core.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175
  1. /*
  2. * Linux Socket Filter - Kernel level socket filtering
  3. *
  4. * Based on the design of the Berkeley Packet Filter. The new
  5. * internal format has been designed by PLUMgrid:
  6. *
  7. * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
  8. *
  9. * Authors:
  10. *
  11. * Jay Schulist <jschlst@samba.org>
  12. * Alexei Starovoitov <ast@plumgrid.com>
  13. * Daniel Borkmann <dborkman@redhat.com>
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * as published by the Free Software Foundation; either version
  18. * 2 of the License, or (at your option) any later version.
  19. *
  20. * Andi Kleen - Fix a few bad bugs and races.
  21. * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  22. */
  23. #include <linux/filter.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/random.h>
  27. #include <linux/moduleloader.h>
  28. #include <linux/bpf.h>
  29. #include <linux/frame.h>
  30. #include <asm/unaligned.h>
  31. /* Registers */
  32. #define BPF_R0 regs[BPF_REG_0]
  33. #define BPF_R1 regs[BPF_REG_1]
  34. #define BPF_R2 regs[BPF_REG_2]
  35. #define BPF_R3 regs[BPF_REG_3]
  36. #define BPF_R4 regs[BPF_REG_4]
  37. #define BPF_R5 regs[BPF_REG_5]
  38. #define BPF_R6 regs[BPF_REG_6]
  39. #define BPF_R7 regs[BPF_REG_7]
  40. #define BPF_R8 regs[BPF_REG_8]
  41. #define BPF_R9 regs[BPF_REG_9]
  42. #define BPF_R10 regs[BPF_REG_10]
  43. /* Named registers */
  44. #define DST regs[insn->dst_reg]
  45. #define SRC regs[insn->src_reg]
  46. #define FP regs[BPF_REG_FP]
  47. #define ARG1 regs[BPF_REG_ARG1]
  48. #define CTX regs[BPF_REG_CTX]
  49. #define IMM insn->imm
  50. /* No hurry in this branch
  51. *
  52. * Exported for the bpf jit load helper.
  53. */
  54. void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  55. {
  56. u8 *ptr = NULL;
  57. if (k >= SKF_NET_OFF)
  58. ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  59. else if (k >= SKF_LL_OFF)
  60. ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  61. if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  62. return ptr;
  63. return NULL;
  64. }
  65. struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
  66. {
  67. gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
  68. gfp_extra_flags;
  69. struct bpf_prog_aux *aux;
  70. struct bpf_prog *fp;
  71. size = round_up(size, PAGE_SIZE);
  72. fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  73. if (fp == NULL)
  74. return NULL;
  75. kmemcheck_annotate_bitfield(fp, meta);
  76. aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
  77. if (aux == NULL) {
  78. vfree(fp);
  79. return NULL;
  80. }
  81. fp->pages = size / PAGE_SIZE;
  82. fp->aux = aux;
  83. fp->aux->prog = fp;
  84. return fp;
  85. }
  86. EXPORT_SYMBOL_GPL(bpf_prog_alloc);
  87. struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
  88. gfp_t gfp_extra_flags)
  89. {
  90. gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
  91. gfp_extra_flags;
  92. struct bpf_prog *fp;
  93. u32 pages, delta;
  94. int ret;
  95. BUG_ON(fp_old == NULL);
  96. size = round_up(size, PAGE_SIZE);
  97. pages = size / PAGE_SIZE;
  98. if (pages <= fp_old->pages)
  99. return fp_old;
  100. delta = pages - fp_old->pages;
  101. ret = __bpf_prog_charge(fp_old->aux->user, delta);
  102. if (ret)
  103. return NULL;
  104. fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  105. if (fp == NULL) {
  106. __bpf_prog_uncharge(fp_old->aux->user, delta);
  107. } else {
  108. kmemcheck_annotate_bitfield(fp, meta);
  109. memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
  110. fp->pages = pages;
  111. fp->aux->prog = fp;
  112. /* We keep fp->aux from fp_old around in the new
  113. * reallocated structure.
