hrtimer.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798
  1. /*
  2. * linux/kernel/hrtimer.c
  3. *
  4. * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  6. * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
  7. *
  8. * High-resolution kernel timers
  9. *
  10. * In contrast to the low-resolution timeout API implemented in
  11. * kernel/timer.c, hrtimers provide finer resolution and accuracy
  12. * depending on system configuration and capabilities.
  13. *
  14. * These timers are currently used for:
  15. * - itimers
  16. * - POSIX timers
  17. * - nanosleep
  18. * - precise in-kernel timing
  19. *
  20. * Started by: Thomas Gleixner and Ingo Molnar
  21. *
  22. * Credits:
  23. * based on kernel/timer.c
  24. *
  25. * Help, testing, suggestions, bugfixes, improvements were
  26. * provided by:
  27. *
  28. * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29. * et. al.
  30. *
  31. * For licencing details see kernel-base/COPYING
  32. */
  33. #include <linux/cpu.h>
  34. #include <linux/export.h>
  35. #include <linux/percpu.h>
  36. #include <linux/hrtimer.h>
  37. #include <linux/notifier.h>
  38. #include <linux/syscalls.h>
  39. #include <linux/kallsyms.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/tick.h>
  42. #include <linux/seq_file.h>
  43. #include <linux/err.h>
  44. #include <linux/debugobjects.h>
  45. #include <linux/sched.h>
  46. #include <linux/sched/sysctl.h>
  47. #include <linux/sched/rt.h>
  48. #include <linux/sched/deadline.h>
  49. #include <linux/timer.h>
  50. #include <linux/freezer.h>
  51. #include <linux/uaccess.h>
  52. #include <trace/events/timer.h>
  53. #include "tick-internal.h"
  54. /*
  55. * The timer bases:
  56. *
  57. * There are more clockids than hrtimer bases. Thus, we index
  58. * into the timer bases by the hrtimer_base_type enum. When trying
  59. * to reach a base using a clockid, hrtimer_clockid_to_base()
  60. * is used to convert from clockid to the proper hrtimer_base_type.
  61. */
  62. DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  63. {
  64. .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  65. .seq = SEQCNT_ZERO(hrtimer_bases.seq),
  66. .clock_base =
  67. {
  68. {
  69. .index = HRTIMER_BASE_MONOTONIC,
  70. .clockid = CLOCK_MONOTONIC,
  71. .get_time = &ktime_get,
  72. },
  73. {
  74. .index = HRTIMER_BASE_REALTIME,
  75. .clockid = CLOCK_REALTIME,
  76. .get_time = &ktime_get_real,
  77. },
  78. {
  79. .index = HRTIMER_BASE_BOOTTIME,
  80. .clockid = CLOCK_BOOTTIME,
  81. .get_time = &ktime_get_boottime,
  82. },
  83. {
  84. .index = HRTIMER_BASE_TAI,
  85. .clockid = CLOCK_TAI,
  86. .get_time = &ktime_get_clocktai,
  87. },
  88. }
  89. };
  90. static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
  91. [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
  92. [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
  93. [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
  94. [CLOCK_TAI] = HRTIMER_BASE_TAI,
  95. };
  96. static inline int hrtimer_clockid_to_base(clockid_t clock_id)
  97. {
  98. return hrtimer_clock_to_base_table[clock_id];
  99. }
  100. /*
  101. * Functions and macros which are different for UP/SMP systems are kept in a
  102. * single place
  103. */
  104. #ifdef CONFIG_SMP
  105. /*
  106. * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
  107. * such that hrtimer_callback_running() can unconditionally dereference
  108. * timer->base->cpu_base
  109. */
  110. static struct hrtimer_cpu_base migration_cpu_base = {
  111. .seq = SEQCNT_ZERO(migration_cpu_base),
  112. .clock_base = { { .cpu_base = &migration_cpu_base, }, },
  113. };
  114. #define migration_base migration_cpu_base.clock_base[0]
  115. /*
  116. * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
  117. * means that all timers which are tied to this base via timer->base are
  118. * locked, and the base itself is locked too.
  119. *
  120. * So __run_timers/migrate_timers can safely modify all timers which could
  121. * be found on the lists/queues.
  122. *
  123. * When the timer's base is locked, and the timer removed from list, it is
  124. * possible to set timer->base = &migration_base and drop the lock: the timer
  125. * remains locked.
  126. */
  127. static
  128. struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
  129. unsigned long *flags)
  130. {
  131. struct hrtimer_clock_base *base;
  132. for (;;) {
  133. base = timer->base;
  134. if (likely(base != &migration_base)) {
  135. raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
  136. if (likely(base == timer->base))
  137. return base;
  138. /* The timer has migrated to another CPU: */
  139. raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
  140. }
  141. cpu_relax();
  142. }
  143. }
  144. /*
  145. * With HIGHRES=y we do not migrate the timer when it is expiring
  146. * before the next event on the target cpu because we cannot reprogram
  147. * the target cpu hardware and we would cause it to fire late.
  148. *
  149. * Called with cpu_base->lock of target cpu held.
  150. */
  151. static int
  152. hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
  153. {
  154. #ifdef CONFIG_HIGH_RES_TIMERS
  155. ktime_t expires;
  156. if (!new_base->cpu_base->hres_active)
  157. return 0;
  158. expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
  159. return expires <= new_base->cpu_base->expires_next;
  160. #else
  161. return 0;
  162. #endif
  163. }
  164. #ifdef CONFIG_NO_HZ_COMMON
  165. static inline
  166. struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
  167. int pinned)
  168. {
  169. if (pinned || !base->migration_enabled)
  170. return base;
  171. return &per_cpu(hrtimer_bases, get_nohz_timer_target());
  172. }
  173. #else
  174. static inline
  175. struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
  176. int pinned)
  177. {
  178. return base;
  179. }
  180. #endif
  181. /*
  182. * We switch the timer base to a power-optimized selected CPU target,
  183. * if:
  184. * - NO_HZ_COMMON is enabled
  185. * - timer migration is enabled
  186. * - the timer callback is not running
  187. * - the timer is not the first expiring timer on the new target
  188. *
  189. * If one of the above requirements is not fulfilled we move the timer
  190. * to the current CPU or leave it on the previously assigned CPU if
  191. * the timer callback is currently running.
  192. */
  193. static inline struct hrtimer_clock_base *
  194. switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
  195. int pinned)
  196. {
  197. struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
  198. struct hrtimer_clock_base *new_base;
  199. int basenum = base->index;
  200. this_cpu_base = this_cpu_ptr(&hrtimer_bases);
  201. new_cpu_base = get_target_base(this_cpu_base, pinned);
  202. again:
  203. new_base = &new_cpu_base->clock_base[basenum];
  204. if (base != new_base) {
  205. /*
  206. * We are trying to move timer to new_base.
  207. * However we can't change timer's base while it is running,
  208. * so we keep it on the same CPU. No hassle vs. reprogramming
  209. * the event source in the high resolution case. The softirq
  210. * code will take care of this when the timer function has
  211. * completed. There is no conflict as we hold the lock until
  212. * the timer is enqueued.
