timekeeping.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344
  1. /*
  2. * linux/kernel/time/timekeeping.c
  3. *
  4. * Kernel timekeeping code and accessor functions
  5. *
  6. * This code was moved from linux/kernel/timer.c.
  7. * Please see that file for copyright and history logs.
  8. *
  9. */
  10. #include <linux/timekeeper_internal.h>
  11. #include <linux/module.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/percpu.h>
  14. #include <linux/init.h>
  15. #include <linux/mm.h>
  16. #include <linux/sched.h>
  17. #include <linux/syscore_ops.h>
  18. #include <linux/clocksource.h>
  19. #include <linux/jiffies.h>
  20. #include <linux/time.h>
  21. #include <linux/tick.h>
  22. #include <linux/stop_machine.h>
  23. #include <linux/pvclock_gtod.h>
  24. #include <linux/compiler.h>
  25. #include "tick-internal.h"
  26. #include "ntp_internal.h"
  27. #include "timekeeping_internal.h"
  28. #define TK_CLEAR_NTP (1 << 0)
  29. #define TK_MIRROR (1 << 1)
  30. #define TK_CLOCK_WAS_SET (1 << 2)
  31. /*
  32. * The most important data for readout fits into a single 64 byte
  33. * cache line.
  34. */
  35. static struct {
  36. seqcount_t seq;
  37. struct timekeeper timekeeper;
  38. } tk_core ____cacheline_aligned;
  39. static DEFINE_RAW_SPINLOCK(timekeeper_lock);
  40. static struct timekeeper shadow_timekeeper;
  41. /**
  42. * struct tk_fast - NMI safe timekeeper
  43. * @seq: Sequence counter for protecting updates. The lowest bit
  44. * is the index for the tk_read_base array
  45. * @base: tk_read_base array. Access is indexed by the lowest bit of
  46. * @seq.
  47. *
  48. * See @update_fast_timekeeper() below.
  49. */
  50. struct tk_fast {
  51. seqcount_t seq;
  52. struct tk_read_base base[2];
  53. };
  54. static struct tk_fast tk_fast_mono ____cacheline_aligned;
  55. static struct tk_fast tk_fast_raw ____cacheline_aligned;
  56. /* flag for if timekeeping is suspended */
  57. int __read_mostly timekeeping_suspended;
  58. static inline void tk_normalize_xtime(struct timekeeper *tk)
  59. {
  60. while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
  61. tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
  62. tk->xtime_sec++;
  63. }
  64. }
  65. static inline struct timespec64 tk_xtime(struct timekeeper *tk)
  66. {
  67. struct timespec64 ts;
  68. ts.tv_sec = tk->xtime_sec;
  69. ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
  70. return ts;
  71. }
  72. static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
  73. {
  74. tk->xtime_sec = ts->tv_sec;
  75. tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
  76. }
  77. static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
  78. {
  79. tk->xtime_sec += ts->tv_sec;
  80. tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
  81. tk_normalize_xtime(tk);
  82. }
  83. static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
  84. {
  85. struct timespec64 tmp;
  86. /*
  87. * Verify consistency of: offset_real = -wall_to_monotonic
  88. * before modifying anything
  89. */
  90. set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
  91. -tk->wall_to_monotonic.tv_nsec);
  92. WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
  93. tk->wall_to_monotonic = wtm;
  94. set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
  95. tk->offs_real = timespec64_to_ktime(tmp);
  96. tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
  97. }
  98. static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
  99. {
  100. tk->offs_boot = ktime_add(tk->offs_boot, delta);
  101. }
  102. #ifdef CONFIG_DEBUG_TIMEKEEPING
  103. #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
  104. static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
  105. {
  106. u64 max_cycles = tk->tkr_mono.clock->max_cycles;
  107. const char *name = tk->tkr_mono.clock->name;
  108. if (offset > max_cycles) {
  109. printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
  110. offset, name, max_cycles);
  111. printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
  112. } else {
  113. if (offset > (max_cycles >> 1)) {
  114. printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
  115. offset, name, max_cycles >> 1);
  116. printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
  117. }
  118. }
  119. if (tk->underflow_seen) {
  120. if (jiffies - tk->last_warning > WARNING_FREQ) {
  121. printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
  122. printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
  123. printk_deferred(" Your kernel is probably still fine.\n");
  124. tk->last_warning = jiffies;
  125. }
  126. tk->underflow_seen = 0;
  127. }
  128. if (tk->overflow_seen) {
  129. if (jiffies - tk->last_warning > WARNING_FREQ) {
  130. printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
  131. printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
  132. printk_deferred(" Your kernel is probably still fine.\n");
  133. tk->last_warning = jiffies;
  134. }
  135. tk->overflow_seen = 0;
  136. }
  137. }
  138. static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
  139. {
  140. struct timekeeper *tk = &tk_core.timekeeper;
  141. u64 now, last, mask, max, delta;
  142. unsigned int seq;
  143. /*
  144. * Since we're called holding a seqlock, the data may shift
  145. * under us while we're doing the calculation. This can cause
  146. * false positives, since we'd note a problem but throw the
  147. * results away. So nest another seqlock here to atomically
  148. * grab the points we are checking with.
  149. */
  150. do {
  151. seq = read_seqcount_begin(&tk_core.seq);
  152. now = tkr->read(tkr->clock);
  153. last = tkr->cycle_last;
  154. mask = tkr->mask;
  155. max = tkr->clock->max_cycles;
  156. } while (read_seqcount_retry(&tk_core.seq, seq));
  157. delta = clocksource_delta(now, last, mask);
  158. /*
  159. * Try to catch underflows by checking if we are seeing small
  160. * mask-relative negative values.
  161. */
  162. if (unlikely((~delta & mask) < (mask >> 3))) {
  163. tk->underflow_seen = 1;
  164. delta = 0;
  165. }
  166. /* Cap delta value to the max_cycles values to avoid mult overflows */
  167. if (unlikely(delta > max)) {
  168. tk->overflow_seen = 1;
  169. delta = tkr->clock->max_cycles;
  170. }
  171. return delta;
  172. }
  173. #else
  174. static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
  175. {
  176. }
  177. static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
  178. {
  179. u64 cycle_now, delta;
  180. /* read clocksource */
  181. cycle_now = tkr->read(tkr->clock);
  182. /* calculate the delta since the last update_wall_time */
  183. delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
  184. return delta;
  185. }
  186. #endif
  187. /**
  188. * tk_setup_internals - Set up internals to use clocksource clock.
  189. *
  190. * @tk: The target timekeeper to setup.
  191. * @clock: Pointer to clocksource.
  192. *
  193. * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
  194. * pair and interval request.
  195. *
  196. * Unless you're the timekeeping code, you should not be using this!
  197. */
  198. static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
  199. {
  200. u64 interval;
  201. u64 tmp, ntpinterval;
  202. struct clocksource *old_clock;
  203. ++tk->cs_was_changed_seq;
  204. old_clock = tk->tkr_mono.clock;
  205. tk->tkr_mono.clock = clock;
  206. tk->tkr_mono.read = clock->read;
  207. tk->tkr_mono.mask = clock->mask;
  208. tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
  209. tk->tkr_raw.clock = clock;
  210. tk->tkr_raw.read = clock->read;
  211. tk->tkr_raw.mask = clock->mask;
  212. tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
  213. /* Do the ns -> cycle conversion first, using original mult */
  214. tmp = NTP_INTERVAL_LENGTH;
  215. tmp <<= clock->shift;
  216. ntpinterval = tmp;
  217. tmp += clock->mult/2;
  218. do_div(tmp, clock->mult);
  219. if (tmp == 0)
  220. tmp = 1;
  221. interval = (u64) tmp;
  222. tk->cycle_interval = interval;
  223. /* Go back from cycles -> shifted ns */
  224. tk->xtime_interval = interval * clock->mult;
  225. tk->xtime_remainder = ntpinterval - tk->xtime_interval;
  226. tk->raw_interval = (interval * clock->mult) >> clock->shift;
  227. /* if changing clocks, convert xtime_nsec shift units */
  228. if (old_clock) {
  229. int shift_change = clock->shift - old_clock->shift;
  230. if (shift_change < 0)
  231. tk->tkr_mono.xtime_nsec >>= -shift_change;
  232. else
  233. tk->tkr_mono.xtime_nsec <<= shift_change;
  234. }
  235. tk->tkr_raw.xtime_nsec = 0;
  236. tk->tkr_mono.shift = clock->shift;
  237. tk->tkr_raw.shift = clock->shift;
  238. tk->ntp_error = 0;
  239. tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
  240. tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
  241. /*
  242. * The timekeeper keeps its own mult values for the currently
  243. * active clocksource. These value will be adjusted via NTP
  244. * to counteract clock drifting.
  245. */
  246. tk->tkr_mono.mult = clock->mult;
  247. tk->tkr_raw.mult = clock->mult;
  248. tk->ntp_err_mult = 0;
  249. }
  250. /* Timekeeper helper functions. */
  251. #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
  252. static u32 default_arch_gettimeoffset(void) { return 0; }
  253. u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
  254. #else
  255. static inline u32 arch_gettimeoffset(void) { return 0; }
  256. #endif
  257. static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
  258. {
  259. u64 nsec;
  260. nsec = delta * tkr->mult + tkr->xtime_nsec;
  261. nsec >>= tkr->shift;
  262. /* If arch requires, add in get_arch_timeoffset() */
  263. return nsec + arch_gettimeoffset();
  264. }
  265. static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
  266. {
  267. u64 delta;
  268. delta = timekeeping_get_delta(tkr);
  269. return timekeeping_delta_to_ns(tkr, delta);
  270. }
  271. static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
  272. {
  273. u64 delta;
  274. /* calculate the delta since the last update_wall_time */
  275. delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
  276. return timekeeping_delta_to_ns(tkr, delta);
  277. }
  278. /**
  279. * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
  280. * @tkr: Timekeeping readout base from which we take the update
  281. *
  282. * We want to use this from any context including NMI and tracing /
  283. * instrumenting the timekeeping code itself.
