alarmtimer.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920
  1. /*
  2. * Alarmtimer interface
  3. *
  4. * This interface provides a timer which is similarto hrtimers,
  5. * but triggers a RTC alarm if the box is suspend.
  6. *
  7. * This interface is influenced by the Android RTC Alarm timer
  8. * interface.
  9. *
  10. * Copyright (C) 2010 IBM Corperation
  11. *
  12. * Author: John Stultz <john.stultz@linaro.org>
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License version 2 as
  16. * published by the Free Software Foundation.
  17. */
  18. #include <linux/time.h>
  19. #include <linux/hrtimer.h>
  20. #include <linux/timerqueue.h>
  21. #include <linux/rtc.h>
  22. #include <linux/alarmtimer.h>
  23. #include <linux/mutex.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/posix-timers.h>
  26. #include <linux/workqueue.h>
  27. #include <linux/freezer.h>
  28. #define CREATE_TRACE_POINTS
  29. #include <trace/events/alarmtimer.h>
  30. /**
  31. * struct alarm_base - Alarm timer bases
  32. * @lock: Lock for syncrhonized access to the base
  33. * @timerqueue: Timerqueue head managing the list of events
  34. * @gettime: Function to read the time correlating to the base
  35. * @base_clockid: clockid for the base
  36. */
  37. static struct alarm_base {
  38. spinlock_t lock;
  39. struct timerqueue_head timerqueue;
  40. ktime_t (*gettime)(void);
  41. clockid_t base_clockid;
  42. } alarm_bases[ALARM_NUMTYPE];
  43. /* freezer information to handle clock_nanosleep triggered wakeups */
  44. static enum alarmtimer_type freezer_alarmtype;
  45. static ktime_t freezer_expires;
  46. static ktime_t freezer_delta;
  47. static DEFINE_SPINLOCK(freezer_delta_lock);
  48. static struct wakeup_source *ws;
  49. #ifdef CONFIG_RTC_CLASS
  50. /* rtc timer and device for setting alarm wakeups at suspend */
  51. static struct rtc_timer rtctimer;
  52. static struct rtc_device *rtcdev;
  53. static DEFINE_SPINLOCK(rtcdev_lock);
  54. /**
  55. * alarmtimer_get_rtcdev - Return selected rtcdevice
  56. *
  57. * This function returns the rtc device to use for wakealarms.
  58. * If one has not already been chosen, it checks to see if a
  59. * functional rtc device is available.
  60. */
  61. struct rtc_device *alarmtimer_get_rtcdev(void)
  62. {
  63. unsigned long flags;
  64. struct rtc_device *ret;
  65. spin_lock_irqsave(&rtcdev_lock, flags);
  66. ret = rtcdev;
  67. spin_unlock_irqrestore(&rtcdev_lock, flags);
  68. return ret;
  69. }
  70. EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
  71. static int alarmtimer_rtc_add_device(struct device *dev,
  72. struct class_interface *class_intf)
  73. {
  74. unsigned long flags;
  75. struct rtc_device *rtc = to_rtc_device(dev);
  76. if (rtcdev)
  77. return -EBUSY;
  78. if (!rtc->ops->set_alarm)
  79. return -1;
  80. if (!device_may_wakeup(rtc->dev.parent))
  81. return -1;
  82. spin_lock_irqsave(&rtcdev_lock, flags);
  83. if (!rtcdev) {
  84. rtcdev = rtc;
  85. /* hold a reference so it doesn't go away */
  86. get_device(dev);
  87. }
  88. spin_unlock_irqrestore(&rtcdev_lock, flags);
  89. return 0;
  90. }
  91. static inline void alarmtimer_rtc_timer_init(void)
  92. {
  93. rtc_timer_init(&rtctimer, NULL, NULL);
  94. }
  95. static struct class_interface alarmtimer_rtc_interface = {
  96. .add_dev = &alarmtimer_rtc_add_device,
  97. };
  98. static int alarmtimer_rtc_interface_setup(void)
  99. {
  100. alarmtimer_rtc_interface.class = rtc_class;
  101. return class_interface_register(&alarmtimer_rtc_interface);
  102. }
  103. static void alarmtimer_rtc_interface_remove(void)
  104. {
  105. class_interface_unregister(&alarmtimer_rtc_interface);
  106. }
  107. #else
  108. struct rtc_device *alarmtimer_get_rtcdev(void)
  109. {
  110. return NULL;
  111. }
  112. #define rtcdev (NULL)
  113. static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
  114. static inline void alarmtimer_rtc_interface_remove(void) { }
  115. static inline void alarmtimer_rtc_timer_init(void) { }
  116. #endif
  117. /**
  118. * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
  119. * @base: pointer to the base where the timer is being run
  120. * @alarm: pointer to alarm being enqueued.