  213. */
  214. if (unlikely(hrtimer_callback_running(timer)))
  215. return base;
  216. /* See the comment in lock_hrtimer_base() */
  217. timer->base = &migration_base;
  218. raw_spin_unlock(&base->cpu_base->lock);
  219. raw_spin_lock(&new_base->cpu_base->lock);
  220. if (new_cpu_base != this_cpu_base &&
  221. hrtimer_check_target(timer, new_base)) {
  222. raw_spin_unlock(&new_base->cpu_base->lock);
  223. raw_spin_lock(&base->cpu_base->lock);
  224. new_cpu_base = this_cpu_base;
  225. timer->base = base;
  226. goto again;
  227. }
  228. timer->base = new_base;
  229. } else {
  230. if (new_cpu_base != this_cpu_base &&
  231. hrtimer_check_target(timer, new_base)) {
  232. new_cpu_base = this_cpu_base;
  233. goto again;
  234. }
  235. }
  236. return new_base;
  237. }
  238. #else /* CONFIG_SMP */
  239. static inline struct hrtimer_clock_base *
  240. lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
  241. {
  242. struct hrtimer_clock_base *base = timer->base;
  243. raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
  244. return base;
  245. }
  246. # define switch_hrtimer_base(t, b, p) (b)
  247. #endif /* !CONFIG_SMP */
  248. /*
  249. * Functions for the union type storage format of ktime_t which are
  250. * too large for inlining:
  251. */
  252. #if BITS_PER_LONG < 64
  253. /*
  254. * Divide a ktime value by a nanosecond value
  255. */
  256. s64 __ktime_divns(const ktime_t kt, s64 div)
  257. {
  258. int sft = 0;
  259. s64 dclc;
  260. u64 tmp;
  261. dclc = ktime_to_ns(kt);
  262. tmp = dclc < 0 ? -dclc : dclc;
  263. /* Make sure the divisor is less than 2^32: */
  264. while (div >> 32) {
  265. sft++;
  266. div >>= 1;
  267. }
  268. tmp >>= sft;
  269. do_div(tmp, (unsigned long) div);
  270. return dclc < 0 ? -tmp : tmp;
  271. }
  272. EXPORT_SYMBOL_GPL(__ktime_divns);
  273. #endif /* BITS_PER_LONG >= 64 */
  274. /*
  275. * Add two ktime values and do a safety check for overflow:
  276. */
  277. ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
  278. {
  279. ktime_t res = ktime_add_unsafe(lhs, rhs);
  280. /*
  281. * We use KTIME_SEC_MAX here, the maximum timeout which we can
  282. * return to user space in a timespec:
  283. */
  284. if (res < 0 || res < lhs || res < rhs)
  285. res = ktime_set(KTIME_SEC_MAX, 0);
  286. return res;
  287. }
  288. EXPORT_SYMBOL_GPL(ktime_add_safe);
  289. #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
  290. static struct debug_obj_descr hrtimer_debug_descr;
  291. static void *hrtimer_debug_hint(void *addr)
  292. {
  293. return ((struct hrtimer *) addr)->function;
  294. }
  295. /*
  296. * fixup_init is called when:
  297. * - an active object is initialized
  298. */
  299. static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
  300. {
  301. struct hrtimer *timer = addr;
  302. switch (state) {
  303. case ODEBUG_STATE_ACTIVE:
  304. hrtimer_cancel(timer);
  305. debug_object_init(timer, &hrtimer_debug_descr);
  306. return true;
  307. default:
  308. return false;
  309. }
  310. }
  311. /*
  312. * fixup_activate is called when:
  313. * - an active object is activated
  314. * - an unknown non-static object is activated
  315. */
  316. static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
  317. {
  318. switch (state) {
  319. case ODEBUG_STATE_ACTIVE:
  320. WARN_ON(1);
  321. default:
  322. return false;
  323. }
  324. }
  325. /*
  326. * fixup_free is called when:
  327. * - an active object is freed
  328. */
  329. static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
  330. {
  331. struct hrtimer *timer = addr;
  332. switch (state) {
  333. case ODEBUG_STATE_ACTIVE:
  334. hrtimer_cancel(timer);
  335. debug_object_free(timer, &hrtimer_debug_descr);
  336. return true;
  337. default:
  338. return false;
  339. }
  340. }
  341. static struct debug_obj_descr hrtimer_debug_descr = {
  342. .name = "hrtimer",
  343. .debug_hint = hrtimer_debug_hint,
  344. .fixup_init = hrtimer_fixup_init,
  345. .fixup_activate = hrtimer_fixup_activate,
  346. .fixup_free = hrtimer_fixup_free,
  347. };
  348. static inline void debug_hrtimer_init(struct hrtimer *timer)
  349. {
  350. debug_object_init(timer, &hrtimer_debug_descr);
  351. }
  352. static inline void debug_hrtimer_activate(struct hrtimer *timer)
  353. {
  354. debug_object_activate(timer, &hrtimer_debug_descr);
  355. }
  356. static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
  357. {
  358. debug_object_deactivate(timer, &hrtimer_debug_descr);
  359. }
  360. static inline void debug_hrtimer_free(struct hrtimer *timer)
  361. {
  362. debug_object_free(timer, &hrtimer_debug_descr);
  363. }
  364. static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
  365. enum hrtimer_mode mode);
  366. void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
  367. enum hrtimer_mode mode)
  368. {
  369. debug_object_init_on_stack(timer, &hrtimer_debug_descr);
  370. __hrtimer_init(timer, clock_id, mode);
  371. }
  372. EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
  373. void destroy_hrtimer_on_stack(struct hrtimer *timer)
  374. {
  375. debug_object_free(timer, &hrtimer_debug_descr);
  376. }
  377. EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
  378. #else
  379. static inline void debug_hrtimer_init(struct hrtimer *timer) { }
  380. static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
  381. static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
  382. #endif
  383. static inline void
  384. debug_init(struct hrtimer *timer, clockid_t clockid,
  385. enum hrtimer_mode mode)
  386. {
  387. debug_hrtimer_init(timer);
  388. trace_hrtimer_init(timer, clockid, mode);
  389. }
  390. static inline void debug_activate(struct hrtimer *timer)
  391. {
  392. debug_hrtimer_activate(timer);
  393. trace_hrtimer_start(timer);
  394. }
  395. static inline void debug_deactivate(struct hrtimer *timer)
  396. {
  397. debug_hrtimer_deactivate(timer);
  398. trace_hrtimer_cancel(timer);
  399. }
  400. #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  401. static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
  402. struct hrtimer *timer)
  403. {
  404. #ifdef CONFIG_HIGH_RES_TIMERS
  405. cpu_base->next_timer = timer;
  406. #endif
  407. }
  408. static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
  409. {
  410. struct hrtimer_clock_base *base = cpu_base->clock_base;
  411. unsigned int active = cpu_base->active_bases;
  412. ktime_t expires, expires_next = KTIME_MAX;
  413. hrtimer_update_next_timer(cpu_base, NULL);
  414. for (; active; base++, active >>= 1) {
  415. struct timerqueue_node *next;
  416. struct hrtimer *timer;
  417. if (!(active & 0x01))
  418. continue;
  419. next = timerqueue_getnext(&base->active);
  420. timer = container_of(next, struct hrtimer, node);
  421. expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
  422. if (expires < expires_next) {
  423. expires_next = expires;
  424. hrtimer_update_next_timer(cpu_base, timer);
  425. }
  426. }
  427. /*
  428. * clock_was_set() might have changed base->offset of any of
  429. * the clock bases so the result might be negative. Fix it up
  430. * to prevent a false positive in clockevents_program_event().
