kasan.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811
  1. /*
  2. * This file contains shadow memory manipulation code.
  3. *
  4. * Copyright (c) 2014 Samsung Electronics Co., Ltd.
  5. * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
  6. *
  7. * Some code borrowed from https://github.com/xairy/kasan-prototype by
  8. * Andrey Konovalov <adech.fo@gmail.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. *
  14. */
  15. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16. #define DISABLE_BRANCH_PROFILING
  17. #include <linux/export.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/init.h>
  20. #include <linux/kasan.h>
  21. #include <linux/kernel.h>
  22. #include <linux/kmemleak.h>
  23. #include <linux/linkage.h>
  24. #include <linux/memblock.h>
  25. #include <linux/memory.h>
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/printk.h>
  29. #include <linux/sched.h>
  30. #include <linux/slab.h>
  31. #include <linux/stacktrace.h>
  32. #include <linux/string.h>
  33. #include <linux/types.h>
  34. #include <linux/vmalloc.h>
  35. #include <linux/bug.h>
  36. #include "kasan.h"
  37. #include "../slab.h"
  38. /*
  39. * Poisons the shadow memory for 'size' bytes starting from 'addr'.
  40. * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
  41. */
  42. static void kasan_poison_shadow(const void *address, size_t size, u8 value)
  43. {
  44. void *shadow_start, *shadow_end;
  45. shadow_start = kasan_mem_to_shadow(address);
  46. shadow_end = kasan_mem_to_shadow(address + size);
  47. memset(shadow_start, value, shadow_end - shadow_start);
  48. }
  49. void kasan_unpoison_shadow(const void *address, size_t size)
  50. {
  51. kasan_poison_shadow(address, size, 0);
  52. if (size & KASAN_SHADOW_MASK) {
  53. u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
  54. *shadow = size & KASAN_SHADOW_MASK;
  55. }
  56. }
  57. static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
  58. {
  59. void *base = task_stack_page(task);
  60. size_t size = sp - base;
  61. kasan_unpoison_shadow(base, size);
  62. }
  63. /* Unpoison the entire stack for a task. */
  64. void kasan_unpoison_task_stack(struct task_struct *task)
  65. {
  66. __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
  67. }
  68. /* Unpoison the stack for the current task beyond a watermark sp value. */
  69. asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
  70. {
  71. /*
  72. * Calculate the task stack base address. Avoid using 'current'
  73. * because this function is called by early resume code which hasn't
  74. * yet set up the percpu register (%gs).
  75. */
  76. void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
  77. kasan_unpoison_shadow(base, watermark - base);
  78. }
  79. /*
  80. * Clear all poison for the region between the current SP and a provided
  81. * watermark value, as is sometimes required prior to hand-crafted asm function
  82. * returns in the middle of functions.
  83. */
  84. void kasan_unpoison_stack_above_sp_to(const void *watermark)
  85. {
  86. const void *sp = __builtin_frame_address(0);
  87. size_t size = watermark - sp;
  88. if (WARN_ON(sp > watermark))
  89. return;
  90. kasan_unpoison_shadow(sp, size);
  91. }
  92. /*
  93. * All functions below always inlined so compiler could
  94. * perform better optimizations in each of __asan_loadX/__assn_storeX
  95. * depending on memory access size X.
  96. */
  97. static __always_inline bool memory_is_poisoned_1(unsigned long addr)
  98. {
  99. s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
  100. if (unlikely(shadow_value)) {
  101. s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
  102. return unlikely(last_accessible_byte >= shadow_value);
  103. }
  104. return false;
  105. }
  106. static __always_inline bool memory_is_poisoned_2(unsigned long addr)
  107. {
  108. u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
  109. if (unlikely(*shadow_addr)) {
  110. if (memory_is_poisoned_1(addr + 1))
  111. return true;
  112. /*
  113. * If single shadow byte covers 2-byte access, we don't
  114. * need to do anything more. Otherwise, test the first
  115. * shadow byte.