  121. *
  122. * Adds alarm to a alarm_base timerqueue
  123. *
  124. * Must hold base->lock when calling.
  125. */
  126. static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
  127. {
  128. if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
  129. timerqueue_del(&base->timerqueue, &alarm->node);
  130. timerqueue_add(&base->timerqueue, &alarm->node);
  131. alarm->state |= ALARMTIMER_STATE_ENQUEUED;
  132. }
  133. /**
  134. * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
  135. * @base: pointer to the base where the timer is running
  136. * @alarm: pointer to alarm being removed
  137. *
  138. * Removes alarm to a alarm_base timerqueue
  139. *
  140. * Must hold base->lock when calling.
  141. */
  142. static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
  143. {
  144. if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
  145. return;
  146. timerqueue_del(&base->timerqueue, &alarm->node);
  147. alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
  148. }
  149. /**
  150. * alarmtimer_fired - Handles alarm hrtimer being fired.
  151. * @timer: pointer to hrtimer being run
  152. *
  153. * When a alarm timer fires, this runs through the timerqueue to
  154. * see which alarms expired, and runs those. If there are more alarm
  155. * timers queued for the future, we set the hrtimer to fire when
  156. * when the next future alarm timer expires.
  157. */
  158. static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
  159. {
  160. struct alarm *alarm = container_of(timer, struct alarm, timer);
  161. struct alarm_base *base = &alarm_bases[alarm->type];
  162. unsigned long flags;
  163. int ret = HRTIMER_NORESTART;
  164. int restart = ALARMTIMER_NORESTART;
  165. spin_lock_irqsave(&base->lock, flags);
  166. alarmtimer_dequeue(base, alarm);
  167. spin_unlock_irqrestore(&base->lock, flags);
  168. if (alarm->function)
  169. restart = alarm->function(alarm, base->gettime());
  170. spin_lock_irqsave(&base->lock, flags);
  171. if (restart != ALARMTIMER_NORESTART) {
  172. hrtimer_set_expires(&alarm->timer, alarm->node.expires);
  173. alarmtimer_enqueue(base, alarm);
  174. ret = HRTIMER_RESTART;
  175. }
  176. spin_unlock_irqrestore(&base->lock, flags);
  177. trace_alarmtimer_fired(alarm, base->gettime());
  178. return ret;
  179. }
  180. ktime_t alarm_expires_remaining(const struct alarm *alarm)
  181. {
  182. struct alarm_base *base = &alarm_bases[alarm->type];
  183. return ktime_sub(alarm->node.expires, base->gettime());
  184. }
  185. EXPORT_SYMBOL_GPL(alarm_expires_remaining);
  186. #ifdef CONFIG_RTC_CLASS
  187. /**
  188. * alarmtimer_suspend - Suspend time callback
  189. * @dev: unused
  190. * @state: unused
  191. *
  192. * When we are going into suspend, we look through the bases
  193. * to see which is the soonest timer to expire. We then
  194. * set an rtc timer to fire that far into the future, which
  195. * will wake us from suspend.