  431. */
  432. if (expires_next < 0)
  433. expires_next = 0;
  434. return expires_next;
  435. }
  436. #endif
  437. static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
  438. {
  439. ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
  440. ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
  441. ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
  442. return ktime_get_update_offsets_now(&base->clock_was_set_seq,
  443. offs_real, offs_boot, offs_tai);
  444. }
  445. /* High resolution timer related functions */
  446. #ifdef CONFIG_HIGH_RES_TIMERS
  447. /*
  448. * High resolution timer enabled ?
  449. */
  450. static bool hrtimer_hres_enabled __read_mostly = true;
  451. unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
  452. EXPORT_SYMBOL_GPL(hrtimer_resolution);
  453. /*
  454. * Enable / Disable high resolution mode
  455. */
  456. static int __init setup_hrtimer_hres(char *str)
  457. {
  458. return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
  459. }
  460. __setup("highres=", setup_hrtimer_hres);
  461. /*
  462. * hrtimer_high_res_enabled - query, if the highres mode is enabled
  463. */
  464. static inline int hrtimer_is_hres_enabled(void)
  465. {
  466. return hrtimer_hres_enabled;
  467. }
  468. /*
  469. * Is the high resolution mode active ?
  470. */
  471. static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
  472. {
  473. return cpu_base->hres_active;
  474. }
  475. static inline int hrtimer_hres_active(void)
  476. {
  477. return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
  478. }
  479. /*
  480. * Reprogram the event source with checking both queues for the
  481. * next event
  482. * Called with interrupts disabled and base->lock held
  483. */
  484. static void
  485. hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
  486. {
  487. ktime_t expires_next;
  488. if (!cpu_base->hres_active)
  489. return;
  490. expires_next = __hrtimer_get_next_event(cpu_base);
  491. if (skip_equal && expires_next == cpu_base->expires_next)
  492. return;
  493. cpu_base->expires_next = expires_next;
  494. /*
  495. * If a hang was detected in the last timer interrupt then we
  496. * leave the hang delay active in the hardware. We want the
  497. * system to make progress. That also prevents the following
  498. * scenario:
  499. * T1 expires 50ms from now
  500. * T2 expires 5s from now
  501. *
  502. * T1 is removed, so this code is called and would reprogram
  503. * the hardware to 5s from now. Any hrtimer_start after that
  504. * will not reprogram the hardware due to hang_detected being
  505. * set. So we'd effectivly block all timers until the T2 event
  506. * fires.
  507. */
  508. if (cpu_base->hang_detected)
  509. return;
  510. tick_program_event(cpu_base->expires_next, 1);
  511. }
  512. /*
  513. * When a timer is enqueued and expires earlier than the already enqueued
  514. * timers, we have to check, whether it expires earlier than the timer for
  515. * which the clock event device was armed.
  516. *
  517. * Called with interrupts disabled and base->cpu_base.lock held
  518. */
  519. static void hrtimer_reprogram(struct hrtimer *timer,
  520. struct hrtimer_clock_base *base)
  521. {
  522. struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
  523. ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
  524. WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
  525. /*
  526. * If the timer is not on the current cpu, we cannot reprogram
  527. * the other cpus clock event device.
  528. */
  529. if (base->cpu_base != cpu_base)
  530. return;
  531. /*
  532. * If the hrtimer interrupt is running, then it will
  533. * reevaluate the clock bases and reprogram the clock event
  534. * device. The callbacks are always executed in hard interrupt
  535. * context so we don't need an extra check for a running
  536. * callback.
  537. */
  538. if (cpu_base->in_hrtirq)
  539. return;
  540. /*
  541. * CLOCK_REALTIME timer might be requested with an absolute
  542. * expiry time which is less than base->offset. Set it to 0.
  543. */
  544. if (expires < 0)
  545. expires = 0;
  546. if (expires >= cpu_base->expires_next)
  547. return;
  548. /* Update the pointer to the next expiring timer */
  549. cpu_base->next_timer = timer;
  550. /*
  551. * If a hang was detected in the last timer interrupt then we
  552. * do not schedule a timer which is earlier than the expiry
  553. * which we enforced in the hang detection. We want the system
  554. * to make progress.
  555. */
  556. if (cpu_base->hang_detected)
  557. return;
  558. /*
  559. * Program the timer hardware. We enforce the expiry for
  560. * events which are already in the past.
  561. */
  562. cpu_base->expires_next = expires;
  563. tick_program_event(expires, 1);
  564. }
  565. /*
  566. * Initialize the high resolution related parts of cpu_base
  567. */
  568. static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
  569. {
  570. base->expires_next = KTIME_MAX;
  571. base->hres_active = 0;
  572. }
  573. /*
  574. * Retrigger next event is called after clock was set
  575. *
  576. * Called with interrupts disabled via on_each_cpu()
  577. */
  578. static void retrigger_next_event(void *arg)
  579. {
  580. struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
  581. if (!base->hres_active)
  582. return;
  583. raw_spin_lock(&base->lock);
  584. hrtimer_update_base(base);
  585. hrtimer_force_reprogram(base, 0);
  586. raw_spin_unlock(&base->lock);
  587. }
  588. /*
  589. * Switch to high resolution mode
  590. */
  591. static void hrtimer_switch_to_hres(void)
  592. {
  593. struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
  594. if (tick_init_highres()) {
  595. printk(KERN_WARNING "Could not switch to high resolution "
  596. "mode on CPU %d\n", base->cpu);
  597. return;
  598. }
  599. base->hres_active = 1;
  600. hrtimer_resolution = HIGH_RES_NSEC;
  601. tick_setup_sched_timer();
  602. /* "Retrigger" the interrupt to get things going */
  603. retrigger_next_event(NULL);
  604. }
  605. static void clock_was_set_work(struct work_struct *work)
  606. {
  607. clock_was_set();
  608. }
  609. static DECLARE_WORK(hrtimer_work, clock_was_set_work);
  610. /*
  611. * Called from timekeeping and resume code to reprogram the hrtimer
  612. * interrupt device on all cpus.
  613. */
  614. void clock_was_set_delayed(void)
  615. {
  616. schedule_work(&hrtimer_work);
  617. }
  618. #else
  619. static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
  620. static inline int hrtimer_hres_active(void) { return 0; }
  621. static inline int hrtimer_is_hres_enabled(void) { return 0; }
  622. static inline void hrtimer_switch_to_hres(void) { }
  623. static inline void
  624. hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
  625. static inline int hrtimer_reprogram(struct hrtimer *timer,
  626. struct hrtimer_clock_base *base)
  627. {
  628. return 0;
  629. }
  630. static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
  631. static inline void retrigger_next_event(void *arg) { }
  632. #endif /* CONFIG_HIGH_RES_TIMERS */
  633. /*
  634. * Clock realtime was set
  635. *
  636. * Change the offset of the realtime clock vs. the monotonic
  637. * clock.