  116. */
  117. if (likely(((addr + 1) & KASAN_SHADOW_MASK) != 0))
  118. return false;
  119. return unlikely(*(u8 *)shadow_addr);
  120. }
  121. return false;
  122. }
  123. static __always_inline bool memory_is_poisoned_4(unsigned long addr)
  124. {
  125. u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
  126. if (unlikely(*shadow_addr)) {
  127. if (memory_is_poisoned_1(addr + 3))
  128. return true;
  129. /*
  130. * If single shadow byte covers 4-byte access, we don't
  131. * need to do anything more. Otherwise, test the first
  132. * shadow byte.
  133. */
  134. if (likely(((addr + 3) & KASAN_SHADOW_MASK) >= 3))
  135. return false;
  136. return unlikely(*(u8 *)shadow_addr);
  137. }
  138. return false;
  139. }
  140. static __always_inline bool memory_is_poisoned_8(unsigned long addr)
  141. {
  142. u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
  143. if (unlikely(*shadow_addr)) {
  144. if (memory_is_poisoned_1(addr + 7))
  145. return true;
  146. /*
  147. * If single shadow byte covers 8-byte access, we don't
  148. * need to do anything more. Otherwise, test the first
  149. * shadow byte.
  150. */
  151. if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
  152. return false;
  153. return unlikely(*(u8 *)shadow_addr);
  154. }
  155. return false;
  156. }
  157. static __always_inline bool memory_is_poisoned_16(unsigned long addr)
  158. {
  159. u32 *shadow_addr = (u32 *)kasan_mem_to_shadow((void *)addr);
  160. if (unlikely(*shadow_addr)) {
  161. u16 shadow_first_bytes = *(u16 *)shadow_addr;
  162. if (unlikely(shadow_first_bytes))
  163. return true;
  164. /*
  165. * If two shadow bytes covers 16-byte access, we don't
  166. * need to do anything more. Otherwise, test the last
  167. * shadow byte.
  168. */
  169. if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
  170. return false;
  171. return memory_is_poisoned_1(addr + 15);
  172. }
  173. return false;
  174. }
  175. static __always_inline unsigned long bytes_is_zero(const u8 *start,
  176. size_t size)
  177. {
  178. while (size) {
  179. if (unlikely(*start))
  180. return (unsigned long)start;
  181. start++;
  182. size--;
  183. }
  184. return 0;
  185. }
  186. static __always_inline unsigned long memory_is_zero(const void *start,
  187. const void *end)
  188. {
  189. unsigned int words;
  190. unsigned long ret;
  191. unsigned int prefix = (unsigned long)start % 8;
  192. if (end - start <= 16)
  193. return bytes_is_zero(start, end - start);
  194. if (prefix) {
  195. prefix = 8 - prefix;
  196. ret = bytes_is_zero(start, prefix);
  197. if (unlikely(ret))
  198. return ret;
  199. start += prefix;
  200. }
  201. words = (end - start) / 8;
  202. while (words) {
  203. if (unlikely(*(u64 *)start))
  204. return bytes_is_zero(start, 8);
  205. start += 8;
  206. words--;
  207. }
  208. return bytes_is_zero(start, (end - start) % 8);
  209. }
  210. static __always_inline bool memory_is_poisoned_n(unsigned long addr,
  211. size_t size)
  212. {
  213. unsigned long ret;
  214. ret = memory_is_zero(kasan_mem_to_shadow((void *)addr),
  215. kasan_mem_to_shadow((void *)addr + size - 1) + 1);
  216. if (unlikely(ret)) {
  217. unsigned long last_byte = addr + size - 1;
  218. s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
  219. if (unlikely(ret != (unsigned long)last_shadow ||
  220. ((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
  221. return true;
  222. }
  223. return false;
  224. }
  225. static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
  226. {
  227. if (__builtin_constant_p(size)) {
  228. switch (size) {
  229. case 1:
  230. return memory_is_poisoned_1(addr);
  231. case 2:
  232. return memory_is_poisoned_2(addr);
  233. case 4:
  234. return memory_is_poisoned_4(addr);
  235. case 8:
  236. return memory_is_poisoned_8(addr);
