xfs_alloc_btree.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466
  1. /*
  2. * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_shared.h"
  21. #include "xfs_format.h"
  22. #include "xfs_log_format.h"
  23. #include "xfs_trans_resv.h"
  24. #include "xfs_sb.h"
  25. #include "xfs_mount.h"
  26. #include "xfs_btree.h"
  27. #include "xfs_alloc_btree.h"
  28. #include "xfs_alloc.h"
  29. #include "xfs_extent_busy.h"
  30. #include "xfs_error.h"
  31. #include "xfs_trace.h"
  32. #include "xfs_cksum.h"
  33. #include "xfs_trans.h"
  34. STATIC struct xfs_btree_cur *
  35. xfs_allocbt_dup_cursor(
  36. struct xfs_btree_cur *cur)
  37. {
  38. return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
  39. cur->bc_private.a.agbp, cur->bc_private.a.agno,
  40. cur->bc_btnum);
  41. }
  42. STATIC void
  43. xfs_allocbt_set_root(
  44. struct xfs_btree_cur *cur,
  45. union xfs_btree_ptr *ptr,
  46. int inc)
  47. {
  48. struct xfs_buf *agbp = cur->bc_private.a.agbp;
  49. struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
  50. xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
  51. int btnum = cur->bc_btnum;
  52. struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
  53. ASSERT(ptr->s != 0);
  54. agf->agf_roots[btnum] = ptr->s;
  55. be32_add_cpu(&agf->agf_levels[btnum], inc);
  56. pag->pagf_levels[btnum] += inc;
  57. xfs_perag_put(pag);
  58. xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
  59. }
  60. STATIC int
  61. xfs_allocbt_alloc_block(
  62. struct xfs_btree_cur *cur,
  63. union xfs_btree_ptr *start,
  64. union xfs_btree_ptr *new,
  65. int *stat)
  66. {
  67. int error;
  68. xfs_agblock_t bno;
  69. XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
  70. /* Allocate the new block from the freelist. If we can't, give up. */
  71. error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
  72. &bno, 1);
  73. if (error) {
  74. XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
  75. return error;
  76. }
  77. if (bno == NULLAGBLOCK) {
  78. XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
  79. *stat = 0;
  80. return 0;
  81. }
  82. xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false);
  83. xfs_trans_agbtree_delta(cur->bc_tp, 1);
  84. new->s = cpu_to_be32(bno);
  85. XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
  86. *stat = 1;
  87. return 0;
  88. }
  89. STATIC int
  90. xfs_allocbt_free_block(
  91. struct xfs_btree_cur *cur,
  92. struct xfs_buf *bp)
  93. {
  94. struct xfs_buf *agbp = cur->bc_private.a.agbp;
  95. struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
  96. xfs_agblock_t bno;
  97. int error;
  98. bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
  99. error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
  100. if (error)
  101. return error;
  102. xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
  103. XFS_EXTENT_BUSY_SKIP_DISCARD);
  104. xfs_trans_agbtree_delta(cur->bc_tp, -1);
  105. return 0;
  106. }
  107. /*
  108. * Update the longest extent in the AGF
  109. */
  110. STATIC void
  111. xfs_allocbt_update_lastrec(
  112. struct xfs_btree_cur *cur,
  113. struct xfs_btree_block *block,
  114. union xfs_btree_rec *rec,
  115. int ptr,
  116. int reason)
  117. {
  118. struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
  119. xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
  120. struct xfs_perag *pag;
  121. __be32 len;
  122. int numrecs;
  123. ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
  124. switch (reason) {
  125. case LASTREC_UPDATE:
  126. /*
  127. * If this is the last leaf block and it's the last record,
  128. * then update the size of the longest extent in the AG.