  284. *
  285. * Employ the latch technique; see @raw_write_seqcount_latch.
  286. *
  287. * So if a NMI hits the update of base[0] then it will use base[1]
  288. * which is still consistent. In the worst case this can result is a
  289. * slightly wrong timestamp (a few nanoseconds). See
  290. * @ktime_get_mono_fast_ns.
  291. */
  292. static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
  293. {
  294. struct tk_read_base *base = tkf->base;
  295. /* Force readers off to base[1] */
  296. raw_write_seqcount_latch(&tkf->seq);
  297. /* Update base[0] */
  298. memcpy(base, tkr, sizeof(*base));
  299. /* Force readers back to base[0] */
  300. raw_write_seqcount_latch(&tkf->seq);
  301. /* Update base[1] */
  302. memcpy(base + 1, base, sizeof(*base));
  303. }
  304. /**
  305. * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
  306. *
  307. * This timestamp is not guaranteed to be monotonic across an update.
  308. * The timestamp is calculated by:
  309. *
  310. * now = base_mono + clock_delta * slope
  311. *
  312. * So if the update lowers the slope, readers who are forced to the
  313. * not yet updated second array are still using the old steeper slope.
  314. *
  315. * tmono
  316. * ^
  317. * | o n
  318. * | o n
  319. * | u
  320. * | o
  321. * |o
  322. * |12345678---> reader order
  323. *
  324. * o = old slope
  325. * u = update
  326. * n = new slope
  327. *
  328. * So reader 6 will observe time going backwards versus reader 5.
  329. *
  330. * While other CPUs are likely to be able observe that, the only way
  331. * for a CPU local observation is when an NMI hits in the middle of
  332. * the update. Timestamps taken from that NMI context might be ahead
  333. * of the following timestamps. Callers need to be aware of that and
  334. * deal with it.
  335. */
  336. static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
  337. {
  338. struct tk_read_base *tkr;
  339. unsigned int seq;
  340. u64 now;
  341. do {
  342. seq = raw_read_seqcount_latch(&tkf->seq);
  343. tkr = tkf->base + (seq & 0x01);
  344. now = ktime_to_ns(tkr->base);
  345. now += timekeeping_delta_to_ns(tkr,
  346. clocksource_delta(
  347. tkr->read(tkr->clock),
  348. tkr->cycle_last,
  349. tkr->mask));
  350. } while (read_seqcount_retry(&tkf->seq, seq));
  351. return now;
  352. }
  353. u64 ktime_get_mono_fast_ns(void)
  354. {
  355. return __ktime_get_fast_ns(&tk_fast_mono);
  356. }
  357. EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
  358. u64 ktime_get_raw_fast_ns(void)
  359. {
  360. return __ktime_get_fast_ns(&tk_fast_raw);
  361. }
  362. EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
  363. /**
  364. * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
  365. *
  366. * To keep it NMI safe since we're accessing from tracing, we're not using a
  367. * separate timekeeper with updates to monotonic clock and boot offset
  368. * protected with seqlocks. This has the following minor side effects:
  369. *
  370. * (1) Its possible that a timestamp be taken after the boot offset is updated
  371. * but before the timekeeper is updated. If this happens, the new boot offset
  372. * is added to the old timekeeping making the clock appear to update slightly
  373. * earlier:
  374. * CPU 0 CPU 1
  375. * timekeeping_inject_sleeptime64()
  376. * __timekeeping_inject_sleeptime(tk, delta);
  377. * timestamp();
  378. * timekeeping_update(tk, TK_CLEAR_NTP...);
  379. *
  380. * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
  381. * partially updated. Since the tk->offs_boot update is a rare event, this
  382. * should be a rare occurrence which postprocessing should be able to handle.
  383. */
  384. u64 notrace ktime_get_boot_fast_ns(void)
  385. {
  386. struct timekeeper *tk = &tk_core.timekeeper;
  387. return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
  388. }
  389. EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
  390. /* Suspend-time cycles value for halted fast timekeeper. */
  391. static u64 cycles_at_suspend;
  392. static u64 dummy_clock_read(struct clocksource *cs)
  393. {
  394. return cycles_at_suspend;
  395. }
  396. /**
  397. * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
  398. * @tk: Timekeeper to snapshot.
  399. *
  400. * It generally is unsafe to access the clocksource after timekeeping has been
  401. * suspended, so take a snapshot of the readout base of @tk and use it as the
  402. * fast timekeeper's readout base while suspended. It will return the same
  403. * number of cycles every time until timekeeping is resumed at which time the
  404. * proper readout base for the fast timekeeper will be restored automatically.
  405. */
  406. static void halt_fast_timekeeper(struct timekeeper *tk)
  407. {
  408. static struct tk_read_base tkr_dummy;
  409. struct tk_read_base *tkr = &tk->tkr_mono;
  410. memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
  411. cycles_at_suspend = tkr->read(tkr->clock);
  412. tkr_dummy.read = dummy_clock_read;
  413. update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
  414. tkr = &tk->tkr_raw;
  415. memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
  416. tkr_dummy.read = dummy_clock_read;
  417. update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
  418. }
  419. #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
  420. static inline void update_vsyscall(struct timekeeper *tk)
  421. {
  422. struct timespec xt, wm;
  423. xt = timespec64_to_timespec(tk_xtime(tk));
  424. wm = timespec64_to_timespec(tk->wall_to_monotonic);
  425. update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
  426. tk->tkr_mono.cycle_last);
  427. }
  428. static inline void old_vsyscall_fixup(struct timekeeper *tk)
  429. {
  430. s64 remainder;
  431. /*
  432. * Store only full nanoseconds into xtime_nsec after rounding
  433. * it up and add the remainder to the error difference.
  434. * XXX - This is necessary to avoid small 1ns inconsistnecies caused
  435. * by truncating the remainder in vsyscalls. However, it causes
  436. * additional work to be done in timekeeping_adjust(). Once
  437. * the vsyscall implementations are converted to use xtime_nsec
  438. * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
  439. * users are removed, this can be killed.
  440. */
  441. remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
  442. if (remainder != 0) {
  443. tk->tkr_mono.xtime_nsec -= remainder;
  444. tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
  445. tk->ntp_error += remainder << tk->ntp_error_shift;
  446. tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
  447. }
  448. }
  449. #else
  450. #define old_vsyscall_fixup(tk)
  451. #endif
  452. static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
  453. static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
  454. {
  455. raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
  456. }
  457. /**
  458. * pvclock_gtod_register_notifier - register a pvclock timedata update listener
  459. */
  460. int pvclock_gtod_register_notifier(struct notifier_block *nb)
  461. {
  462. struct timekeeper *tk = &tk_core.timekeeper;
  463. unsigned long flags;
  464. int ret;
  465. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  466. ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
  467. update_pvclock_gtod(tk, true);
  468. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  469. return ret;
  470. }
  471. EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
  472. /**
  473. * pvclock_gtod_unregister_notifier - unregister a pvclock
  474. * timedata update listener
  475. */
  476. int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
  477. {
  478. unsigned long flags;
  479. int ret;
  480. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  481. ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
  482. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  483. return ret;
  484. }
  485. EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
  486. /*
  487. * tk_update_leap_state - helper to update the next_leap_ktime
  488. */
  489. static inline void tk_update_leap_state(struct timekeeper *tk)
  490. {
  491. tk->next_leap_ktime = ntp_get_next_leap();
  492. if (tk->next_leap_ktime != KTIME_MAX)
  493. /* Convert to monotonic time */
  494. tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
  495. }
  496. /*
  497. * Update the ktime_t based scalar nsec members of the timekeeper
  498. */
  499. static inline void tk_update_ktime_data(struct timekeeper *tk)
  500. {
  501. u64 seconds;
  502. u32 nsec;
  503. /*
  504. * The xtime based monotonic readout is:
  505. * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
  506. * The ktime based monotonic readout is:
  507. * nsec = base_mono + now();
  508. * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
  509. */
  510. seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
  511. nsec = (u32) tk->wall_to_monotonic.tv_nsec;
  512. tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
  513. /* Update the monotonic raw base */
  514. tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
  515. /*
  516. * The sum of the nanoseconds portions of xtime and
  517. * wall_to_monotonic can be greater/equal one second. Take
  518. * this into account before updating tk->ktime_sec.
  519. */
  520. nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
  521. if (nsec >= NSEC_PER_SEC)
  522. seconds++;
  523. tk->ktime_sec = seconds;
  524. }
  525. /* must hold timekeeper_lock */
  526. static void timekeeping_update(struct timekeeper *tk, unsigned int action)
  527. {
  528. if (action & TK_CLEAR_NTP) {
  529. tk->ntp_error = 0;
  530. ntp_clear();
  531. }
  532. tk_update_leap_state(tk);
  533. tk_update_ktime_data(tk);
  534. update_vsyscall(tk);
  535. update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
  536. update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
  537. update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
  538. if (action & TK_CLOCK_WAS_SET)
  539. tk->clock_was_set_seq++;
  540. /*
  541. * The mirroring of the data to the shadow-timekeeper needs
  542. * to happen last here to ensure we don't over-write the
  543. * timekeeper structure on the next update with stale data
  544. */
  545. if (action & TK_MIRROR)
  546. memcpy(&shadow_timekeeper, &tk_core.timekeeper,
  547. sizeof(tk_core.timekeeper));
  548. }
  549. /**
  550. * timekeeping_forward_now - update clock to the current time
  551. *
  552. * Forward the current clock to update its state since the last call to
  553. * update_wall_time(). This is useful before significant clock changes,
  554. * as it avoids having to deal with this time offset explicitly.
