem_charge(mapping->host, n)) {
  1188. result = SCAN_FAIL;
  1189. break;
  1190. }
  1191. nr_none += n;
  1192. for (; index < min(iter.index, end); index++) {
  1193. radix_tree_insert(&mapping->page_tree, index,
  1194. new_page + (index % HPAGE_PMD_NR));
  1195. }
  1196. /* We are done. */
  1197. if (index >= end)
  1198. break;
  1199. page = radix_tree_deref_slot_protected(slot,
  1200. &mapping->tree_lock);
  1201. if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
  1202. spin_unlock_irq(&mapping->tree_lock);
  1203. /* swap in or instantiate fallocated page */
  1204. if (shmem_getpage(mapping->host, index, &page,
  1205. SGP_NOHUGE)) {
  1206. result = SCAN_FAIL;
  1207. goto tree_unlocked;
  1208. }
  1209. spin_lock_irq(&mapping->tree_lock);
  1210. } else if (trylock_page(page)) {
  1211. get_page(page);
  1212. } else {
  1213. result = SCAN_PAGE_LOCK;
  1214. break;
  1215. }
  1216. /*
  1217. * The page must be locked, so we can drop the tree_lock
  1218. * without racing with truncate.
  1219. */
  1220. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1221. VM_BUG_ON_PAGE(!PageUptodate(page), page);
  1222. VM_BUG_ON_PAGE(PageTransCompound(page), page);
  1223. if (page_mapping(page) != mapping) {
  1224. result = SCAN_TRUNCATED;
  1225. goto out_unlock;
  1226. }
  1227. spin_unlock_irq(&mapping->tree_lock);
  1228. if (isolate_lru_page(page)) {
  1229. result = SCAN_DEL_PAGE_LRU;
  1230. goto out_isolate_failed;
  1231. }
  1232. if (page_mapped(page))
  1233. unmap_mapping_range(mapping, index << PAGE_SHIFT,
  1234. PAGE_SIZE, 0);
  1235. spin_lock_irq(&mapping->tree_lock);
  1236. slot = radix_tree_lookup_slot(&mapping->page_tree, index);
  1237. VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
  1238. &mapping->tree_lock), page);
  1239. VM_BUG_ON_PAGE(page_mapped(page), page);
  1240. /*
  1241. * The page is expected to have page_count() == 3:
  1242. * - we hold a pin on it;
  1243. * - one reference from radix tree;
  1244. * - one from isolate_lru_page;
  1245. */
  1246. if (!page_ref_freeze(page, 3)) {
  1247. result = SCAN_PAGE_COUNT;
  1248. goto out_lru;
  1249. }
  1250. /*
  1251. * Add the page to the list to be able to undo the collapse if
  1252. * something go wrong.
  1253. */
  1254. list_add_tail(&page->lru, &pagelist);
  1255. /* Finally, replace with the new page. */
  1256. radix_tree_replace_slot(&mapping->page_tree, slot,
  1257. new_page + (index % HPAGE_PMD_NR));
  1258. slot = radix_tree_iter_resume(slot, &iter);
  1259. index++;
  1260. continue;
  1261. out_lru:
  1262. spin_unlock_irq(&mapping->tree_lock);
  1263. putback_lru_page(page);
  1264. out_isolate_failed:
  1265. unlock_page(page);
  1266. put_page(page);
  1267. goto tree_unlocked;
  1268. out_unlock:
  1269. unlock_page(page);
  1270. put_page(page);
  1271. break;
  1272. }
  1273. /*
  1274. * Handle hole in radix tree at the end of the range.
  1275. * This code only triggers if there's nothing in radix tree
  1276. * beyond 'end'.