  129. */
  130. if (ptr != xfs_btree_get_numrecs(block))
  131. return;
  132. len = rec->alloc.ar_blockcount;
  133. break;
  134. case LASTREC_INSREC:
  135. if (be32_to_cpu(rec->alloc.ar_blockcount) <=
  136. be32_to_cpu(agf->agf_longest))
  137. return;
  138. len = rec->alloc.ar_blockcount;
  139. break;
  140. case LASTREC_DELREC:
  141. numrecs = xfs_btree_get_numrecs(block);
  142. if (ptr <= numrecs)
  143. return;
  144. ASSERT(ptr == numrecs + 1);
  145. if (numrecs) {
  146. xfs_alloc_rec_t *rrp;
  147. rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
  148. len = rrp->ar_blockcount;
  149. } else {
  150. len = 0;
  151. }
  152. break;
  153. default:
  154. ASSERT(0);
  155. return;
  156. }
  157. agf->agf_longest = len;
  158. pag = xfs_perag_get(cur->bc_mp, seqno);
  159. pag->pagf_longest = be32_to_cpu(len);
  160. xfs_perag_put(pag);
  161. xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST);
  162. }
  163. STATIC int
  164. xfs_allocbt_get_minrecs(
  165. struct xfs_btree_cur *cur,
  166. int level)
  167. {
  168. return cur->bc_mp->m_alloc_mnr[level != 0];
  169. }
  170. STATIC int
  171. xfs_allocbt_get_maxrecs(
  172. struct xfs_btree_cur *cur,
  173. int level)
  174. {
  175. return cur->bc_mp->m_alloc_mxr[level != 0];
  176. }
  177. STATIC void
  178. xfs_allocbt_init_key_from_rec(
  179. union xfs_btree_key *key,
  180. union xfs_btree_rec *rec)
  181. {
  182. ASSERT(rec->alloc.ar_startblock != 0);
  183. key->alloc.ar_startblock = rec->alloc.ar_startblock;
  184. key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
  185. }
  186. STATIC void
  187. xfs_allocbt_init_rec_from_cur(
  188. struct xfs_btree_cur *cur,
  189. union xfs_btree_rec *rec)
  190. {
  191. ASSERT(cur->bc_rec.a.ar_startblock != 0);
  192. rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
  193. rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
  194. }
  195. STATIC void
  196. xfs_allocbt_init_ptr_from_cur(
  197. struct xfs_btree_cur *cur,
  198. union xfs_btree_ptr *ptr)
  199. {
  200. struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
  201. ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
  202. ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
  203. ptr->s = agf->agf_roots[cur->bc_btnum];
  204. }
  205. STATIC __int64_t
  206. xfs_allocbt_key_diff(
  207. struct xfs_btree_cur *cur,
  208. union xfs_btree_key *key)
  209. {
  210. xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
  211. xfs_alloc_key_t *kp = &key->alloc;
  212. __int64_t diff;
  213. if (cur->bc_btnum == XFS_BTNUM_BNO) {
  214. return (__int64_t)be32_to_cpu(kp->ar_startblock) -
  215. rec->ar_startblock;
  216. }
  217. diff = (__int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
  218. if (diff)
  219. return diff;
  220. return (__int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
  221. }
  222. static bool
  223. xfs_allocbt_verify(
  224. struct xfs_buf *bp)
  225. {
  226. struct xfs_mount *mp = bp->b_target->bt_mount;
  227. struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
  228. struct xfs_perag *pag = bp->b_pag;
  229. unsigned int level;
  230. /*
  231. * magic number and level verification
  232. *
  233. * During growfs operations, we can't verify the exact level or owner as
  234. * the perag is not fully initialised and hence not attached to the
  235. * buffer. In this case, check against the maximum tree depth.
  236. *
  237. * Similarly, during log recovery we will have a perag structure
  238. * attached, but the agf information will not yet have been initialised
  239. * from the on disk AGF. Again, we can only check against maximum limits
  240. * in this case.
  241. */
  242. level = be16_to_cpu(block->bb_level);
  243. switch (block->bb_magic) {
  244. case cpu_to_be32(XFS_ABTB_CRC_MAGIC):
  245. if (!xfs_btree_sblock_v5hdr_verify(bp))
  246. return false;
  247. /* fall through */
  248. case cpu_to_be32(XFS_ABTB_MAGIC):
  249. if (pag && pag->pagf_init) {
  250. if (level >= pag->pagf_levels[XFS_BTNUM_BNOi])
  251. return false;
  252. } else if (level >= mp->m_ag_maxlevels)
  253. return false;
  254. break;
  255. case cpu_to_be32(XFS_ABTC_CRC_MAGIC):
  256. if (!xfs_btree_sblock_v5hdr_verify(bp))
  257. return false;
  258. /* fall through */
  259. case cpu_to_be32(XFS_ABTC_MAGIC):
  260. if (pag && pag->pagf_init) {
  261. if (level >= pag->pagf_levels[XFS_BTNUM_CNTi])
  262. return false;
  263. } else if (level >= mp->m_ag_maxlevels)
  264. return false;
  265. break;
  266. default:
  267. return false;
  268. }
  269. return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
  270. }
  271. static void
  272. xfs_allocbt_read_verify(
  273. struct xfs_buf *bp)
  274. {
  275. if (!xfs_btree_sblock_verify_crc(bp))