  555. */
  556. static void timekeeping_forward_now(struct timekeeper *tk)
  557. {
  558. struct clocksource *clock = tk->tkr_mono.clock;
  559. u64 cycle_now, delta;
  560. u64 nsec;
  561. cycle_now = tk->tkr_mono.read(clock);
  562. delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
  563. tk->tkr_mono.cycle_last = cycle_now;
  564. tk->tkr_raw.cycle_last = cycle_now;
  565. tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
  566. /* If arch requires, add in get_arch_timeoffset() */
  567. tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
  568. tk_normalize_xtime(tk);
  569. nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
  570. timespec64_add_ns(&tk->raw_time, nsec);
  571. }
  572. /**
  573. * __getnstimeofday64 - Returns the time of day in a timespec64.
  574. * @ts: pointer to the timespec to be set
  575. *
  576. * Updates the time of day in the timespec.
  577. * Returns 0 on success, or -ve when suspended (timespec will be undefined).
  578. */
  579. int __getnstimeofday64(struct timespec64 *ts)
  580. {
  581. struct timekeeper *tk = &tk_core.timekeeper;
  582. unsigned long seq;
  583. u64 nsecs;
  584. do {
  585. seq = read_seqcount_begin(&tk_core.seq);
  586. ts->tv_sec = tk->xtime_sec;
  587. nsecs = timekeeping_get_ns(&tk->tkr_mono);
  588. } while (read_seqcount_retry(&tk_core.seq, seq));
  589. ts->tv_nsec = 0;
  590. timespec64_add_ns(ts, nsecs);
  591. /*
  592. * Do not bail out early, in case there were callers still using
  593. * the value, even in the face of the WARN_ON.
  594. */
  595. if (unlikely(timekeeping_suspended))
  596. return -EAGAIN;
  597. return 0;
  598. }
  599. EXPORT_SYMBOL(__getnstimeofday64);
  600. /**
  601. * getnstimeofday64 - Returns the time of day in a timespec64.
  602. * @ts: pointer to the timespec64 to be set
  603. *
  604. * Returns the time of day in a timespec64 (WARN if suspended).
  605. */
  606. void getnstimeofday64(struct timespec64 *ts)
  607. {
  608. WARN_ON(__getnstimeofday64(ts));
  609. }
  610. EXPORT_SYMBOL(getnstimeofday64);
  611. ktime_t ktime_get(void)
  612. {
  613. struct timekeeper *tk = &tk_core.timekeeper;
  614. unsigned int seq;
  615. ktime_t base;
  616. u64 nsecs;
  617. WARN_ON(timekeeping_suspended);
  618. do {
  619. seq = read_seqcount_begin(&tk_core.seq);
  620. base = tk->tkr_mono.base;
  621. nsecs = timekeeping_get_ns(&tk->tkr_mono);
  622. } while (read_seqcount_retry(&tk_core.seq, seq));
  623. return ktime_add_ns(base, nsecs);
  624. }
  625. EXPORT_SYMBOL_GPL(ktime_get);
  626. u32 ktime_get_resolution_ns(void)
  627. {
  628. struct timekeeper *tk = &tk_core.timekeeper;
  629. unsigned int seq;
  630. u32 nsecs;
  631. WARN_ON(timekeeping_suspended);
  632. do {
  633. seq = read_seqcount_begin(&tk_core.seq);
  634. nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
  635. } while (read_seqcount_retry(&tk_core.seq, seq));
  636. return nsecs;
  637. }
  638. EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
  639. static ktime_t *offsets[TK_OFFS_MAX] = {
  640. [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
  641. [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
  642. [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
  643. };
  644. ktime_t ktime_get_with_offset(enum tk_offsets offs)
  645. {
  646. struct timekeeper *tk = &tk_core.timekeeper;
  647. unsigned int seq;
  648. ktime_t base, *offset = offsets[offs];
  649. u64 nsecs;
  650. WARN_ON(timekeeping_suspended);
  651. do {
  652. seq = read_seqcount_begin(&tk_core.seq);
  653. base = ktime_add(tk->tkr_mono.base, *offset);
  654. nsecs = timekeeping_get_ns(&tk->tkr_mono);
  655. } while (read_seqcount_retry(&tk_core.seq, seq));
  656. return ktime_add_ns(base, nsecs);
  657. }
  658. EXPORT_SYMBOL_GPL(ktime_get_with_offset);
  659. /**
  660. * ktime_mono_to_any() - convert mononotic time to any other time
  661. * @tmono: time to convert.
  662. * @offs: which offset to use
  663. */
  664. ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
  665. {
  666. ktime_t *offset = offsets[offs];
  667. unsigned long seq;
  668. ktime_t tconv;
  669. do {
  670. seq = read_seqcount_begin(&tk_core.seq);
  671. tconv = ktime_add(tmono, *offset);
  672. } while (read_seqcount_retry(&tk_core.seq, seq));
  673. return tconv;
  674. }
  675. EXPORT_SYMBOL_GPL(ktime_mono_to_any);
  676. /**
  677. * ktime_get_raw - Returns the raw monotonic time in ktime_t format
  678. */
  679. ktime_t ktime_get_raw(void)
  680. {
  681. struct timekeeper *tk = &tk_core.timekeeper;
  682. unsigned int seq;
  683. ktime_t base;
  684. u64 nsecs;
  685. do {
  686. seq = read_seqcount_begin(&tk_core.seq);
  687. base = tk->tkr_raw.base;
  688. nsecs = timekeeping_get_ns(&tk->tkr_raw);
  689. } while (read_seqcount_retry(&tk_core.seq, seq));
  690. return ktime_add_ns(base, nsecs);
  691. }
  692. EXPORT_SYMBOL_GPL(ktime_get_raw);
  693. /**
  694. * ktime_get_ts64 - get the monotonic clock in timespec64 format
  695. * @ts: pointer to timespec variable
  696. *
  697. * The function calculates the monotonic clock from the realtime
  698. * clock and the wall_to_monotonic offset and stores the result
  699. * in normalized timespec64 format in the variable pointed to by @ts.
  700. */
  701. void ktime_get_ts64(struct timespec64 *ts)
  702. {
  703. struct timekeeper *tk = &tk_core.timekeeper;
  704. struct timespec64 tomono;
  705. unsigned int seq;
  706. u64 nsec;
  707. WARN_ON(timekeeping_suspended);
  708. do {
  709. seq = read_seqcount_begin(&tk_core.seq);
  710. ts->tv_sec = tk->xtime_sec;
  711. nsec = timekeeping_get_ns(&tk->tkr_mono);
  712. tomono = tk->wall_to_monotonic;
  713. } while (read_seqcount_retry(&tk_core.seq, seq));
  714. ts->tv_sec += tomono.tv_sec;
  715. ts->tv_nsec = 0;
  716. timespec64_add_ns(ts, nsec + tomono.tv_nsec);
  717. }
  718. EXPORT_SYMBOL_GPL(ktime_get_ts64);
  719. /**
  720. * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
  721. *
  722. * Returns the seconds portion of CLOCK_MONOTONIC with a single non
  723. * serialized read. tk->ktime_sec is of type 'unsigned long' so this
  724. * works on both 32 and 64 bit systems. On 32 bit systems the readout
  725. * covers ~136 years of uptime which should be enough to prevent
  726. * premature wrap arounds.
  727. */
  728. time64_t ktime_get_seconds(void)
  729. {
  730. struct timekeeper *tk = &tk_core.timekeeper;
  731. WARN_ON(timekeeping_suspended);
  732. return tk->ktime_sec;
  733. }
  734. EXPORT_SYMBOL_GPL(ktime_get_seconds);
  735. /**
  736. * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
  737. *
  738. * Returns the wall clock seconds since 1970. This replaces the
  739. * get_seconds() interface which is not y2038 safe on 32bit systems.
  740. *
  741. * For 64bit systems the fast access to tk->xtime_sec is preserved. On
  742. * 32bit systems the access must be protected with the sequence
  743. * counter to provide "atomic" access to the 64bit tk->xtime_sec
  744. * value.
  745. */
  746. time64_t ktime_get_real_seconds(void)
  747. {
  748. struct timekeeper *tk = &tk_core.timekeeper;
  749. time64_t seconds;
  750. unsigned int seq;
  751. if (IS_ENABLED(CONFIG_64BIT))
  752. return tk->xtime_sec;
  753. do {
  754. seq = read_seqcount_begin(&tk_core.seq);
  755. seconds = tk->xtime_sec;
  756. } while (read_seqcount_retry(&tk_core.seq, seq));
  757. return seconds;
  758. }
  759. EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
  760. /**
  761. * __ktime_get_real_seconds - The same as ktime_get_real_seconds
  762. * but without the sequence counter protect. This internal function
  763. * is called just when timekeeping lock is already held.