  114. */
  115. fp_old->aux = NULL;
  116. __bpf_prog_free(fp_old);
  117. }
  118. return fp;
  119. }
  120. void __bpf_prog_free(struct bpf_prog *fp)
  121. {
  122. kfree(fp->aux);
  123. vfree(fp);
  124. }
  125. int bpf_prog_calc_tag(struct bpf_prog *fp)
  126. {
  127. const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
  128. u32 raw_size = bpf_prog_tag_scratch_size(fp);
  129. u32 digest[SHA_DIGEST_WORDS];
  130. u32 ws[SHA_WORKSPACE_WORDS];
  131. u32 i, bsize, psize, blocks;
  132. struct bpf_insn *dst;
  133. bool was_ld_map;
  134. u8 *raw, *todo;
  135. __be32 *result;
  136. __be64 *bits;
  137. raw = vmalloc(raw_size);
  138. if (!raw)
  139. return -ENOMEM;
  140. sha_init(digest);
  141. memset(ws, 0, sizeof(ws));
  142. /* We need to take out the map fd for the digest calculation
  143. * since they are unstable from user space side.
  144. */
  145. dst = (void *)raw;
  146. for (i = 0, was_ld_map = false; i < fp->len; i++) {
  147. dst[i] = fp->insnsi[i];
  148. if (!was_ld_map &&
  149. dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
  150. dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
  151. was_ld_map = true;
  152. dst[i].imm = 0;
  153. } else if (was_ld_map &&
  154. dst[i].code == 0 &&
  155. dst[i].dst_reg == 0 &&
  156. dst[i].src_reg == 0 &&
  157. dst[i].off == 0) {
  158. was_ld_map = false;
  159. dst[i].imm = 0;
  160. } else {
  161. was_ld_map = false;
  162. }
  163. }
  164. psize = bpf_prog_insn_size(fp);
  165. memset(&raw[psize], 0, raw_size - psize);
  166. raw[psize++] = 0x80;
  167. bsize = round_up(psize, SHA_MESSAGE_BYTES);
  168. blocks = bsize / SHA_MESSAGE_BYTES;
  169. todo = raw;
  170. if (bsize - psize >= sizeof(__be64)) {
  171. bits = (__be64 *)(todo + bsize - sizeof(__be64));
  172. } else {
  173. bits = (__be64 *)(todo + bsize + bits_offset);
  174. blocks++;
  175. }
  176. *bits = cpu_to_be64((psize - 1) << 3);
  177. while (blocks--) {
  178. sha_transform(digest, todo, ws);
  179. todo += SHA_MESSAGE_BYTES;
  180. }
  181. result = (__force __be32 *)digest;
  182. for (i = 0; i < SHA_DIGEST_WORDS; i++)
  183. result[i] = cpu_to_be32(digest[i]);
  184. memcpy(fp->tag, result, sizeof(fp->tag));
  185. vfree(raw);
  186. return 0;
  187. }
  188. static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
  189. {
  190. return BPF_CLASS(insn->code) == BPF_JMP &&
  191. /* Call and Exit are both special jumps with no
  192. * target inside the BPF instruction image.
  193. */
  194. BPF_OP(insn->code) != BPF_CALL &&
  195. BPF_OP(insn->code) != BPF_EXIT;
  196. }
  197. static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
  198. {
  199. struct bpf_insn *insn = prog->insnsi;
  200. u32 i, insn_cnt = prog->len;
  201. for (i = 0; i < insn_cnt; i++, insn++) {
  202. if (!bpf_is_jmp_and_has_target(insn))
  203. continue;
  204. /* Adjust offset of jmps if we cross boundaries. */
  205. if (i < pos && i + insn->off + 1 > pos)
  206. insn->off += delta;
  207. else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
  208. insn->off -= delta;
  209. }
  210. }
  211. struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
  212. const struct bpf_insn *patch, u32 len)
  213. {
  214. u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
  215. struct bpf_prog *prog_adj;
  216. /* Since our patchlet doesn't expand the image, we're done. */
  217. if (insn_delta == 0) {
  218. memcpy(prog->insnsi + off, patch, sizeof(*patch));
  219. return prog;
  220. }
  221. insn_adj_cnt = prog->len + insn_delta;
  222. /* Several new instructions need to be inserted. Make room
  223. * for them. Likely, there's no need for a new allocation as
  224. * last page could have large enough tailroom.
  225. */
  226. prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
  227. GFP_USER);
  228. if (!prog_adj)
  229. return NULL;
  230. prog_adj->len = insn_adj_cnt;
  231. /* Patching happens in 3 steps:
  232. *
  233. * 1) Move over tail of insnsi from next instruction onwards,
  234. * so we can patch the single target insn with one or more
  235. * new ones (patching is always from 1 to n insns, n > 0).
  236. * 2) Inject new instructions at the target location.
  237. * 3) Adjust branch offsets if necessary.