  237. case 16:
  238. return memory_is_poisoned_16(addr);
  239. default:
  240. BUILD_BUG();
  241. }
  242. }
  243. return memory_is_poisoned_n(addr, size);
  244. }
  245. static __always_inline void check_memory_region_inline(unsigned long addr,
  246. size_t size, bool write,
  247. unsigned long ret_ip)
  248. {
  249. if (unlikely(size == 0))
  250. return;
  251. if (unlikely((void *)addr <
  252. kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
  253. kasan_report(addr, size, write, ret_ip);
  254. return;
  255. }
  256. if (likely(!memory_is_poisoned(addr, size)))
  257. return;
  258. kasan_report(addr, size, write, ret_ip);
  259. }
  260. static void check_memory_region(unsigned long addr,
  261. size_t size, bool write,
  262. unsigned long ret_ip)
  263. {
  264. check_memory_region_inline(addr, size, write, ret_ip);
  265. }
  266. void kasan_check_read(const void *p, unsigned int size)
  267. {
  268. check_memory_region((unsigned long)p, size, false, _RET_IP_);
  269. }
  270. EXPORT_SYMBOL(kasan_check_read);
  271. void kasan_check_write(const void *p, unsigned int size)
  272. {
  273. check_memory_region((unsigned long)p, size, true, _RET_IP_);
  274. }
  275. EXPORT_SYMBOL(kasan_check_write);
  276. #undef memset
  277. void *memset(void *addr, int c, size_t len)
  278. {
  279. check_memory_region((unsigned long)addr, len, true, _RET_IP_);
  280. return __memset(addr, c, len);
  281. }
  282. #undef memmove
  283. void *memmove(void *dest, const void *src, size_t len)
  284. {
  285. check_memory_region((unsigned long)src, len, false, _RET_IP_);
  286. check_memory_region((unsigned long)dest, len, true, _RET_IP_);
  287. return __memmove(dest, src, len);
  288. }
  289. #undef memcpy
  290. void *memcpy(void *dest, const void *src, size_t len)
  291. {
  292. check_memory_region((unsigned long)src, len, false, _RET_IP_);
  293. check_memory_region((unsigned long)dest, len, true, _RET_IP_);
  294. return __memcpy(dest, src, len);
  295. }
  296. void kasan_alloc_pages(struct page *page, unsigned int order)
  297. {
  298. if (likely(!PageHighMem(page)))
  299. kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
  300. }
  301. void kasan_free_pages(struct page *page, unsigned int order)
  302. {
  303. if (likely(!PageHighMem(page)))
  304. kasan_poison_shadow(page_address(page),
  305. PAGE_SIZE << order,
  306. KASAN_FREE_PAGE);
  307. }
  308. /*
  309. * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
  310. * For larger allocations larger redzones are used.
  311. */
  312. static size_t optimal_redzone(size_t object_size)
  313. {
  314. int rz =
  315. object_size <= 64 - 16 ? 16 :
  316. object_size <= 128 - 32 ? 32 :
  317. object_size <= 512 - 64 ? 64 :
  318. object_size <= 4096 - 128 ? 128 :
  319. object_size <= (1 << 14) - 256 ? 256 :
  320. object_size <= (1 << 15) - 512 ? 512 :
  321. object_size <= (1 << 16) - 1024 ? 1024 : 2048;
  322. return rz;
  323. }
  324. void kasan_cache_create(struct kmem_cache *cache, size_t *size,
  325. unsigned long *flags)
  326. {
  327. int redzone_adjust;
  328. int orig_size = *size;
  329. /* Add alloc meta. */
  330. cache->kasan_info.alloc_meta_offset = *size;
  331. *size += sizeof(struct kasan_alloc_meta);
  332. /* Add free meta. */
  333. if (cache->flags & SLAB_DESTROY_BY_RCU || cache->ctor ||
  334. cache->object_size < sizeof(struct kasan_free_meta)) {
  335. cache->kasan_info.free_meta_offset = *size;
  336. *size += sizeof(struct kasan_free_meta);
  337. }
  338. redzone_adjust = optimal_redzone(cache->object_size) -
  339. (*size - cache->object_size);
  340. if (redzone_adjust > 0)
  341. *size += redzone_adjust;
  342. *size = min(KMALLOC_MAX_SIZE, max(*size, cache->object_size +
  343. optimal_redzone(cache->object_size)));
  344. /*
  345. * If the metadata doesn't fit, don't enable KASAN at all.