  638. *
  639. * We might have to reprogram the high resolution timer interrupt. On
  640. * SMP we call the architecture specific code to retrigger _all_ high
  641. * resolution timer interrupts. On UP we just disable interrupts and
  642. * call the high resolution interrupt code.
  643. */
  644. void clock_was_set(void)
  645. {
  646. #ifdef CONFIG_HIGH_RES_TIMERS
  647. /* Retrigger the CPU local events everywhere */
  648. on_each_cpu(retrigger_next_event, NULL, 1);
  649. #endif
  650. timerfd_clock_was_set();
  651. }
  652. /*
  653. * During resume we might have to reprogram the high resolution timer
  654. * interrupt on all online CPUs. However, all other CPUs will be
  655. * stopped with IRQs interrupts disabled so the clock_was_set() call
  656. * must be deferred.
  657. */
  658. void hrtimers_resume(void)
  659. {
  660. WARN_ONCE(!irqs_disabled(),
  661. KERN_INFO "hrtimers_resume() called with IRQs enabled!");
  662. /* Retrigger on the local CPU */
  663. retrigger_next_event(NULL);
  664. /* And schedule a retrigger for all others */
  665. clock_was_set_delayed();
  666. }
  667. static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
  668. {
  669. #ifdef CONFIG_TIMER_STATS
  670. if (timer->start_site)
  671. return;
  672. timer->start_site = __builtin_return_address(0);
  673. memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
  674. timer->start_pid = current->pid;
  675. #endif
  676. }
  677. static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
  678. {
  679. #ifdef CONFIG_TIMER_STATS
  680. timer->start_site = NULL;
  681. #endif
  682. }
  683. static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
  684. {
  685. #ifdef CONFIG_TIMER_STATS
  686. if (likely(!timer_stats_active))
  687. return;
  688. timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
  689. timer->function, timer->start_comm, 0);
  690. #endif
  691. }
  692. /*
  693. * Counterpart to lock_hrtimer_base above:
  694. */
  695. static inline
  696. void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
  697. {
  698. raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
  699. }
  700. /**
  701. * hrtimer_forward - forward the timer expiry
  702. * @timer: hrtimer to forward
  703. * @now: forward past this time
  704. * @interval: the interval to forward
  705. *
  706. * Forward the timer expiry so it will expire in the future.
  707. * Returns the number of overruns.
  708. *
  709. * Can be safely called from the callback function of @timer. If
  710. * called from other contexts @timer must neither be enqueued nor
  711. * running the callback and the caller needs to take care of
  712. * serialization.
  713. *
  714. * Note: This only updates the timer expiry value and does not requeue
  715. * the timer.
  716. */
  717. u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
  718. {
  719. u64 orun = 1;
  720. ktime_t delta;
  721. delta = ktime_sub(now, hrtimer_get_expires(timer));
  722. if (delta < 0)
  723. return 0;
  724. if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
  725. return 0;
  726. if (interval < hrtimer_resolution)
  727. interval = hrtimer_resolution;
  728. if (unlikely(delta >= interval)) {
  729. s64 incr = ktime_to_ns(interval);
  730. orun = ktime_divns(delta, incr);
  731. hrtimer_add_expires_ns(timer, incr * orun);
  732. if (hrtimer_get_expires_tv64(timer) > now)
  733. return orun;
  734. /*
  735. * This (and the ktime_add() below) is the
  736. * correction for exact:
  737. */
  738. orun++;
  739. }
  740. hrtimer_add_expires(timer, interval);
  741. return orun;
  742. }
  743. EXPORT_SYMBOL_GPL(hrtimer_forward);
  744. /*
  745. * enqueue_hrtimer - internal function to (re)start a timer
  746. *
  747. * The timer is inserted in expiry order. Insertion into the
  748. * red black tree is O(log(n)). Must hold the base lock.
  749. *
  750. * Returns 1 when the new timer is the leftmost timer in the tree.
  751. */
  752. static int enqueue_hrtimer(struct hrtimer *timer,
  753. struct hrtimer_clock_base *base)
  754. {
  755. debug_activate(timer);
  756. base->cpu_base->active_bases |= 1 << base->index;
  757. timer->state = HRTIMER_STATE_ENQUEUED;
  758. return timerqueue_add(&base->active, &timer->node);
  759. }
  760. /*
  761. * __remove_hrtimer - internal function to remove a timer
  762. *
  763. * Caller must hold the base lock.
  764. *
  765. * High resolution timer mode reprograms the clock event device when the
  766. * timer is the one which expires next. The caller can disable this by setting
  767. * reprogram to zero. This is useful, when the context does a reprogramming
  768. * anyway (e.g. timer interrupt)
  769. */
  770. static void __remove_hrtimer(struct hrtimer *timer,
  771. struct hrtimer_clock_base *base,
  772. u8 newstate, int reprogram)
  773. {
  774. struct hrtimer_cpu_base *cpu_base = base->cpu_base;
  775. u8 state = timer->state;
  776. timer->state = newstate;
  777. if (!(state & HRTIMER_STATE_ENQUEUED))
  778. return;
  779. if (!timerqueue_del(&base->active, &timer->node))
  780. cpu_base->active_bases &= ~(1 << base->index);
  781. #ifdef CONFIG_HIGH_RES_TIMERS
  782. /*
  783. * Note: If reprogram is false we do not update
  784. * cpu_base->next_timer. This happens when we remove the first
  785. * timer on a remote cpu. No harm as we never dereference
  786. * cpu_base->next_timer. So the worst thing what can happen is
  787. * an superflous call to hrtimer_force_reprogram() on the
  788. * remote cpu later on if the same timer gets enqueued again.
  789. */
  790. if (reprogram && timer == cpu_base->next_timer)
  791. hrtimer_force_reprogram(cpu_base, 1);
  792. #endif
  793. }
  794. /*
  795. * remove hrtimer, called with base lock held
  796. */
  797. static inline int
  798. remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
  799. {
  800. if (hrtimer_is_queued(timer)) {
  801. u8 state = timer->state;
  802. int reprogram;
  803. /*
  804. * Remove the timer and force reprogramming when high
  805. * resolution mode is active and the timer is on the current
  806. * CPU. If we remove a timer on another CPU, reprogramming is
  807. * skipped. The interrupt event on this CPU is fired and
  808. * reprogramming happens in the interrupt handler. This is a
  809. * rare case and less expensive than a smp call.