  764. */
  765. time64_t __ktime_get_real_seconds(void)
  766. {
  767. struct timekeeper *tk = &tk_core.timekeeper;
  768. return tk->xtime_sec;
  769. }
  770. /**
  771. * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
  772. * @systime_snapshot: pointer to struct receiving the system time snapshot
  773. */
  774. void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
  775. {
  776. struct timekeeper *tk = &tk_core.timekeeper;
  777. unsigned long seq;
  778. ktime_t base_raw;
  779. ktime_t base_real;
  780. u64 nsec_raw;
  781. u64 nsec_real;
  782. u64 now;
  783. WARN_ON_ONCE(timekeeping_suspended);
  784. do {
  785. seq = read_seqcount_begin(&tk_core.seq);
  786. now = tk->tkr_mono.read(tk->tkr_mono.clock);
  787. systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
  788. systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
  789. base_real = ktime_add(tk->tkr_mono.base,
  790. tk_core.timekeeper.offs_real);
  791. base_raw = tk->tkr_raw.base;
  792. nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
  793. nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
  794. } while (read_seqcount_retry(&tk_core.seq, seq));
  795. systime_snapshot->cycles = now;
  796. systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
  797. systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
  798. }
  799. EXPORT_SYMBOL_GPL(ktime_get_snapshot);
  800. /* Scale base by mult/div checking for overflow */
  801. static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
  802. {
  803. u64 tmp, rem;
  804. tmp = div64_u64_rem(*base, div, &rem);
  805. if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
  806. ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
  807. return -EOVERFLOW;
  808. tmp *= mult;
  809. rem *= mult;
  810. do_div(rem, div);
  811. *base = tmp + rem;
  812. return 0;
  813. }
  814. /**
  815. * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
  816. * @history: Snapshot representing start of history
  817. * @partial_history_cycles: Cycle offset into history (fractional part)
  818. * @total_history_cycles: Total history length in cycles
  819. * @discontinuity: True indicates clock was set on history period
  820. * @ts: Cross timestamp that should be adjusted using
  821. * partial/total ratio
  822. *
  823. * Helper function used by get_device_system_crosststamp() to correct the
  824. * crosstimestamp corresponding to the start of the current interval to the
  825. * system counter value (timestamp point) provided by the driver. The
  826. * total_history_* quantities are the total history starting at the provided
  827. * reference point and ending at the start of the current interval. The cycle
  828. * count between the driver timestamp point and the start of the current
  829. * interval is partial_history_cycles.
  830. */
  831. static int adjust_historical_crosststamp(struct system_time_snapshot *history,
  832. u64 partial_history_cycles,
  833. u64 total_history_cycles,
  834. bool discontinuity,
  835. struct system_device_crosststamp *ts)
  836. {
  837. struct timekeeper *tk = &tk_core.timekeeper;
  838. u64 corr_raw, corr_real;
  839. bool interp_forward;
  840. int ret;
  841. if (total_history_cycles == 0 || partial_history_cycles == 0)
  842. return 0;
  843. /* Interpolate shortest distance from beginning or end of history */
  844. interp_forward = partial_history_cycles > total_history_cycles/2 ?
  845. true : false;
  846. partial_history_cycles = interp_forward ?
  847. total_history_cycles - partial_history_cycles :
  848. partial_history_cycles;
  849. /*
  850. * Scale the monotonic raw time delta by:
  851. * partial_history_cycles / total_history_cycles
  852. */
  853. corr_raw = (u64)ktime_to_ns(
  854. ktime_sub(ts->sys_monoraw, history->raw));
  855. ret = scale64_check_overflow(partial_history_cycles,
  856. total_history_cycles, &corr_raw);
  857. if (ret)
  858. return ret;
  859. /*
  860. * If there is a discontinuity in the history, scale monotonic raw
  861. * correction by:
  862. * mult(real)/mult(raw) yielding the realtime correction
  863. * Otherwise, calculate the realtime correction similar to monotonic
  864. * raw calculation
  865. */
  866. if (discontinuity) {
  867. corr_real = mul_u64_u32_div
  868. (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
  869. } else {
  870. corr_real = (u64)ktime_to_ns(
  871. ktime_sub(ts->sys_realtime, history->real));
  872. ret = scale64_check_overflow(partial_history_cycles,
  873. total_history_cycles, &corr_real);
  874. if (ret)
  875. return ret;
  876. }
  877. /* Fixup monotonic raw and real time time values */
  878. if (interp_forward) {
  879. ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
  880. ts->sys_realtime = ktime_add_ns(history->real, corr_real);
  881. } else {
  882. ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
  883. ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
  884. }
  885. return 0;
  886. }
  887. /*
  888. * cycle_between - true if test occurs chronologically between before and after
  889. */
  890. static bool cycle_between(u64 before, u64 test, u64 after)
  891. {
  892. if (test > before && test < after)
  893. return true;
  894. if (test < before && before > after)
  895. return true;
  896. return false;
  897. }
  898. /**
  899. * get_device_system_crosststamp - Synchronously capture system/device timestamp
  900. * @get_time_fn: Callback to get simultaneous device time and
  901. * system counter from the device driver
  902. * @ctx: Context passed to get_time_fn()
  903. * @history_begin: Historical reference point used to interpolate system
  904. * time when counter provided by the driver is before the current interval
  905. * @xtstamp: Receives simultaneously captured system and device time
  906. *
  907. * Reads a timestamp from a device and correlates it to system time
  908. */
  909. int get_device_system_crosststamp(int (*get_time_fn)
  910. (ktime_t *device_time,
  911. struct system_counterval_t *sys_counterval,
  912. void *ctx),
  913. void *ctx,
  914. struct system_time_snapshot *history_begin,
  915. struct system_device_crosststamp *xtstamp)
  916. {
  917. struct system_counterval_t system_counterval;
  918. struct timekeeper *tk = &tk_core.timekeeper;
  919. u64 cycles, now, interval_start;
  920. unsigned int clock_was_set_seq = 0;
  921. ktime_t base_real, base_raw;
  922. u64 nsec_real, nsec_raw;
  923. u8 cs_was_changed_seq;
  924. unsigned long seq;
  925. bool do_interp;
  926. int ret;
  927. do {
  928. seq = read_seqcount_begin(&tk_core.seq);
  929. /*
  930. * Try to synchronously capture device time and a system
  931. * counter value calling back into the device driver
  932. */
  933. ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
  934. if (ret)
  935. return ret;
  936. /*
  937. * Verify that the clocksource associated with the captured
  938. * system counter value is the same as the currently installed
  939. * timekeeper clocksource
  940. */
  941. if (tk->tkr_mono.clock != system_counterval.cs)
  942. return -ENODEV;
  943. cycles = system_counterval.cycles;
  944. /*
  945. * Check whether the system counter value provided by the
  946. * device driver is on the current timekeeping interval.
  947. */
  948. now = tk->tkr_mono.read(tk->tkr_mono.clock);
  949. interval_start = tk->tkr_mono.cycle_last;
  950. if (!cycle_between(interval_start, cycles, now)) {
  951. clock_was_set_seq = tk->clock_was_set_seq;
  952. cs_was_changed_seq = tk->cs_was_changed_seq;
  953. cycles = interval_start;
  954. do_interp = true;
  955. } else {
  956. do_interp = false;
  957. }
  958. base_real = ktime_add(tk->tkr_mono.base,
  959. tk_core.timekeeper.offs_real);
  960. base_raw = tk->tkr_raw.base;
  961. nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
  962. system_counterval.cycles);
  963. nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
  964. system_counterval.cycles);
  965. } while (read_seqcount_retry(&tk_core.seq, seq));
  966. xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
  967. xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
  968. /*
  969. * Interpolate if necessary, adjusting back from the start of the
  970. * current interval
  971. */
  972. if (do_interp) {
  973. u64 partial_history_cycles, total_history_cycles;
  974. bool discontinuity;
  975. /*
  976. * Check that the counter value occurs after the provided
  977. * history reference and that the history doesn't cross a
  978. * clocksource change
  979. */
  980. if (!history_begin ||
  981. !cycle_between(history_begin->cycles,
  982. system_counterval.cycles, cycles) ||
  983. history_begin->cs_was_changed_seq != cs_was_changed_seq)
  984. return -EINVAL;
  985. partial_history_cycles = cycles - system_counterval.cycles;
  986. total_history_cycles = cycles - history_begin->cycles;
  987. discontinuity =
  988. history_begin->clock_was_set_seq != clock_was_set_seq;
  989. ret = adjust_historical_crosststamp(history_begin,
  990. partial_history_cycles,
  991. total_history_cycles,
  992. discontinuity, xtstamp);
  993. if (ret)
  994. return ret;
  995. }
  996. return 0;
  997. }
  998. EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
  999. /**
  1000. * do_gettimeofday - Returns the time of day in a timeval
  1001. * @tv: pointer to the timeval to be set
  1002. *
  1003. * NOTE: Users should be converted to using getnstimeofday()
  1004. */
  1005. void do_gettimeofday(struct timeval *tv)
  1006. {
  1007. struct timespec64 now;
  1008. getnstimeofday64(&now);
  1009. tv->tv_sec = now.tv_sec;
  1010. tv->tv_usec = now.tv_nsec/1000;
  1011. }
  1012. EXPORT_SYMBOL(do_gettimeofday);
  1013. /**
  1014. * do_settimeofday64 - Sets the time of day.
  1015. * @ts: pointer to the timespec64 variable containing the new time
  1016. *
  1017. * Sets the time of day to the new time and update NTP and notify hrtimers
  1018. */
  1019. int do_settimeofday64(const struct timespec64 *ts)
  1020. {
  1021. struct timekeeper *tk = &tk_core.timekeeper;
  1022. struct timespec64 ts_delta, xt;
  1023. unsigned long flags;
  1024. int ret = 0;
  1025. if (!timespec64_valid_strict(ts))
  1026. return -EINVAL;
  1027. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1028. write_seqcount_begin(&tk_core.seq);
  1029. timekeeping_forward_now(tk);
  1030. xt = tk_xtime(tk);
  1031. ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
  1032. ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
  1033. if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
  1034. ret = -EINVAL;
  1035. goto out;
  1036. }
  1037. tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
  1038. tk_set_xtime(tk, ts);
  1039. out:
  1040. timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
  1041. write_seqcount_end(&tk_core.seq);
  1042. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1043. /* signal hrtimers about time change */
  1044. clock_was_set();
  1045. return ret;
  1046. }
  1047. EXPORT_SYMBOL(do_settimeofday64);
  1048. /**
  1049. * timekeeping_inject_offset - Adds or subtracts from the current time.