  346. */
  347. if (*size <= cache->kasan_info.alloc_meta_offset ||
  348. *size <= cache->kasan_info.free_meta_offset) {
  349. cache->kasan_info.alloc_meta_offset = 0;
  350. cache->kasan_info.free_meta_offset = 0;
  351. *size = orig_size;
  352. return;
  353. }
  354. *flags |= SLAB_KASAN;
  355. }
  356. void kasan_cache_shrink(struct kmem_cache *cache)
  357. {
  358. quarantine_remove_cache(cache);
  359. }
  360. void kasan_cache_destroy(struct kmem_cache *cache)
  361. {
  362. quarantine_remove_cache(cache);
  363. }
  364. size_t kasan_metadata_size(struct kmem_cache *cache)
  365. {
  366. return (cache->kasan_info.alloc_meta_offset ?
  367. sizeof(struct kasan_alloc_meta) : 0) +
  368. (cache->kasan_info.free_meta_offset ?
  369. sizeof(struct kasan_free_meta) : 0);
  370. }
  371. void kasan_poison_slab(struct page *page)
  372. {
  373. kasan_poison_shadow(page_address(page),
  374. PAGE_SIZE << compound_order(page),
  375. KASAN_KMALLOC_REDZONE);
  376. }
  377. void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
  378. {
  379. kasan_unpoison_shadow(object, cache->object_size);
  380. }
  381. void kasan_poison_object_data(struct kmem_cache *cache, void *object)
  382. {
  383. kasan_poison_shadow(object,
  384. round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
  385. KASAN_KMALLOC_REDZONE);
  386. }
  387. static inline int in_irqentry_text(unsigned long ptr)
  388. {
  389. return (ptr >= (unsigned long)&__irqentry_text_start &&
  390. ptr < (unsigned long)&__irqentry_text_end) ||
  391. (ptr >= (unsigned long)&__softirqentry_text_start &&
  392. ptr < (unsigned long)&__softirqentry_text_end);
  393. }
  394. static inline void filter_irq_stacks(struct stack_trace *trace)
  395. {
  396. int i;
  397. if (!trace->nr_entries)
  398. return;
  399. for (i = 0; i < trace->nr_entries; i++)
  400. if (in_irqentry_text(trace->entries[i])) {
  401. /* Include the irqentry function into the stack. */
  402. trace->nr_entries = i + 1;
  403. break;
  404. }
  405. }
  406. static inline depot_stack_handle_t save_stack(gfp_t flags)
  407. {
  408. unsigned long entries[KASAN_STACK_DEPTH];
  409. struct stack_trace trace = {
  410. .nr_entries = 0,
  411. .entries = entries,
  412. .max_entries = KASAN_STACK_DEPTH,
  413. .skip = 0
  414. };
  415. save_stack_trace(&trace);
  416. filter_irq_stacks(&trace);
  417. if (trace.nr_entries != 0 &&
  418. trace.entries[trace.nr_entries-1] == ULONG_MAX)
  419. trace.nr_entries--;
  420. return depot_save_stack(&trace, flags);
  421. }
  422. static inline void set_track(struct kasan_track *track, gfp_t flags)
  423. {
  424. track->pid = current->pid;
  425. track->stack = save_stack(flags);
  426. }
  427. struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
  428. const void *object)
  429. {
  430. BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
  431. return (void *)object + cache->kasan_info.alloc_meta_offset;
  432. }
  433. struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
  434. const void *object)
  435. {
  436. BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
  437. return (void *)object + cache->kasan_info.free_meta_offset;
  438. }
  439. void kasan_init_slab_obj(struct kmem_cache *cache, const void *object)
  440. {
  441. struct kasan_alloc_meta *alloc_info;
  442. if (!(cache->flags & SLAB_KASAN))
  443. return;
  444. alloc_info = get_alloc_info(cache, object);
  445. __memset(alloc_info, 0, sizeof(*alloc_info));
  446. }
  447. void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
  448. {
  449. kasan_kmalloc(cache, object, cache->object_size, flags);
  450. }
  451. static void kasan_poison_slab_free(struct kmem_cache *cache, void *object)
  452. {
  453. unsigned long size = cache->object_size;
  454. unsigned long rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
  455. /* RCU slabs could be legally used after free within the RCU period */