  810. */
  811. debug_deactivate(timer);
  812. timer_stats_hrtimer_clear_start_info(timer);
  813. reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
  814. if (!restart)
  815. state = HRTIMER_STATE_INACTIVE;
  816. __remove_hrtimer(timer, base, state, reprogram);
  817. return 1;
  818. }
  819. return 0;
  820. }
  821. static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
  822. const enum hrtimer_mode mode)
  823. {
  824. #ifdef CONFIG_TIME_LOW_RES
  825. /*
  826. * CONFIG_TIME_LOW_RES indicates that the system has no way to return
  827. * granular time values. For relative timers we add hrtimer_resolution
  828. * (i.e. one jiffie) to prevent short timeouts.
  829. */
  830. timer->is_rel = mode & HRTIMER_MODE_REL;
  831. if (timer->is_rel)
  832. tim = ktime_add_safe(tim, hrtimer_resolution);
  833. #endif
  834. return tim;
  835. }
  836. /**
  837. * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
  838. * @timer: the timer to be added
  839. * @tim: expiry time
  840. * @delta_ns: "slack" range for the timer
  841. * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
  842. * relative (HRTIMER_MODE_REL)
  843. */
  844. void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
  845. u64 delta_ns, const enum hrtimer_mode mode)
  846. {
  847. struct hrtimer_clock_base *base, *new_base;
  848. unsigned long flags;
  849. int leftmost;
  850. base = lock_hrtimer_base(timer, &flags);
  851. /* Remove an active timer from the queue: */
  852. remove_hrtimer(timer, base, true);
  853. if (mode & HRTIMER_MODE_REL)
  854. tim = ktime_add_safe(tim, base->get_time());
  855. tim = hrtimer_update_lowres(timer, tim, mode);
  856. hrtimer_set_expires_range_ns(timer, tim, delta_ns);
  857. /* Switch the timer base, if necessary: */
  858. new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
  859. timer_stats_hrtimer_set_start_info(timer);
  860. leftmost = enqueue_hrtimer(timer, new_base);
  861. if (!leftmost)
  862. goto unlock;
  863. if (!hrtimer_is_hres_active(timer)) {
  864. /*
  865. * Kick to reschedule the next tick to handle the new timer
  866. * on dynticks target.
  867. */
  868. if (new_base->cpu_base->nohz_active)
  869. wake_up_nohz_cpu(new_base->cpu_base->cpu);
  870. } else {
  871. hrtimer_reprogram(timer, new_base);
  872. }
  873. unlock:
  874. unlock_hrtimer_base(timer, &flags);
  875. }
  876. EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
  877. /**
  878. * hrtimer_try_to_cancel - try to deactivate a timer
  879. * @timer: hrtimer to stop
  880. *
  881. * Returns:
  882. * 0 when the timer was not active
  883. * 1 when the timer was active
  884. * -1 when the timer is currently excuting the callback function and
  885. * cannot be stopped
  886. */
  887. int hrtimer_try_to_cancel(struct hrtimer *timer)
  888. {
  889. struct hrtimer_clock_base *base;
  890. unsigned long flags;
  891. int ret = -1;
  892. /*
  893. * Check lockless first. If the timer is not active (neither
  894. * enqueued nor running the callback, nothing to do here. The
  895. * base lock does not serialize against a concurrent enqueue,
  896. * so we can avoid taking it.
  897. */
  898. if (!hrtimer_active(timer))
  899. return 0;
  900. base = lock_hrtimer_base(timer, &flags);
  901. if (!hrtimer_callback_running(timer))
  902. ret = remove_hrtimer(timer, base, false);
  903. unlock_hrtimer_base(timer, &flags);
  904. return ret;
  905. }
  906. EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
  907. /**
  908. * hrtimer_cancel - cancel a timer and wait for the handler to finish.
  909. * @timer: the timer to be cancelled
  910. *
  911. * Returns:
  912. * 0 when the timer was not active
  913. * 1 when the timer was active
  914. */
  915. int hrtimer_cancel(struct hrtimer *timer)
  916. {
  917. for (;;) {
  918. int ret = hrtimer_try_to_cancel(timer);
  919. if (ret >= 0)
  920. return ret;
  921. cpu_relax();
  922. }
  923. }
  924. EXPORT_SYMBOL_GPL(hrtimer_cancel);
  925. /**
  926. * hrtimer_get_remaining - get remaining time for the timer
  927. * @timer: the timer to read
  928. * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
  929. */
  930. ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
  931. {
  932. unsigned long flags;
  933. ktime_t rem;
  934. lock_hrtimer_base(timer, &flags);
  935. if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
  936. rem = hrtimer_expires_remaining_adjusted(timer);
  937. else
  938. rem = hrtimer_expires_remaining(timer);
  939. unlock_hrtimer_base(timer, &flags);
  940. return rem;
  941. }
  942. EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
  943. #ifdef CONFIG_NO_HZ_COMMON
  944. /**
  945. * hrtimer_get_next_event - get the time until next expiry event
  946. *
  947. * Returns the next expiry time or KTIME_MAX if no timer is pending.
  948. */
  949. u64 hrtimer_get_next_event(void)
  950. {
  951. struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
  952. u64 expires = KTIME_MAX;
  953. unsigned long flags;
  954. raw_spin_lock_irqsave(&cpu_base->lock, flags);
  955. if (!__hrtimer_hres_active(cpu_base))
  956. expires = __hrtimer_get_next_event(cpu_base);
  957. raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
  958. return expires;
  959. }
  960. #endif
  961. static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
  962. enum hrtimer_mode mode)
  963. {
  964. struct hrtimer_cpu_base *cpu_base;
  965. int base;
  966. memset(timer, 0, sizeof(struct hrtimer));
  967. cpu_base = raw_cpu_ptr(&hrtimer_bases);
  968. if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
  969. clock_id = CLOCK_MONOTONIC;
  970. base = hrtimer_clockid_to_base(clock_id);
  971. timer->base = &cpu_base->clock_base[base];
  972. timerqueue_init(&timer->node);
  973. #ifdef CONFIG_TIMER_STATS
  974. timer->start_site = NULL;
  975. timer->start_pid = -1;
  976. memset(timer->start_comm, 0, TASK_COMM_LEN);
  977. #endif
  978. }
  979. /**
  980. * hrtimer_init - initialize a timer to the given clock
  981. * @timer: the timer to be initialized
  982. * @clock_id: the clock to be used
  983. * @mode: timer mode abs/rel
  984. */
  985. void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
  986. enum hrtimer_mode mode)
  987. {
  988. debug_init(timer, clock_id, mode);
  989. __hrtimer_init(timer, clock_id, mode);
  990. }
  991. EXPORT_SYMBOL_GPL(hrtimer_init);
  992. /*
  993. * A timer is active, when it is enqueued into the rbtree or the
  994. * callback function is running or it's in the state of being migrated
  995. * to another cpu.
  996. *
  997. * It is important for this function to not return a false negative.
