cputime.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
  1. #include <linux/export.h>
  2. #include <linux/sched.h>
  3. #include <linux/tsacct_kern.h>
  4. #include <linux/kernel_stat.h>
  5. #include <linux/static_key.h>
  6. #include <linux/context_tracking.h>
  7. #include "sched.h"
  8. #ifdef CONFIG_PARAVIRT
  9. #include <asm/paravirt.h>
  10. #endif
  11. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  12. /*
  13. * There are no locks covering percpu hardirq/softirq time.
  14. * They are only modified in vtime_account, on corresponding CPU
  15. * with interrupts disabled. So, writes are safe.
  16. * They are read and saved off onto struct rq in update_rq_clock().
  17. * This may result in other CPU reading this CPU's irq time and can
  18. * race with irq/vtime_account on this CPU. We would either get old
  19. * or new value with a side effect of accounting a slice of irq time to wrong
  20. * task when irq is in progress while we read rq->clock. That is a worthy
  21. * compromise in place of having locks on each irq in account_system_time.
  22. */
  23. DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
  24. static int sched_clock_irqtime;
  25. void enable_sched_clock_irqtime(void)
  26. {
  27. sched_clock_irqtime = 1;
  28. }
  29. void disable_sched_clock_irqtime(void)
  30. {
  31. sched_clock_irqtime = 0;
  32. }
  33. /*
  34. * Called before incrementing preempt_count on {soft,}irq_enter
  35. * and before decrementing preempt_count on {soft,}irq_exit.
  36. */
  37. void irqtime_account_irq(struct task_struct *curr)
  38. {
  39. struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  40. s64 delta;
  41. int cpu;
  42. if (!sched_clock_irqtime)
  43. return;
  44. cpu = smp_processor_id();
  45. delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
  46. irqtime->irq_start_time += delta;
  47. u64_stats_update_begin(&irqtime->sync);
  48. /*
  49. * We do not account for softirq time from ksoftirqd here.
  50. * We want to continue accounting softirq time to ksoftirqd thread
  51. * in that case, so as not to confuse scheduler with a special task
  52. * that do not consume any time, but still wants to run.
  53. */
  54. if (hardirq_count())
  55. irqtime->hardirq_time += delta;
  56. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  57. irqtime->softirq_time += delta;
  58. u64_stats_update_end(&irqtime->sync);
  59. }
  60. EXPORT_SYMBOL_GPL(irqtime_account_irq);
  61. static cputime_t irqtime_account_update(u64 irqtime, int idx, cputime_t maxtime)
  62. {
  63. u64 *cpustat = kcpustat_this_cpu->cpustat;
  64. cputime_t irq_cputime;
  65. irq_cputime = nsecs_to_cputime64(irqtime) - cpustat[idx];
  66. irq_cputime = min(irq_cputime, maxtime);
  67. cpustat[idx] += irq_cputime;
  68. return irq_cputime;
  69. }
  70. static cputime_t irqtime_account_hi_update(cputime_t maxtime)
  71. {
  72. return irqtime_account_update(__this_cpu_read(cpu_irqtime.hardirq_time),
  73. CPUTIME_IRQ, maxtime);
  74. }
  75. static cputime_t irqtime_account_si_update(cputime_t maxtime)
  76. {
  77. return irqtime_account_update(__this_cpu_read(cpu_irqtime.softirq_time),
  78. CPUTIME_SOFTIRQ, maxtime);
  79. }
  80. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  81. #define sched_clock_irqtime (0)
  82. static cputime_t irqtime_account_hi_update(cputime_t dummy)
  83. {
  84. return 0;
  85. }
  86. static cputime_t irqtime_account_si_update(cputime_t dummy)
  87. {
  88. return 0;
  89. }
  90. #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
  91. static inline void task_group_account_field(struct task_struct *p, int index,
  92. u64 tmp)
  93. {
  94. /*
  95. * Since all updates are sure to touch the root cgroup, we
  96. * get ourselves ahead and touch it first. If the root cgroup
  97. * is the only cgroup, then nothing else should be necessary.