  238. */
  239. insn_rest = insn_adj_cnt - off - len;
  240. memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
  241. sizeof(*patch) * insn_rest);
  242. memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
  243. bpf_adj_branches(prog_adj, off, insn_delta);
  244. return prog_adj;
  245. }
  246. #ifdef CONFIG_BPF_JIT
  247. struct bpf_binary_header *
  248. bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
  249. unsigned int alignment,
  250. bpf_jit_fill_hole_t bpf_fill_ill_insns)
  251. {
  252. struct bpf_binary_header *hdr;
  253. unsigned int size, hole, start;
  254. /* Most of BPF filters are really small, but if some of them
  255. * fill a page, allow at least 128 extra bytes to insert a
  256. * random section of illegal instructions.
  257. */
  258. size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
  259. hdr = module_alloc(size);
  260. if (hdr == NULL)
  261. return NULL;
  262. /* Fill space with illegal/arch-dep instructions. */
  263. bpf_fill_ill_insns(hdr, size);
  264. hdr->pages = size / PAGE_SIZE;
  265. hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
  266. PAGE_SIZE - sizeof(*hdr));
  267. start = (get_random_int() % hole) & ~(alignment - 1);
  268. /* Leave a random number of instructions before BPF code. */
  269. *image_ptr = &hdr->image[start];
  270. return hdr;
  271. }
  272. void bpf_jit_binary_free(struct bpf_binary_header *hdr)
  273. {
  274. module_memfree(hdr);
  275. }
  276. int bpf_jit_harden __read_mostly;
  277. static int bpf_jit_blind_insn(const struct bpf_insn *from,
  278. const struct bpf_insn *aux,
  279. struct bpf_insn *to_buff)
  280. {
  281. struct bpf_insn *to = to_buff;
  282. u32 imm_rnd = get_random_int();
  283. s16 off;
  284. BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
  285. BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
  286. if (from->imm == 0 &&
  287. (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
  288. from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
  289. *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
  290. goto out;
  291. }
  292. switch (from->code) {
  293. case BPF_ALU | BPF_ADD | BPF_K:
  294. case BPF_ALU | BPF_SUB | BPF_K:
  295. case BPF_ALU | BPF_AND | BPF_K:
  296. case BPF_ALU | BPF_OR | BPF_K:
  297. case BPF_ALU | BPF_XOR | BPF_K:
  298. case BPF_ALU | BPF_MUL | BPF_K:
  299. case BPF_ALU | BPF_MOV | BPF_K:
  300. case BPF_ALU | BPF_DIV | BPF_K:
  301. case BPF_ALU | BPF_MOD | BPF_K:
  302. *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
  303. *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
  304. *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
  305. break;
  306. case BPF_ALU64 | BPF_ADD | BPF_K:
  307. case BPF_ALU64 | BPF_SUB | BPF_K:
  308. case BPF_ALU64 | BPF_AND | BPF_K:
  309. case BPF_ALU64 | BPF_OR | BPF_K:
  310. case BPF_ALU64 | BPF_XOR | BPF_K:
  311. case BPF_ALU64 | BPF_MUL | BPF_K:
  312. case BPF_ALU64 | BPF_MOV | BPF_K:
  313. case BPF_ALU64 | BPF_DIV | BPF_K:
  314. case BPF_ALU64 | BPF_MOD | BPF_K:
  315. *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
  316. *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
  317. *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
  318. break;
  319. case BPF_JMP | BPF_JEQ | BPF_K:
  320. case BPF_JMP | BPF_JNE | BPF_K:
  321. case BPF_JMP | BPF_JGT | BPF_K:
  322. case BPF_JMP | BPF_JGE | BPF_K:
  323. case BPF_JMP | BPF_JSGT | BPF_K:
  324. case BPF_JMP | BPF_JSGE | BPF_K:
  325. case BPF_JMP | BPF_JSET | BPF_K:
  326. /* Accommodate for extra offset in case of a backjump. */
  327. off = from->off;
  328. if (off < 0)
  329. off -= 2;
  330. *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
  331. *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
  332. *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
  333. break;
  334. case BPF_LD | BPF_ABS | BPF_W:
  335. case BPF_LD | BPF_ABS | BPF_H:
  336. case BPF_LD | BPF_ABS | BPF_B:
  337. *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
  338. *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
  339. *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
  340. break;
  341. case BPF_LD | BPF_IND | BPF_W:
  342. case BPF_LD | BPF_IND | BPF_H:
  343. case BPF_LD | BPF_IND | BPF_B:
  344. *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
  345. *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
  346. *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
  347. *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
  348. break;
  349. case BPF_LD | BPF_IMM | BPF_DW:
  350. *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
  351. *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
  352. *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
  353. *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
  354. break;
  355. case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
  356. *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
  357. *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
  358. *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
  359. break;
  360. case BPF_ST | BPF_MEM | BPF_DW:
  361. case BPF_ST | BPF_MEM | BPF_W:
  362. case BPF_ST | BPF_MEM | BPF_H:
  363. case BPF_ST | BPF_MEM | BPF_B:
  364. *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
  365. *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
  366. *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
  367. break;
  368. }
  369. out:
  370. return to - to_buff;
  371. }
  372. static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
  373. gfp_t gfp_extra_flags)
  374. {
  375. gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
  376. gfp_extra_flags;
  377. struct bpf_prog *fp;
  378. fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
  379. if (fp != NULL) {
  380. kmemcheck_annotate_bitfield(fp, meta);
  381. /* aux->prog still points to the fp_other one, so
  382. * when promoting the clone to the real program,
  383. * this still needs to be adapted.