  1277. */
  1278. if (result == SCAN_SUCCEED && index < end) {
  1279. int n = end - index;
  1280. if (!shmem_charge(mapping->host, n)) {
  1281. result = SCAN_FAIL;
  1282. goto tree_locked;
  1283. }
  1284. for (; index < end; index++) {
  1285. radix_tree_insert(&mapping->page_tree, index,
  1286. new_page + (index % HPAGE_PMD_NR));
  1287. }
  1288. nr_none += n;
  1289. }
  1290. tree_locked:
  1291. spin_unlock_irq(&mapping->tree_lock);
  1292. tree_unlocked:
  1293. if (result == SCAN_SUCCEED) {
  1294. unsigned long flags;
  1295. struct zone *zone = page_zone(new_page);
  1296. /*
  1297. * Replacing old pages with new one has succeed, now we need to
  1298. * copy the content and free old pages.
  1299. */
  1300. list_for_each_entry_safe(page, tmp, &pagelist, lru) {
  1301. copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
  1302. page);
  1303. list_del(&page->lru);
  1304. unlock_page(page);
  1305. page_ref_unfreeze(page, 1);
  1306. page->mapping = NULL;
  1307. ClearPageActive(page);
  1308. ClearPageUnevictable(page);
  1309. put_page(page);
  1310. }
  1311. local_irq_save(flags);
  1312. __inc_node_page_state(new_page, NR_SHMEM_THPS);
  1313. if (nr_none) {
  1314. __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
  1315. __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
  1316. }
  1317. local_irq_restore(flags);
  1318. /*
  1319. * Remove pte page tables, so we can re-faulti
  1320. * the page as huge.
  1321. */
  1322. retract_page_tables(mapping, start);
  1323. /* Everything is ready, let's unfreeze the new_page */
  1324. set_page_dirty(new_page);
  1325. SetPageUptodate(new_page);
  1326. page_ref_unfreeze(new_page, HPAGE_PMD_NR);
  1327. mem_cgroup_commit_charge(new_page, memcg, false, true);
  1328. lru_cache_add_anon(new_page);
  1329. unlock_page(new_page);
  1330. *hpage = NULL;
  1331. } else {
  1332. /* Something went wrong: rollback changes to the radix-tree */
  1333. shmem_uncharge(mapping->host, nr_none);
  1334. spin_lock_irq(&mapping->tree_lock);
  1335. radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
  1336. start) {
  1337. if (iter.index >= end)
  1338. break;
  1339. page = list_first_entry_or_null(&pagelist,
  1340. struct page, lru);
  1341. if (!page || iter.index < page->index) {
  1342. if (!nr_none)
  1343. break;
  1344. nr_none--;
  1345. /* Put holes back where they were */
  1346. radix_tree_delete(&mapping->page_tree,
  1347. iter.index);
  1348. continue;
  1349. }
  1350. VM_BUG_ON_PAGE(page->index != iter.index, page);
  1351. /* Unfreeze the page. */
  1352. list_del(&page->lru);
  1353. page_ref_unfreeze(page, 2);
  1354. radix_tree_replace_slot(&mapping->page_tree,
  1355. slot, page);
  1356. slot = radix_tree_iter_resume(slot, &iter);
  1357. spin_unlock_irq(&mapping->tree_lock);
  1358. putback_lru_page(page);
  1359. unlock_page(page);
  1360. spin_lock_irq(&mapping->tree_lock);
  1361. }
  1362. VM_BUG_ON(nr_none);
  1363. spin_unlock_irq(&mapping->tree_lock);
  1364. /* Unfreeze new_page, caller would take care about freeing it */
  1365. page_ref_unfreeze(new_page, 1);
  1366. mem_cgroup_cancel_charge(new_page, memcg, true);
  1367. unlock_page(new_page);
  1368. new_page->mapping = NULL;
  1369. }
  1370. out:
  1371. VM_BUG_ON(!list_empty(&pagelist));
  1372. /* TODO: tracepoints */
  1373. }
  1374. static void khugepaged_scan_shmem(struct mm_struct *mm,
  1375. struct address_space *mapping,
  1376. pgoff_t start, struct page **hpage)