  998. */
  999. bool hrtimer_active(const struct hrtimer *timer)
  1000. {
  1001. struct hrtimer_cpu_base *cpu_base;
  1002. unsigned int seq;
  1003. do {
  1004. cpu_base = READ_ONCE(timer->base->cpu_base);
  1005. seq = raw_read_seqcount_begin(&cpu_base->seq);
  1006. if (timer->state != HRTIMER_STATE_INACTIVE ||
  1007. cpu_base->running == timer)
  1008. return true;
  1009. } while (read_seqcount_retry(&cpu_base->seq, seq) ||
  1010. cpu_base != READ_ONCE(timer->base->cpu_base));
  1011. return false;
  1012. }
  1013. EXPORT_SYMBOL_GPL(hrtimer_active);
  1014. /*
  1015. * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
  1016. * distinct sections:
  1017. *
  1018. * - queued: the timer is queued
  1019. * - callback: the timer is being ran
  1020. * - post: the timer is inactive or (re)queued
  1021. *
  1022. * On the read side we ensure we observe timer->state and cpu_base->running
  1023. * from the same section, if anything changed while we looked at it, we retry.
  1024. * This includes timer->base changing because sequence numbers alone are
  1025. * insufficient for that.
  1026. *
  1027. * The sequence numbers are required because otherwise we could still observe
  1028. * a false negative if the read side got smeared over multiple consequtive
  1029. * __run_hrtimer() invocations.
  1030. */
  1031. static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
  1032. struct hrtimer_clock_base *base,
  1033. struct hrtimer *timer, ktime_t *now)
  1034. {
  1035. enum hrtimer_restart (*fn)(struct hrtimer *);
  1036. int restart;
  1037. lockdep_assert_held(&cpu_base->lock);
  1038. debug_deactivate(timer);
  1039. cpu_base->running = timer;
  1040. /*
  1041. * Separate the ->running assignment from the ->state assignment.
  1042. *
  1043. * As with a regular write barrier, this ensures the read side in
  1044. * hrtimer_active() cannot observe cpu_base->running == NULL &&
  1045. * timer->state == INACTIVE.
  1046. */
  1047. raw_write_seqcount_barrier(&cpu_base->seq);
  1048. __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
  1049. timer_stats_account_hrtimer(timer);
  1050. fn = timer->function;
  1051. /*
  1052. * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
  1053. * timer is restarted with a period then it becomes an absolute
  1054. * timer. If its not restarted it does not matter.
  1055. */
  1056. if (IS_ENABLED(CONFIG_TIME_LOW_RES))
  1057. timer->is_rel = false;
  1058. /*
  1059. * Because we run timers from hardirq context, there is no chance
  1060. * they get migrated to another cpu, therefore its safe to unlock
  1061. * the timer base.
  1062. */
  1063. raw_spin_unlock(&cpu_base->lock);
  1064. trace_hrtimer_expire_entry(timer, now);
  1065. restart = fn(timer);
  1066. trace_hrtimer_expire_exit(timer);
  1067. raw_spin_lock(&cpu_base->lock);
  1068. /*
  1069. * Note: We clear the running state after enqueue_hrtimer and
  1070. * we do not reprogram the event hardware. Happens either in
  1071. * hrtimer_start_range_ns() or in hrtimer_interrupt()
  1072. *
  1073. * Note: Because we dropped the cpu_base->lock above,
  1074. * hrtimer_start_range_ns() can have popped in and enqueued the timer
  1075. * for us already.
  1076. */
  1077. if (restart != HRTIMER_NORESTART &&
  1078. !(timer->state & HRTIMER_STATE_ENQUEUED))
  1079. enqueue_hrtimer(timer, base);
  1080. /*
  1081. * Separate the ->running assignment from the ->state assignment.
  1082. *
  1083. * As with a regular write barrier, this ensures the read side in
  1084. * hrtimer_active() cannot observe cpu_base->running == NULL &&
  1085. * timer->state == INACTIVE.
  1086. */
  1087. raw_write_seqcount_barrier(&cpu_base->seq);
  1088. WARN_ON_ONCE(cpu_base->running != timer);
  1089. cpu_base->running = NULL;
  1090. }
  1091. static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
  1092. {
  1093. struct hrtimer_clock_base *base = cpu_base->clock_base;
  1094. unsigned int active = cpu_base->active_bases;
  1095. for (; active; base++, active >>= 1) {
  1096. struct timerqueue_node *node;
  1097. ktime_t basenow;
  1098. if (!(active & 0x01))
  1099. continue;
  1100. basenow = ktime_add(now, base->offset);
  1101. while ((node = timerqueue_getnext(&base->active))) {
  1102. struct hrtimer *timer;
  1103. timer = container_of(node, struct hrtimer, node);
  1104. /*
  1105. * The immediate goal for using the softexpires is
  1106. * minimizing wakeups, not running timers at the
  1107. * earliest interrupt after their soft expiration.
  1108. * This allows us to avoid using a Priority Search
  1109. * Tree, which can answer a stabbing querry for
  1110. * overlapping intervals and instead use the simple
  1111. * BST we already have.
  1112. * We don't add extra wakeups by delaying timers that
  1113. * are right-of a not yet expired timer, because that
  1114. * timer will have to trigger a wakeup anyway.
  1115. */
  1116. if (basenow < hrtimer_get_softexpires_tv64(timer))
  1117. break;
  1118. __run_hrtimer(cpu_base, base, timer, &basenow);
  1119. }
  1120. }
  1121. }
  1122. #ifdef CONFIG_HIGH_RES_TIMERS
  1123. /*
  1124. * High resolution timer interrupt
  1125. * Called with interrupts disabled
  1126. */
  1127. void hrtimer_interrupt(struct clock_event_device *dev)
  1128. {
  1129. struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
  1130. ktime_t expires_next, now, entry_time, delta;
  1131. int retries = 0;
  1132. BUG_ON(!cpu_base->hres_active);
  1133. cpu_base->nr_events++;
  1134. dev->next_event = KTIME_MAX;
  1135. raw_spin_lock(&cpu_base->lock);
  1136. entry_time = now = hrtimer_update_base(cpu_base);
  1137. retry:
  1138. cpu_base->in_hrtirq = 1;
  1139. /*
  1140. * We set expires_next to KTIME_MAX here with cpu_base->lock
  1141. * held to prevent that a timer is enqueued in our queue via
  1142. * the migration code. This does not affect enqueueing of
  1143. * timers which run their callback and need to be requeued on
  1144. * this CPU.
  1145. */
  1146. cpu_base->expires_next = KTIME_MAX;
  1147. __hrtimer_run_queues(cpu_base, now);
  1148. /* Reevaluate the clock bases for the next expiry */
  1149. expires_next = __hrtimer_get_next_event(cpu_base);
  1150. /*
  1151. * Store the new expiry value so the migration code can verify
  1152. * against it.
  1153. */
  1154. cpu_base->expires_next = expires_next;
  1155. cpu_base->in_hrtirq = 0;
  1156. raw_spin_unlock(&cpu_base->lock);
  1157. /* Reprogramming necessary ? */
  1158. if (!tick_program_event(expires_next, 0)) {
  1159. cpu_base->hang_detected = 0;
  1160. return;
  1161. }
  1162. /*
  1163. * The next timer was already expired due to:
  1164. * - tracing
  1165. * - long lasting callbacks
  1166. * - being scheduled away when running in a VM
  1167. *
  1168. * We need to prevent that we loop forever in the hrtimer
  1169. * interrupt routine. We give it 3 attempts to avoid
  1170. * overreacting on some spurious event.