  384. */
  385. memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
  386. }
  387. return fp;
  388. }
  389. static void bpf_prog_clone_free(struct bpf_prog *fp)
  390. {
  391. /* aux was stolen by the other clone, so we cannot free
  392. * it from this path! It will be freed eventually by the
  393. * other program on release.
  394. *
  395. * At this point, we don't need a deferred release since
  396. * clone is guaranteed to not be locked.
  397. */
  398. fp->aux = NULL;
  399. __bpf_prog_free(fp);
  400. }
  401. void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
  402. {
  403. /* We have to repoint aux->prog to self, as we don't
  404. * know whether fp here is the clone or the original.
  405. */
  406. fp->aux->prog = fp;
  407. bpf_prog_clone_free(fp_other);
  408. }
  409. struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
  410. {
  411. struct bpf_insn insn_buff[16], aux[2];
  412. struct bpf_prog *clone, *tmp;
  413. int insn_delta, insn_cnt;
  414. struct bpf_insn *insn;
  415. int i, rewritten;
  416. if (!bpf_jit_blinding_enabled())
  417. return prog;
  418. clone = bpf_prog_clone_create(prog, GFP_USER);
  419. if (!clone)
  420. return ERR_PTR(-ENOMEM);
  421. insn_cnt = clone->len;
  422. insn = clone->insnsi;
  423. for (i = 0; i < insn_cnt; i++, insn++) {
  424. /* We temporarily need to hold the original ld64 insn
  425. * so that we can still access the first part in the
  426. * second blinding run.
  427. */
  428. if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
  429. insn[1].code == 0)
  430. memcpy(aux, insn, sizeof(aux));
  431. rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
  432. if (!rewritten)
  433. continue;
  434. tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
  435. if (!tmp) {
  436. /* Patching may have repointed aux->prog during
  437. * realloc from the original one, so we need to
  438. * fix it up here on error.
  439. */
  440. bpf_jit_prog_release_other(prog, clone);
  441. return ERR_PTR(-ENOMEM);
  442. }
  443. clone = tmp;
  444. insn_delta = rewritten - 1;
  445. /* Walk new program and skip insns we just inserted. */
  446. insn = clone->insnsi + i + insn_delta;
  447. insn_cnt += insn_delta;
  448. i += insn_delta;
  449. }
  450. return clone;
  451. }
  452. #endif /* CONFIG_BPF_JIT */
  453. /* Base function for offset calculation. Needs to go into .text section,
  454. * therefore keeping it non-static as well; will also be used by JITs
  455. * anyway later on, so do not let the compiler omit it.
  456. */
  457. noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
  458. {
  459. return 0;
  460. }
  461. EXPORT_SYMBOL_GPL(__bpf_call_base);
  462. /**
  463. * __bpf_prog_run - run eBPF program on a given context
  464. * @ctx: is the data we are operating on
  465. * @insn: is the array of eBPF instructions
  466. *
  467. * Decode and execute eBPF instructions.