  1377. {
  1378. struct page *page = NULL;
  1379. struct radix_tree_iter iter;
  1380. void **slot;
  1381. int present, swap;
  1382. int node = NUMA_NO_NODE;
  1383. int result = SCAN_SUCCEED;
  1384. present = 0;
  1385. swap = 0;
  1386. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  1387. rcu_read_lock();
  1388. radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
  1389. if (iter.index >= start + HPAGE_PMD_NR)
  1390. break;
  1391. page = radix_tree_deref_slot(slot);
  1392. if (radix_tree_deref_retry(page)) {
  1393. slot = radix_tree_iter_retry(&iter);
  1394. continue;
  1395. }
  1396. if (radix_tree_exception(page)) {
  1397. if (++swap > khugepaged_max_ptes_swap) {
  1398. result = SCAN_EXCEED_SWAP_PTE;
  1399. break;
  1400. }
  1401. continue;
  1402. }
  1403. if (PageTransCompound(page)) {
  1404. result = SCAN_PAGE_COMPOUND;
  1405. break;
  1406. }
  1407. node = page_to_nid(page);
  1408. if (khugepaged_scan_abort(node)) {
  1409. result = SCAN_SCAN_ABORT;
  1410. break;
  1411. }
  1412. khugepaged_node_load[node]++;
  1413. if (!PageLRU(page)) {
  1414. result = SCAN_PAGE_LRU;
  1415. break;
  1416. }
  1417. if (page_count(page) != 1 + page_mapcount(page)) {
  1418. result = SCAN_PAGE_COUNT;
  1419. break;
  1420. }
  1421. /*
  1422. * We probably should check if the page is referenced here, but
  1423. * nobody would transfer pte_young() to PageReferenced() for us.
  1424. * And rmap walk here is just too costly...
  1425. */
  1426. present++;
  1427. if (need_resched()) {
  1428. slot = radix_tree_iter_resume(slot, &iter);
  1429. cond_resched_rcu();
  1430. }
  1431. }
  1432. rcu_read_unlock();
  1433. if (result == SCAN_SUCCEED) {
  1434. if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
  1435. result = SCAN_EXCEED_NONE_PTE;
  1436. } else {
  1437. node = khugepaged_find_target_node();
  1438. collapse_shmem(mm, mapping, start, hpage, node);
  1439. }
  1440. }
  1441. /* TODO: tracepoints */
  1442. }
  1443. #else
  1444. static void khugepaged_scan_shmem(struct mm_struct *mm,
  1445. struct address_space *mapping,
  1446. pgoff_t start, struct page **hpage)
  1447. {
  1448. BUILD_BUG();
  1449. }
  1450. #endif
  1451. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1452. struct page **hpage)
  1453. __releases(&khugepaged_mm_lock)
  1454. __acquires(&khugepaged_mm_lock)
  1455. {
  1456. struct mm_slot *mm_slot;
  1457. struct mm_struct *mm;
  1458. struct vm_area_struct *vma;
  1459. int progress = 0;
  1460. VM_BUG_ON(!pages);
  1461. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1462. if (khugepaged_scan.mm_slot)
  1463. mm_slot = khugepaged_scan.mm_slot;
  1464. else {
  1465. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1466. struct mm_slot, mm_node);
  1467. khugepaged_scan.address = 0;
  1468. khugepaged_scan.mm_slot = mm_slot;
  1469. }
  1470. spin_unlock(&khugepaged_mm_lock);
  1471. mm = mm_slot->mm;
  1472. down_read(&mm->mmap_sem);
  1473. if (unlikely(khugepaged_test_exit(mm)))
  1474. vma = NULL;
  1475. else
  1476. vma = find_vma(mm, khugepaged_scan.address);
  1477. progress++;
  1478. for (; vma; vma = vma->vm_next) {
  1479. unsigned long hstart, hend;
  1480. cond_resched();
  1481. if (unlikely(khugepaged_test_exit(mm))) {
  1482. progress++;
  1483. break;
  1484. }
  1485. if (!hugepage_vma_check(vma)) {
  1486. skip:
  1487. progress++;
  1488. continue;
  1489. }
  1490. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1491. hend = vma->vm_end & HPAGE_PMD_MASK;