  456. if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
  457. return;
  458. kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
  459. }
  460. bool kasan_slab_free(struct kmem_cache *cache, void *object)
  461. {
  462. s8 shadow_byte;
  463. /* RCU slabs could be legally used after free within the RCU period */
  464. if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
  465. return false;
  466. shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
  467. if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) {
  468. kasan_report_double_free(cache, object, shadow_byte);
  469. return true;
  470. }
  471. kasan_poison_slab_free(cache, object);
  472. if (unlikely(!(cache->flags & SLAB_KASAN)))
  473. return false;
  474. set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
  475. quarantine_put(get_free_info(cache, object), cache);
  476. return true;
  477. }
  478. void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
  479. gfp_t flags)
  480. {
  481. unsigned long redzone_start;
  482. unsigned long redzone_end;
  483. if (gfpflags_allow_blocking(flags))
  484. quarantine_reduce();
  485. if (unlikely(object == NULL))
  486. return;
  487. redzone_start = round_up((unsigned long)(object + size),
  488. KASAN_SHADOW_SCALE_SIZE);
  489. redzone_end = round_up((unsigned long)object + cache->object_size,
  490. KASAN_SHADOW_SCALE_SIZE);
  491. kasan_unpoison_shadow(object, size);
  492. kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
  493. KASAN_KMALLOC_REDZONE);
  494. if (cache->flags & SLAB_KASAN)
  495. set_track(&get_alloc_info(cache, object)->alloc_track, flags);
  496. }
  497. EXPORT_SYMBOL(kasan_kmalloc);
  498. void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
  499. {
  500. struct page *page;
  501. unsigned long redzone_start;
  502. unsigned long redzone_end;
  503. if (gfpflags_allow_blocking(flags))
  504. quarantine_reduce();
  505. if (unlikely(ptr == NULL))
  506. return;
  507. page = virt_to_page(ptr);
  508. redzone_start = round_up((unsigned long)(ptr + size),
  509. KASAN_SHADOW_SCALE_SIZE);
  510. redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
  511. kasan_unpoison_shadow(ptr, size);
  512. kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
  513. KASAN_PAGE_REDZONE);
  514. }
  515. void kasan_krealloc(const void *object, size_t size, gfp_t flags)
  516. {
  517. struct page *page;
  518. if (unlikely(object == ZERO_SIZE_PTR))
  519. return;
  520. page = virt_to_head_page(object);
  521. if (unlikely(!PageSlab(page)))
  522. kasan_kmalloc_large(object, size, flags);
  523. else
  524. kasan_kmalloc(page->slab_cache, object, size, flags);
  525. }
  526. void kasan_poison_kfree(void *ptr)
  527. {
  528. struct page *page;
  529. page = virt_to_head_page(ptr);
  530. if (unlikely(!PageSlab(page)))
  531. kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
  532. KASAN_FREE_PAGE);
  533. else
  534. kasan_poison_slab_free(page->slab_cache, ptr);
  535. }
  536. void kasan_kfree_large(const void *ptr)
  537. {
  538. struct page *page = virt_to_page(ptr);
  539. kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
  540. KASAN_FREE_PAGE);
  541. }
  542. int kasan_module_alloc(void *addr, size_t size)
  543. {
  544. void *ret;
  545. size_t shadow_size;
  546. unsigned long shadow_start;
  547. shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
  548. shadow_size = round_up(size >> KASAN_SHADOW_SCALE_SHIFT,
  549. PAGE_SIZE);
  550. if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
  551. return -EINVAL;
  552. ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
  553. shadow_start + shadow_size,
  554. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  555. PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
  556. __builtin_return_address(0));
  557. if (ret) {
  558. find_vm_area(addr)->flags |= VM_KASAN;