  98. *
  99. */
  100. __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
  101. cpuacct_account_field(p, index, tmp);
  102. }
  103. /*
  104. * Account user cpu time to a process.
  105. * @p: the process that the cpu time gets accounted to
  106. * @cputime: the cpu time spent in user space since the last update
  107. */
  108. void account_user_time(struct task_struct *p, cputime_t cputime)
  109. {
  110. int index;
  111. /* Add user time to process. */
  112. p->utime += cputime;
  113. account_group_user_time(p, cputime);
  114. index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
  115. /* Add user time to cpustat. */
  116. task_group_account_field(p, index, (__force u64) cputime);
  117. /* Account for user time used */
  118. acct_account_cputime(p);
  119. }
  120. /*
  121. * Account guest cpu time to a process.
  122. * @p: the process that the cpu time gets accounted to
  123. * @cputime: the cpu time spent in virtual machine since the last update
  124. */
  125. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  126. {
  127. u64 *cpustat = kcpustat_this_cpu->cpustat;
  128. /* Add guest time to process. */
  129. p->utime += cputime;
  130. account_group_user_time(p, cputime);
  131. p->gtime += cputime;
  132. /* Add guest time to cpustat. */
  133. if (task_nice(p) > 0) {
  134. cpustat[CPUTIME_NICE] += (__force u64) cputime;
  135. cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
  136. } else {
  137. cpustat[CPUTIME_USER] += (__force u64) cputime;
  138. cpustat[CPUTIME_GUEST] += (__force u64) cputime;
  139. }
  140. }
  141. /*
  142. * Account system cpu time to a process and desired cpustat field
  143. * @p: the process that the cpu time gets accounted to
  144. * @cputime: the cpu time spent in kernel space since the last update
  145. * @index: pointer to cpustat field that has to be updated
  146. */
  147. static inline
  148. void __account_system_time(struct task_struct *p, cputime_t cputime, int index)
  149. {
  150. /* Add system time to process. */
  151. p->stime += cputime;
  152. account_group_system_time(p, cputime);
  153. /* Add system time to cpustat. */
  154. task_group_account_field(p, index, (__force u64) cputime);
  155. /* Account for system time used */
  156. acct_account_cputime(p);
  157. }
  158. /*
  159. * Account system cpu time to a process.
  160. * @p: the process that the cpu time gets accounted to
  161. * @hardirq_offset: the offset to subtract from hardirq_count()
  162. * @cputime: the cpu time spent in kernel space since the last update
  163. */
  164. void account_system_time(struct task_struct *p, int hardirq_offset,
  165. cputime_t cputime)
  166. {
  167. int index;
  168. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  169. account_guest_time(p, cputime);
  170. return;
  171. }
  172. if (hardirq_count() - hardirq_offset)
  173. index = CPUTIME_IRQ;
  174. else if (in_serving_softirq())
  175. index = CPUTIME_SOFTIRQ;
  176. else
  177. index = CPUTIME_SYSTEM;
  178. __account_system_time(p, cputime, index);
  179. }
  180. /*
  181. * Account for involuntary wait time.
  182. * @cputime: the cpu time spent in involuntary wait
  183. */
  184. void account_steal_time(cputime_t cputime)
  185. {
  186. u64 *cpustat = kcpustat_this_cpu->cpustat;
  187. cpustat[CPUTIME_STEAL] += (__force u64) cputime;
  188. }
  189. /*
  190. * Account for idle time.
  191. * @cputime: the cpu time spent in idle wait
  192. */
  193. void account_idle_time(cputime_t cputime)
  194. {
  195. u64 *cpustat = kcpustat_this_cpu->cpustat;
  196. struct rq *rq = this_rq();
  197. if (atomic_read(&rq->nr_iowait) > 0)
  198. cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
  199. else
  200. cpustat[CPUTIME_IDLE] += (__force u64) cputime;
  201. }
  202. /*
  203. * When a guest is interrupted for a longer amount of time, missed clock
  204. * ticks are not redelivered later. Due to that, this function may on
  205. * occasion account more time than the calling functions think elapsed.