  1492. if (hstart >= hend)
  1493. goto skip;
  1494. if (khugepaged_scan.address > hend)
  1495. goto skip;
  1496. if (khugepaged_scan.address < hstart)
  1497. khugepaged_scan.address = hstart;
  1498. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1499. while (khugepaged_scan.address < hend) {
  1500. int ret;
  1501. cond_resched();
  1502. if (unlikely(khugepaged_test_exit(mm)))
  1503. goto breakouterloop;
  1504. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1505. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1506. hend);
  1507. if (shmem_file(vma->vm_file)) {
  1508. struct file *file;
  1509. pgoff_t pgoff = linear_page_index(vma,
  1510. khugepaged_scan.address);
  1511. if (!shmem_huge_enabled(vma))
  1512. goto skip;
  1513. file = get_file(vma->vm_file);
  1514. up_read(&mm->mmap_sem);
  1515. ret = 1;
  1516. khugepaged_scan_shmem(mm, file->f_mapping,
  1517. pgoff, hpage);
  1518. fput(file);
  1519. } else {
  1520. ret = khugepaged_scan_pmd(mm, vma,
  1521. khugepaged_scan.address,
  1522. hpage);
  1523. }
  1524. /* move to next address */
  1525. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1526. progress += HPAGE_PMD_NR;
  1527. if (ret)
  1528. /* we released mmap_sem so break loop */
  1529. goto breakouterloop_mmap_sem;
  1530. if (progress >= pages)
  1531. goto breakouterloop;
  1532. }
  1533. }
  1534. breakouterloop:
  1535. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1536. breakouterloop_mmap_sem:
  1537. spin_lock(&khugepaged_mm_lock);
  1538. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1539. /*
  1540. * Release the current mm_slot if this mm is about to die, or
  1541. * if we scanned all vmas of this mm.
  1542. */
  1543. if (khugepaged_test_exit(mm) || !vma) {
  1544. /*
  1545. * Make sure that if mm_users is reaching zero while
  1546. * khugepaged runs here, khugepaged_exit will find
  1547. * mm_slot not pointing to the exiting mm.
  1548. */
  1549. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1550. khugepaged_scan.mm_slot = list_entry(
  1551. mm_slot->mm_node.next,
  1552. struct mm_slot, mm_node);
  1553. khugepaged_scan.address = 0;
  1554. } else {
  1555. khugepaged_scan.mm_slot = NULL;
  1556. khugepaged_full_scans++;
  1557. }
  1558. collect_mm_slot(mm_slot);
  1559. }
  1560. return progress;
  1561. }
  1562. static int khugepaged_has_work(void)
  1563. {
  1564. return !list_empty(&khugepaged_scan.mm_head) &&
  1565. khugepaged_enabled();
  1566. }
  1567. static int khugepaged_wait_event(void)
  1568. {
  1569. return !list_empty(&khugepaged_scan.mm_head) ||
  1570. kthread_should_stop();
  1571. }
  1572. static void khugepaged_do_scan(void)
  1573. {
  1574. struct page *hpage = NULL;
  1575. unsigned int progress = 0, pass_through_head = 0;
  1576. unsigned int pages = khugepaged_pages_to_scan;
  1577. bool wait = true;
  1578. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1579. while (progress < pages) {
  1580. if (!khugepaged_prealloc_page(&hpage, &wait))
  1581. break;
  1582. cond_resched();
  1583. if (unlikely(kthread_should_stop() || try_to_freeze()))
  1584. break;
  1585. spin_lock(&khugepaged_mm_lock);
  1586. if (!khugepaged_scan.mm_slot)
  1587. pass_through_head++;
  1588. if (khugepaged_has_work() &&
  1589. pass_through_head < 2)
  1590. progress += khugepaged_scan_mm_slot(pages - progress,
  1591. &hpage);
  1592. else
  1593. progress = pages;
  1594. spin_unlock(&khugepaged_mm_lock);
  1595. }