  468. */
  469. static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
  470. {
  471. u64 stack[MAX_BPF_STACK / sizeof(u64)];
  472. u64 regs[MAX_BPF_REG], tmp;
  473. static const void *jumptable[256] = {
  474. [0 ... 255] = &&default_label,
  475. /* Now overwrite non-defaults ... */
  476. /* 32 bit ALU operations */
  477. [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
  478. [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
  479. [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
  480. [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
  481. [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
  482. [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
  483. [BPF_ALU | BPF_OR | BPF_X] = &&ALU_OR_X,
  484. [BPF_ALU | BPF_OR | BPF_K] = &&ALU_OR_K,
  485. [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
  486. [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
  487. [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
  488. [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
  489. [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
  490. [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
  491. [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
  492. [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
  493. [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
  494. [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
  495. [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
  496. [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
  497. [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
  498. [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
  499. [BPF_ALU | BPF_NEG] = &&ALU_NEG,
  500. [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
  501. [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
  502. /* 64 bit ALU operations */
  503. [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
  504. [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
  505. [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
  506. [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
  507. [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
  508. [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
  509. [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
  510. [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
  511. [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
  512. [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
  513. [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
  514. [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
  515. [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
  516. [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
  517. [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
  518. [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
  519. [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
  520. [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
  521. [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
  522. [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
  523. [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
  524. [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
  525. [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
  526. [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
  527. [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
  528. /* Call instruction */
  529. [BPF_JMP | BPF_CALL] = &&JMP_CALL,
  530. [BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
  531. /* Jumps */
  532. [BPF_JMP | BPF_JA] = &&JMP_JA,
  533. [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
  534. [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
  535. [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
  536. [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
  537. [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
  538. [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
  539. [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
  540. [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
  541. [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
  542. [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
  543. [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
  544. [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
  545. [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
  546. [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
  547. /* Program return */
  548. [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
  549. /* Store instructions */
  550. [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
  551. [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
  552. [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
  553. [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
  554. [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