  196. */
  197. static int alarmtimer_suspend(struct device *dev)
  198. {
  199. ktime_t min, now, expires;
  200. int i, ret, type;
  201. struct rtc_device *rtc;
  202. unsigned long flags;
  203. struct rtc_time tm;
  204. spin_lock_irqsave(&freezer_delta_lock, flags);
  205. min = freezer_delta;
  206. expires = freezer_expires;
  207. type = freezer_alarmtype;
  208. freezer_delta = 0;
  209. spin_unlock_irqrestore(&freezer_delta_lock, flags);
  210. rtc = alarmtimer_get_rtcdev();
  211. /* If we have no rtcdev, just return */
  212. if (!rtc)
  213. return 0;
  214. /* Find the soonest timer to expire*/
  215. for (i = 0; i < ALARM_NUMTYPE; i++) {
  216. struct alarm_base *base = &alarm_bases[i];
  217. struct timerqueue_node *next;
  218. ktime_t delta;
  219. spin_lock_irqsave(&base->lock, flags);
  220. next = timerqueue_getnext(&base->timerqueue);
  221. spin_unlock_irqrestore(&base->lock, flags);
  222. if (!next)
  223. continue;
  224. delta = ktime_sub(next->expires, base->gettime());
  225. if (!min || (delta < min)) {
  226. expires = next->expires;
  227. min = delta;
  228. type = i;
  229. }
  230. }
  231. if (min == 0)
  232. return 0;
  233. if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
  234. __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
  235. return -EBUSY;
  236. }
  237. trace_alarmtimer_suspend(expires, type);
  238. /* Setup an rtc timer to fire that far in the future */
  239. rtc_timer_cancel(rtc, &rtctimer);
  240. rtc_read_time(rtc, &tm);
  241. now = rtc_tm_to_ktime(tm);
  242. now = ktime_add(now, min);
  243. /* Set alarm, if in the past reject suspend briefly to handle */
  244. ret = rtc_timer_start(rtc, &rtctimer, now, 0);
  245. if (ret < 0)
  246. __pm_wakeup_event(ws, MSEC_PER_SEC);
  247. return ret;
  248. }
  249. static int alarmtimer_resume(struct device *dev)
  250. {
  251. struct rtc_device *rtc;
  252. rtc = alarmtimer_get_rtcdev();
  253. if (rtc)
  254. rtc_timer_cancel(rtc, &rtctimer);
  255. return 0;
  256. }
  257. #else
  258. static int alarmtimer_suspend(struct device *dev)
  259. {
  260. return 0;
  261. }
  262. static int alarmtimer_resume(struct device *dev)
  263. {
  264. return 0;
  265. }
  266. #endif
  267. static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
  268. {
  269. struct alarm_base *base;
  270. unsigned long flags;
  271. ktime_t delta;
  272. switch(type) {
  273. case ALARM_REALTIME:
  274. base = &alarm_bases[ALARM_REALTIME];
  275. type = ALARM_REALTIME_FREEZER;
  276. break;
  277. case ALARM_BOOTTIME:
  278. base = &alarm_bases[ALARM_BOOTTIME];
  279. type = ALARM_BOOTTIME_FREEZER;
  280. break;
  281. default:
  282. WARN_ONCE(1, "Invalid alarm type: %d\n", type);
  283. return;
  284. }
  285. delta = ktime_sub(absexp, base->gettime());
  286. spin_lock_irqsave(&freezer_delta_lock, flags);
  287. if (!freezer_delta || (delta < freezer_delta)) {
  288. freezer_delta = delta;
  289. freezer_expires = absexp;
  290. freezer_alarmtype = type;
  291. }
  292. spin_unlock_irqrestore(&freezer_delta_lock, flags);
  293. }
  294. /**
  295. * alarm_init - Initialize an alarm structure
  296. * @alarm: ptr to alarm to be initialized
  297. * @type: the type of the alarm
  298. * @function: callback that is run when the alarm fires
  299. */
  300. void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
  301. enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
  302. {
  303. timerqueue_init(&alarm->node);
  304. hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
  305. HRTIMER_MODE_ABS);
  306. alarm->timer.function = alarmtimer_fired;
  307. alarm->function = function;
  308. alarm->type = type;
  309. alarm->state = ALARMTIMER_STATE_INACTIVE;
  310. }
  311. EXPORT_SYMBOL_GPL(alarm_init);
  312. /**
  313. * alarm_start - Sets an absolute alarm to fire