  1596. if (!IS_ERR_OR_NULL(hpage))
  1597. put_page(hpage);
  1598. }
  1599. static bool khugepaged_should_wakeup(void)
  1600. {
  1601. return kthread_should_stop() ||
  1602. time_after_eq(jiffies, khugepaged_sleep_expire);
  1603. }
  1604. static void khugepaged_wait_work(void)
  1605. {
  1606. if (khugepaged_has_work()) {
  1607. const unsigned long scan_sleep_jiffies =
  1608. msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
  1609. if (!scan_sleep_jiffies)
  1610. return;
  1611. khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
  1612. wait_event_freezable_timeout(khugepaged_wait,
  1613. khugepaged_should_wakeup(),
  1614. scan_sleep_jiffies);
  1615. return;
  1616. }
  1617. if (khugepaged_enabled())
  1618. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  1619. }
  1620. static int khugepaged(void *none)
  1621. {
  1622. struct mm_slot *mm_slot;
  1623. set_freezable();
  1624. set_user_nice(current, MAX_NICE);
  1625. while (!kthread_should_stop()) {
  1626. khugepaged_do_scan();
  1627. khugepaged_wait_work();
  1628. }
  1629. spin_lock(&khugepaged_mm_lock);
  1630. mm_slot = khugepaged_scan.mm_slot;
  1631. khugepaged_scan.mm_slot = NULL;
  1632. if (mm_slot)
  1633. collect_mm_slot(mm_slot);
  1634. spin_unlock(&khugepaged_mm_lock);
  1635. return 0;
  1636. }
  1637. static void set_recommended_min_free_kbytes(void)
  1638. {
  1639. struct zone *zone;
  1640. int nr_zones = 0;
  1641. unsigned long recommended_min;
  1642. for_each_populated_zone(zone)
  1643. nr_zones++;
  1644. /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
  1645. recommended_min = pageblock_nr_pages * nr_zones * 2;
  1646. /*
  1647. * Make sure that on average at least two pageblocks are almost free
  1648. * of another type, one for a migratetype to fall back to and a
  1649. * second to avoid subsequent fallbacks of other types There are 3
  1650. * MIGRATE_TYPES we care about.
  1651. */
  1652. recommended_min += pageblock_nr_pages * nr_zones *
  1653. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  1654. /* don't ever allow to reserve more than 5% of the lowmem */
  1655. recommended_min = min(recommended_min,
  1656. (unsigned long) nr_free_buffer_pages() / 20);
  1657. recommended_min <<= (PAGE_SHIFT-10);
  1658. if (recommended_min > min_free_kbytes) {
  1659. if (user_min_free_kbytes >= 0)
  1660. pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
  1661. min_free_kbytes, recommended_min);
  1662. min_free_kbytes = recommended_min;
  1663. }
  1664. setup_per_zone_wmarks();
  1665. }
  1666. int start_stop_khugepaged(void)
  1667. {
  1668. static struct task_struct *khugepaged_thread __read_mostly;
  1669. static DEFINE_MUTEX(khugepaged_mutex);
  1670. int err = 0;
  1671. mutex_lock(&khugepaged_mutex);
  1672. if (khugepaged_enabled()) {
  1673. if (!khugepaged_thread)
  1674. khugepaged_thread = kthread_run(khugepaged, NULL,
  1675. "khugepaged");
  1676. if (IS_ERR(khugepaged_thread)) {
  1677. pr_err("khugepaged: kthread_run(khugepaged) failed\n");
  1678. err = PTR_ERR(khugepaged_thread);
  1679. khugepaged_thread = NULL;
  1680. goto fail;
  1681. }
  1682. if (!list_empty(&khugepaged_scan.mm_head))
  1683. wake_up_interruptible(&khugepaged_wait);
  1684. set_recommended_min_free_kbytes();
  1685. } else if (khugepaged_thread) {
  1686. kthread_stop(khugepaged_thread);
  1687. khugepaged_thread = NULL;
  1688. }
  1689. fail:
  1690. mutex_unlock(&khugepaged_mutex);
  1691. return err;
  1692. }