  555. [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
  556. [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
  557. [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
  558. [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
  559. [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
  560. /* Load instructions */
  561. [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
  562. [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
  563. [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
  564. [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
  565. [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
  566. [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
  567. [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
  568. [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
  569. [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
  570. [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
  571. [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
  572. };
  573. u32 tail_call_cnt = 0;
  574. void *ptr;
  575. int off;
  576. #define CONT ({ insn++; goto select_insn; })
  577. #define CONT_JMP ({ insn++; goto select_insn; })
  578. FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
  579. ARG1 = (u64) (unsigned long) ctx;
  580. select_insn:
  581. goto *jumptable[insn->code];
  582. /* ALU */
  583. #define ALU(OPCODE, OP) \
  584. ALU64_##OPCODE##_X: \
  585. DST = DST OP SRC; \
  586. CONT; \
  587. ALU_##OPCODE##_X: \
  588. DST = (u32) DST OP (u32) SRC; \
  589. CONT; \
  590. ALU64_##OPCODE##_K: \
  591. DST = DST OP IMM; \
  592. CONT; \
  593. ALU_##OPCODE##_K: \
  594. DST = (u32) DST OP (u32) IMM; \
  595. CONT;
  596. ALU(ADD, +)
  597. ALU(SUB, -)
  598. ALU(AND, &)
  599. ALU(OR, |)
  600. ALU(LSH, <<)
  601. ALU(RSH, >>)
  602. ALU(XOR, ^)
  603. ALU(MUL, *)
  604. #undef ALU
  605. ALU_NEG:
  606. DST = (u32) -DST;
  607. CONT;
  608. ALU64_NEG:
  609. DST = -DST;
  610. CONT;
  611. ALU_MOV_X:
  612. DST = (u32) SRC;
  613. CONT;
  614. ALU_MOV_K:
  615. DST = (u32) IMM;
  616. CONT;
  617. ALU64_MOV_X:
  618. DST = SRC;
  619. CONT;
  620. ALU64_MOV_K:
  621. DST = IMM;
  622. CONT;
  623. LD_IMM_DW:
  624. DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
  625. insn++;
  626. CONT;
  627. ALU64_ARSH_X:
  628. (*(s64 *) &DST) >>= SRC;
  629. CONT;
  630. ALU64_ARSH_K:
  631. (*(s64 *) &DST) >>= IMM;
  632. CONT;
  633. ALU64_MOD_X:
  634. if (unlikely(SRC == 0))
  635. return 0;
  636. div64_u64_rem(DST, SRC, &tmp);
  637. DST = tmp;
  638. CONT;
  639. ALU_MOD_X:
  640. if (unlikely(SRC == 0))
  641. return 0;
  642. tmp = (u32) DST;
  643. DST = do_div(tmp, (u32) SRC);
  644. CONT;
  645. ALU64_MOD_K:
  646. div64_u64_rem(DST, IMM, &tmp);
  647. DST = tmp;
  648. CONT;
  649. ALU_MOD_K:
  650. tmp = (u32) DST;
  651. DST = do_div(tmp, (u32) IMM);
  652. CONT;
  653. ALU64_DIV_X:
  654. if (unlikely(SRC == 0))
  655. return 0;
  656. DST = div64_u64(DST, SRC);
  657. CONT;
  658. ALU_DIV_X:
  659. if (unlikely(SRC == 0))
  660. return 0;
  661. tmp = (u32) DST;
  662. do_div(tmp, (u32) SRC);
  663. DST = (u32) tmp;
  664. CONT;
  665. ALU64_DIV_K:
  666. DST = div64_u64(DST, IMM);
  667. CONT;
  668. ALU_DIV_K:
  669. tmp = (u32) DST;
  670. do_div(tmp, (u32) IMM);
  671. DST = (u32) tmp;
  672. CONT;
  673. ALU_END_TO_BE:
  674. switch (IMM) {
  675. case 16:
  676. DST = (__force u16) cpu_to_be16(DST);
  677. break;
  678. case 32:
  679. DST = (__force u32) cpu_to_be32(DST);
  680. break;
  681. case 64:
  682. DST = (__force u64) cpu_to_be64(DST);
  683. break;
  684. }
  685. CONT;
  686. ALU_END_TO_LE:
  687. switch (IMM) {
  688. case 16:
  689. DST = (__force u16) cpu_to_le16(DST);
  690. break;
  691. case 32:
  692. DST = (__force u32) cpu_to_le32(DST);
  693. break;
  694. case 64:
  695. DST = (__force u64) cpu_to_le64(DST);
  696. break;
  697. }
  698. CONT;
  699. /* CALL */
  700. JMP_CALL:
  701. /* Function call scratches BPF_R1-BPF_R5 registers,
  702. * preserves BPF_R6-BPF_R9, and stores return value
  703. * into BPF_R0.
  704. */
  705. BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
  706. BPF_R4, BPF_R5);
  707. CONT;
  708. JMP_TAIL_CALL: {
  709. struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
  710. struct bpf_array *array = container_of(map, struct bpf_array, map);
  711. struct bpf_prog *prog;
  712. u64 index = BPF_R3;
  713. if (unlikely(index >= array->map.max_entries))
  714. goto out;
  715. if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
  716. goto out;
  717. tail_call_cnt++;
  718. prog = READ_ONCE(array->ptrs[index]);
  719. if (!prog)
  720. goto out;
  721. /* ARG1 at this point is guaranteed to point to CTX from
  722. * the verifier side due to the fact that the tail call is
  723. * handeled like a helper, that is, bpf_tail_call_proto,
  724. * where arg1_type is ARG_PTR_TO_CTX.
  725. */