  559. kmemleak_ignore(ret);
  560. return 0;
  561. }
  562. return -ENOMEM;
  563. }
  564. void kasan_free_shadow(const struct vm_struct *vm)
  565. {
  566. if (vm->flags & VM_KASAN)
  567. vfree(kasan_mem_to_shadow(vm->addr));
  568. }
  569. static void register_global(struct kasan_global *global)
  570. {
  571. size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
  572. kasan_unpoison_shadow(global->beg, global->size);
  573. kasan_poison_shadow(global->beg + aligned_size,
  574. global->size_with_redzone - aligned_size,
  575. KASAN_GLOBAL_REDZONE);
  576. }
  577. void __asan_register_globals(struct kasan_global *globals, size_t size)
  578. {
  579. int i;
  580. for (i = 0; i < size; i++)
  581. register_global(&globals[i]);
  582. }
  583. EXPORT_SYMBOL(__asan_register_globals);
  584. void __asan_unregister_globals(struct kasan_global *globals, size_t size)
  585. {
  586. }
  587. EXPORT_SYMBOL(__asan_unregister_globals);
  588. #define DEFINE_ASAN_LOAD_STORE(size) \
  589. void __asan_load##size(unsigned long addr) \
  590. { \
  591. check_memory_region_inline(addr, size, false, _RET_IP_);\
  592. } \
  593. EXPORT_SYMBOL(__asan_load##size); \
  594. __alias(__asan_load##size) \
  595. void __asan_load##size##_noabort(unsigned long); \
  596. EXPORT_SYMBOL(__asan_load##size##_noabort); \
  597. void __asan_store##size(unsigned long addr) \
  598. { \
  599. check_memory_region_inline(addr, size, true, _RET_IP_); \
  600. } \
  601. EXPORT_SYMBOL(__asan_store##size); \
  602. __alias(__asan_store##size) \
  603. void __asan_store##size##_noabort(unsigned long); \
  604. EXPORT_SYMBOL(__asan_store##size##_noabort)
  605. DEFINE_ASAN_LOAD_STORE(1);
  606. DEFINE_ASAN_LOAD_STORE(2);
  607. DEFINE_ASAN_LOAD_STORE(4);
  608. DEFINE_ASAN_LOAD_STORE(8);
  609. DEFINE_ASAN_LOAD_STORE(16);
  610. void __asan_loadN(unsigned long addr, size_t size)
  611. {
  612. check_memory_region(addr, size, false, _RET_IP_);
  613. }
  614. EXPORT_SYMBOL(__asan_loadN);
  615. __alias(__asan_loadN)
  616. void __asan_loadN_noabort(unsigned long, size_t);
  617. EXPORT_SYMBOL(__asan_loadN_noabort);
  618. void __asan_storeN(unsigned long addr, size_t size)
  619. {
  620. check_memory_region(addr, size, true, _RET_IP_);
  621. }
  622. EXPORT_SYMBOL(__asan_storeN);
  623. __alias(__asan_storeN)
  624. void __asan_storeN_noabort(unsigned long, size_t);
  625. EXPORT_SYMBOL(__asan_storeN_noabort);
  626. /* to shut up compiler complaints */
  627. void __asan_handle_no_return(void) {}
  628. EXPORT_SYMBOL(__asan_handle_no_return);
  629. /* Emitted by compiler to poison large objects when they go out of scope. */
  630. void __asan_poison_stack_memory(const void *addr, size_t size)
  631. {
  632. /*
  633. * Addr is KASAN_SHADOW_SCALE_SIZE-aligned and the object is surrounded
  634. * by redzones, so we simply round up size to simplify logic.
  635. */
  636. kasan_poison_shadow(addr, round_up(size, KASAN_SHADOW_SCALE_SIZE),
  637. KASAN_USE_AFTER_SCOPE);
  638. }
  639. EXPORT_SYMBOL(__asan_poison_stack_memory);
  640. /* Emitted by compiler to unpoison large objects when they go into scope. */
  641. void __asan_unpoison_stack_memory(const void *addr, size_t size)
  642. {
  643. kasan_unpoison_shadow(addr, size);
  644. }
  645. EXPORT_SYMBOL(__asan_unpoison_stack_memory);
  646. #ifdef CONFIG_MEMORY_HOTPLUG
  647. static int kasan_mem_notifier(struct notifier_block *nb,
  648. unsigned long action, void *data)
  649. {
  650. return (action == MEM_GOING_ONLINE) ? NOTIFY_BAD : NOTIFY_OK;
  651. }
  652. static int __init kasan_memhotplug_init(void)
  653. {
  654. pr_info("WARNING: KASAN doesn't support memory hot-add\n");
  655. pr_info("Memory hot-add will be disabled\n");
  656. hotplug_memory_notifier(kasan_mem_notifier, 0);
  657. return 0;
  658. }
  659. module_init(kasan_memhotplug_init);
  660. #endif