  206. */
  207. static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
  208. {
  209. #ifdef CONFIG_PARAVIRT
  210. if (static_key_false(&paravirt_steal_enabled)) {
  211. cputime_t steal_cputime;
  212. u64 steal;
  213. steal = paravirt_steal_clock(smp_processor_id());
  214. steal -= this_rq()->prev_steal_time;
  215. steal_cputime = min(nsecs_to_cputime(steal), maxtime);
  216. account_steal_time(steal_cputime);
  217. this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime);
  218. return steal_cputime;
  219. }
  220. #endif
  221. return 0;
  222. }
  223. /*
  224. * Account how much elapsed time was spent in steal, irq, or softirq time.
  225. */
  226. static inline cputime_t account_other_time(cputime_t max)
  227. {
  228. cputime_t accounted;
  229. /* Shall be converted to a lockdep-enabled lightweight check */
  230. WARN_ON_ONCE(!irqs_disabled());
  231. accounted = steal_account_process_time(max);
  232. if (accounted < max)
  233. accounted += irqtime_account_hi_update(max - accounted);
  234. if (accounted < max)
  235. accounted += irqtime_account_si_update(max - accounted);
  236. return accounted;
  237. }
  238. #ifdef CONFIG_64BIT
  239. static inline u64 read_sum_exec_runtime(struct task_struct *t)
  240. {
  241. return t->se.sum_exec_runtime;
  242. }
  243. #else
  244. static u64 read_sum_exec_runtime(struct task_struct *t)
  245. {
  246. u64 ns;
  247. struct rq_flags rf;
  248. struct rq *rq;
  249. rq = task_rq_lock(t, &rf);
  250. ns = t->se.sum_exec_runtime;
  251. task_rq_unlock(rq, t, &rf);
  252. return ns;
  253. }
  254. #endif
  255. /*
  256. * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
  257. * tasks (sum on group iteration) belonging to @tsk's group.
  258. */
  259. void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
  260. {
  261. struct signal_struct *sig = tsk->signal;
  262. cputime_t utime, stime;
  263. struct task_struct *t;
  264. unsigned int seq, nextseq;
  265. unsigned long flags;
  266. /*
  267. * Update current task runtime to account pending time since last
  268. * scheduler action or thread_group_cputime() call. This thread group
  269. * might have other running tasks on different CPUs, but updating
  270. * their runtime can affect syscall performance, so we skip account
  271. * those pending times and rely only on values updated on tick or
  272. * other scheduler action.
  273. */
  274. if (same_thread_group(current, tsk))
  275. (void) task_sched_runtime(current);
  276. rcu_read_lock();
  277. /* Attempt a lockless read on the first round. */
  278. nextseq = 0;
  279. do {
  280. seq = nextseq;
  281. flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
  282. times->utime = sig->utime;
  283. times->stime = sig->stime;
  284. times->sum_exec_runtime = sig->sum_sched_runtime;
  285. for_each_thread(tsk, t) {
  286. task_cputime(t, &utime, &stime);
  287. times->utime += utime;
  288. times->stime += stime;
  289. times->sum_exec_runtime += read_sum_exec_runtime(t);
  290. }
  291. /* If lockless access failed, take the lock. */
  292. nextseq = 1;
  293. } while (need_seqretry(&sig->stats_lock, seq));
  294. done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
  295. rcu_read_unlock();
  296. }
  297. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  298. /*
  299. * Account a tick to a process and cpustat
  300. * @p: the process that the cpu time gets accounted to
  301. * @user_tick: is the tick from userspace
  302. * @rq: the pointer to rq
  303. *
  304. * Tick demultiplexing follows the order
  305. * - pending hardirq update
  306. * - pending softirq update
  307. * - user_time
  308. * - idle_time
  309. * - system time
  310. * - check for guest_time
  311. * - else account as system_time
  312. *
  313. * Check for hardirq is done both for system and user time as there is
  314. * no timer going off while we are on hardirq and hence we may never get an
  315. * opportunity to update it solely in system time.
  316. * p->stime and friends are only updated on system time and not on irq
  317. * softirq as those do not count in task exec_runtime any more.