  726. insn = prog->insnsi;
  727. goto select_insn;
  728. out:
  729. CONT;
  730. }
  731. /* JMP */
  732. JMP_JA:
  733. insn += insn->off;
  734. CONT;
  735. JMP_JEQ_X:
  736. if (DST == SRC) {
  737. insn += insn->off;
  738. CONT_JMP;
  739. }
  740. CONT;
  741. JMP_JEQ_K:
  742. if (DST == IMM) {
  743. insn += insn->off;
  744. CONT_JMP;
  745. }
  746. CONT;
  747. JMP_JNE_X:
  748. if (DST != SRC) {
  749. insn += insn->off;
  750. CONT_JMP;
  751. }
  752. CONT;
  753. JMP_JNE_K:
  754. if (DST != IMM) {
  755. insn += insn->off;
  756. CONT_JMP;
  757. }
  758. CONT;
  759. JMP_JGT_X:
  760. if (DST > SRC) {
  761. insn += insn->off;
  762. CONT_JMP;
  763. }
  764. CONT;
  765. JMP_JGT_K:
  766. if (DST > IMM) {
  767. insn += insn->off;
  768. CONT_JMP;
  769. }
  770. CONT;
  771. JMP_JGE_X:
  772. if (DST >= SRC) {
  773. insn += insn->off;
  774. CONT_JMP;
  775. }
  776. CONT;
  777. JMP_JGE_K:
  778. if (DST >= IMM) {
  779. insn += insn->off;
  780. CONT_JMP;
  781. }
  782. CONT;
  783. JMP_JSGT_X:
  784. if (((s64) DST) > ((s64) SRC)) {
  785. insn += insn->off;
  786. CONT_JMP;
  787. }
  788. CONT;
  789. JMP_JSGT_K:
  790. if (((s64) DST) > ((s64) IMM)) {
  791. insn += insn->off;
  792. CONT_JMP;
  793. }
  794. CONT;
  795. JMP_JSGE_X:
  796. if (((s64) DST) >= ((s64) SRC)) {
  797. insn += insn->off;
  798. CONT_JMP;
  799. }
  800. CONT;
  801. JMP_JSGE_K:
  802. if (((s64) DST) >= ((s64) IMM)) {
  803. insn += insn->off;
  804. CONT_JMP;
  805. }
  806. CONT;
  807. JMP_JSET_X:
  808. if (DST & SRC) {
  809. insn += insn->off;
  810. CONT_JMP;
  811. }
  812. CONT;
  813. JMP_JSET_K:
  814. if (DST & IMM) {
  815. insn += insn->off;
  816. CONT_JMP;
  817. }
  818. CONT;
  819. JMP_EXIT:
  820. return BPF_R0;
  821. /* STX and ST and LDX*/
  822. #define LDST(SIZEOP, SIZE) \
  823. STX_MEM_##SIZEOP: \
  824. *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
  825. CONT; \
  826. ST_MEM_##SIZEOP: \
  827. *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
  828. CONT; \
  829. LDX_MEM_##SIZEOP: \
  830. DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
  831. CONT;
  832. LDST(B, u8)
  833. LDST(H, u16)
  834. LDST(W, u32)
  835. LDST(DW, u64)
  836. #undef LDST
  837. STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
  838. atomic_add((u32) SRC, (atomic_t *)(unsigned long)
  839. (DST + insn->off));
  840. CONT;
  841. STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
  842. atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
  843. (DST + insn->off));
  844. CONT;
  845. LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
  846. off = IMM;
  847. load_word:
  848. /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
  849. * only appearing in the programs where ctx ==
  850. * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
  851. * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
  852. * internal BPF verifier will check that BPF_R6 ==
  853. * ctx.
  854. *
  855. * BPF_ABS and BPF_IND are wrappers of function calls,
  856. * so they scratch BPF_R1-BPF_R5 registers, preserve
  857. * BPF_R6-BPF_R9, and store return value into BPF_R0.
  858. *
  859. * Implicit input:
  860. * ctx == skb == BPF_R6 == CTX
  861. *
  862. * Explicit input:
  863. * SRC == any register
  864. * IMM == 32-bit immediate
  865. *
  866. * Output:
  867. * BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
  868. */
  869. ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
  870. if (likely(ptr != NULL)) {
  871. BPF_R0 = get_unaligned_be32(ptr);
  872. CONT;
  873. }
  874. return 0;
  875. LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
  876. off = IMM;
  877. load_half:
  878. ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
  879. if (likely(ptr != NULL)) {
  880. BPF_R0 = get_unaligned_be16(ptr);
  881. CONT;
  882. }
  883. return 0;
  884. LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
  885. off = IMM;
  886. load_byte:
  887. ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
  888. if (likely(ptr != NULL)) {
  889. BPF_R0 = *(u8 *)ptr;
  890. CONT;
  891. }
  892. return 0;
  893. LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
  894. off = IMM + SRC;
  895. goto load_word;
  896. LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
  897. off = IMM + SRC;
  898. goto load_half;
  899. LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
  900. off = IMM + SRC;
  901. goto load_byte;
  902. default_label:
  903. /* If we ever reach this, we have a bug somewhere. */
  904. WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
  905. return 0;
  906. }
  907. STACK_FRAME_NON_STANDARD(__bpf_prog_run); /* jump table */
  908. bool bpf_prog_array_compatible(struct bpf_array *array,
  909. const struct bpf_prog *fp)
  910. {
  911. if (!array->owner_prog_type) {
  912. /* There's no owner yet where we could check for
  913. * compatibility.