  276. xfs_buf_ioerror(bp, -EFSBADCRC);
  277. else if (!xfs_allocbt_verify(bp))
  278. xfs_buf_ioerror(bp, -EFSCORRUPTED);
  279. if (bp->b_error) {
  280. trace_xfs_btree_corrupt(bp, _RET_IP_);
  281. xfs_verifier_error(bp);
  282. }
  283. }
  284. static void
  285. xfs_allocbt_write_verify(
  286. struct xfs_buf *bp)
  287. {
  288. if (!xfs_allocbt_verify(bp)) {
  289. trace_xfs_btree_corrupt(bp, _RET_IP_);
  290. xfs_buf_ioerror(bp, -EFSCORRUPTED);
  291. xfs_verifier_error(bp);
  292. return;
  293. }
  294. xfs_btree_sblock_calc_crc(bp);
  295. }
  296. const struct xfs_buf_ops xfs_allocbt_buf_ops = {
  297. .name = "xfs_allocbt",
  298. .verify_read = xfs_allocbt_read_verify,
  299. .verify_write = xfs_allocbt_write_verify,
  300. };
  301. #if defined(DEBUG) || defined(XFS_WARN)
  302. STATIC int
  303. xfs_allocbt_keys_inorder(
  304. struct xfs_btree_cur *cur,
  305. union xfs_btree_key *k1,
  306. union xfs_btree_key *k2)
  307. {
  308. if (cur->bc_btnum == XFS_BTNUM_BNO) {
  309. return be32_to_cpu(k1->alloc.ar_startblock) <
  310. be32_to_cpu(k2->alloc.ar_startblock);
  311. } else {
  312. return be32_to_cpu(k1->alloc.ar_blockcount) <
  313. be32_to_cpu(k2->alloc.ar_blockcount) ||
  314. (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
  315. be32_to_cpu(k1->alloc.ar_startblock) <
  316. be32_to_cpu(k2->alloc.ar_startblock));
  317. }
  318. }
  319. STATIC int
  320. xfs_allocbt_recs_inorder(
  321. struct xfs_btree_cur *cur,
  322. union xfs_btree_rec *r1,
  323. union xfs_btree_rec *r2)
  324. {
  325. if (cur->bc_btnum == XFS_BTNUM_BNO) {
  326. return be32_to_cpu(r1->alloc.ar_startblock) +
  327. be32_to_cpu(r1->alloc.ar_blockcount) <=
  328. be32_to_cpu(r2->alloc.ar_startblock);
  329. } else {
  330. return be32_to_cpu(r1->alloc.ar_blockcount) <
  331. be32_to_cpu(r2->alloc.ar_blockcount) ||
  332. (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
  333. be32_to_cpu(r1->alloc.ar_startblock) <
  334. be32_to_cpu(r2->alloc.ar_startblock));
  335. }
  336. }
  337. #endif /* DEBUG */
  338. static const struct xfs_btree_ops xfs_allocbt_ops = {
  339. .rec_len = sizeof(xfs_alloc_rec_t),
  340. .key_len = sizeof(xfs_alloc_key_t),
  341. .dup_cursor = xfs_allocbt_dup_cursor,
  342. .set_root = xfs_allocbt_set_root,
  343. .alloc_block = xfs_allocbt_alloc_block,
  344. .free_block = xfs_allocbt_free_block,
  345. .update_lastrec = xfs_allocbt_update_lastrec,
  346. .get_minrecs = xfs_allocbt_get_minrecs,
  347. .get_maxrecs = xfs_allocbt_get_maxrecs,
  348. .init_key_from_rec = xfs_allocbt_init_key_from_rec,
  349. .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
  350. .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
  351. .key_diff = xfs_allocbt_key_diff,
  352. .buf_ops = &xfs_allocbt_buf_ops,
  353. #if defined(DEBUG) || defined(XFS_WARN)
  354. .keys_inorder = xfs_allocbt_keys_inorder,
  355. .recs_inorder = xfs_allocbt_recs_inorder,
  356. #endif
  357. };
  358. /*
  359. * Allocate a new allocation btree cursor.
  360. */
  361. struct xfs_btree_cur * /* new alloc btree cursor */
  362. xfs_allocbt_init_cursor(
  363. struct xfs_mount *mp, /* file system mount point */
  364. struct xfs_trans *tp, /* transaction pointer */
  365. struct xfs_buf *agbp, /* buffer for agf structure */
  366. xfs_agnumber_t agno, /* allocation group number */
  367. xfs_btnum_t btnum) /* btree identifier */
  368. {
  369. struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
  370. struct xfs_btree_cur *cur;
  371. ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
  372. cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
  373. cur->bc_tp = tp;
  374. cur->bc_mp = mp;
  375. cur->bc_btnum = btnum;
  376. cur->bc_blocklog = mp->m_sb.sb_blocklog;
  377. cur->bc_ops = &xfs_allocbt_ops;
  378. if (btnum == XFS_BTNUM_BNO)
  379. cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
  380. else
  381. cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
  382. if (btnum == XFS_BTNUM_CNT) {
  383. cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
  384. cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
  385. } else {
  386. cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
  387. }
  388. cur->bc_private.a.agbp = agbp;
  389. cur->bc_private.a.agno = agno;
  390. if (xfs_sb_version_hascrc(&mp->m_sb))
  391. cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
  392. return cur;
  393. }
  394. /*
  395. * Calculate number of records in an alloc btree block.
  396. */
  397. int
  398. xfs_allocbt_maxrecs(
  399. struct xfs_mount *mp,
  400. int blocklen,
  401. int leaf)
  402. {
  403. blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
  404. if (leaf)
  405. return blocklen / sizeof(xfs_alloc_rec_t);
  406. return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
  407. }