  318. */
  319. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  320. struct rq *rq, int ticks)
  321. {
  322. u64 cputime = (__force u64) cputime_one_jiffy * ticks;
  323. cputime_t other;
  324. /*
  325. * When returning from idle, many ticks can get accounted at
  326. * once, including some ticks of steal, irq, and softirq time.
  327. * Subtract those ticks from the amount of time accounted to
  328. * idle, or potentially user or system time. Due to rounding,
  329. * other time can exceed ticks occasionally.
  330. */
  331. other = account_other_time(ULONG_MAX);
  332. if (other >= cputime)
  333. return;
  334. cputime -= other;
  335. if (this_cpu_ksoftirqd() == p) {
  336. /*
  337. * ksoftirqd time do not get accounted in cpu_softirq_time.
  338. * So, we have to handle it separately here.
  339. * Also, p->stime needs to be updated for ksoftirqd.
  340. */
  341. __account_system_time(p, cputime, CPUTIME_SOFTIRQ);
  342. } else if (user_tick) {
  343. account_user_time(p, cputime);
  344. } else if (p == rq->idle) {
  345. account_idle_time(cputime);
  346. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  347. account_guest_time(p, cputime);
  348. } else {
  349. __account_system_time(p, cputime, CPUTIME_SYSTEM);
  350. }
  351. }
  352. static void irqtime_account_idle_ticks(int ticks)
  353. {
  354. struct rq *rq = this_rq();
  355. irqtime_account_process_tick(current, 0, rq, ticks);
  356. }
  357. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  358. static inline void irqtime_account_idle_ticks(int ticks) {}
  359. static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  360. struct rq *rq, int nr_ticks) {}
  361. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  362. /*
  363. * Use precise platform statistics if available:
  364. */
  365. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  366. #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
  367. void vtime_common_task_switch(struct task_struct *prev)
  368. {
  369. if (is_idle_task(prev))
  370. vtime_account_idle(prev);
  371. else
  372. vtime_account_system(prev);
  373. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  374. vtime_account_user(prev);
  375. #endif
  376. arch_vtime_task_switch(prev);
  377. }
  378. #endif
  379. #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
  380. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  381. /*
  382. * Archs that account the whole time spent in the idle task
  383. * (outside irq) as idle time can rely on this and just implement
  384. * vtime_account_system() and vtime_account_idle(). Archs that
  385. * have other meaning of the idle time (s390 only includes the
  386. * time spent by the CPU when it's in low power mode) must override
  387. * vtime_account().
  388. */
  389. #ifndef __ARCH_HAS_VTIME_ACCOUNT
  390. void vtime_account_irq_enter(struct task_struct *tsk)
  391. {
  392. if (!in_interrupt() && is_idle_task(tsk))
  393. vtime_account_idle(tsk);
  394. else
  395. vtime_account_system(tsk);
  396. }
  397. EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
  398. #endif /* __ARCH_HAS_VTIME_ACCOUNT */
  399. void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
  400. {
  401. *ut = p->utime;
  402. *st = p->stime;
  403. }
  404. EXPORT_SYMBOL_GPL(task_cputime_adjusted);
  405. void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
  406. {
  407. struct task_cputime cputime;
  408. thread_group_cputime(p, &cputime);
  409. *ut = cputime.utime;
  410. *st = cputime.stime;
  411. }
  412. #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
  413. /*
  414. * Account a single tick of cpu time.
  415. * @p: the process that the cpu time gets accounted to
  416. * @user_tick: indicates if the tick is a user or a system tick
  417. */
  418. void account_process_tick(struct task_struct *p, int user_tick)
  419. {
  420. cputime_t cputime, steal;
  421. struct rq *rq = this_rq();
  422. if (vtime_accounting_cpu_enabled())
  423. return;
  424. if (sched_clock_irqtime) {
  425. irqtime_account_process_tick(p, user_tick, rq, 1);
  426. return;
  427. }
  428. cputime = cputime_one_jiffy;
  429. steal = steal_account_process_time(ULONG_MAX);
  430. if (steal >= cputime)
  431. return;
  432. cputime -= steal;
  433. if (user_tick)
  434. account_user_time(p, cputime);
  435. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  436. account_system_time(p, HARDIRQ_OFFSET, cputime);
  437. else
  438. account_idle_time(cputime);
  439. }
  440. /*
  441. * Account multiple ticks of idle time.