  1171. *
  1172. * Acquire base lock for updating the offsets and retrieving
  1173. * the current time.
  1174. */
  1175. raw_spin_lock(&cpu_base->lock);
  1176. now = hrtimer_update_base(cpu_base);
  1177. cpu_base->nr_retries++;
  1178. if (++retries < 3)
  1179. goto retry;
  1180. /*
  1181. * Give the system a chance to do something else than looping
  1182. * here. We stored the entry time, so we know exactly how long
  1183. * we spent here. We schedule the next event this amount of
  1184. * time away.
  1185. */
  1186. cpu_base->nr_hangs++;
  1187. cpu_base->hang_detected = 1;
  1188. raw_spin_unlock(&cpu_base->lock);
  1189. delta = ktime_sub(now, entry_time);
  1190. if ((unsigned int)delta > cpu_base->max_hang_time)
  1191. cpu_base->max_hang_time = (unsigned int) delta;
  1192. /*
  1193. * Limit it to a sensible value as we enforce a longer
  1194. * delay. Give the CPU at least 100ms to catch up.
  1195. */
  1196. if (delta > 100 * NSEC_PER_MSEC)
  1197. expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
  1198. else
  1199. expires_next = ktime_add(now, delta);
  1200. tick_program_event(expires_next, 1);
  1201. printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
  1202. ktime_to_ns(delta));
  1203. }
  1204. /*
  1205. * local version of hrtimer_peek_ahead_timers() called with interrupts
  1206. * disabled.
  1207. */
  1208. static inline void __hrtimer_peek_ahead_timers(void)
  1209. {
  1210. struct tick_device *td;
  1211. if (!hrtimer_hres_active())
  1212. return;
  1213. td = this_cpu_ptr(&tick_cpu_device);
  1214. if (td && td->evtdev)
  1215. hrtimer_interrupt(td->evtdev);
  1216. }
  1217. #else /* CONFIG_HIGH_RES_TIMERS */
  1218. static inline void __hrtimer_peek_ahead_timers(void) { }
  1219. #endif /* !CONFIG_HIGH_RES_TIMERS */
  1220. /*
  1221. * Called from run_local_timers in hardirq context every jiffy
  1222. */
  1223. void hrtimer_run_queues(void)
  1224. {
  1225. struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
  1226. ktime_t now;
  1227. if (__hrtimer_hres_active(cpu_base))
  1228. return;
  1229. /*
  1230. * This _is_ ugly: We have to check periodically, whether we
  1231. * can switch to highres and / or nohz mode. The clocksource
  1232. * switch happens with xtime_lock held. Notification from
  1233. * there only sets the check bit in the tick_oneshot code,
  1234. * otherwise we might deadlock vs. xtime_lock.
  1235. */
  1236. if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
  1237. hrtimer_switch_to_hres();
  1238. return;
  1239. }
  1240. raw_spin_lock(&cpu_base->lock);
  1241. now = hrtimer_update_base(cpu_base);
  1242. __hrtimer_run_queues(cpu_base, now);
  1243. raw_spin_unlock(&cpu_base->lock);
  1244. }
  1245. /*
  1246. * Sleep related functions:
  1247. */
  1248. static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
  1249. {
  1250. struct hrtimer_sleeper *t =
  1251. container_of(timer, struct hrtimer_sleeper, timer);
  1252. struct task_struct *task = t->task;
  1253. t->task = NULL;
  1254. if (task)
  1255. wake_up_process(task);
  1256. return HRTIMER_NORESTART;
  1257. }
  1258. void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
  1259. {
  1260. sl->timer.function = hrtimer_wakeup;
  1261. sl->task = task;
  1262. }
  1263. EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
  1264. static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
  1265. {
  1266. hrtimer_init_sleeper(t, current);
  1267. do {
  1268. set_current_state(TASK_INTERRUPTIBLE);
  1269. hrtimer_start_expires(&t->timer, mode);
  1270. if (likely(t->task))
  1271. freezable_schedule();
  1272. hrtimer_cancel(&t->timer);
  1273. mode = HRTIMER_MODE_ABS;
  1274. } while (t->task && !signal_pending(current));
  1275. __set_current_state(TASK_RUNNING);
  1276. return t->task == NULL;
  1277. }
  1278. static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
  1279. {
  1280. struct timespec rmt;
  1281. ktime_t rem;
  1282. rem = hrtimer_expires_remaining(timer);
  1283. if (rem <= 0)
  1284. return 0;
  1285. rmt = ktime_to_timespec(rem);
  1286. if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
  1287. return -EFAULT;
  1288. return 1;
  1289. }
  1290. long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
  1291. {
  1292. struct hrtimer_sleeper t;
  1293. struct timespec __user *rmtp;
  1294. int ret = 0;
  1295. hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
  1296. HRTIMER_MODE_ABS);
  1297. hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
  1298. if (do_nanosleep(&t, HRTIMER_MODE_ABS))
  1299. goto out;
  1300. rmtp = restart->nanosleep.rmtp;
  1301. if (rmtp) {
  1302. ret = update_rmtp(&t.timer, rmtp);
  1303. if (ret <= 0)
  1304. goto out;
  1305. }
  1306. /* The other values in restart are already filled in */
  1307. ret = -ERESTART_RESTARTBLOCK;
  1308. out:
  1309. destroy_hrtimer_on_stack(&t.timer);
  1310. return ret;
  1311. }
  1312. long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
  1313. const enum hrtimer_mode mode, const clockid_t clockid)
  1314. {
  1315. struct restart_block *restart;
  1316. struct hrtimer_sleeper t;
  1317. int ret = 0;
  1318. u64 slack;
  1319. slack = current->timer_slack_ns;
  1320. if (dl_task(current) || rt_task(current))
  1321. slack = 0;
  1322. hrtimer_init_on_stack(&t.timer, clockid, mode);
  1323. hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
  1324. if (do_nanosleep(&t, mode))
  1325. goto out;
  1326. /* Absolute timers do not update the rmtp value and restart: */
  1327. if (mode == HRTIMER_MODE_ABS) {
  1328. ret = -ERESTARTNOHAND;
  1329. goto out;
  1330. }
  1331. if (rmtp) {
  1332. ret = update_rmtp(&t.timer, rmtp);
  1333. if (ret <= 0)
  1334. goto out;
  1335. }
  1336. restart = &current->restart_block;
  1337. restart->fn = hrtimer_nanosleep_restart;
  1338. restart->nanosleep.clockid = t.timer.base->clockid;
  1339. restart->nanosleep.rmtp = rmtp;
  1340. restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
  1341. ret = -ERESTART_RESTARTBLOCK;
  1342. out:
  1343. destroy_hrtimer_on_stack(&t.timer);
  1344. return ret;
  1345. }
  1346. SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
  1347. struct timespec __user *, rmtp)
  1348. {
  1349. struct timespec tu;
  1350. if (copy_from_user(&tu, rqtp, sizeof(tu)))
  1351. return -EFAULT;
  1352. if (!timespec_valid(&tu))
  1353. return -EINVAL;
  1354. return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
  1355. }
  1356. /*
  1357. * Functions related to boot-time initialization:
  1358. */
  1359. int hrtimers_prepare_cpu(unsigned int cpu)
  1360. {
  1361. struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
  1362. int i;
  1363. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
  1364. cpu_base->clock_base[i].cpu_base = cpu_base;
  1365. timerqueue_init_head(&cpu_base->clock_base[i].active);
  1366. }
  1367. cpu_base->cpu = cpu;
  1368. hrtimer_init_hres(cpu_base);
  1369. return 0;
  1370. }
  1371. #ifdef CONFIG_HOTPLUG_CPU
  1372. static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
  1373. struct hrtimer_clock_base *new_base)
  1374. {
  1375. struct hrtimer *timer;
  1376. struct timerqueue_node *node;
  1377. while ((node = timerqueue_getnext(&old_base->active))) {
  1378. timer = container_of(node, struct hrtimer, node);
  1379. BUG_ON(hrtimer_callback_running(timer));
  1380. debug_deactivate(timer);
  1381. /*
  1382. * Mark it as ENQUEUED not INACTIVE otherwise the
  1383. * timer could be seen as !active and just vanish away
  1384. * under us on another CPU
  1385. */
  1386. __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
  1387. timer->base = new_base;
  1388. /*
  1389. * Enqueue the timers on the new cpu. This does not
  1390. * reprogram the event device in case the timer
  1391. * expires before the earliest on this CPU, but we run
  1392. * hrtimer_interrupt after we migrated everything to
  1393. * sort out already expired timers and reprogram the
  1394. * event device.
  1395. */
  1396. enqueue_hrtimer(timer, new_base);
  1397. }
  1398. }
  1399. int hrtimers_dead_cpu(unsigned int scpu)
  1400. {
  1401. struct hrtimer_cpu_base *old_base, *new_base;
  1402. int i;
  1403. BUG_ON(cpu_online(scpu));
  1404. tick_cancel_sched_timer(scpu);
  1405. local_irq_disable();
  1406. old_base = &per_cpu(hrtimer_bases, scpu);
  1407. new_base = this_cpu_ptr(&hrtimer_bases);
  1408. /*
  1409. * The caller is globally serialized and nobody else
  1410. * takes two locks at once, deadlock is not possible.
  1411. */
  1412. raw_spin_lock(&new_base->lock);
  1413. raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
  1414. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
  1415. migrate_hrtimer_list(&old_base->clock_base[i],
  1416. &new_base->clock_base[i]);
  1417. }
  1418. raw_spin_unlock(&old_base->lock);
  1419. raw_spin_unlock(&new_base->lock);
  1420. /* Check, if we got expired work to do */
  1421. __hrtimer_peek_ahead_timers();
  1422. local_irq_enable();
  1423. return 0;
  1424. }
  1425. #endif /* CONFIG_HOTPLUG_CPU */
  1426. void __init hrtimers_init(void)
  1427. {
  1428. hrtimers_prepare_cpu(smp_processor_id());
  1429. }
  1430. /**
  1431. * schedule_hrtimeout_range_clock - sleep until timeout
  1432. * @expires: timeout value (ktime_t)
  1433. * @delta: slack in expires timeout (ktime_t)
  1434. * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
  1435. * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
  1436. */
  1437. int __sched
  1438. schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
  1439. const enum hrtimer_mode mode, int clock)
  1440. {
  1441. struct hrtimer_sleeper t;
  1442. /*
  1443. * Optimize when a zero timeout value is given. It does not
  1444. * matter whether this is an absolute or a relative time.
  1445. */
  1446. if (expires && *expires == 0) {
  1447. __set_current_state(TASK_RUNNING);
  1448. return 0;
  1449. }
  1450. /*
  1451. * A NULL parameter means "infinite"
  1452. */
  1453. if (!expires) {
  1454. schedule();
  1455. return -EINTR;
  1456. }
  1457. hrtimer_init_on_stack(&t.timer, clock, mode);
  1458. hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
  1459. hrtimer_init_sleeper(&t, current);
  1460. hrtimer_start_expires(&t.timer, mode);
  1461. if (likely(t.task))
  1462. schedule();
  1463. hrtimer_cancel(&t.timer);
  1464. destroy_hrtimer_on_stack(&t.timer);
  1465. __set_current_state(TASK_RUNNING);
  1466. return !t.task ? 0 : -EINTR;
  1467. }
  1468. /**
  1469. * schedule_hrtimeout_range - sleep until timeout
  1470. * @expires: timeout value (ktime_t)
  1471. * @delta: slack in expires timeout (ktime_t)
  1472. * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
  1473. *
  1474. * Make the current task sleep until the given expiry time has
  1475. * elapsed. The routine will return immediately unless
  1476. * the current task state has been set (see set_current_state()).
  1477. *
  1478. * The @delta argument gives the kernel the freedom to schedule the
  1479. * actual wakeup to a time that is both power and performance friendly.
  1480. * The kernel give the normal best effort behavior for "@expires+@delta",
  1481. * but may decide to fire the timer earlier, but no earlier than @expires.
  1482. *
  1483. * You can set the task state as follows -
  1484. *
  1485. * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
  1486. * pass before the routine returns unless the current task is explicitly
  1487. * woken up, (e.g. by wake_up_process()).
  1488. *
  1489. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  1490. * delivered to the current task or the current task is explicitly woken
  1491. * up.
  1492. *
  1493. * The current task state is guaranteed to be TASK_RUNNING when this
  1494. * routine returns.
  1495. *
  1496. * Returns 0 when the timer has expired. If the task was woken before the
  1497. * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
  1498. * by an explicit wakeup, it returns -EINTR.
  1499. */
  1500. int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
  1501. const enum hrtimer_mode mode)
  1502. {
  1503. return schedule_hrtimeout_range_clock(expires, delta, mode,
  1504. CLOCK_MONOTONIC);
  1505. }
  1506. EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
  1507. /**
  1508. * schedule_hrtimeout - sleep until timeout
  1509. * @expires: timeout value (ktime_t)
  1510. * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
  1511. *
  1512. * Make the current task sleep until the given expiry time has
  1513. * elapsed. The routine will return immediately unless
  1514. * the current task state has been set (see set_current_state()).
  1515. *
  1516. * You can set the task state as follows -
  1517. *
  1518. * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
  1519. * pass before the routine returns unless the current task is explicitly
  1520. * woken up, (e.g. by wake_up_process()).
  1521. *
  1522. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  1523. * delivered to the current task or the current task is explicitly woken
  1524. * up.
  1525. *
  1526. * The current task state is guaranteed to be TASK_RUNNING when this
  1527. * routine returns.
  1528. *
  1529. * Returns 0 when the timer has expired. If the task was woken before the
  1530. * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
  1531. * by an explicit wakeup, it returns -EINTR.
  1532. */
  1533. int __sched schedule_hrtimeout(ktime_t *expires,
  1534. const enum hrtimer_mode mode)
  1535. {
  1536. return schedule_hrtimeout_range(expires, 0, mode);
  1537. }
  1538. EXPORT_SYMBOL_GPL(schedule_hrtimeout);