  1050. * @tv: pointer to the timespec variable containing the offset
  1051. *
  1052. * Adds or subtracts an offset value from the current time.
  1053. */
  1054. int timekeeping_inject_offset(struct timespec *ts)
  1055. {
  1056. struct timekeeper *tk = &tk_core.timekeeper;
  1057. unsigned long flags;
  1058. struct timespec64 ts64, tmp;
  1059. int ret = 0;
  1060. if (!timespec_inject_offset_valid(ts))
  1061. return -EINVAL;
  1062. ts64 = timespec_to_timespec64(*ts);
  1063. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1064. write_seqcount_begin(&tk_core.seq);
  1065. timekeeping_forward_now(tk);
  1066. /* Make sure the proposed value is valid */
  1067. tmp = timespec64_add(tk_xtime(tk), ts64);
  1068. if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
  1069. !timespec64_valid_strict(&tmp)) {
  1070. ret = -EINVAL;
  1071. goto error;
  1072. }
  1073. tk_xtime_add(tk, &ts64);
  1074. tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
  1075. error: /* even if we error out, we forwarded the time, so call update */
  1076. timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
  1077. write_seqcount_end(&tk_core.seq);
  1078. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1079. /* signal hrtimers about time change */
  1080. clock_was_set();
  1081. return ret;
  1082. }
  1083. EXPORT_SYMBOL(timekeeping_inject_offset);
  1084. /**
  1085. * timekeeping_get_tai_offset - Returns current TAI offset from UTC
  1086. *
  1087. */
  1088. s32 timekeeping_get_tai_offset(void)
  1089. {
  1090. struct timekeeper *tk = &tk_core.timekeeper;
  1091. unsigned int seq;
  1092. s32 ret;
  1093. do {
  1094. seq = read_seqcount_begin(&tk_core.seq);
  1095. ret = tk->tai_offset;
  1096. } while (read_seqcount_retry(&tk_core.seq, seq));
  1097. return ret;
  1098. }
  1099. /**
  1100. * __timekeeping_set_tai_offset - Lock free worker function
  1101. *
  1102. */
  1103. static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
  1104. {
  1105. tk->tai_offset = tai_offset;
  1106. tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
  1107. }
  1108. /**
  1109. * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
  1110. *
  1111. */
  1112. void timekeeping_set_tai_offset(s32 tai_offset)
  1113. {
  1114. struct timekeeper *tk = &tk_core.timekeeper;
  1115. unsigned long flags;
  1116. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1117. write_seqcount_begin(&tk_core.seq);
  1118. __timekeeping_set_tai_offset(tk, tai_offset);
  1119. timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
  1120. write_seqcount_end(&tk_core.seq);
  1121. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1122. clock_was_set();
  1123. }
  1124. /**
  1125. * change_clocksource - Swaps clocksources if a new one is available
  1126. *
  1127. * Accumulates current time interval and initializes new clocksource
  1128. */
  1129. static int change_clocksource(void *data)
  1130. {
  1131. struct timekeeper *tk = &tk_core.timekeeper;
  1132. struct clocksource *new, *old;
  1133. unsigned long flags;
  1134. new = (struct clocksource *) data;
  1135. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1136. write_seqcount_begin(&tk_core.seq);
  1137. timekeeping_forward_now(tk);
  1138. /*
  1139. * If the cs is in module, get a module reference. Succeeds
  1140. * for built-in code (owner == NULL) as well.
  1141. */
  1142. if (try_module_get(new->owner)) {
  1143. if (!new->enable || new->enable(new) == 0) {
  1144. old = tk->tkr_mono.clock;
  1145. tk_setup_internals(tk, new);
  1146. if (old->disable)
  1147. old->disable(old);
  1148. module_put(old->owner);
  1149. } else {
  1150. module_put(new->owner);
  1151. }
  1152. }
  1153. timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
  1154. write_seqcount_end(&tk_core.seq);
  1155. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1156. return 0;
  1157. }
  1158. /**
  1159. * timekeeping_notify - Install a new clock source
  1160. * @clock: pointer to the clock source
  1161. *
  1162. * This function is called from clocksource.c after a new, better clock
  1163. * source has been registered. The caller holds the clocksource_mutex.
  1164. */
  1165. int timekeeping_notify(struct clocksource *clock)
  1166. {
  1167. struct timekeeper *tk = &tk_core.timekeeper;
  1168. if (tk->tkr_mono.clock == clock)
  1169. return 0;
  1170. stop_machine(change_clocksource, clock, NULL);
  1171. tick_clock_notify();
  1172. return tk->tkr_mono.clock == clock ? 0 : -1;
  1173. }
  1174. /**
  1175. * getrawmonotonic64 - Returns the raw monotonic time in a timespec
  1176. * @ts: pointer to the timespec64 to be set
  1177. *
  1178. * Returns the raw monotonic time (completely un-modified by ntp)
  1179. */
  1180. void getrawmonotonic64(struct timespec64 *ts)
  1181. {
  1182. struct timekeeper *tk = &tk_core.timekeeper;
  1183. struct timespec64 ts64;
  1184. unsigned long seq;
  1185. u64 nsecs;
  1186. do {
  1187. seq = read_seqcount_begin(&tk_core.seq);
  1188. nsecs = timekeeping_get_ns(&tk->tkr_raw);
  1189. ts64 = tk->raw_time;
  1190. } while (read_seqcount_retry(&tk_core.seq, seq));
  1191. timespec64_add_ns(&ts64, nsecs);
  1192. *ts = ts64;
  1193. }
  1194. EXPORT_SYMBOL(getrawmonotonic64);
  1195. /**
  1196. * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
  1197. */
  1198. int timekeeping_valid_for_hres(void)
  1199. {
  1200. struct timekeeper *tk = &tk_core.timekeeper;
  1201. unsigned long seq;
  1202. int ret;
  1203. do {
  1204. seq = read_seqcount_begin(&tk_core.seq);
  1205. ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
  1206. } while (read_seqcount_retry(&tk_core.seq, seq));
  1207. return ret;
  1208. }
  1209. /**
  1210. * timekeeping_max_deferment - Returns max time the clocksource can be deferred
  1211. */
  1212. u64 timekeeping_max_deferment(void)
  1213. {
  1214. struct timekeeper *tk = &tk_core.timekeeper;
  1215. unsigned long seq;
  1216. u64 ret;
  1217. do {
  1218. seq = read_seqcount_begin(&tk_core.seq);
  1219. ret = tk->tkr_mono.clock->max_idle_ns;
  1220. } while (read_seqcount_retry(&tk_core.seq, seq));
  1221. return ret;
  1222. }
  1223. /**
  1224. * read_persistent_clock - Return time from the persistent clock.
  1225. *
  1226. * Weak dummy function for arches that do not yet support it.
  1227. * Reads the time from the battery backed persistent clock.
  1228. * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
  1229. *
  1230. * XXX - Do be sure to remove it once all arches implement it.
  1231. */
  1232. void __weak read_persistent_clock(struct timespec *ts)
  1233. {
  1234. ts->tv_sec = 0;
  1235. ts->tv_nsec = 0;
  1236. }
  1237. void __weak read_persistent_clock64(struct timespec64 *ts64)
  1238. {
  1239. struct timespec ts;
  1240. read_persistent_clock(&ts);
  1241. *ts64 = timespec_to_timespec64(ts);
  1242. }
  1243. /**
  1244. * read_boot_clock64 - Return time of the system start.
  1245. *
  1246. * Weak dummy function for arches that do not yet support it.
  1247. * Function to read the exact time the system has been started.
  1248. * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
  1249. *
  1250. * XXX - Do be sure to remove it once all arches implement it.
  1251. */
  1252. void __weak read_boot_clock64(struct timespec64 *ts)
  1253. {
  1254. ts->tv_sec = 0;
  1255. ts->tv_nsec = 0;
  1256. }
  1257. /* Flag for if timekeeping_resume() has injected sleeptime */
  1258. static bool sleeptime_injected;
  1259. /* Flag for if there is a persistent clock on this platform */
  1260. static bool persistent_clock_exists;
  1261. /*
  1262. * timekeeping_init - Initializes the clocksource and common timekeeping values
  1263. */
  1264. void __init timekeeping_init(void)
  1265. {
  1266. struct timekeeper *tk = &tk_core.timekeeper;
  1267. struct clocksource *clock;
  1268. unsigned long flags;
  1269. struct timespec64 now, boot, tmp;
  1270. read_persistent_clock64(&now);
  1271. if (!timespec64_valid_strict(&now)) {
  1272. pr_warn("WARNING: Persistent clock returned invalid value!\n"
  1273. " Check your CMOS/BIOS settings.\n");
  1274. now.tv_sec = 0;
  1275. now.tv_nsec = 0;
  1276. } else if (now.tv_sec || now.tv_nsec)
  1277. persistent_clock_exists = true;
  1278. read_boot_clock64(&boot);
  1279. if (!timespec64_valid_strict(&boot)) {
  1280. pr_warn("WARNING: Boot clock returned invalid value!\n"
  1281. " Check your CMOS/BIOS settings.\n");
  1282. boot.tv_sec = 0;
  1283. boot.tv_nsec = 0;
  1284. }
  1285. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1286. write_seqcount_begin(&tk_core.seq);
  1287. ntp_init();
  1288. clock = clocksource_default_clock();
  1289. if (clock->enable)
  1290. clock->enable(clock);
  1291. tk_setup_internals(tk, clock);
  1292. tk_set_xtime(tk, &now);
  1293. tk->raw_time.tv_sec = 0;
  1294. tk->raw_time.tv_nsec = 0;
  1295. if (boot.tv_sec == 0 && boot.tv_nsec == 0)
  1296. boot = tk_xtime(tk);
  1297. set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
  1298. tk_set_wall_to_mono(tk, tmp);
  1299. timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
  1300. write_seqcount_end(&tk_core.seq);
  1301. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1302. }
  1303. /* time in seconds when suspend began for persistent clock */
  1304. static struct timespec64 timekeeping_suspend_time;
  1305. /**
  1306. * __timekeeping_inject_sleeptime - Internal function to add sleep interval
  1307. * @delta: pointer to a timespec delta value
  1308. *
  1309. * Takes a timespec offset measuring a suspend interval and properly
  1310. * adds the sleep offset to the timekeeping variables.