  442. * @ticks: number of stolen ticks
  443. */
  444. void account_idle_ticks(unsigned long ticks)
  445. {
  446. cputime_t cputime, steal;
  447. if (sched_clock_irqtime) {
  448. irqtime_account_idle_ticks(ticks);
  449. return;
  450. }
  451. cputime = jiffies_to_cputime(ticks);
  452. steal = steal_account_process_time(ULONG_MAX);
  453. if (steal >= cputime)
  454. return;
  455. cputime -= steal;
  456. account_idle_time(cputime);
  457. }
  458. /*
  459. * Perform (stime * rtime) / total, but avoid multiplication overflow by
  460. * loosing precision when the numbers are big.
  461. */
  462. static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
  463. {
  464. u64 scaled;
  465. for (;;) {
  466. /* Make sure "rtime" is the bigger of stime/rtime */
  467. if (stime > rtime)
  468. swap(rtime, stime);
  469. /* Make sure 'total' fits in 32 bits */
  470. if (total >> 32)
  471. goto drop_precision;
  472. /* Does rtime (and thus stime) fit in 32 bits? */
  473. if (!(rtime >> 32))
  474. break;
  475. /* Can we just balance rtime/stime rather than dropping bits? */
  476. if (stime >> 31)
  477. goto drop_precision;
  478. /* We can grow stime and shrink rtime and try to make them both fit */
  479. stime <<= 1;
  480. rtime >>= 1;
  481. continue;
  482. drop_precision:
  483. /* We drop from rtime, it has more bits than stime */
  484. rtime >>= 1;
  485. total >>= 1;
  486. }
  487. /*
  488. * Make sure gcc understands that this is a 32x32->64 multiply,
  489. * followed by a 64/32->64 divide.
  490. */
  491. scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
  492. return (__force cputime_t) scaled;
  493. }
  494. /*
  495. * Adjust tick based cputime random precision against scheduler runtime
  496. * accounting.
  497. *
  498. * Tick based cputime accounting depend on random scheduling timeslices of a
  499. * task to be interrupted or not by the timer. Depending on these
  500. * circumstances, the number of these interrupts may be over or
  501. * under-optimistic, matching the real user and system cputime with a variable
  502. * precision.
  503. *
  504. * Fix this by scaling these tick based values against the total runtime
  505. * accounted by the CFS scheduler.
  506. *
  507. * This code provides the following guarantees:
  508. *
  509. * stime + utime == rtime
  510. * stime_i+1 >= stime_i, utime_i+1 >= utime_i
  511. *
  512. * Assuming that rtime_i+1 >= rtime_i.
  513. */
  514. static void cputime_adjust(struct task_cputime *curr,
  515. struct prev_cputime *prev,
  516. cputime_t *ut, cputime_t *st)
  517. {
  518. cputime_t rtime, stime, utime;
  519. unsigned long flags;
  520. /* Serialize concurrent callers such that we can honour our guarantees */
  521. raw_spin_lock_irqsave(&prev->lock, flags);
  522. rtime = nsecs_to_cputime(curr->sum_exec_runtime);
  523. /*
  524. * This is possible under two circumstances:
  525. * - rtime isn't monotonic after all (a bug);
  526. * - we got reordered by the lock.
  527. *
  528. * In both cases this acts as a filter such that the rest of the code
  529. * can assume it is monotonic regardless of anything else.
  530. */
  531. if (prev->stime + prev->utime >= rtime)
  532. goto out;
  533. stime = curr->stime;
  534. utime = curr->utime;
  535. /*
  536. * If either stime or both stime and utime are 0, assume all runtime is
  537. * userspace. Once a task gets some ticks, the monotonicy code at
  538. * 'update' will ensure things converge to the observed ratio.