  914. */
  915. array->owner_prog_type = fp->type;
  916. array->owner_jited = fp->jited;
  917. return true;
  918. }
  919. return array->owner_prog_type == fp->type &&
  920. array->owner_jited == fp->jited;
  921. }
  922. static int bpf_check_tail_call(const struct bpf_prog *fp)
  923. {
  924. struct bpf_prog_aux *aux = fp->aux;
  925. int i;
  926. for (i = 0; i < aux->used_map_cnt; i++) {
  927. struct bpf_map *map = aux->used_maps[i];
  928. struct bpf_array *array;
  929. if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
  930. continue;
  931. array = container_of(map, struct bpf_array, map);
  932. if (!bpf_prog_array_compatible(array, fp))
  933. return -EINVAL;
  934. }
  935. return 0;
  936. }
  937. /**
  938. * bpf_prog_select_runtime - select exec runtime for BPF program
  939. * @fp: bpf_prog populated with internal BPF program
  940. * @err: pointer to error variable
  941. *
  942. * Try to JIT eBPF program, if JIT is not available, use interpreter.
  943. * The BPF program will be executed via BPF_PROG_RUN() macro.
  944. */
  945. struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
  946. {
  947. fp->bpf_func = (void *) __bpf_prog_run;
  948. /* eBPF JITs can rewrite the program in case constant
  949. * blinding is active. However, in case of error during
  950. * blinding, bpf_int_jit_compile() must always return a
  951. * valid program, which in this case would simply not
  952. * be JITed, but falls back to the interpreter.
  953. */
  954. fp = bpf_int_jit_compile(fp);
  955. bpf_prog_lock_ro(fp);
  956. /* The tail call compatibility check can only be done at
  957. * this late stage as we need to determine, if we deal
  958. * with JITed or non JITed program concatenations and not
  959. * all eBPF JITs might immediately support all features.
  960. */
  961. *err = bpf_check_tail_call(fp);
  962. return fp;
  963. }
  964. EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
  965. static void bpf_prog_free_deferred(struct work_struct *work)
  966. {
  967. struct bpf_prog_aux *aux;
  968. aux = container_of(work, struct bpf_prog_aux, work);
  969. bpf_jit_free(aux->prog);
  970. }
  971. /* Free internal BPF program */
  972. void bpf_prog_free(struct bpf_prog *fp)
  973. {
  974. struct bpf_prog_aux *aux = fp->aux;
  975. INIT_WORK(&aux->work, bpf_prog_free_deferred);
  976. schedule_work(&aux->work);
  977. }
  978. EXPORT_SYMBOL_GPL(bpf_prog_free);
  979. /* RNG for unpriviledged user space with separated state from prandom_u32(). */
  980. static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
  981. void bpf_user_rnd_init_once(void)
  982. {
  983. prandom_init_once(&bpf_user_rnd_state);
  984. }
  985. BPF_CALL_0(bpf_user_rnd_u32)
  986. {
  987. /* Should someone ever have the rather unwise idea to use some
  988. * of the registers passed into this function, then note that
  989. * this function is called from native eBPF and classic-to-eBPF
  990. * transformations. Register assignments from both sides are
  991. * different, f.e. classic always sets fn(ctx, A, X) here.
  992. */
  993. struct rnd_state *state;
  994. u32 res;
  995. state = &get_cpu_var(bpf_user_rnd_state);
  996. res = prandom_u32_state(state);
  997. put_cpu_var(bpf_user_rnd_state);
  998. return res;
  999. }
  1000. /* Weak definitions of helper functions in case we don't have bpf syscall. */
  1001. const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
  1002. const struct bpf_func_proto bpf_map_update_elem_proto __weak;
  1003. const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
  1004. const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
  1005. const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
  1006. const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
  1007. const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
  1008. const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
  1009. const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
  1010. const struct bpf_func_proto bpf_get_current_comm_proto __weak;
  1011. const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
  1012. {
  1013. return NULL;
  1014. }
  1015. u64 __weak
  1016. bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
  1017. void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
  1018. {
  1019. return -ENOTSUPP;
  1020. }
  1021. /* Always built-in helper functions. */
  1022. const struct bpf_func_proto bpf_tail_call_proto = {
  1023. .func = NULL,
  1024. .gpl_only = false,
  1025. .ret_type = RET_VOID,
  1026. .arg1_type = ARG_PTR_TO_CTX,
  1027. .arg2_type = ARG_CONST_MAP_PTR,
  1028. .arg3_type = ARG_ANYTHING,
  1029. };
  1030. /* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
  1031. struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
  1032. {
  1033. return prog;
  1034. }
  1035. bool __weak bpf_helper_changes_pkt_data(void *func)
  1036. {
  1037. return false;
  1038. }
  1039. /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
  1040. * skb_copy_bits(), so provide a weak definition of it for NET-less config.
  1041. */
  1042. int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
  1043. int len)
  1044. {
  1045. return -EFAULT;
  1046. }