  314. * @alarm: ptr to alarm to set
  315. * @start: time to run the alarm
  316. */
  317. void alarm_start(struct alarm *alarm, ktime_t start)
  318. {
  319. struct alarm_base *base = &alarm_bases[alarm->type];
  320. unsigned long flags;
  321. spin_lock_irqsave(&base->lock, flags);
  322. alarm->node.expires = start;
  323. alarmtimer_enqueue(base, alarm);
  324. hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
  325. spin_unlock_irqrestore(&base->lock, flags);
  326. trace_alarmtimer_start(alarm, base->gettime());
  327. }
  328. EXPORT_SYMBOL_GPL(alarm_start);
  329. /**
  330. * alarm_start_relative - Sets a relative alarm to fire
  331. * @alarm: ptr to alarm to set
  332. * @start: time relative to now to run the alarm
  333. */
  334. void alarm_start_relative(struct alarm *alarm, ktime_t start)
  335. {
  336. struct alarm_base *base = &alarm_bases[alarm->type];
  337. start = ktime_add(start, base->gettime());
  338. alarm_start(alarm, start);
  339. }
  340. EXPORT_SYMBOL_GPL(alarm_start_relative);
  341. void alarm_restart(struct alarm *alarm)
  342. {
  343. struct alarm_base *base = &alarm_bases[alarm->type];
  344. unsigned long flags;
  345. spin_lock_irqsave(&base->lock, flags);
  346. hrtimer_set_expires(&alarm->timer, alarm->node.expires);
  347. hrtimer_restart(&alarm->timer);
  348. alarmtimer_enqueue(base, alarm);
  349. spin_unlock_irqrestore(&base->lock, flags);
  350. }
  351. EXPORT_SYMBOL_GPL(alarm_restart);
  352. /**
  353. * alarm_try_to_cancel - Tries to cancel an alarm timer
  354. * @alarm: ptr to alarm to be canceled
  355. *
  356. * Returns 1 if the timer was canceled, 0 if it was not running,
  357. * and -1 if the callback was running
  358. */
  359. int alarm_try_to_cancel(struct alarm *alarm)
  360. {
  361. struct alarm_base *base = &alarm_bases[alarm->type];
  362. unsigned long flags;
  363. int ret;
  364. spin_lock_irqsave(&base->lock, flags);
  365. ret = hrtimer_try_to_cancel(&alarm->timer);
  366. if (ret >= 0)
  367. alarmtimer_dequeue(base, alarm);
  368. spin_unlock_irqrestore(&base->lock, flags);
  369. trace_alarmtimer_cancel(alarm, base->gettime());
  370. return ret;
  371. }
  372. EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
  373. /**
  374. * alarm_cancel - Spins trying to cancel an alarm timer until it is done
  375. * @alarm: ptr to alarm to be canceled
  376. *
  377. * Returns 1 if the timer was canceled, 0 if it was not active.
  378. */
  379. int alarm_cancel(struct alarm *alarm)
  380. {
  381. for (;;) {
  382. int ret = alarm_try_to_cancel(alarm);
  383. if (ret >= 0)
  384. return ret;
  385. cpu_relax();
  386. }
  387. }
  388. EXPORT_SYMBOL_GPL(alarm_cancel);
  389. u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
  390. {
  391. u64 overrun = 1;
  392. ktime_t delta;
  393. delta = ktime_sub(now, alarm->node.expires);
  394. if (delta < 0)
  395. return 0;
  396. if (unlikely(delta >= interval)) {
  397. s64 incr = ktime_to_ns(interval);
  398. overrun = ktime_divns(delta, incr);
  399. alarm->node.expires = ktime_add_ns(alarm->node.expires,
  400. incr*overrun);
  401. if (alarm->node.expires > now)
  402. return overrun;
  403. /*
  404. * This (and the ktime_add() below) is the
  405. * correction for exact:
  406. */
  407. overrun++;
  408. }
  409. alarm->node.expires = ktime_add(alarm->node.expires, interval);
  410. return overrun;
  411. }
  412. EXPORT_SYMBOL_GPL(alarm_forward);
  413. u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
  414. {
  415. struct alarm_base *base = &alarm_bases[alarm->type];
  416. return alarm_forward(alarm, base->gettime(), interval);
  417. }
  418. EXPORT_SYMBOL_GPL(alarm_forward_now);
  419. /**
  420. * clock2alarm - helper that converts from clockid to alarmtypes
  421. * @clockid: clockid.