  539. */
  540. if (stime == 0) {
  541. utime = rtime;
  542. goto update;
  543. }
  544. if (utime == 0) {
  545. stime = rtime;
  546. goto update;
  547. }
  548. stime = scale_stime((__force u64)stime, (__force u64)rtime,
  549. (__force u64)(stime + utime));
  550. update:
  551. /*
  552. * Make sure stime doesn't go backwards; this preserves monotonicity
  553. * for utime because rtime is monotonic.
  554. *
  555. * utime_i+1 = rtime_i+1 - stime_i
  556. * = rtime_i+1 - (rtime_i - utime_i)
  557. * = (rtime_i+1 - rtime_i) + utime_i
  558. * >= utime_i
  559. */
  560. if (stime < prev->stime)
  561. stime = prev->stime;
  562. utime = rtime - stime;
  563. /*
  564. * Make sure utime doesn't go backwards; this still preserves
  565. * monotonicity for stime, analogous argument to above.
  566. */
  567. if (utime < prev->utime) {
  568. utime = prev->utime;
  569. stime = rtime - utime;
  570. }
  571. prev->stime = stime;
  572. prev->utime = utime;
  573. out:
  574. *ut = prev->utime;
  575. *st = prev->stime;
  576. raw_spin_unlock_irqrestore(&prev->lock, flags);
  577. }
  578. void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
  579. {
  580. struct task_cputime cputime = {
  581. .sum_exec_runtime = p->se.sum_exec_runtime,
  582. };
  583. task_cputime(p, &cputime.utime, &cputime.stime);
  584. cputime_adjust(&cputime, &p->prev_cputime, ut, st);
  585. }
  586. EXPORT_SYMBOL_GPL(task_cputime_adjusted);
  587. void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
  588. {
  589. struct task_cputime cputime;
  590. thread_group_cputime(p, &cputime);
  591. cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
  592. }
  593. #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
  594. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  595. static cputime_t vtime_delta(struct task_struct *tsk)
  596. {
  597. unsigned long now = READ_ONCE(jiffies);
  598. if (time_before(now, (unsigned long)tsk->vtime_snap))
  599. return 0;
  600. return jiffies_to_cputime(now - tsk->vtime_snap);
  601. }
  602. static cputime_t get_vtime_delta(struct task_struct *tsk)
  603. {
  604. unsigned long now = READ_ONCE(jiffies);
  605. cputime_t delta, other;
  606. /*
  607. * Unlike tick based timing, vtime based timing never has lost
  608. * ticks, and no need for steal time accounting to make up for
  609. * lost ticks. Vtime accounts a rounded version of actual
  610. * elapsed time. Limit account_other_time to prevent rounding
  611. * errors from causing elapsed vtime to go negative.
  612. */
  613. delta = jiffies_to_cputime(now - tsk->vtime_snap);
  614. other = account_other_time(delta);
  615. WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
  616. tsk->vtime_snap = now;
  617. return delta - other;
  618. }
  619. static void __vtime_account_system(struct task_struct *tsk)
  620. {
  621. cputime_t delta_cpu = get_vtime_delta(tsk);
  622. account_system_time(tsk, irq_count(), delta_cpu);
  623. }
  624. void vtime_account_system(struct task_struct *tsk)
  625. {
  626. if (!vtime_delta(tsk))
  627. return;
  628. write_seqcount_begin(&tsk->vtime_seqcount);
  629. __vtime_account_system(tsk);
  630. write_seqcount_end(&tsk->vtime_seqcount);
  631. }
  632. void vtime_account_user(struct task_struct *tsk)
  633. {
  634. cputime_t delta_cpu;
  635. write_seqcount_begin(&tsk->vtime_seqcount);
  636. tsk->vtime_snap_whence = VTIME_SYS;
  637. if (vtime_delta(tsk)) {
  638. delta_cpu = get_vtime_delta(tsk);
  639. account_user_time(tsk, delta_cpu);
  640. }
  641. write_seqcount_end(&tsk->vtime_seqcount);
  642. }
  643. void vtime_user_enter(struct task_struct *tsk)
  644. {
  645. write_seqcount_begin(&tsk->vtime_seqcount);
  646. if (vtime_delta(tsk))
  647. __vtime_account_system(tsk);
  648. tsk->vtime_snap_whence = VTIME_USER;
  649. write_seqcount_end(&tsk->vtime_seqcount);
  650. }
  651. void vtime_guest_enter(struct task_struct *tsk)
  652. {
  653. /*
  654. * The flags must be updated under the lock with
  655. * the vtime_snap flush and update.