  1311. */
  1312. static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
  1313. struct timespec64 *delta)
  1314. {
  1315. if (!timespec64_valid_strict(delta)) {
  1316. printk_deferred(KERN_WARNING
  1317. "__timekeeping_inject_sleeptime: Invalid "
  1318. "sleep delta value!\n");
  1319. return;
  1320. }
  1321. tk_xtime_add(tk, delta);
  1322. tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
  1323. tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
  1324. tk_debug_account_sleep_time(delta);
  1325. }
  1326. #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
  1327. /**
  1328. * We have three kinds of time sources to use for sleep time
  1329. * injection, the preference order is:
  1330. * 1) non-stop clocksource
  1331. * 2) persistent clock (ie: RTC accessible when irqs are off)
  1332. * 3) RTC
  1333. *
  1334. * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
  1335. * If system has neither 1) nor 2), 3) will be used finally.
  1336. *
  1337. *
  1338. * If timekeeping has injected sleeptime via either 1) or 2),
  1339. * 3) becomes needless, so in this case we don't need to call
  1340. * rtc_resume(), and this is what timekeeping_rtc_skipresume()
  1341. * means.
  1342. */
  1343. bool timekeeping_rtc_skipresume(void)
  1344. {
  1345. return sleeptime_injected;
  1346. }
  1347. /**
  1348. * 1) can be determined whether to use or not only when doing
  1349. * timekeeping_resume() which is invoked after rtc_suspend(),
  1350. * so we can't skip rtc_suspend() surely if system has 1).
  1351. *
  1352. * But if system has 2), 2) will definitely be used, so in this
  1353. * case we don't need to call rtc_suspend(), and this is what
  1354. * timekeeping_rtc_skipsuspend() means.
  1355. */
  1356. bool timekeeping_rtc_skipsuspend(void)
  1357. {
  1358. return persistent_clock_exists;
  1359. }
  1360. /**
  1361. * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
  1362. * @delta: pointer to a timespec64 delta value
  1363. *
  1364. * This hook is for architectures that cannot support read_persistent_clock64
  1365. * because their RTC/persistent clock is only accessible when irqs are enabled.
  1366. * and also don't have an effective nonstop clocksource.
  1367. *
  1368. * This function should only be called by rtc_resume(), and allows
  1369. * a suspend offset to be injected into the timekeeping values.
  1370. */
  1371. void timekeeping_inject_sleeptime64(struct timespec64 *delta)
  1372. {
  1373. struct timekeeper *tk = &tk_core.timekeeper;
  1374. unsigned long flags;
  1375. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1376. write_seqcount_begin(&tk_core.seq);
  1377. timekeeping_forward_now(tk);
  1378. __timekeeping_inject_sleeptime(tk, delta);
  1379. timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
  1380. write_seqcount_end(&tk_core.seq);
  1381. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1382. /* signal hrtimers about time change */
  1383. clock_was_set();
  1384. }
  1385. #endif
  1386. /**
  1387. * timekeeping_resume - Resumes the generic timekeeping subsystem.
  1388. */
  1389. void timekeeping_resume(void)
  1390. {
  1391. struct timekeeper *tk = &tk_core.timekeeper;
  1392. struct clocksource *clock = tk->tkr_mono.clock;
  1393. unsigned long flags;
  1394. struct timespec64 ts_new, ts_delta;
  1395. u64 cycle_now;
  1396. sleeptime_injected = false;
  1397. read_persistent_clock64(&ts_new);
  1398. clockevents_resume();
  1399. clocksource_resume();
  1400. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1401. write_seqcount_begin(&tk_core.seq);
  1402. /*
  1403. * After system resumes, we need to calculate the suspended time and
  1404. * compensate it for the OS time. There are 3 sources that could be
  1405. * used: Nonstop clocksource during suspend, persistent clock and rtc
  1406. * device.
  1407. *
  1408. * One specific platform may have 1 or 2 or all of them, and the
  1409. * preference will be:
  1410. * suspend-nonstop clocksource -> persistent clock -> rtc
  1411. * The less preferred source will only be tried if there is no better
  1412. * usable source. The rtc part is handled separately in rtc core code.
  1413. */
  1414. cycle_now = tk->tkr_mono.read(clock);
  1415. if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
  1416. cycle_now > tk->tkr_mono.cycle_last) {
  1417. u64 nsec, cyc_delta;
  1418. cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
  1419. tk->tkr_mono.mask);
  1420. nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
  1421. ts_delta = ns_to_timespec64(nsec);
  1422. sleeptime_injected = true;
  1423. } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
  1424. ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
  1425. sleeptime_injected = true;
  1426. }
  1427. if (sleeptime_injected)
  1428. __timekeeping_inject_sleeptime(tk, &ts_delta);
  1429. /* Re-base the last cycle value */
  1430. tk->tkr_mono.cycle_last = cycle_now;
  1431. tk->tkr_raw.cycle_last = cycle_now;
  1432. tk->ntp_error = 0;
  1433. timekeeping_suspended = 0;
  1434. timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
  1435. write_seqcount_end(&tk_core.seq);
  1436. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1437. touch_softlockup_watchdog();
  1438. tick_resume();
  1439. hrtimers_resume();
  1440. }
  1441. int timekeeping_suspend(void)
  1442. {
  1443. struct timekeeper *tk = &tk_core.timekeeper;
  1444. unsigned long flags;
  1445. struct timespec64 delta, delta_delta;
  1446. static struct timespec64 old_delta;
  1447. read_persistent_clock64(&timekeeping_suspend_time);
  1448. /*
  1449. * On some systems the persistent_clock can not be detected at
  1450. * timekeeping_init by its return value, so if we see a valid
  1451. * value returned, update the persistent_clock_exists flag.
  1452. */
  1453. if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
  1454. persistent_clock_exists = true;
  1455. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1456. write_seqcount_begin(&tk_core.seq);
  1457. timekeeping_forward_now(tk);
  1458. timekeeping_suspended = 1;
  1459. if (persistent_clock_exists) {
  1460. /*
  1461. * To avoid drift caused by repeated suspend/resumes,
  1462. * which each can add ~1 second drift error,
  1463. * try to compensate so the difference in system time
  1464. * and persistent_clock time stays close to constant.
  1465. */
  1466. delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
  1467. delta_delta = timespec64_sub(delta, old_delta);
  1468. if (abs(delta_delta.tv_sec) >= 2) {
  1469. /*
  1470. * if delta_delta is too large, assume time correction
  1471. * has occurred and set old_delta to the current delta.
  1472. */
  1473. old_delta = delta;
  1474. } else {
  1475. /* Otherwise try to adjust old_system to compensate */
  1476. timekeeping_suspend_time =
  1477. timespec64_add(timekeeping_suspend_time, delta_delta);
  1478. }
  1479. }
  1480. timekeeping_update(tk, TK_MIRROR);
  1481. halt_fast_timekeeper(tk);
  1482. write_seqcount_end(&tk_core.seq);
  1483. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1484. tick_suspend();
  1485. clocksource_suspend();
  1486. clockevents_suspend();
  1487. return 0;
  1488. }
  1489. /* sysfs resume/suspend bits for timekeeping */
  1490. static struct syscore_ops timekeeping_syscore_ops = {
  1491. .resume = timekeeping_resume,
  1492. .suspend = timekeeping_suspend,
  1493. };
  1494. static int __init timekeeping_init_ops(void)
  1495. {
  1496. register_syscore_ops(&timekeeping_syscore_ops);
  1497. return 0;
  1498. }
  1499. device_initcall(timekeeping_init_ops);
  1500. /*
  1501. * Apply a multiplier adjustment to the timekeeper
  1502. */
  1503. static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
  1504. s64 offset,
  1505. bool negative,
  1506. int adj_scale)
  1507. {
  1508. s64 interval = tk->cycle_interval;
  1509. s32 mult_adj = 1;
  1510. if (negative) {
  1511. mult_adj = -mult_adj;
  1512. interval = -interval;
  1513. offset = -offset;
  1514. }
  1515. mult_adj <<= adj_scale;
  1516. interval <<= adj_scale;
  1517. offset <<= adj_scale;
  1518. /*
  1519. * So the following can be confusing.
  1520. *
  1521. * To keep things simple, lets assume mult_adj == 1 for now.
  1522. *
  1523. * When mult_adj != 1, remember that the interval and offset values
  1524. * have been appropriately scaled so the math is the same.
  1525. *
  1526. * The basic idea here is that we're increasing the multiplier
  1527. * by one, this causes the xtime_interval to be incremented by
  1528. * one cycle_interval. This is because:
  1529. * xtime_interval = cycle_interval * mult
  1530. * So if mult is being incremented by one:
  1531. * xtime_interval = cycle_interval * (mult + 1)
  1532. * Its the same as:
  1533. * xtime_interval = (cycle_interval * mult) + cycle_interval
  1534. * Which can be shortened to:
  1535. * xtime_interval += cycle_interval
  1536. *
  1537. * So offset stores the non-accumulated cycles. Thus the current
  1538. * time (in shifted nanoseconds) is:
  1539. * now = (offset * adj) + xtime_nsec
  1540. * Now, even though we're adjusting the clock frequency, we have
  1541. * to keep time consistent. In other words, we can't jump back
  1542. * in time, and we also want to avoid jumping forward in time.
  1543. *
  1544. * So given the same offset value, we need the time to be the same
  1545. * both before and after the freq adjustment.
  1546. * now = (offset * adj_1) + xtime_nsec_1
  1547. * now = (offset * adj_2) + xtime_nsec_2
  1548. * So:
  1549. * (offset * adj_1) + xtime_nsec_1 =
  1550. * (offset * adj_2) + xtime_nsec_2
  1551. * And we know:
  1552. * adj_2 = adj_1 + 1
  1553. * So:
  1554. * (offset * adj_1) + xtime_nsec_1 =
  1555. * (offset * (adj_1+1)) + xtime_nsec_2
  1556. * (offset * adj_1) + xtime_nsec_1 =
  1557. * (offset * adj_1) + offset + xtime_nsec_2
  1558. * Canceling the sides:
  1559. * xtime_nsec_1 = offset + xtime_nsec_2
  1560. * Which gives us:
  1561. * xtime_nsec_2 = xtime_nsec_1 - offset
  1562. * Which simplfies to:
  1563. * xtime_nsec -= offset
  1564. *
  1565. * XXX - TODO: Doc ntp_error calculation.
  1566. */
  1567. if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
  1568. /* NTP adjustment caused clocksource mult overflow */
  1569. WARN_ON_ONCE(1);
  1570. return;
  1571. }
  1572. tk->tkr_mono.mult += mult_adj;
  1573. tk->xtime_interval += interval;
  1574. tk->tkr_mono.xtime_nsec -= offset;
  1575. tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
  1576. }
  1577. /*
  1578. * Calculate the multiplier adjustment needed to match the frequency
  1579. * specified by NTP
  1580. */
  1581. static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
  1582. s64 offset)
  1583. {
  1584. s64 interval = tk->cycle_interval;
  1585. s64 xinterval = tk->xtime_interval;
  1586. u32 base = tk->tkr_mono.clock->mult;
  1587. u32 max = tk->tkr_mono.clock->maxadj;
  1588. u32 cur_adj = tk->tkr_mono.mult;
  1589. s64 tick_error;
  1590. bool negative;
  1591. u32 adj_scale;
  1592. /* Remove any current error adj from freq calculation */
  1593. if (tk->ntp_err_mult)
  1594. xinterval -= tk->cycle_interval;
  1595. tk->ntp_tick = ntp_tick_length();
  1596. /* Calculate current error per tick */
  1597. tick_error = ntp_tick_length() >> tk->ntp_error_shift;
  1598. tick_error -= (xinterval + tk->xtime_remainder);
  1599. /* Don't worry about correcting it if its small */
  1600. if (likely((tick_error >= 0) && (tick_error <= interval)))
  1601. return;
  1602. /* preserve the direction of correction */
  1603. negative = (tick_error < 0);
  1604. /* If any adjustment would pass the max, just return */
  1605. if (negative && (cur_adj - 1) <= (base - max))
  1606. return;
  1607. if (!negative && (cur_adj + 1) >= (base + max))
  1608. return;
  1609. /*
  1610. * Sort out the magnitude of the correction, but
  1611. * avoid making so large a correction that we go
  1612. * over the max adjustment.
  1613. */
  1614. adj_scale = 0;
  1615. tick_error = abs(tick_error);
  1616. while (tick_error > interval) {
  1617. u32 adj = 1 << (adj_scale + 1);
  1618. /* Check if adjustment gets us within 1 unit from the max */
  1619. if (negative && (cur_adj - adj) <= (base - max))
  1620. break;
  1621. if (!negative && (cur_adj + adj) >= (base + max))
  1622. break;
  1623. adj_scale++;
  1624. tick_error >>= 1;
  1625. }
  1626. /* scale the corrections */
  1627. timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
  1628. }
  1629. /*
  1630. * Adjust the timekeeper's multiplier to the correct frequency
  1631. * and also to reduce the accumulated error value.
  1632. */
  1633. static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
  1634. {
  1635. /* Correct for the current frequency error */
  1636. timekeeping_freqadjust(tk, offset);
  1637. /* Next make a small adjustment to fix any cumulative error */
  1638. if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
  1639. tk->ntp_err_mult = 1;
  1640. timekeeping_apply_adjustment(tk, offset, 0, 0);
  1641. } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
  1642. /* Undo any existing error adjustment */
  1643. timekeeping_apply_adjustment(tk, offset, 1, 0);
  1644. tk->ntp_err_mult = 0;
  1645. }
  1646. if (unlikely(tk->tkr_mono.clock->maxadj &&
  1647. (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
  1648. > tk->tkr_mono.clock->maxadj))) {
  1649. printk_once(KERN_WARNING
  1650. "Adjusting %s more than 11%% (%ld vs %ld)\n",
  1651. tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
  1652. (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
  1653. }
  1654. /*
  1655. * It may be possible that when we entered this function, xtime_nsec
  1656. * was very small. Further, if we're slightly speeding the clocksource
  1657. * in the code above, its possible the required corrective factor to
  1658. * xtime_nsec could cause it to underflow.
  1659. *
  1660. * Now, since we already accumulated the second, cannot simply roll
  1661. * the accumulated second back, since the NTP subsystem has been
  1662. * notified via second_overflow. So instead we push xtime_nsec forward
  1663. * by the amount we underflowed, and add that amount into the error.
  1664. *
  1665. * We'll correct this error next time through this function, when
  1666. * xtime_nsec is not as small.
  1667. */
  1668. if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
  1669. s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
  1670. tk->tkr_mono.xtime_nsec = 0;
  1671. tk->ntp_error += neg << tk->ntp_error_shift;
  1672. }
  1673. }
  1674. /**
  1675. * accumulate_nsecs_to_secs - Accumulates nsecs into secs
  1676. *
  1677. * Helper function that accumulates the nsecs greater than a second
  1678. * from the xtime_nsec field to the xtime_secs field.
  1679. * It also calls into the NTP code to handle leapsecond processing.
  1680. *
  1681. */
  1682. static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
  1683. {
  1684. u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
  1685. unsigned int clock_set = 0;
  1686. while (tk->tkr_mono.xtime_nsec >= nsecps) {
  1687. int leap;
  1688. tk->tkr_mono.xtime_nsec -= nsecps;
  1689. tk->xtime_sec++;
  1690. /* Figure out if its a leap sec and apply if needed */
  1691. leap = second_overflow(tk->xtime_sec);
  1692. if (unlikely(leap)) {
  1693. struct timespec64 ts;
  1694. tk->xtime_sec += leap;
  1695. ts.tv_sec = leap;
  1696. ts.tv_nsec = 0;
  1697. tk_set_wall_to_mono(tk,
  1698. timespec64_sub(tk->wall_to_monotonic, ts));
  1699. __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
  1700. clock_set = TK_CLOCK_WAS_SET;
  1701. }
  1702. }
  1703. return clock_set;
  1704. }
  1705. /**
  1706. * logarithmic_accumulation - shifted accumulation of cycles
  1707. *
  1708. * This functions accumulates a shifted interval of cycles into
  1709. * into a shifted interval nanoseconds. Allows for O(log) accumulation
  1710. * loop.
  1711. *
  1712. * Returns the unconsumed cycles.
  1713. */
  1714. static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
  1715. u32 shift, unsigned int *clock_set)
  1716. {
  1717. u64 interval = tk->cycle_interval << shift;
  1718. u64 raw_nsecs;
  1719. /* If the offset is smaller than a shifted interval, do nothing */
  1720. if (offset < interval)
  1721. return offset;
  1722. /* Accumulate one shifted interval */
  1723. offset -= interval;
  1724. tk->tkr_mono.cycle_last += interval;
  1725. tk->tkr_raw.cycle_last += interval;
  1726. tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
  1727. *clock_set |= accumulate_nsecs_to_secs(tk);
  1728. /* Accumulate raw time */
  1729. raw_nsecs = (u64)tk->raw_interval << shift;
  1730. raw_nsecs += tk->raw_time.tv_nsec;
  1731. if (raw_nsecs >= NSEC_PER_SEC) {
  1732. u64 raw_secs = raw_nsecs;
  1733. raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
  1734. tk->raw_time.tv_sec += raw_secs;
  1735. }
  1736. tk->raw_time.tv_nsec = raw_nsecs;
  1737. /* Accumulate error between NTP and clock interval */
  1738. tk->ntp_error += tk->ntp_tick << shift;
  1739. tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
  1740. (tk->ntp_error_shift + shift);
  1741. return offset;
  1742. }
  1743. /**
  1744. * update_wall_time - Uses the current clocksource to increment the wall time
  1745. *
  1746. */
  1747. void update_wall_time(void)
  1748. {
  1749. struct timekeeper *real_tk = &tk_core.timekeeper;
  1750. struct timekeeper *tk = &shadow_timekeeper;
  1751. u64 offset;
  1752. int shift = 0, maxshift;
  1753. unsigned int clock_set = 0;
  1754. unsigned long flags;
  1755. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1756. /* Make sure we're fully resumed: */
  1757. if (unlikely(timekeeping_suspended))
  1758. goto out;
  1759. #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
  1760. offset = real_tk->cycle_interval;
  1761. #else
  1762. offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
  1763. tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
  1764. #endif
  1765. /* Check if there's really nothing to do */
  1766. if (offset < real_tk->cycle_interval)
  1767. goto out;
  1768. /* Do some additional sanity checking */
  1769. timekeeping_check_update(real_tk, offset);
  1770. /*
  1771. * With NO_HZ we may have to accumulate many cycle_intervals
  1772. * (think "ticks") worth of time at once. To do this efficiently,
  1773. * we calculate the largest doubling multiple of cycle_intervals
  1774. * that is smaller than the offset. We then accumulate that
  1775. * chunk in one go, and then try to consume the next smaller
  1776. * doubled multiple.
  1777. */
  1778. shift = ilog2(offset) - ilog2(tk->cycle_interval);
  1779. shift = max(0, shift);
  1780. /* Bound shift to one less than what overflows tick_length */
  1781. maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
  1782. shift = min(shift, maxshift);
  1783. while (offset >= tk->cycle_interval) {
  1784. offset = logarithmic_accumulation(tk, offset, shift,
  1785. &clock_set);
  1786. if (offset < tk->cycle_interval<<shift)
  1787. shift--;
  1788. }
  1789. /* correct the clock when NTP error is too big */
  1790. timekeeping_adjust(tk, offset);
  1791. /*
  1792. * XXX This can be killed once everyone converts
  1793. * to the new update_vsyscall.
  1794. */
  1795. old_vsyscall_fixup(tk);
  1796. /*
  1797. * Finally, make sure that after the rounding
  1798. * xtime_nsec isn't larger than NSEC_PER_SEC
  1799. */
  1800. clock_set |= accumulate_nsecs_to_secs(tk);
  1801. write_seqcount_begin(&tk_core.seq);
  1802. /*
  1803. * Update the real timekeeper.
  1804. *
  1805. * We could avoid this memcpy by switching pointers, but that
  1806. * requires changes to all other timekeeper usage sites as
  1807. * well, i.e. move the timekeeper pointer getter into the
  1808. * spinlocked/seqcount protected sections. And we trade this
  1809. * memcpy under the tk_core.seq against one before we start
  1810. * updating.
  1811. */
  1812. timekeeping_update(tk, clock_set);
  1813. memcpy(real_tk, tk, sizeof(*tk));
  1814. /* The memcpy must come last. Do not put anything here! */
  1815. write_seqcount_end(&tk_core.seq);
  1816. out:
  1817. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1818. if (clock_set)
  1819. /* Have to call _delayed version, since in irq context*/
  1820. clock_was_set_delayed();
  1821. }
  1822. /**
  1823. * getboottime64 - Return the real time of system boot.
  1824. * @ts: pointer to the timespec64 to be set
  1825. *
  1826. * Returns the wall-time of boot in a timespec64.
  1827. *
  1828. * This is based on the wall_to_monotonic offset and the total suspend
  1829. * time. Calls to settimeofday will affect the value returned (which
  1830. * basically means that however wrong your real time clock is at boot time,
  1831. * you get the right time here).
  1832. */
  1833. void getboottime64(struct timespec64 *ts)
  1834. {
  1835. struct timekeeper *tk = &tk_core.timekeeper;
  1836. ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
  1837. *ts = ktime_to_timespec64(t);
  1838. }
  1839. EXPORT_SYMBOL_GPL(getboottime64);
  1840. unsigned long get_seconds(void)
  1841. {
  1842. struct timekeeper *tk = &tk_core.timekeeper;
  1843. return tk->xtime_sec;
  1844. }
  1845. EXPORT_SYMBOL(get_seconds);
  1846. struct timespec __current_kernel_time(void)
  1847. {
  1848. struct timekeeper *tk = &tk_core.timekeeper;
  1849. return timespec64_to_timespec(tk_xtime(tk));
  1850. }
  1851. struct timespec64 current_kernel_time64(void)
  1852. {
  1853. struct timekeeper *tk = &tk_core.timekeeper;
  1854. struct timespec64 now;
  1855. unsigned long seq;
  1856. do {
  1857. seq = read_seqcount_begin(&tk_core.seq);
  1858. now = tk_xtime(tk);
  1859. } while (read_seqcount_retry(&tk_core.seq, seq));
  1860. return now;
  1861. }
  1862. EXPORT_SYMBOL(current_kernel_time64);
  1863. struct timespec64 get_monotonic_coarse64(void)
  1864. {
  1865. struct timekeeper *tk = &tk_core.timekeeper;
  1866. struct timespec64 now, mono;
  1867. unsigned long seq;
  1868. do {
  1869. seq = read_seqcount_begin(&tk_core.seq);
  1870. now = tk_xtime(tk);
  1871. mono = tk->wall_to_monotonic;
  1872. } while (read_seqcount_retry(&tk_core.seq, seq));
  1873. set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
  1874. now.tv_nsec + mono.tv_nsec);
  1875. return now;
  1876. }
  1877. EXPORT_SYMBOL(get_monotonic_coarse64);
  1878. /*
  1879. * Must hold jiffies_lock
  1880. */
  1881. void do_timer(unsigned long ticks)
  1882. {
  1883. jiffies_64 += ticks;
  1884. calc_global_load(ticks);
  1885. }
  1886. /**
  1887. * ktime_get_update_offsets_now - hrtimer helper
  1888. * @cwsseq: pointer to check and store the clock was set sequence number
  1889. * @offs_real: pointer to storage for monotonic -> realtime offset
  1890. * @offs_boot: pointer to storage for monotonic -> boottime offset
  1891. * @offs_tai: pointer to storage for monotonic -> clock tai offset
  1892. *
  1893. * Returns current monotonic time and updates the offsets if the
  1894. * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
  1895. * different.
  1896. *
  1897. * Called from hrtimer_interrupt() or retrigger_next_event()
  1898. */
  1899. ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
  1900. ktime_t *offs_boot, ktime_t *offs_tai)
  1901. {
  1902. struct timekeeper *tk = &tk_core.timekeeper;
  1903. unsigned int seq;
  1904. ktime_t base;
  1905. u64 nsecs;
  1906. do {
  1907. seq = read_seqcount_begin(&tk_core.seq);
  1908. base = tk->tkr_mono.base;
  1909. nsecs = timekeeping_get_ns(&tk->tkr_mono);
  1910. base = ktime_add_ns(base, nsecs);
  1911. if (*cwsseq != tk->clock_was_set_seq) {
  1912. *cwsseq = tk->clock_was_set_seq;
  1913. *offs_real = tk->offs_real;
  1914. *offs_boot = tk->offs_boot;
  1915. *offs_tai = tk->offs_tai;
  1916. }
  1917. /* Handle leapsecond insertion adjustments */
  1918. if (unlikely(base >= tk->next_leap_ktime))
  1919. *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
  1920. } while (read_seqcount_retry(&tk_core.seq, seq));
  1921. return base;
  1922. }
  1923. /**
  1924. * do_adjtimex() - Accessor function to NTP __do_adjtimex function
  1925. */
  1926. int do_adjtimex(struct timex *txc)
  1927. {
  1928. struct timekeeper *tk = &tk_core.timekeeper;
  1929. unsigned long flags;
  1930. struct timespec64 ts;
  1931. s32 orig_tai, tai;
  1932. int ret;
  1933. /* Validate the data before disabling interrupts */
  1934. ret = ntp_validate_timex(txc);
  1935. if (ret)
  1936. return ret;
  1937. if (txc->modes & ADJ_SETOFFSET) {
  1938. struct timespec delta;
  1939. delta.tv_sec = txc->time.tv_sec;
  1940. delta.tv_nsec = txc->time.tv_usec;
  1941. if (!(txc->modes & ADJ_NANO))
  1942. delta.tv_nsec *= 1000;
  1943. ret = timekeeping_inject_offset(&delta);
  1944. if (ret)
  1945. return ret;
  1946. }
  1947. getnstimeofday64(&ts);
  1948. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1949. write_seqcount_begin(&tk_core.seq);
  1950. orig_tai = tai = tk->tai_offset;
  1951. ret = __do_adjtimex(txc, &ts, &tai);
  1952. if (tai != orig_tai) {
  1953. __timekeeping_set_tai_offset(tk, tai);
  1954. timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
  1955. }
  1956. tk_update_leap_state(tk);
  1957. write_seqcount_end(&tk_core.seq);
  1958. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1959. if (tai != orig_tai)
  1960. clock_was_set();
  1961. ntp_notify_cmos_timer();
  1962. return ret;
  1963. }
  1964. #ifdef CONFIG_NTP_PPS
  1965. /**
  1966. * hardpps() - Accessor function to NTP __hardpps function
  1967. */
  1968. void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
  1969. {
  1970. unsigned long flags;
  1971. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1972. write_seqcount_begin(&tk_core.seq);
  1973. __hardpps(phase_ts, raw_ts);
  1974. write_seqcount_end(&tk_core.seq);
  1975. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1976. }
  1977. EXPORT_SYMBOL(hardpps);
  1978. #endif
  1979. /**
  1980. * xtime_update() - advances the timekeeping infrastructure
  1981. * @ticks: number of ticks, that have elapsed since the last call.
  1982. *
  1983. * Must be called with interrupts disabled.
  1984. */
  1985. void xtime_update(unsigned long ticks)
  1986. {
  1987. write_seqlock(&jiffies_lock);
  1988. do_timer(ticks);
  1989. write_sequnlock(&jiffies_lock);
  1990. update_wall_time();
  1991. }