  422. */
  423. static enum alarmtimer_type clock2alarm(clockid_t clockid)
  424. {
  425. if (clockid == CLOCK_REALTIME_ALARM)
  426. return ALARM_REALTIME;
  427. if (clockid == CLOCK_BOOTTIME_ALARM)
  428. return ALARM_BOOTTIME;
  429. return -1;
  430. }
  431. /**
  432. * alarm_handle_timer - Callback for posix timers
  433. * @alarm: alarm that fired
  434. *
  435. * Posix timer callback for expired alarm timers.
  436. */
  437. static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
  438. ktime_t now)
  439. {
  440. unsigned long flags;
  441. struct k_itimer *ptr = container_of(alarm, struct k_itimer,
  442. it.alarm.alarmtimer);
  443. enum alarmtimer_restart result = ALARMTIMER_NORESTART;
  444. spin_lock_irqsave(&ptr->it_lock, flags);
  445. if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
  446. if (IS_ENABLED(CONFIG_POSIX_TIMERS) &&
  447. posix_timer_event(ptr, 0) != 0)
  448. ptr->it_overrun++;
  449. }
  450. /* Re-add periodic timers */
  451. if (ptr->it.alarm.interval) {
  452. ptr->it_overrun += alarm_forward(alarm, now,
  453. ptr->it.alarm.interval);
  454. result = ALARMTIMER_RESTART;
  455. }
  456. spin_unlock_irqrestore(&ptr->it_lock, flags);
  457. return result;
  458. }
  459. /**
  460. * alarm_clock_getres - posix getres interface
  461. * @which_clock: clockid
  462. * @tp: timespec to fill
  463. *
  464. * Returns the granularity of underlying alarm base clock
  465. */
  466. static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
  467. {
  468. if (!alarmtimer_get_rtcdev())
  469. return -EINVAL;
  470. tp->tv_sec = 0;
  471. tp->tv_nsec = hrtimer_resolution;
  472. return 0;
  473. }
  474. /**
  475. * alarm_clock_get - posix clock_get interface
  476. * @which_clock: clockid
  477. * @tp: timespec to fill.
  478. *
  479. * Provides the underlying alarm base time.
  480. */
  481. static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
  482. {
  483. struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
  484. if (!alarmtimer_get_rtcdev())
  485. return -EINVAL;
  486. *tp = ktime_to_timespec(base->gettime());
  487. return 0;
  488. }
  489. /**
  490. * alarm_timer_create - posix timer_create interface
  491. * @new_timer: k_itimer pointer to manage
  492. *
  493. * Initializes the k_itimer structure.
  494. */
  495. static int alarm_timer_create(struct k_itimer *new_timer)
  496. {
  497. enum alarmtimer_type type;
  498. if (!alarmtimer_get_rtcdev())
  499. return -ENOTSUPP;
  500. if (!capable(CAP_WAKE_ALARM))
  501. return -EPERM;
  502. type = clock2alarm(new_timer->it_clock);
  503. alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
  504. return 0;
  505. }
  506. /**
  507. * alarm_timer_get - posix timer_get interface
  508. * @new_timer: k_itimer pointer
  509. * @cur_setting: itimerspec data to fill
  510. *
  511. * Copies out the current itimerspec data
  512. */
  513. static void alarm_timer_get(struct k_itimer *timr,
  514. struct itimerspec *cur_setting)
  515. {
  516. ktime_t relative_expiry_time =
  517. alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
  518. if (ktime_to_ns(relative_expiry_time) > 0) {
  519. cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
  520. } else {
  521. cur_setting->it_value.tv_sec = 0;
  522. cur_setting->it_value.tv_nsec = 0;
  523. }
  524. cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
  525. }
  526. /**
  527. * alarm_timer_del - posix timer_del interface
  528. * @timr: k_itimer pointer to be deleted
  529. *
  530. * Cancels any programmed alarms for the given timer.
  531. */
  532. static int alarm_timer_del(struct k_itimer *timr)
  533. {
  534. if (!rtcdev)
  535. return -ENOTSUPP;
  536. if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
  537. return TIMER_RETRY;
  538. return 0;
  539. }
  540. /**
  541. * alarm_timer_set - posix timer_set interface
  542. * @timr: k_itimer pointer to be deleted
  543. * @flags: timer flags
  544. * @new_setting: itimerspec to be used
  545. * @old_setting: itimerspec being replaced
  546. *
  547. * Sets the timer to new_setting, and starts the timer.
  548. */
  549. static int alarm_timer_set(struct k_itimer *timr, int flags,
  550. struct itimerspec *new_setting,
  551. struct itimerspec *old_setting)
  552. {
  553. ktime_t exp;
  554. if (!rtcdev)
  555. return -ENOTSUPP;
  556. if (flags & ~TIMER_ABSTIME)
  557. return -EINVAL;
  558. if (old_setting)
  559. alarm_timer_get(timr, old_setting);
  560. /* If the timer was already set, cancel it */
  561. if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
  562. return TIMER_RETRY;
  563. /* start the timer */
  564. timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
  565. exp = timespec_to_ktime(new_setting->it_value);
  566. /* Convert (if necessary) to absolute time */
  567. if (flags != TIMER_ABSTIME) {
  568. ktime_t now;
  569. now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
  570. exp = ktime_add(now, exp);
  571. }
  572. alarm_start(&timr->it.alarm.alarmtimer, exp);
  573. return 0;
  574. }
  575. /**
  576. * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
  577. * @alarm: ptr to alarm that fired
  578. *
  579. * Wakes up the task that set the alarmtimer
  580. */
  581. static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
  582. ktime_t now)
  583. {
  584. struct task_struct *task = (struct task_struct *)alarm->data;
  585. alarm->data = NULL;
  586. if (task)
  587. wake_up_process(task);
  588. return ALARMTIMER_NORESTART;
  589. }
  590. /**
  591. * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
  592. * @alarm: ptr to alarmtimer
  593. * @absexp: absolute expiration time
  594. *
  595. * Sets the alarm timer and sleeps until it is fired or interrupted.
  596. */
  597. static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
  598. {
  599. alarm->data = (void *)current;
  600. do {
  601. set_current_state(TASK_INTERRUPTIBLE);
  602. alarm_start(alarm, absexp);
  603. if (likely(alarm->data))
  604. schedule();
  605. alarm_cancel(alarm);
  606. } while (alarm->data && !signal_pending(current));
  607. __set_current_state(TASK_RUNNING);
  608. return (alarm->data == NULL);
  609. }
  610. /**
  611. * update_rmtp - Update remaining timespec value
  612. * @exp: expiration time
  613. * @type: timer type
  614. * @rmtp: user pointer to remaining timepsec value
  615. *
  616. * Helper function that fills in rmtp value with time between
  617. * now and the exp value
  618. */
  619. static int update_rmtp(ktime_t exp, enum alarmtimer_type type,
  620. struct timespec __user *rmtp)
  621. {
  622. struct timespec rmt;
  623. ktime_t rem;
  624. rem = ktime_sub(exp, alarm_bases[type].gettime());
  625. if (rem <= 0)
  626. return 0;
  627. rmt = ktime_to_timespec(rem);
  628. if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
  629. return -EFAULT;
  630. return 1;
  631. }
  632. /**
  633. * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
  634. * @restart: ptr to restart block
  635. *
  636. * Handles restarted clock_nanosleep calls
  637. */
  638. static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
  639. {
  640. enum alarmtimer_type type = restart->nanosleep.clockid;
  641. ktime_t exp;
  642. struct timespec __user *rmtp;
  643. struct alarm alarm;
  644. int ret = 0;
  645. exp = restart->nanosleep.expires;
  646. alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
  647. if (alarmtimer_do_nsleep(&alarm, exp))
  648. goto out;
  649. if (freezing(current))
  650. alarmtimer_freezerset(exp, type);
  651. rmtp = restart->nanosleep.rmtp;
  652. if (rmtp) {
  653. ret = update_rmtp(exp, type, rmtp);
  654. if (ret <= 0)
  655. goto out;
  656. }
  657. /* The other values in restart are already filled in */
  658. ret = -ERESTART_RESTARTBLOCK;
  659. out:
  660. return ret;
  661. }
  662. /**
  663. * alarm_timer_nsleep - alarmtimer nanosleep
  664. * @which_clock: clockid
  665. * @flags: determins abstime or relative
  666. * @tsreq: requested sleep time (abs or rel)
  667. * @rmtp: remaining sleep time saved
  668. *
  669. * Handles clock_nanosleep calls against _ALARM clockids
  670. */
  671. static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
  672. struct timespec *tsreq, struct timespec __user *rmtp)
  673. {
  674. enum alarmtimer_type type = clock2alarm(which_clock);
  675. struct alarm alarm;
  676. ktime_t exp;
  677. int ret = 0;
  678. struct restart_block *restart;
  679. if (!alarmtimer_get_rtcdev())
  680. return -ENOTSUPP;
  681. if (flags & ~TIMER_ABSTIME)
  682. return -EINVAL;
  683. if (!capable(CAP_WAKE_ALARM))
  684. return -EPERM;
  685. alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
  686. exp = timespec_to_ktime(*tsreq);
  687. /* Convert (if necessary) to absolute time */
  688. if (flags != TIMER_ABSTIME) {
  689. ktime_t now = alarm_bases[type].gettime();
  690. exp = ktime_add(now, exp);
  691. }
  692. if (alarmtimer_do_nsleep(&alarm, exp))
  693. goto out;
  694. if (freezing(current))
  695. alarmtimer_freezerset(exp, type);
  696. /* abs timers don't set remaining time or restart */
  697. if (flags == TIMER_ABSTIME) {
  698. ret = -ERESTARTNOHAND;
  699. goto out;
  700. }
  701. if (rmtp) {
  702. ret = update_rmtp(exp, type, rmtp);
  703. if (ret <= 0)
  704. goto out;
  705. }
  706. restart = &current->restart_block;
  707. restart->fn = alarm_timer_nsleep_restart;
  708. restart->nanosleep.clockid = type;
  709. restart->nanosleep.expires = exp;
  710. restart->nanosleep.rmtp = rmtp;
  711. ret = -ERESTART_RESTARTBLOCK;
  712. out:
  713. return ret;
  714. }
  715. /* Suspend hook structures */
  716. static const struct dev_pm_ops alarmtimer_pm_ops = {
  717. .suspend = alarmtimer_suspend,
  718. .resume = alarmtimer_resume,
  719. };
  720. static struct platform_driver alarmtimer_driver = {
  721. .driver = {
  722. .name = "alarmtimer",
  723. .pm = &alarmtimer_pm_ops,
  724. }
  725. };
  726. /**
  727. * alarmtimer_init - Initialize alarm timer code
  728. *
  729. * This function initializes the alarm bases and registers
  730. * the posix clock ids.
  731. */
  732. static int __init alarmtimer_init(void)
  733. {
  734. struct platform_device *pdev;
  735. int error = 0;
  736. int i;
  737. struct k_clock alarm_clock = {
  738. .clock_getres = alarm_clock_getres,
  739. .clock_get = alarm_clock_get,
  740. .timer_create = alarm_timer_create,
  741. .timer_set = alarm_timer_set,
  742. .timer_del = alarm_timer_del,
  743. .timer_get = alarm_timer_get,
  744. .nsleep = alarm_timer_nsleep,
  745. };
  746. alarmtimer_rtc_timer_init();
  747. if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
  748. posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
  749. posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
  750. }
  751. /* Initialize alarm bases */
  752. alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
  753. alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
  754. alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
  755. alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
  756. for (i = 0; i < ALARM_NUMTYPE; i++) {
  757. timerqueue_init_head(&alarm_bases[i].timerqueue);
  758. spin_lock_init(&alarm_bases[i].lock);
  759. }
  760. error = alarmtimer_rtc_interface_setup();
  761. if (error)
  762. return error;
  763. error = platform_driver_register(&alarmtimer_driver);
  764. if (error)
  765. goto out_if;
  766. pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
  767. if (IS_ERR(pdev)) {
  768. error = PTR_ERR(pdev);
  769. goto out_drv;
  770. }
  771. ws = wakeup_source_register("alarmtimer");
  772. return 0;
  773. out_drv:
  774. platform_driver_unregister(&alarmtimer_driver);
  775. out_if:
  776. alarmtimer_rtc_interface_remove();
  777. return error;
  778. }
  779. device_initcall(alarmtimer_init);