  656. * That enforces a right ordering and update sequence
  657. * synchronization against the reader (task_gtime())
  658. * that can thus safely catch up with a tickless delta.
  659. */
  660. write_seqcount_begin(&tsk->vtime_seqcount);
  661. if (vtime_delta(tsk))
  662. __vtime_account_system(tsk);
  663. current->flags |= PF_VCPU;
  664. write_seqcount_end(&tsk->vtime_seqcount);
  665. }
  666. EXPORT_SYMBOL_GPL(vtime_guest_enter);
  667. void vtime_guest_exit(struct task_struct *tsk)
  668. {
  669. write_seqcount_begin(&tsk->vtime_seqcount);
  670. __vtime_account_system(tsk);
  671. current->flags &= ~PF_VCPU;
  672. write_seqcount_end(&tsk->vtime_seqcount);
  673. }
  674. EXPORT_SYMBOL_GPL(vtime_guest_exit);
  675. void vtime_account_idle(struct task_struct *tsk)
  676. {
  677. cputime_t delta_cpu = get_vtime_delta(tsk);
  678. account_idle_time(delta_cpu);
  679. }
  680. void arch_vtime_task_switch(struct task_struct *prev)
  681. {
  682. write_seqcount_begin(&prev->vtime_seqcount);
  683. prev->vtime_snap_whence = VTIME_INACTIVE;
  684. write_seqcount_end(&prev->vtime_seqcount);
  685. write_seqcount_begin(&current->vtime_seqcount);
  686. current->vtime_snap_whence = VTIME_SYS;
  687. current->vtime_snap = jiffies;
  688. write_seqcount_end(&current->vtime_seqcount);
  689. }
  690. void vtime_init_idle(struct task_struct *t, int cpu)
  691. {
  692. unsigned long flags;
  693. local_irq_save(flags);
  694. write_seqcount_begin(&t->vtime_seqcount);
  695. t->vtime_snap_whence = VTIME_SYS;
  696. t->vtime_snap = jiffies;
  697. write_seqcount_end(&t->vtime_seqcount);
  698. local_irq_restore(flags);
  699. }
  700. cputime_t task_gtime(struct task_struct *t)
  701. {
  702. unsigned int seq;
  703. cputime_t gtime;
  704. if (!vtime_accounting_enabled())
  705. return t->gtime;
  706. do {
  707. seq = read_seqcount_begin(&t->vtime_seqcount);
  708. gtime = t->gtime;
  709. if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
  710. gtime += vtime_delta(t);
  711. } while (read_seqcount_retry(&t->vtime_seqcount, seq));
  712. return gtime;
  713. }
  714. /*
  715. * Fetch cputime raw values from fields of task_struct and
  716. * add up the pending nohz execution time since the last
  717. * cputime snapshot.
  718. */
  719. void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
  720. {
  721. cputime_t delta;
  722. unsigned int seq;
  723. if (!vtime_accounting_enabled()) {
  724. *utime = t->utime;
  725. *stime = t->stime;
  726. return;
  727. }
  728. do {
  729. seq = read_seqcount_begin(&t->vtime_seqcount);
  730. *utime = t->utime;
  731. *stime = t->stime;
  732. /* Task is sleeping, nothing to add */
  733. if (t->vtime_snap_whence == VTIME_INACTIVE || is_idle_task(t))
  734. continue;
  735. delta = vtime_delta(t);
  736. /*
  737. * Task runs either in user or kernel space, add pending nohz time to
  738. * the right place.
  739. */
  740. if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU)
  741. *utime += delta;
  742. else if (t->vtime_snap_whence == VTIME_SYS)
  743. *stime += delta;
  744. } while (read_seqcount_retry(&t->vtime_seqcount, seq));
  745. }
  746. #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */